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Abstract

Quantum and classical systems evolving under the same formal Hamiltonian H may exhibit dramatically
different behavior after the Ehrenfest timescale tg ~ log(h™'), even as i — 0. Coupling the system
to a Markovian environment results in a Lindblad equation for the quantum evolution. Its classical
counterpart is given by the Fokker-Planck equation on phase space, which describes Hamiltonian flow with
friction and diffusive noise. The quantum and classical evolutions may be compared via the Wigner-Weyl
representation. Due to decoherence, they are conjectured to match closely for times far beyond the
Ehrenfest timescale as i — 0. We prove a version of this correspondence, bounding the error between the
quantum and classical evolutions for any sufficiently regular Hamiltonian H(z,p) and Lindblad functions
Li(x,p). The error is small when the strength of the diffusion D associated to the Lindblad functions
satisfies D > h4/3, in particular allowing vanishing noise in the classical limit. We use a time-dependent
semiclassical mixture of variably squeezed Gaussian states evolving by a local harmonic approximation to
the Lindblad dynamics. Both the exact quantum trajectory and its classical counterpart can be expressed
as perturbations of this semiclassical mixture, with the errors bounded using Duhamel’s principle. We
present heuristic arguments suggesting the 4/3 exponent is optimal and defines a boundary in the sense
that asymptotically weaker diffusion permits a breakdown of quantum-classical correspondence at the
Ehrenfest timescale. Our presentation aims to be comprehensive and accessible to both mathematicians
and physicists. In a shorter companion paper, we treat the special case of Hamiltonians of the form
H =p? /2m + V(z) and linear Lindblad operators, with explicit bounds that can be applied directly to
physical systems.

*Email: felipehb@stanford.edu
fEmail: dranard@mit.edu
tEmail: jessriedel@gmail.com



Contents

1 Introduction

1.1 Quantum-classical correspondence times for different coupling strengths . . . . . . . . . . ..
1.2 Heuristic justification of the A%/3 threshold from the Moyal bracket . . . . . . ... ... ...
1.3 Previous work . . . . ..o e
1.4 Future work . . . . . . . . e e e

1.5 Structure of the paper . . . . . . . . ..

1.6 Acknowledgements . . . . . . .. ... o

Overview of the proof

Statement of the main result

3.1 Definitions and assumptions . . . . . . .. ...
3.2 Statement of Theorem 3.1 . . . . . . . ... ... o

Basic notation and definitions

4.1 Indices and the symplectic form . . . . . . . ... L oL 0oL
4.2 Matrices . . . . ..o e
4.3 Norms and seminorms . . . . . . . . . .. ...
4.4 Wigner-Weyl representation . . . . . . .. ... . o oL
4.5 Moyal star product . . . . ... ..o L

Technical preliminaries

5.1 Classical limit of Lindblad dynamics: Fokker-Planck equation
5.2 Harmonic Markovian dynamics: quadratic Lindblad equation
5.3 Gaussian states and their harmonic evolution . . . . . ... ... ... ...
5.4 Local harmonic approximation . . . . . .. ... .. ... .. ........

Proof of Theorem 3.1

6.1 Defining the Gaussian mixture p(¢) . . . . . . . ... ... oL
6.2 Bounding |[p—pllmr - - - - - e
6.3 Bounding |[Wh[p] — fllLr - - -« o o o o
6.4 Concluding the proof . . . . . . . . .. .. Lo

NTS Preservation

Harmonic approximation error

81 Classical case . . . . . . . . .
8.2 Quantum case. . . . . . . ...

Moyal product bound

9.1 Mainlemma . . . . . . . . . e e e e
9.2 Proof of Proposition 8.1 from Lemma 9.1 . . ... .. ... .........
9.3 Proof of the Moyal product bound . . . . . .. ... ... ... ... ...
Physical units, symplectic covariance, and a corollary

A.1 Symplectic transformations of the mainresult . . . . . ... ... ... ...
A2 Units. . .. o
A3 Corollary . . . . .
Gaussian derivatives and integrals

B.1 Gaussian derivatives . . . . . . . ...
B.2 Gaussian integrals . . . . . . . . . ...

17
17
17
19
19
21

21
21
23
24
26

29
29
31
32
33

33

37
37
40

46
47
48
50

53
53
54
54



1 Introduction

In this paper we study the correspondence between classical and quantum mechanics in systems that interact
with an external environment. That is, we include effects such as dissipation, diffusion, and decoherence
that arise from the environmental interaction. Such systems are referred to in the physics literature as open
quantum systems'! and are important for the understanding of the emergence of classical behavior from
quantum mechanics. Closed quantum systems by definition have no such interactions with an environment,
and the correspondence between classical and quantum mechanics provided by Egorov’s theorem [1-6] is
limited to the Ehrenfest time, which is logarithmic in Planck’s constant, the semiclassical parameter h.
Beyond this timescale, the quantum wavefunction for a closed quantum system can develop coherence over
long distances, which do not correspond to any classical state and are not readily observed in real-world
macroscopic systems. It has been argued in the physics literature that decoherence from the environment
is responsible for the appearance of classical behavior [7-14] (but cf. [15-25]). Numerical simulations and
analytical arguments [26-33] suggest that the Wigner function of the quantum state and the corresponding
classical state will become indistinguishable in the classical limit in the presence of sufficient decoherence.
The state of an open quantum system for d variables is given by p, a positive semi-definite trace-class
operator on L%(R). The strong fundamental assumption enabling our analysis is the Markov condition, which
implies that the dynamics generate a quantum dynamical semigroup [34-42]. Under this assumption, the
quantum state evolves according to the Lindblad equation ,p(t) = L[p(t)], with Lindbladian £ given by?

Llp] = —% {ﬁ,p} + % Zk: <ﬁkpﬁﬁ — % {ﬁﬁﬁk,p}) . (1.1)

The first term corresponds to the Schrodinger evolution with self-adjoint Hamiltonian H and the second
term incorporates the effect of the environment, as described by the Lindblad operators Lj. Within this
introduction we use a coupling strength v > 0 to more transparently control the overall strength of the
coupling with the environment, and in particular we will allow v to depend on & as we take i — 0. The
Lindblad equation is traditionally written with v =1 (i.e., /¥ absorbed into the definition of ﬂk), as we will
in fact do following the introduction.

As we review in Section 5.1, the corresponding classical dynamics for the classical distribution f(¢) are
given by the Fokker-Planck equation 0;f = L[f] using the Liovillian [43,44]

L) = ~0ulf (0" H + G*)] + 50,(D" ). (12)

where H = Opgl[lil ] is the Wigner transform?® of the Hamiltonian, and where the friction vector G* and
diffusion matrix D are given by

G*:=~Im ) Ly0"L; (1.3)
k

D :=yhRe» (9°Ly)(0"L}) (1.4)
k

using the “Lindblad functions” Lj = Opgl[ﬁk}. We use phase space coordinate indices a,b € {1,...,2d}
where the first d indices are spatial and the second d indices are momentum variables. Raised and lowered
indices are contracted with the standard symplectic form w = (—(I)M, ]lod ), so that for example (0, f)(0*H) =
(Oxf)(OpH) — (Opf)(0xH) =: { f, H}p is the Poisson bracket and 0,0 = 0 vanishes by antisymmetry. We
will discuss varying v with & further in Section 1.1, but for now just note that with v = 1 the diffusion D

1In the mathematics literature, the term “open system” often refers to a dynamical system on a non-compact space. In this
paper we instead use the physicist’s meaning of the term “open system”. In particular, the entropy of the open quantum state
obeying the Lindblad equation 1.1 and the entropy of the open classical state obeying the Fokker-Planck equation 1.2 can both
increase with time.

2We use [A, B] := AB — BA and {A, B} := AB + BA for the commutator and anti-commutator of operators. In particular,
the latter should not be confused with the Poisson bracket, which we denote {-,-}pg.

3The Wigner transformation is the inverse of Weyl quantization, Opy,. This and other aspects of the Wigner-Weyl representation
are reviewed in Section 4.4.



vanishes in the classical limit & — 0 while the friction G is fixed. 4 We sometimes refer to the diffusion in the
classical dynamics as “noise,” in the sense of Brownian motion arising from a Langevin stochastic differential
equation.

We loosely refer to a “quantum-classical correspondence” when the quantum trajectory p(t) resembles the
classical trajectory f(¢). For closed systems (y = 0), such a correspondence only lasts until the Ehrenfest
time 75 ~ log(h~1), while for open systems with v sufficiently large it is conjectured to last much longer. Our
primary contribution in this paper is to prove such a correspondence for times that are a negative power of #,
hence exponentially larger than the Ehrenfest time, and for a general class of Lindbladians. The special case
of Hamiltonians of the form H = p? /2m + V(&) and linear Lindblad operators without friction is addressed in
a short companion paper [45].

To show the quantum and classical evolutions are close, ideally one might show that f(¢) and Wy[p(t)]
are close. Instead we show a closely related claim by constructing an auxiliary object p(t) that at each time
t is a certain mixture of Gaussian states and hence has both a quantum and classical interpretation. We
then show that p(t) is close to p(t) in trace norm (the Schatten 1-norm) and that its non-negative Wigner
function Wy [p(t)] is close to f(t) in total variation distance (the L' norm). To this end, we introduce a new
strategy for representing quantum states as a mixture of Gaussians with covariance matrices that are allowed
to dynamically evolve but never get too strongly squeezed. This can be seen as a generalization of both the
Glauber-Sudarshan P-function [46-49] and the techniques of Heller and Graefe et al. [50-52]

We now state a simplified version® of our main result, which demonstrates how our error bound scales with
h and ~. It assumes fixed Hamiltonian function H and Lindblad functions L that satisfy regularity conditions
described in Assumption 3.1 in Section 3.1, and it refers to coherent states, which are pure Gaussian states
with covariance matrix proportional to the identity as reviewed in Section 5.3.

