Machine-learning system based on light could yield more powerful, efficient large language models

MIT system demonstrates greater than 100-fold improvement in energy efficiency and a 25-fold improvement in compute density compared with current systems. The current work is the latest achievement in a drumbeat of progress over the last few years by Englund and many of the same colleagues. For example, in 2019 an Englund team reported the theoretical work that led to the current demonstration. The first author of that paper, Ryan Hamerly, now of RLE and NTT Research Inc., is also an author of the current paper. Machine-learning system based on light could yield more powerful, efficient large language models | MIT News | Massachusetts Institute of Technology

Facebook
Twitter
LinkedIn
Your Privacy

When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.