How Analog AI Hardware May One Day Reduce Costs and Carbon Emissions

Could analog artificial intelligence (AI) hardware – rather than digital – tap fast, low-energy processing to solve machine learning’s rising costs and carbon footprint? Researchers say yes: Logan Wright and Tatsuhiro Onodera, research scientists at NTT Research and Cornell University, envision a future where machine learning (ML) will be performed with novel physical hardware, such as those based on photonics or nanomechanics. These unconventional devices, they say, could be applied in both edge and server settings. How analog AI hardware may one day reduce costs and carbon emissions | VentureBeat

Facebook
Twitter
LinkedIn
Your Privacy

When you visit any website, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and change our default settings. However, blocking some types of cookies may impact your experience of the site and the services we are able to offer.