Theorem 1.1 (Main result, simplified). Assume p(t=0) is a mixture of coherent states, p(t) solves the
Lindblad equation, and f(t) solves the Fokker-Planck equation with f(t=0) = Wy[p(t=0)], for some h € (0,1).
Then there exists a quasiclassical quantum trajectory p(t) that is a mizture of Gaussian states, has positive
Wigner function, and approximates both p and f in the sense that

Walp()] = F)llr < et

@) = p()]ly < et (1.5)

where
e = C(H, Ly) h'/? max{1,~/2}. (1.6)

In the above theorem the constant C'(H, L) depends only on the functions H and Ly, and is finite so
long as (H, {L}X ) is admissible.5 A more quantitative version which specifies the constants C(H, L) more
precisely is given by Theorem 3.1. In a short companion paper [45], we apply the same techniques to the
special case of Hamiltonians of the form H = p/2m + V(&) with linear Lindblad functions. The special case
there allows more explicit bounds and physical discussion.

When the error in (1.5) is small, these bounds show the quantum evolution p(t) is well-approximated by a
certain mixture of Gaussians p(t) for all quantum observables, and the corresponding distribution Wy, [p(¢)]
on phase space in turn matches the classical evolution f(t) for all classical variables. (See Section 4.3.) We
also note that for any classical observable A(zx,p) and corresponding quantum observable A= Op;[A] we can
also obtain a bound” that does not refer to p:

< et([| Al = + 1 4]lop)- (L.7)

Trlp() 4] - [ f()4da

4Although it might initially seem strange that the classical dynamics “depend” on % , the interpretation is clear: making
a choice of h relative to a fixed macroscopic scale sets the strength of the noise in the open quantum system, and hence the
strength of the noise in the classical system to which it corresponds.

5Physicists will note that the condition & € (0, 1) implicitly assumes a choice of physical units has been made. See Appendix A
for thorough discussion.

SMore precisely, this constant only depends on |H||c2d+a, | Lkllcaa+s, the ellipticity constants A and A appearing in
Assumption 3.1, and the nonlocal quantity in (3.8).

"This follows directly from Eq. (1.5), applying Eqgs. (4.4) and (4.5). Also, using the Calderén-Vaillancourt theorem [2], the
operator norm in Eq. (1.7) can be upper bounded as ||Al|lop < [|A|lec 4+ O(h) for symbols A that are smooth and independent of
h.



For sufficiently large coupling strength, v = 1, the max in Eq. (1.6) for € reduces to 1, hence the error
accumulates linearly as tv/h, guaranteeing small error for times ¢ < h~2. We can also allow v to depend
on h. When v — 0 as i — 0, the error is dominated by the term ti'/24~3/2. So in general, if v > Al/3-P
for some p > 0, or equivalently D > i*/37P  the error is small for times t < A7 for ¢ = min{%7 %p} The
correspondence time for different regimes is illustrated in Figure 1.

In contrast to our shorter companion paper [45] which treats specifically the case that the Hamiltonian
splits in the form H = p% + V(%) with linear Lindblad operators, Theorem 3.1 has the benefit of applying
to any sufficiently smooth Hamiltonian and Lindblad operators. Some assorted examples of Hamiltonians
that do not take the special form include: (1) non-linear optical systems (expressed in quadratures), like
Kerr oscilators, (2) the beyond-leading-order terms in the non-relativistic expansion for a particle in an
inhomogeneous gravitational field with kinetic term p,p,g""(x), and (3) quasiparticles with an effective
position-dependent dispersion relation. Moreover, although linear Lindblad operators are widely deployed and
convenient approximations, in many cases non-linear Lindblad operators are necessary to avoid unphysical
effects [53].

One might wonder how our bound depends on our choice of convention for the Lindblad equation in
Eq. (1.1), where the Lindblad operators Ly have a h~! pre-factor just like the Hamiltonian. For instance,
this equation is sometimes written with an A or 2=2 pre-factor instead on the Lindblad terms. ® These
alternative conventions for A factors can be accommodated by taking + to depend differently on /. Regardless,
we can also frame result our result in terms of the strength of the diffusion D given by Eq. (3.5). For instance,
Theorem 1.1 implies D > h*/3 suffices for an accurate quantum-classical correspondence. Such statements
are independent of any conventions about the h factors appearing in the Lindblad equation. °

While we have touted that our bound is useful beyond the Ehrenfest time, one might ask: how interesting
are the quantum and classical distributions beyond this time? For simple chaotic systems with bounded
accessible phase space, one expects that these systems “thermalize” after several multiples of the Ehrenfest
time, i.e. spread somewhat uniformly over the allowed phase space, in which case our bound would be
comparing two thermalizing distributions (which is non-trivial regardless). However, in chaotic systems with
large accessible phase spaces, or with both chaotic and non-chaotic degrees of freedom, or regardless with
degrees of freedom that thermalize at very different speeds, this simple picture breaks down, and the dynamics
beyond the Ehrenfest time may be much more interesting.

1.1 Quantum-classical correspondence times for different coupling strengths

We summarize what we know about the quantum-classical correspondence, or how well the quantum and
classical trajectories match, for different regimes of coupling strength ~. In each regime we ask about the
loosely defined correspondence time, also called the “(quantum) breaking time”: the timescale before
which the trajectories are guaranteed to approximately match, and after which they may differ appreciably in
some systems.

The notion of a correspondence time depends on the metric by which we measure the distance between the
quantum state p(t) and classical distribution f(¢). One possibility, and the route we take in this work, is to show
the existence of a quantum trajectory p(t) such that both [|Why[p(t)] — f(t)|| . = o(h) and ||5(t) — p||1, = o(h).
That is, we find a trajectory that both (1) matches the quantum trajectory for all quantum observables and
(2) matches the classical trajectory for all classical observables. Another possibility would be to demand
both ||[Wr[p(t)] — f(t)]l . = o(h) and ||p(t) — Opy[f(t)]l|1, = o(k), which we were not yet able to show using
our method, though which we speculate may be possible as a corollary. Finally, there is a weaker notion

8The 0 and h~2 factors are natural boundaries: Suppose one uses a ™" prefactor and takes & — 0 while holding the
Lindblad functions and v = 1 fixed. For n < 0, the physical diffusion D on phase space diverges (i.e., classical dynamics are
swamped by environment-induced noise). For n > 2, superpositions over macroscopic intervals «, which decohere at a rate
h~la%Agpal, become stable as i — 0. See Fig. 1 and the discussion in Section 1.1. Qur choice of n = 1 lies in the middle of
these two boundaries, and ensures Lj Ly has the same physical units as H.

9Tt might seem that when deriving the Lindblad equation for a system coupled to an abstract bath (see the the heuristic
argument in [54] or the more detailed [55]), there should be a definitive answer about which power of % precedes the Lindblad
operators (when 7 is fixed), or equivalently how « should depend on . Indeed, naively these derivations suggest v ~ h~!, or an
overall factor of i~2 on the Lindblad operators. However, the Lindblad operators depend on the bath correlation function, which
may actually depend on h. There is perhaps no canonical answer as to how one should choose these h factors in the abstract:
different physical mechanisms for different system-bath couplings may have different /1 dependencies; see [56] for some examples
of decoherence mechanisms and their associated h-dependence.
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Figure 1: We illustrate the quantum-classical correspondence time (also know as the quantum breaking time) in
different regimes of the coupling strength ~. Unless they are set to exactly zero (e.g. Ly = 0), the classical diffusion D
and classical friction G scale like v and ~ respectively. When #° < -+, friction must be assumed exactly zero or else
the classical dynamics will become will become singular (and likewise for diffusion when i~! < ).

open system

of correspondence: one might only require that the trajectories match for “macroscopic observables,” e.g.
requiring only that | Tr[p(t)A] — J daf(a)A(a)] = o(h) for smooth symbols A = WilA] that do not depend on
h. In fact, there has been some speculation that such a weaker notion of correspondence may hold for all times
even in closed systems [22] except perhaps in certain fine-tuned situations, but there may also be numerical
evidence to the contrary [57,58]. Regardless, we do not explore this weaker notion of correspondence.

In Fig. 1 we illustrate our conclusions about the quantum-classical correspondence time from Theorem 1.1,
when using the notion of correspondence and initial state specified there. We take v to depend on A, plotted
along the horizontal axis, and we consider the correspondence time as well as the strength of the diffusion
D Py and friction G o y. We also consider the localization matrix or “decoherence matrix” [59]

A:=h"'A=h"?D (1.8)

which characterizes the inverse timescale on which a Schrodinger cat state (two wavepackets initially superposed
over an arbitrary fixed macroscopic distance) will decohere;'° it scales as A oc YA~ L.

The regime h'/3 < v < 1, or equivalently #*/3 <« D < h, is shaded green, because there our main result
shows the correspondence time is at least a negative power of /i (and the true correspondence time may indeed
be much longer). ! In this regime we also have that friction G and diffusion D vanish as & — 0, approaching
closed Hamiltonian mechanics. The regime 1 < v < h~!, or equivalently h*/? < D < h, is partially shaded
green, indicating the fact that the correspondence time A~/2 is long, but that the friction G will diverge as
h — 0 — making the Fokker-Planck equation singular — unless the Lindblad functions are specifically taken
to satisfy 0 =Im ), L;,0°L;, (i.e., unless the friction vanishes regardless of ). At the border between these
two regimes, v ~ 1, the corresponding classical dynamics generically exhibit finite friction.'?

For v < A! (including the case v = 0 of exactly closed systems), decoherence is too weak to prevent
Schrodinger cat states from being generated in chaotic systems, leading to a breakdown of correspondence at
the Ehrenfest time 7z ~ log h~!. Based on the numerical results of Toscano et al. [33,60,61] and unpublished

10More precisely, for linear Lindblad operators with constant diffusion matrix D, the matrix Agp = h~ 2wacwpgDC? characterizes
how a superposition of two wavepackets with separation « decoheres: the interference terms are suppressed by a factor
exp(—ta®Agspa®) [59]

HFor D > h*/3 in the chaotic system studied in Ref. [33], it appears the correspondence holds as the distributions approach
their steadystate (after which the correspondence continues to hold trivially), meaning the correspondence time is in fact infinite.
In contrast, for D < h*/3, the trajectories diverge at the Ehrenfest time. In this sense, the border D ~ Rl/3 may be a sharp
threshold.

12Instead of using the coupling strength v, one could consider a family of quantum and classical systems where the Lindblad
functions are taken to depend on A in a more complicated, e.g., so that the friction and diffusion are both finite as h — 0. As
briefly discussed in footnote 9, it is not clear that there is a single “correct” scaling.



work with Y. Borns-Weil, we conjecture that this lack of correspondence extends through the regime v < fi!/3
(marked by “logh~! (?)” in Fig. 1).
To summarize, if our conjecture is true, then

1. In the regime D < i*/? (i.e., v < h'/3), there is a loss of correspondence after the Ehrenfest time for at
least some observables.

2. The regime h*/? < D < k' (i.e., h'/? < v < 1) achieves correspondence beyond the Ehrenfest time;
this regime characterizes the seemingly reversible macroscopic classical systems of everyday life.

3. The regime bt < D < h° (i.e., i% < v < h~!) also exhibits the quantum-correspondence, but the
classical dynamics are singular (due to divergent friction) unless the Lindblad functions induce precisely
zero friction.

4. In the regime h° < D (i.e., i~ < =), the diffusion diverges, giving singular classical dynamics.

While we describe the regime with D — 0 as vanishing diffusion, or vanishing noise, we must take some
care with timescales. The formal limit D — 0 in the Fokker-Planck equation Eq. (1.2) indeed results in
deterministic flow (in particular the classical Hamiltonian flow, if friction also vanishes). Fixing a timescale
and taking D sufficiently small, the evolution of smooth observables should be well-approximated by the D = 0
classical flow. Thus we say the classical evolution gives the appearance of zero noise over fixed timescales.
However, for any fixed D > 0, at sufficiently large times ¢ > log(D~1) the diffusion may have dramatic effect,
due to the exponential amplification of the noise by chaotic dynamics.

1.2 Heuristic justification of the 7*/3 threshold from the Moyal bracket

While in Section 2 we outline the reasoning that we ultimately make precise, we offer an alternative heuristic
argument below, via the Moyal bracket. This argument does not rely on any harmonic approximation, but it
suggests the same scaling for the error as given in Eq. (1.5). The agreement with (1.5) suggests the dependence
on A, may be optimal, or at least not an artifact of the harmonic approximation.

In a closed quantum system, the Wigner function f evolves under Hamiltonian H by [62]

of = {{H, f}MB (1-9)
- %Hsin <g“5a5>a) f (1.10)
e —h2 4\
S O+ Do H) (07000 ) (1.11)
n=0
= (0, H)(0"f) — ;lz(aaabacﬂ)(aaabac f+... (1.12)

where {-, -} is the Moyal bracket, and the % and 3 denote partial derivatives acting to the left and right,
as defined by the next line. (The power series is a formal expansion, and we do not discuss its convergence,
but it is useful for the intuition below.)

Say H only varies over order-unity scales (i.e., independent of ), and say the Wigner function f has
minimum length scale w that may depend on £, e.g. maybe f has long tendrils, with minimum width w. Then
0% f <w3f, so the leading h-dependent term above is roughly A2w =3 f, or

Ouf ~ (OuH) (D" f) + [PPw 3 f] + ... (1.13)

So given a classical solution f(t), the error between the quantum and classical evolution generators acting on
f is like

10f = (0aH)(O" ), S WPw™>. (1.14)

We can ignore the higher-order terms 7%"w~("+1) because they are small when the leading term A2w =3 is
small, i.e. when w > hs.



Now consider an open system with diffusion D. The classical evolution under the Fokker-Planck equation
(1.2) will produce a distribution f with minimum length scale

w ~ /DJAr, (1.15)

for maximal local Lyapunov exponent Az. (This is the scale at which the diffusion balances the squeezing; see
Fig. 2.) If we assume linear Lindblad operators for simplicity, i.e. constant diffusion D, there is no quantum
correction associated to this term (see Section 5.4). Therefore Eq. (1.14) again holds, and so

100f — (0aH)(0°f)|,, S H2D~5. (1.16)

Note this quantifies the rate at which the quantum and classical evolution can diverge. Using a Duhamel-type
argument as in Sections 6.2 and 6.3, the cumulative error after time ¢ is then at most

1£(£) = Walo@)lll,, < th*D3. (1.17)

which is the like the tA!/24=3/2 term in Eq. (1.5). We again conclude the quantum and classical evolutions
match (for times at least ¢ < h'/2) when D > h*/3.

Some previous literature [27,32] has used a different heuristic to conclude that the weaker condition
D > k2, rather than D > h*/3, is sufficient for matching quantum and classical evolutions as & — 0. Here is
one attempt to paraphrase these arguments in the context of the calculation above, although this paraphrase
may be incorrect: The first two terms in Eq. (1.13) are schematically size w™!f and A~ 2w ™3 f respectively,
and one might claim the second and higher terms in Eq. (1.13) can be dropped when the second term is small
compared to the first term, or w > h, which by (1.15) requires only D > hZ.

However, we suggest that the second term being small relative to the first does not justify dropping it
since, in fact, both terms may be large. To emphasize with a related example, consider a Gaussian coherent
state in phase space with minor axis of thickness w ~ h, traveling at unit speed parallel to this short axis.
Then both [|0; f|| .. and [|[0:Whp]||,. are diverging like h~! as h — 0, because although the wavepacket travels
at unit speed, the small support of the wavepacket quickly becomes disjoint from its previous location. For
f(t) and Wh[p(¢)] to match after time ¢, it is not sufficient for them to diverge at a rate slow compared to the
large rate |0 f|| ... Instead, they must diverge at a rate small compared to t.

1.3 Previous work

In the introduction, we briefly cited some of the large literature on the quantum-classical correspondence that
motivated the present paper. Here, we will discuss in a bit more detail some earlier approximation techniques
and how they relate to our results.

Ehrenfest’s theorem [63] from 1927 states that for Hamiltonians of the form H = % + V(&) and any
wavefunction v solving the Schrédinger equation (and hence for a closed system), the observables & and p
instantaneously satisfy

< el = m wlply) Slbl) = ~WIVV @) (118)

As Ehrenfest remarked, when a state v is localized in position, one can approximate (p|VV(&)y)) ~
VV ({(¢|£]1)) in Eq. (1.18) to obtain an ODE for for the time evolution of the expectation values (1|Z[y))
and (|p|y), yielding Hamilton’s classical equation of motion. This provides heuristic justification for the
correspondence between classical and quantum mechanics. More rigorously, when paired with a bound
for the rate of stretching in phase space of the function (t), one can use Ehrenfest’s theorem to prove
a comparison between the quantum and classical evolutions at some finite time. In contrast, Egorov’s
theorem [1] (see Zworski [2] for a modern introduction) is a finite-time comparison of a Heisenberg-picture
operator A(t) = e*/m Op, [Agle~"H/" (evolved with the Schrédinger equation) and the quantization of the
corresponding classical variable A.(t) = e**a Age~Fa (evolved with Liouville’s equation).

Heller [50] first approximated the evolution of a Gaussian state in a non-harmonic potential of a closed
quantum system by making a local harmonic approximation, leading to a Gaussian whose center follows
the classical trajectory and whose shape distorts over time. This method is sometimes called the “thawed



Gaussian approximation.” (In contrast, the “frozen Gaussian approximation” [51] uses a covariance matrix
fixed in time.) Much more recently, Graefe et al. [52] present an analogous approximation for open systems.
The Gaussian approximation method has been used to simulate a variety of quantum-mechanical phenomena
(see Refs. [64-66]), in addition to sampling-based methods for the Fokker-Planck equation [67].

In terms of analytical results for bounding the error introduced by the Gaussian approximation, an error
bound for the thawed Gaussian approximation was first calculated by Hagedorn [68] (see Theorem 2.9) for
closed systems of the form H= p? + V(#). For a more recent treatment with an emphasis on numerical
methods see Lemma 5 of Bergold & Lasser [69]. We are not aware of any analogous results for open systems.
We present such a result in Lemma 6.2, for a general class of Hamiltonian and Lindblad operators. Note that
even within the setting of closed systems, one can reach longer timescales by generalizing the set of states
one is willing to consider from Gaussian coherent states to more general WKB states. The degeneration of
wavepackets into delocalized states was studied using local harmonic approximations by Schubert, Vallejos, &
Toscano [70].

The formal correspondence between the quantum Lindblad equation for the Wigner function and the
classical Fokker-Planck equation has frequently been discussed for the case of linear Lindblad operators. For
more general Lindblad operators, the formal limit of the Lindblad equation (i.e. dropping terms subleading
in A1) has been shown to yield a Fokker-Planck equation in Refs. [71-74],'% similar to our development in
Section 5.1.

The question of how long the quantum-classical correspondence holds in open quantum systems and how
much diffusion is necessary has been discussed extensively [10,20,29-31,33,60,61], though without rigorous
general results. It has been suggested that the condition D >> h? is sufficient to ensure a lack of coherent
superposition over order-unity scales [10], which is one component of a quantum-classical correspondence.
More strongly, some arguments suggest that D >> h? is sufficient [27,28,32] to ensure closely matching
quantum and classical evolutions, though see the comments at the end of Section 1.2. In contrast, numerical
evidence and heuristic arguments for specific systems (kicked harmonic oscillators) in [33,60,61] suggest the
error between the quantum and classical trajectories is genuinely proportional to F2D~3/2_ and in particular
the error may be large when 72D ~3/2 is large, even as i — 0. The numerical evidence thus suggests D > i*/3
is actually necessary for quantum-classical correspondence in some systems. The heuristic in Section 1.2 is
consistent with this conclusion. If that were true, our bound in Theorem 1.1 would have optimal dependence
on 7 and %, and D ~ k*/3 would be a genuine threshold.

1.4 Future work

We list several questions left open, roughly ordered from more significant questions at the top to more minor
questions at the bottom which may only require small improvements to our argument.

1. Does a similar bound apply in the case of an arbitrary initial state, rather than a mixture of Gaussian
wavepackets? We expect that arbitrary initial states will decohere into an approximate mixture of
Gaussian wavepackets, without substantially changing the expectation of classical smooth variables on
phase space, on a timescale that vanishes as i — 0. (Indeed, there is reason to think this may happen
exactly in finite time [75-78].)

2. Does a similar bound apply in the case of a degenerate diffusion matrix, such as when position but not
momentum is decohered? Degenerate diffusion matrices arise naturally, e.g., in the case of collisional
decoherence [53,59,79].

3. Do similar results hold for different phase spaces, e.g. for the correspondence between classical spins and
large quantum spins? There generalizations of the Moyal product may be used.

4. Do similar error bounds apply uniformly in time for some systems? One might expect that even though
the errors accumulate, they may be continuously washed away as the system thermalizes. Then the
“correspondence time” discussed in Section 1.1 would be infinite in the appropriate regime, consistent
with the numerical simulations in [33]. The Duhamel-based bound presented here, which simply adds
together the errors that accumulate at each time step without allowing them to cancel, would have to
be modified.

13In particular, Dubois et al. [74] consider the case of a curved phase space, necessitating modified Poisson brackets.




5. Can the scaling exhibited in Theorem 1.1 in terms of v and % be shown to be optimal? As discussed in
Section 1.3, evidence from [33,60,61] suggests this may be the case.

6. Can the results be generalized to handle H and Lj that are irregular in ways that violate Assumption 3.1
but only in regions of phase space that are essentially inaccessible to the quantum state? For instance,
currently we must assume the Hamiltonian grows at most quadratically at infinity so that the local
harmonic dynamics associated with V2H have strength that is bounded over phase space, but this
shouldn’t be necessary if the Hamiltonian diverges positively in all directions and the state has bounded
energy since this means it is confined to a bounded region that never sees this growth.

7. Can one more directly relate the quantum evolution p(t) and classical evolution f(t), without the
intermediary p? Perhaps one can bound |[p(t) — Opy[f(¢)]|l1, and/or [Wh[p(t)] — f(t)]| 11

8. Can the heuristic in Section 1.2 using the Moyal bracket be made rigorous?

9. Can the length and complexity of the argument be reduced? In particular we expect the size and
especially d-dependence of the constants can certainly be improved. More fully exploiting symplectic
symmetry may help. See Appendix A for more discussion of this point.

1.5 Structure of the paper

In Section 2 we present a heuristic overview of the proof for Theorem 1.1 and 3.1, including an explanation of
the appearance of the factor 'y*%. In Section 3 we make some definitions and formally state Theorem 3.1.
We prove Theorem 3.1 (which implies Theorem 1.1) in Section 6, but before this we first review notation in
Section 4 and present some preliminary facts about harmonic approximations for the Lindblad and Fokker-
Planck equations in Section 5. In Sections 7, 8, and 9 we prove some lemmas needed in the main proof.
Appendix A discusses physical units and symplectic covariance, and illustrates them with Corollary A.1.
Readers interested in understanding the argument in a simpler setting may prefer to review the companion
paper [45] which treats the special case of Hamiltonians of the form H = p? + V(z) with linear Lindblad

operators and includes more explicit bounds and physical discussion.
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2 Overview of the proof

We sketch the ideas behind the proof of Theorem 1.1. We offer a synopsis before elaborating, perhaps initially
opaque: we approximate p(t) with a mixture 5(t) of pure Gaussian states, each of which evolves according to
a local quadratic expansion of the Lindbladian, while being continuously decomposed into a further mixture
of Gaussian states, which never become overly stretched or squeezed due to the diffusion induced by the
Lindblad operators. See Fig. 2.

A key tool is the use of Gaussian quantum states 7, », which are precisely the states that have Gaussian
Wigner functions, each specified by its mean o € R2? and covariance matrix o. We review intuition here. (See
Section 5.3 for details.) We often visualize Gaussian states 7, ., in phase space as ellipses centered at «, with
principal axes and (squared) lengths given by the eigenvectors and eigenvalues of o. These ellipses'4 must
have volume at least (h/2)?, achieving this minimum when the states are pure, i.e., when rank(7,,,) = 1. By
a generalization of Heisenberg’s uncertainty principle, o then has eigenvalues that come in pairs (A1, A2) with
product A; Az = h?/4. In the isotropic case o = (h/2)124, we call these pure Gaussian states “coherent states,”
otherwise we refer to them as “squeezed,” imagining squeezed ellipses.

14In more than one spatial dimension (two dimensions of phase space), one can imagine Gaussian states as ellipsoids.
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Figure 2: (a) An initial pure quantum Gaussian state p(t=0) evolves in phase space. (b) At short times the dynamics
admit a local harmonic (quadratic) approximation, broadening the distribution via diffusion (purple arrows) and
possibly squeezing it via classical flow (red arrows). For diffusion strength D and local Lyapunov exponent Ar, of the
flow, the Gaussian state (ellipse) has a minimum thickness: the diffusion broadens the ellipse at speed w ~ D /w,
while the the Hamiltonian flow can shrink the width by at most w ~ —w/Ar, with the competing effects balanced at
w ~ (D/AL)Y/2. (c) After p(t) becomes mixed due to diffusive broadening, it can be approximated by a mixture j(t)
of pure Gaussian states (ellipses) that are individually less squeezed. Each evolves by its own local harmonic dynamics
while continuously being further decomposed. (¢) As p(t) spreads in phase space, our approximation j(t) uses ellipses
of fixed area /i but varying amounts of squeezing. (d) The minimum thickness w controls the error of the harmonic
approximation: the dynamics are perturbed by the leading-order anharmonicity V3H, which is strongest (relative to
the center) at the tips of the ellipse lying on either end of the long axis v ~ h/w. This changes the speed of the local
flow by s < v?||V2H]||, so the discrepancy (red shaded area) between the true distribution (curved boomerang) and the
ellipse grows at rate < sv. Compared to the ellipse’s area f, this gives an error rate sv/h S (h4/3/D)3/2)\i/2HV3HH,
which is small when D > h%/3.

We approximate the quantum evolution p(t) by p(t), a positive mixture of pure Gaussian states:

o) ~ p(t) = / dadopa o (s (2.1)

for some time-dependent probability distribution p, - (t). We assume the initial state p(t=0) is a mixture of
Gaussian states, so that at time ¢ = 0 we can take p = p and the approximation is exact. In general, p(t > 0)
is not precisely a positive mixture of Gaussian states, so our task is to choose a suitable p, ,(t) and control
the error (p — p).

To this end, we consider how a single 7, , evolves using the second-order expansion of the Lindbladian with
respect to a. We call this second-order expansion a “harmonic approximation,” because it approximates the
true Hamiltonian by a generalized harmonic oscillator.!® In our harmonic approximation, pairs of Lindblad
functions Ly are also expanded to quadratic order (roughly corresponding to a linear expansion of each Ly),
so that the dynamics are given by a damped harmonic oscillator with constant diffusion, or Brownian noise.
Two key features of the harmonic approximation are that (1) it exactly preserves Gaussian states, and (2) the
harmonic approximation of the quantum and classical dynamics agree.'® So under this approximation, 7, »
remains a Gaussian state, with the center « following the classical flow while the covariance o evolves as

oo =(F+T)o+a(F+T)" + D, (2.2)

where F' = wV?2H consists of second derivatives of the Hamiltonian, and where D and I' are determined by
the Lindblad operators, with D = vhA describing diffusion and T related to friction. (See Lemma 5.1.17)
The effect of the Hamiltonian, through F', is to symplectically squeeze and stretch the ellipse associated to
o without changing its volume. In contrast, the diffusion term D implements diffusive broadening in phase
space, increasing the volume of the ellipse and hence the entropy of the state 7, ;.

15See Section 5.4 for a precise definition of the harmonic approximation. We say “generalized harmonic oscillator” because, in
addition to being skewed in phase space, the oscillator may be unstable in any number of directions.

16For quadratic Hamiltonian and linear Lindblad operators, the agreement of the Lindblad equation and Fokker-Planck
equation can be confirmed readily from the Moyal product expansion (1.12). The exact preservation of Gaussian states follows
from the observation that harmonic oscillators merely induce linear dynamics on phase space. A complete demonstration is
found in Section 5.3.

17Note we have set v = 1 in Lemma 5.1, i.e. we absorb /7 into L, as we do for cleanliness beginning in Section 3.
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Crucially, because the quantum and classical evolutions on phase space are identical for harmonic
dynamics, the quantum evolution is well-approximated by the classical evolution whenever the local harmonic
approximation is good. The error introduced by the harmonic approximation increases as the covariance
matrix becomes squeezed and 7, , extends over a larger distance in phase space. In particular, because the
error in the harmonic approximation appears at third order, we loosely expect a bound of the form

harmonic approximation error o< %||a||3/2 (2.3)
since ||o||'/? is the the diameter of the effective support of the Gaussian packet (the “length of the ellipse”),
and the factor of A~ appears in the Schrodinger equation. See Figure 2 (e).

In closed chaotic systems, a pure Gaussian state stretches exponentially quickly so that ||o(t)|| ~ [|o(0)|le
where Ap, is the largest local Lyapunov exponent of the system, which summarizes the maximum amount of
stretching in the relevant region of phase space on the relevant timescale. Thus by Ehrenfest time we can
already have HJH3/ 2> h, so that the harmonic approximation error is large in closed systems. If one tried
to decompose the corresponding over-stretched ellipse into a mixture of less-stretched ellipses, these would
have volume less than (5/2)%, violating the uncertainty principle and hence not corresponding to admissable
quantum states. However, in open systems, the diffusion prevents the Gaussian states from becoming squeezed
too thin. In particular, the strength of the diffusion D becomes stronger, relative to Hamiltonian squeezing
associated with Ap, as the ellipse gets narrower, resulting in a minimum thickness w ~ y/D/Ar, (see Figure
2(b)). This means that the mixed Gaussian can be continuously decomposed into pure Gaussians of maximum
length v ~ h/w ~ /ALk/D, and these new states can be separately evolved with the harmonic approximation
about their respective centroids, thus controlling the error of the harmonic approximation.

More precisely, for a given Gaussian 7, , consider the time derivative of the smallest eigenvalue o, denoted
Amin[o]. By first order variation of the eigenvalue Apin[o], with unit eigenvector denoted v, and using the
evolution equation for the covariance matrix (2.2), we have!8

ALt

Ot Amin[o] = vT((?tU)v
=0 (F4+TD)ov+v o(F+T) v+0v"D (2.4)
2 /\min[D] - 2>\min[0']||F —+ F”,

where Apin[D] denotes the minimum eigenvalue of D. We see that A\yin[o] is growing so long as

>\min [D]

Aminl gy (2.5)
| F+ Ll

A1rnin [U] ~

The second relation follows from treating H and Ly as fixed classical functions (independent of % and 7) so
that'® F oc i% T < A°, and D o< Ary. (In Theorem 3.1 we drop « and work directly with D, F', and T, but for
this overview it will be simpler to use v as in Theorem 1.1.)

Thus if Apin[o] initially satisfies Amin[o] 2 Ay, it will never shrink below Apin[o] ~ Ay. Then the
mixed state with covariance o can be decomposed into (pure) coherent states whose covariance matrix has
minimum eigenvalue Apin[0] ~ Amin{1,~} and maximum eigenvalue Ayax|[o] ~ Amax{1,7~ 1} because®’ the
eigenvalues of pure-state covariance matrices come in pairs multiplying to h?/4. By Eq. (2.3), the harmonic
approximation error for such coherent states is i~ '||o||3/? ~ h'/2 max{1,773/2}. This is the instantaneous
error, which we integrate in time (using Duhamel’s principle in the sense of Eq. (6.20)) to yield the final error
of th'/? max{1,~y~3/?} that appears in Theorem 3.1.

So far we have described a process of evolving 7, , according to a local harmonic approximation, which
we then decompose into pure Gaussian states, which we then further evolve, and so on. While this picture
is instructive and closely resembles the logic of the proof, there we more cleanly track the continuous

18 Although the unit eigenvector v is changing with time, its derivative is necessarily orthogonal to itself, v (8;v) = 0, ensuring
that 8 (v ov) = (Bv T )ov +v 1 (8:0)v 4+ v " 0(v) = Amin[0](Bev v 4+ v T (8:0)v + Aminlo]v T (Brv) = v T (Bro)v.

9Per the discussion in Section 1.1, we are here assuming I' = 0 or v < h° so that I' < A9.

20The max arises because when v < 1 the mixed state can be decomposed into coherent states with o = %112(1, which are the
Gaussian pure state that are least extended in phase space. In this case, additional diffusion — larger v — cannot help because
the states are already fully unsqueezed.
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decompositions by simply specifying a PDE for the mixture p, ,(t) defining p in Eq. (2.1). We define p(¢) to
evolve like

D,(t) = / dadopa o ()L 7 o] (2.6)

where £(® is the harmonic approximation about the point « to the full Lindbladian L. We re-express
L[+, ,] above as a change in the distribution p,.,(t). Even for fixed 5(t), we have freedom in how we
choose pq,, corresponding to our freedom to decompose mixed Gaussian states in multiple ways. The
discussion below Eq. (2.4) ensures we can choose the distribution p, +(t) to be supported on pure states with
Amin[o] = vh and ||o|| < hy~!, which controls the error of the harmonic approximation as discussed above.

3 Statement of the main result

For the rest of the paper we will drop the coupling strength v from the Lindblad equation (1.1) by setting
v =1 (equivalently, absorbing it into the Lindblad operators).

As discussed in depth in Appendix A, the theorem we present in this section “ignores physical units”:
we imagine a fixed choice of length, time, and mass units has been made, so that physically dimensionful
quantities are represented by dimensionless numbers, and in particular it makes sense to (1) require that
h <1, and (2) use the Euclidean norm of a vector a = (a*, aP) € R?? in phase space: |a|? = |a*|? + |aP|2.
Indeed one could generally obtain a tighter bound by optimizing over the choice of units. This is due to the
fact that our results are not invariant under linear symplectic transformations, despite the Fokker-Planck
equation enjoying this symmetry. See Appendix A for more on this.

To help keep navigate the notation in this paper, the reader may refer to the glossary in Table 1.

3.1 Definitions and assumptions

We will use the Weyl quantization Opy,[-] to map classical functions of phase space to operators as follows:?!

(OpAlEN)(v) = (Bv)(w) = (2mh) ¢ [dadpet= 7 B(T1Y, p)o). (31)

The inverse map can be used to define the Wigner function Wy [p] := Op; ' [p]/(27h)? of a quantum state p.
In terms of the state’s kernel K, the Wigner function can be written

Whlol(o.p) = (2) ¢ [ ehrP K o+ /2.~ /20y (3.2

The oscillatory integral is a distributional Fourier transform in the y variable, so is well defined as a distribution
in (z,p). (For more details on Op; and Wy, see Section 4.4.)

Definition 3.1 (Corresponding dynamics). Let H, Ly € C™(R??) be smooth functions on phase space with
1 <k < K € N. The Markovian open quantum system corresponding to the data (H,{Ly}< |) at
semiclassical parameter h is defined by the evolution equation (3.3) with H = Opy[H] and Ly = Op;[Ly]

£l = 7%‘ (1.0 + %Z (ﬁkpikf - % {i,ﬁik,p}> . (3.3)
k

where p(t) is a trace-class operators on the Hilbert space L?>(R%). The corresponding classical dynamics
are given by the Fokker-Planck equation

0uf = ~0u[f(0"H + G + 30.(D"01). (3.4)

21Other quantizations are also perfectly acceptable, the Weyl quantization simply has simplifying properties that we make use
of.
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where

D®(a) :=hRe» (w*eLy)(w**04L}) := hA™ (diffusion matriz) (3.5)
k
G* :==Im Z Ly (w*d.Ly) (friction vector) (3.6)
k

When G* = 0, we say the dynamics are frictionless. Given a quantum trajectory p(t) that evolves according
to the Lindblad equation (3.3) from an initial state p(t=0) with a non-negative Wigner function Wy [p(t=0)],
the corresponding classical trajectory f(t) is the solution to the Fokker-Planck equation (3.4) with initial
distribution f(t=0) = Wx[p(t=0)].

We review [73,74,80] in Section 5.1 why the Fokker-Planck equation (1.2) describes the classical dynamics
naturally corresponding to the Lindblad equation (3.3), and in particular why D% («) is interpreted as the
classical diffusion matrix. For the purposes of stating our assumptions and our bounds, it is will also be useful
to refer to the scaled diffusion matrix

1
A :=Re > (w"eLy)(w*04L}) = ﬁpab. (3.7)
k

Note that A is independent of & and only depends on the classical functions Ly.
Our results will apply to data (H, {L;}5_,) that satisfy some regularity and decay assumptions.

Assumption 3.1 (Admissible class of Lindbladians). We say that the tuple of functions (H,{L;} |) is
admissible if the following hold:

a. For 2 < j <2d+44, all j-th order mized partial derivatives of the Hamiltonian are bounded over phase
space: sup, |0y, -+ 0q, H(a)| < 00. For 1 < j < 4d + 6, the same is true for the Lindblad functions:
sup,, [Oa, - - - Oa; Li ()| < co.

b. For 3 < j < 2d+4, the j-th order mized partial derivatives of the Lindblad functions, weighted by the
functions themselves, grow sublinearly?® at infinity:

| Li()||9a, - - - Da,; Li(P)|

up < Q. 3.8
o, 1+ |Oé - B' ( )
c. The matriz A defined in (3.7) is uniformly lower bounded,

inf Apin [A()] > 0. (3.9)

The first assumption allows H to be unbounded but requires it grows at most quadratically at infinity.
The second assumption ensures that the friction G* is bounded and, for example, is satisfied for Lindblad
functions of the form L(a) = a® + g(«) where g is any Schwartz-class function.

To state our main result we introduce some quantities that we use to bound the error between the
classical and quantum evolutions. The first measures the strength of the diffusion term in the evolution of the
covariance matrix (2.2) relative to the squeezing terms caused by the Hamiltonian flow and the friction.

Definition 3.2 (Relative diffusion strength). Given an admissible tuple (H,{Ly}< ), we define the relative
diffusion strength g to be

o XaalA@] L AamlA@] )
g := min {2 12f N [VZH () 71gf (Amax[A(a)]> } (3.10)

In the special case that the dynamics are frictionless (i.e., when G define by (3.6) vanishes), we define g to be

the larger quantity
. . )\min [A(a)]
g := min {mf 1. (3.11)
& Amax|VZ2H ()]’
22This assumption can be relaxed to allow for any polynomial growth of the product |Lg()||0a; * - - Oa,, Lx(B)| at the cost of
requiring bounded higher-order derivatives.
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The relative diffusion strength compares the diffusion term to the Hamiltonian and friction terms in the
evolution equation for the covariance matrix (2.2). The Hamiltonian term [represented by F' = wV?H in (2.2)]
is simply bounded with the largest eigenvalue?® of the Hessian of the Hamiltonian A\pyax[VZH]. On the other
hand, the friction term [represented by I' = VG in (2.2)] is bounded indirectly with Apmax[A] using the matrix
inequality A +il['w > 0. The fact that g depends on the condition number of A, and therefore is not monotone
in the diffusion D, is an artifact of our proof that we believe to be suboptimal.2* In the frictionless case we
only need to compare the diffusion to the Hamiltonian squeezing term (without needing to bound I' in terms
of A), and therefore recover the desired monotonicity in D.

Now we introduce a preferred set of pure (i.e., rank-1) quantum state. The pure Gaussian states
are Too = |Pa0) (Pa,0| Where ¢ » is a wavepacket with Gaussian envelope and a quadratic phase. It is
parameterized by the phase space mean a and the covariance matrix o = %6 where & is positive definite and
(per the uncertainty principle) symplectic: 6 > 0, & € Sp(2d,R). The Wigner function of a Gaussian state is

Wilfao)(a+ B) = Taola+ B) = (2m)"4det 0) /2 exp(—BT o1 5/2). (3.12)

For more details about Gaussian states we refer to Section 5.3.

A special kind of pure Gaussian state are the coherent states 7, := 7, ,, with covariance matrix
Oy = %]lzd- In this paper we will make use of the following class of states that are “almost coherent” in the
sense that their condition number is controlled.

Definition 3.3 (Not-too-squeezed states). Given a squeezing ratio p < 1, we say a pure?® Gaussian state
Ta,o 15 Mot too squeezed (NTS) when its covariance matriz obeys o > po,. The set of such covariance
matrices s

h
7 Sp(2d,R), 0 > uzngd} (3.13)

Snrs(p) == {0’ e

When o = g& is the covariance matrix of a pure state (so that & is positive-definite and symplectic),
the minimum and maximum eigenvalues come in pairs (A/2)u~! and (h/2)u. Therefore we in fact have
po, <o < puto, whenever o € Syrs(i). By the uncertainty principle, the phase-space standard deviations
satisfy puy/h/2 < Ax < p=t\/h/2 and pu\/h/2 < Ap < p=ty\/h/2. When p = 1, the only states allowed are

the coherent states, i.e., the unsqueezed pure Gaussian states for which Az = Ap = /h/2.

Assumption 3.2 (Suitable class of initial states). We assume the initial state py = p(t=0) is a mizture of
pure Gaussian states 7o, that are squeezed relative to the coherent states 7, by mo more than the effective
inverse diffusion strength (3.10) of the dynamics, i.e.,

00 :/ da/ dopa,o(t)Ta,0 (3.14)
R2d Snts(9/2)

for some probability distribution pe,.(t) supported only on the set Snrs(g/2) of covariance matrices that are
not too squeezed, where g is the relative diffusion strength parameter defined in Definition 3.2.

The other important parameters that we introduce which quantify the divergence between the classical
and quantum trajectories are the “anharmonicity” factors. These measure the failure of H to be a quadratic
function and Ly to be a linear function. The classical anharmonicity factor over phase space is

BN H, L] o= (|H|gs + |Gloz + A1) (3.15)

23In Hamiltonian systems, the local flow generated by the Hamiltonian H is 0 H = w8, H. The Jacobian of this vector field
is F'% := 0p0°H = w(V2H)pe. The Hessian V2 H is necessarily symmetric, so the Jacobian F% is a Hamiltonian matrix by
construction. Because the symplectic form w is an orthogonal matrix, | F|| = | V2H]|.

24The friction term can squeeze the state, potentially increasing the discrepancy between the quantum and classical states, and
hence must sometimes lower the relative diffusion strength g. However, we bound it with Amax[A], and pure (i.e., frictionless)
diffusion can only reduce the discrepancy, and would ideally only increase g. Since our argument in its current form cannot
distinguish these, we have been forced to define the relative diffusion strength g so that it has the undesirable property that
adding pure diffusion to the dynamics can weaken our bound, which manifest as lowering the g defined here. We attribute this
deficiency to the crude operator norm estimates and use of the triangle inequality in Lemma 7.1.

25In this paper we will only work with pure NTS states, but there are reasons to consider generalizations to mixed states
with appropriately bounded covariance matrices, e.g., when extending our main result to the case of degenerate diffusion. See
Section 1.4.
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where the C* seminorms are defined in (4.7). The quantum anharmonicity factors are defined using the

“anharmonicity seminorms” QF" and its nonlocally weighted version N7

h;s,v
QB =) W= sup |V ()|, = D HO2| B, (3.16)
Jj=q « Jj=q
LN |VIE(a+ B)||
q,T . (1—a)/2 gop
h;s,y[E](a) N Zh S]‘gp (1 + V71|B|)s . (317)

Jj=q

Above ||-||,,, is the “operator norm” for tensors, defined in (4.6). Note that if ¢ = r there is no i-dependence

gop
in QF"[E] s0%® we can drop the appearance of h. Then we define
Bgnh[H’ Lk7 h] — Q.',;L,QdJrﬁl[H} + Z Ql,l[Lk]Qi,2d+3[Lk] (318)
k
By [Lihov] =) [sup L) NG el (@) + w(Q O [L])? (3.19)
k (a7

Note that Bgnh [H, Ly, h] and Bg,nh [Lg, h, V] are finite when H and Ly, satisfy the hypotheses of Assumption 3.1,
and vanish when H is quadratic and Ly are linear functions of @. The quantum anharmonicity factors are
much more complicated than the classical ones essentially because they are needed to control the higher-order
error terms in the Moyal product expansion for the symbol of products of operators.

3.2 Statement of Theorem 3.1
We are ready now to state the main result.

Theorem 3.1 (Main result). Consider an open system with data (H,{Ly}1_,) which is admissible in the sense
of Assumption 3.1 with quantum trajectory p(t) solving the Lindblad equation (3.3) and corresponding classical
trajectory f(t) solving the Fokker-Planck equation (3.4) with correspondiong initial state f(t=0) = Wy [p(t=0)]
as in Definition 3.1. Assume the initial state p(t=0) is a mizture of Gaussians states that are not too
squeezed as in Assumption 3.2. Associated with the dynamics, let g be the relative diffusion strength (3.10)
Jrom Definition 3.2 and let B=""[H, L], B3"[H, Ly, h], and Bi"™[Ly,, h,g~*h] be the anharmonicity factors
(3.15)-(3.19). Then there exists a quasiclassical quantum trajectory p(t) which is a mizture of Gaussian which
approzimates p and f in the following sense:

a. p(t) approximates the corresponding classical trajectory f(t) for all possible classical variables in the sense
that
IWAlp()] = F()l < 1402t g~ 2RY2 BEH, Ly, (3.20)

and

b. p(t) approximates the true quantum trajectory p(t) for all possible quantum observables in the sense that
15() = p(t)lgy < Catg™#nt (BE™[H, Ly, b] + By Ly, h,v/B]g)) (3.21)

Here, Cy is a universal constant depending only on the dimension d.

We can recover the weaker Theorem 1.1 from Theorem 3.1 by restoring the coupling strength + in the
definition (3.10) of ¢ using the replacement A — A and noting®” that g=3/2 ~ max{y~3/2,1}. Also note that
the classical error (3.20) does not include an unspecific constant Cy, and we can see dimensional dependence
is on the order d*/2. In contrast the dimensional constant Cy appearing in (3.21) grows superexponentially in
the dimension, and one can recover from our proof a bound of the form Cy < (d!)¢.?8

26Likewise, B2"P[H, Li] = Q33[H] + Q%2[G] + Q1 [A].

2"Restoring 7 using the replacement A — A in the definition (3.10) of g, we see that g is comparable to min{1,~}, up to
constants depending on H and Ly (but not on % or 7).

281n the case treated in the companion paper [45], we find the analogs of both (3.20) and (3.20) come with dimensional-
dependence of only d3/2. The dependence (d!)c comes from the bound on the Moyal product appearing in Proposition 8.1.
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4 Basic notation and definitions

This section recalls some basic notation and definitions that we will use. A glossary of our most important
notation can be found in Table 1.

4.1 Indices and the symplectic form

We consider the non-relativistic, first-quantized, open-system quantum dynamics of a particle in d spatial
dimension with position operator & = (il,...,aﬁd) and momentum operator p = (ﬁl,...,ﬁd). We use
F= (..., 7% = (2,p) = (&1,...,2%,p", ..., p?) for the combined phase-space operator. As shown, we use
upper indices a, b,... =1,...,2d to access the elements of vectors like 7. We parameterize the points in phase
with a, 3, or v (as when integrating over it), where a = (o, aP) = (a!,...,a??). The phase-space coordinate
vector function is denoted 7, i.e., r*(a) = a®, so the mean of a distribution f is (r*); = [daa®f(«). (Note
in particular that the index a is not an exponent.)

We use lower indices to access the elements of co-vectors (1-forms), like partial derivatives, with lower
indices: (0,F)(a) = 0E(a)/0a”. Because of its special importance to dynamical systems, it will be useful to

raise and lower indices with the symplectic form,

o= (_01 g) , (4.1)

where 1 is the d x d identity matrix: 7, := Wap? , 0% = w3y, where repeated indices are summed over.
(Einstein notation is used throughout.) Our sign convention is (in d = 1) w*? = +1 = wpy, WP = —1 = wyp.
All of the above applies similarly to (hat-less) phase-space vectors like a® and $%, as well as higher-order
tensors like Fup(a) = 0,0, H(c).

At times we will find it convenient to dispense with the index notation and rely on conventional matrix
multiplication, in which case the elements of the un-indexed vectors and matrices are assumed to correspond
to the indexed versions found in Table 1. For phase-space vectors, we use the bare symbol and the transpose,
e.g., a and BT, producing scalars like 3Twa. We reserve bra-ket notation for quantum states, e.g., [v), (],
and (6|Bl).

Note that, due to the antisymmetry of the symplectic form, v®w, = —v,w® and hence that v%v, = 0 for
any v, e.g., 0°0, = 0. Phase-space vectors are thus contracted with the symplectic form as oy 3% = a’w.;,3% =
a* - BP —aP . ¥ = a'wp, where ‘- is the traditional inner product on R?.

4.2 Matrices

We use Apin and Apax respectively for the smallest and largest eigenvalue value of a matrix. We also
use the unsubscripted norm || - || for the operator norm of a matrix, and operator norms for operators on
infinite-dimensional Hilbert space are written || - ||op-

Associated with the symplectic form is the idea of a symplectic matrix A, characterized by preserving
the symplectic form under conjugation: ATwA = w. The set of all symplectic matrices is denoted Sp(2d, R).
When a (non-singular) symplectic matrix is also symmetric, AT = A, it satisfies w' Aw = A~

Additionally, we will consider Hamiltonian matrices (not to be confused with the Hamiltonian function
H of the dynamics), which instead satisfy AT = —w Aw, and skew-Hamiltonian matrices, which satisfy
AT = wT Aw. Equivalently, A is Hamiltonian (skew-Hamiltonian) when Aw is symmetric (antisymmetric),
which means an arbitrary matrix A can be uniquely decomposed as a sum of its Hamiltonian component
(A —w' Aw)/2 and its skew-Hamiltonian component (A + w' Aw)/2. Symplectic matrices are closed under
multiplication, while Hamiltonian and skew-Hamiltonian matrices are closed under both addition and the
inverse.

As discussed further in Sec 5.3, symplectic positive definite matrices correspond to covariance matrices
of pure Gaussian states. The special role of Hamiltonian matrices for us is that they generate linear time
evolution for such matrices. More precisely, suppose o(t) is a time-dependent symmetric symplectic matrix.
In order that the symmetry condition | = ¢ is preserved, we must have 6| = &. Likewise, for the symplectic
condition cwo = w to be preserved, we must have

d

0= —(owo) = dwo + ows = 6o~ 'w+wo™

dit

o =60 w— (607 1w)" (4.2)
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Notation Meaning Reference to definition
d Number of degrees of freedom -
we Symplectic form Definition 3.1
X, vs. X Index raising/lowering via X = w X, -
74 Phase space operator 7 = (&, p) -
a®, gb Phase space coordinate a = (z,p) € R?? -
o Covariance matrix Eq. 5.23
Ta,o Gaussian classical distribution Eq. (5.24)
Ta,o Gaussian quantum state Eq. (5.25)
E = Op,[E] Weyl quantization (operator) of function F Eq. (4.8)
E = Ws[E] Wigner transform (function) of operator £ Eq. (4.11)
H Hamiltonian function Definition 3.1
Ly, Lindblad function Definition 3.1
G* Friction vector Definition 3.1, (3.6)
Db Diffusion matrix Definition 3.1, (3.5)
g Relative diffusion strength Definition 3.2
Snrs (1) Set of NTS states Definition 3.3
U Deterministic drift Eq. (6.5)
K% Gradient matrix of U Eq. (6.6)
e Hessian matrix of H Eq. (6.7)
re, Gradient matrix of G Eq. (6.8)
Gab Time derivative of o Eq. (6.4)
Adb Scaled diffusion matrix Eq. (3.7)
Ab Localization matrix Eq. (1.8)
Cmax Max strength ratio of F' to D Eq. (6.47)
Xmax Max condition number of D Eq. (6.48)
B Nie s Anharmonicity seminorms Egs. (3.16), (3.17)
Banh, Bgnh, Bg,“h Anharmonicity factors for H and Ly, Egs. (3.15), (3.18), (3.19)
|- |k C* seminorm Eq. (4.7)
I lgop Generalized operator norm Eq. (4.6)
Symplectic coordinate-change matrix -

Table 1: A glossary of notation used in this paper. All operators have hats except the quantum states p and p. All
function above are real-valued except the Lindblad function Lx. Hats on a function E denote quantization with Op,[-],
but the hat on the Gaussian distribution 7u,, = W, '[Ta,o] = (27h)? Op;[Ta,.] differs by a factor of (277)? because it
is a Wigner function rather than a Wigner transform; see Section 4.4.
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i.e., 6o~ is Hamiltonian. We can always express the dynamics as & = Ao +0 AT for Hamiltonian A := go =1 /2
(since o and & are both symmetric).?

4.3 Norms and seminorms

For a function f(a) over phase space variable a = (z,p) € R?? the (Lebesgue) L? norm is

115 = ([ dalf(a)lq>l/q- (43)

In this paper, we only need the case ¢ = 2 (used for wavefunctions) and ¢ = 1 (for Wigner functions and
classical probability distributions). In the latter case we note that

s = sup / 6(a) f(a)do (4.4)

|¢|CU:

The supremum is over continuous functions ¢ bounded by 1. In particular, for probability distributions f and
g the error ||f — g||z1 represents the largest possible discrepancy of a bounded classical observable ¢ with
respect to the probability distributions f and g.

The analogous norm on the quantum side is the trace norm ||A| . = Tr[(ATA)'/2] of an operator A, i.e.,
the sum of the singular values of A. Just as in the classical case, there is an equivalent expression

A = sup Tr[AB]. (4.5)
I1Bllop=1

where || B]op := SUDP =6l =1 |(4)|B|¢)]| is the traditional operator norm, i.e., the largest singular value

of an operator B. In particular, ||[p — n||q, gives a bound on the difference between two quantum states p
and 7 as measured by any bounded observable. Thus, two classical states (quantum states) cannot be easily
distinguished when they are close in L! norm (trace norm), no matter what measurement is performed.

For a finite-dimensional tensor Z of order k (i.e., k indices), the generalized operator norm [/ Z||,,, is
defined by
1Z]lgop 7= sup |(B1@ Bo@---@ f) - 2. (4.6)
l18511=1
This is a generalization of the traditional operator norm on matrices || - || (the k = 2 case). Using VFE :=

(0% -~ 0" E)q,....ap to denote the tensor of all k-th order partial derivatives of a function E on phase space,
we define the C* seminorm for a scale function F to be

|Elow = sup [[V*E(@)],, = sup sup [ - 57" Oa, -+~ O, B)| (4.7)
o o |Bi]=1

In particular, |E|,, measures the largest gradient of E, and |E|. the maximum operator norm of its Hessian.

When E% "’ is more generally a tensor of order r, |E|,x is the supremum of the operator norm of the

order-(k + 1) tensor V¥ E: |E| ¢ = sup, supy g, =1 |81 - Brit Oay - Oay Bay -y (@)

4.4 Wigner-Weyl representation

Here we recall the basic components of the Wigner-Weyl representation. We emphasize (linear) “symplectic
covariance” and a careful handling of normalization factors since they play an important role in our main
result.

29More abstractly, the space sp(2d,R) of Hamiltonian matrices is the Lie algebra that generates the Lie group Sp(2d,R) of
symplectic matrices.
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In order to compare®® quantum and classical systems, we use Weyl quantization®! of a symbol E:

Op;|F] / dx/ do E(a)eXa(f=)" (4.8)
2d R2d R2d

This defines an invertible mapping between complex—valued functions on phase space R2¢ and operators on the
Hilbert space L?(R%) of complex-valued wavefunctions on configuration space R?. When it is unambiguous
from context, we will for compactness use a hat3? to denote the quantum operator corresponding to a classical
function: £ = Opj,[E]. Weyl quantization obeys Op,[E*] = Op,[E]! and the crucial trace identity

Tr[E] = ﬁ /]R  daE(a). (4.9)

The action of a Weyl operator on a vector ¢ € L?(R?) is
. 1 i
Opy|E = (F e — d dper@—v)rEp
(Opu[E}) ) = (B)(0) = s [ o [ apette

This form does not respect the symplectic covariance, but it is common and often useful for calculations.
The inverse of Weyl quantization is the Wigner transform of E, producing the symbol FE, a scalar
function on phase space:

Tty

p) (@), (4.10)

Op; ! [B] () = (2rh)* /R dy Tr [eiXaWa)“E] . (4.11)

A slightly different object is the Wigner function W;[p| of a density matrix (positive semidefinite
trace-class operator) p. In order to obtain relations like Tr[2"p] = [2"Ws[p](z,p) dzdp and Tr[p™p] =
[ p"Whlpl(x, p) dzdp, we must define the Wigner function to differ from the Wigner transform of p by a
factor of (27h)~¢

-1
Whlp] = (?;:Lh)[g] = /Rmdx Tr {e”‘“(“"‘) E] (4.12)
Although this seems a bit unusual, the normalization factor in (4.8) is fixed by the desire that Op;[1] = I (the
identity operator) while the normalization factor in (4.12) is fixed by the desire that Tr[p] = [ Wh[p](a) dev.
Indeed, note that Op, preserves the physical units (e.g., meters for & = Opy,[x]), while for Wy[p] to be a
probability distribution over phase space it needs to have the same units as A~¢ even though the operator p
has no units. For compactness we will sometimes use the notation W, := Wj[p] when there is no chance of
ambiguity.
For a quantum state p with Schwartz kernel K,(x,y) = (z|p|y),

/dyK z,y)Y(y), (4.13)

an alternative and maybe more recognizable expression for the Wigner function is

1 i

— | eWPIhK (x 2.z —y/2)dy. 4.14
) /Rd (@ +y/ y/2)dy (4.14)
This expression is more amenable to direct computation than the equivalent expression (4.12), but breaks
symplectic covariance by treating position and momentum differently. Note that K, need only be distribution
valued in order to make sense of Wy[p| as a distribution, since the oscillatory integral can be considered as a
distributional Fourier transform.

Whlpl(z,p) =

30T here are alternative mappings one can consider, each furnishing an alternative representation of quantum mechanics on
phase space. Most are associated with a particular convention for ordering mixed products of  and p, with Wigner-Weyl
corresponding to symmetric ordering [49]. The Wigner-Weyl representation has useful symmetry properties, and we have chosen
it merely for convenience. Our result does not depend on Wigner-Weyl being the “correct” phase-space representation of quantum
mechanics.

31This is sometimes written with the variable substitution x = £/h, so the normalization factor out front becomes (27h)~22
Alternatively, when E is analytic, Opy[E] can equivalently be defined by expanding E as a power series and mapping p"z"
27y (M)grpmanTr =27m Y (1) ptamp e [62,81].

32In the special case of Gaussian states (see Section 5.3), we will in this paper also use hats slightly differently to distinguish
the quantum Gaussian state 7o,s from its Wigner function, the corresponding classical Gaussian state 7a,0 := Wg[fa,0] =

Op;, ' [fa,0)/(2nh) 2.
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4.5 Moyal star product

On the phase-space side, the Moyal star product x implements the equivalent of matrix multiplication, i.e.,
OpplA * B] = Opy,[A] Opy,[B] for the symbols A and B. The general definition is

1
(2mh)d

A% B(a) = / ¢80 A0 4 B/2) Bla + £/2) dB dE. (4.15)

When A and B are analytic, it can alternatively be expressed as

A% B =Aexp [(m/z)éﬁa} B (4.16)
_ i ("’Z 2 Dy -+ 0u, A)(O" - 0 B) (4.17)

n=0 :
=AB + % {A, BYpg + O(R?) (4.18)

where {A, B}pg = (0,4)(8°B) = (0,A)(0,B) — (9,A)(8,B) is the Poisson bracket and w is the anti-
symmetric Levi-Civita symbol. When one of the functions (say A) is a polynomial of degree n, then the
summation in (4.17) is naturally understood to terminate after the n-th term, and one can check that it
agrees with the integral definition (4.15) so long as the other function (B) has derivatives defined through
order n, even if B is not analytic.

Likewise, the Moyal bracket is

{A, By g ::%(A*B—B*A) (4.19)
={A, B} pp + O(1?) (4.20)

which reduces to the Poisson bracket for small & as expected.

5 Technical preliminaries

This section collects previously known results in a common notation that will be used in our proof. It also
introduces the “local harmonic approximation” for quantum and classical Markovian dynamics which, in the
quantum case, we were unable to find explicitly in the literature in full generality. Some readers may wish to
only skim this section before reading the proof, returning here as necessary for clarification.

5.1 Classical limit of Lindblad dynamics: Fokker-Planck equation

We assume our system follows Markovian dynamics so the density matrix p of the system obeys a Lindblad
equation dip = L[p] with

Llp) = =5 [H,p] + %Z (ﬁkp!iL - ;{ﬁlimp}) (5.1)
k

= [0+ 5 > (1w, LY + [Lis L)) (5.2)

where H is the Hamiltonian and {L;} some set of Lindblad operators.

In this section we recall how to heuristically identify the classical Liouville equation (for the dynamics of a
probability distribution over phase space) that is associated with a Markovian quantum system in the limit
h — 0. We will do so by considering the quantum dynamics in the Wigner phase-space representation. Note
that this is not a formal limit. Indeed even when the quantum and classical Liouvillians are close according
to an appropriate metric, the evolving states will often diverge exponentially fast in time, so that similar
dynamics on an identical initial state can produce very different states at later times, including flagrantly
non-classical states.
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The Lindblad equation (5.1) is transformed to the Wigner representation as 0,W, = L,[W,] by applying
Wy, to both sides [52,72,73]:

Lo[Wp] :==Wi[L]p]] (5.3)
= {H Wb + 5 2 (L Wo Lidhg + {20 Wy * Liygo) (5.4)
k

i 1 1 1
- %(H*WP—WP*H) + gz (Lk*Wp*L,’; — 5L LW, — QWP*LZ*Lk> (5.5)
k
where W, = W;[p] is the Wigner function of p. We emphasize that £, = Wy 0 Lo W, 14533 just a different
representation of the exact quantum dynamics generated by L. Using the series expression for the Moyal
star product (4.17) to expand in powers of i, and making use of 9,0 = w*9,0, = 0 (by symmetry), we
have [71-74] (see also [76, 80,82, 83])

h
Lo[W] = (0.H)(0"W) + 0" |WIm > LpdaLj | + 04 | (2W) Re» (9°Li)(0"Ly)| + O(h?)  (5.6)
k k

=—0,[(0"H + G*) W] + gaa (A9,W) + O(R?) (5.7)

where the friction vector G* := Im ", L;,0°L; and the scaled diffusion matrix3
A :=Re) (0"Ly)(9"L;) (5.8)

k

are functions on phase space. This shows that if we identify the diffusion matrix3® as D% = RA®

then the quantum dynamics in the Wigner representation take on the general form?3® of the Fokker-Planck
equation [43,44]

Llf) = ~0ul(0 T +G*)f] + 30, (D) (59)
= —0u(U" ) + 50u(D"00 ) (5.10)

up to terms of order O(h?), where we have introduced the deterministic drift U* = 9*H + G®. This justifies
our Definition 3.1 for corresponding classical dynamics.
It’s worth briefly noting that the Fokker-Planck equation is often written as

Lf] = ~0u(0"H + G + 0,0 /2)f] + L0,0,(D" ) (5.11)

= —0u(0°) + 500D ) (5.12)

33 As usual, “o” denotes function composition.

34Instead of A,p, many authors (e.g., Ref. [56]) have traditionally used a “localization matrix” Ay, = h 1Ay = h™2Dgp, =
h~'ReY, £ o lip (or maybe with a factor of 2). Some intuition for the physical meaning of these matrices can come
from noting that a superposition of two wavepackets widely separated in phase space by the vector o decoheres at a rate
a®Agpal = hm1a%Agpal, i.e., the off-diagonal components of the density matrix decay like ~ exp(—ta®Apa®). We choose to
work with A, rather than A,p because A,y has no h dependence (as we consider Ly and H to be independent of &) when, as we
have done, Lindblad operators are defined so products of pairs of them have the same units as the Hamltonian. This makes it
easier to read off the classical limit h — 0.

35There have long been competing [43] conventions [44] on whether to include the factor of 1/2 in front of the diffusion term in
the Fokker-Planck equation, and there is no uniformity even within authors studying quantum Brownian motion specifically. Our
convention for the matrix D,y agrees with, e.g., Didsi & Kiefer [75,84] and Graefe et al. [52], but differs by a factor of 2 from,
e.g., Isar et al. [85] and Dekker & Valsakumar [86].

36Gtrictly speaking, one can consider the Kramer-Moyal expansion, a partial differential equation for f with derivatives of
arbitrary power. However, by the Pawula theorem, if the expansion does not terminate by second order then it must contain an
infinite number of terms in order that f remain positive [87]. See Ref. [88] and Sections 1.2.7, 3.3.2, and 4.1 of Ref. [43] for further
discussion. In the case of a classical stochastic system that arises as the limit of a Lindblad equation, we see that the additional
terms will correspond to higher powers of h, which get small in the classical limit. We have kept track of the O(h!) terms because
these are the necessary ones to produce the classical state f that p will well approximate. That is, adding higher-order terms
would define different f, but they would all be close to j, while dropping the O(h!) terms would give non-diffusive (though
generically still dissipative) dynamics that produce a f that is not well approximated by p.
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which has the advantage®” of isolating the mean drift vector U® = 9*H + G* + 8,D% /2 (usually called
simply the drift). The mean drift points in the direction of the mean probability ﬂow i.e., the direction
that a strongly localized distribution will move when averaging over the diffusion: 3 (r*); = f da U “(a) f().
The mean drift and the deterministic drift differ by the spurious drift vector 8bD“b /2 = Ue —ue (also
known as the noise-induced drift). For the important case of harmonic dynamics, discussed in Section 5.2, the
diffusion matrix D is constant over phase space, so U =U, the spurious drift vanishes, and the two forms
(5.9) and (5.11) coincide. For non-harmonic dynamics, we will be most interested in the deterministic drift
U® because, as discussed in Section 5.3, it is the direction in which Gaussians states flow under the local
harmonic approximation introduced in Section 5.4.
We emphasize that even though the diffusion term

h

;a (D0, f) = =0a (A™0pf) = h (m%j(a%k)(a%;)ab f) (5.13)

in the Fokker-Planck equation (5.9) vanishes as i — 0 with the classical function Ly, fixed, we do not generically
recover closed-system dynamics in this limit: the friction vector G* = Im}_, L,0*L;j, survives. However,
when the system is closed (Ly = 0), both the friction and the diffusion vanish and we recover the Liouville

equation: 0y f = (0, H)(0"f) = {H, f}pp-

5.2 Harmonic Markovian dynamics: quadratic Lindblad equation

It’s widely known that when the Hamiltonian of a closed classical or quantum system is quadratic in the phase
space variables = and p (so H = F,,7%"/2 after an appropriate choice of the origin), the dynamics can be
solved exactly for all time. Such dynamics are often called “linear” because when the system is perturbed its
response is proportional to the size of the perturbation.?® To avoid confusion between the quadratic variables
and the resulting linear response, we will call these “harmonic” dynamics.

It is less often appreciated that exact solutions also exist in the more general case of a Lindbladian open
systems when, in addition to a quadratic Hamiltonian, the Lindblad operators are linear in & and p [85,89,90].
(Introducing linear Lindblad operators, rather than quadratic ones, is the natural way to generalize a quadratic
Hamiltonian since the Lindblad operators appear together in pairs in the Lindblad equation.) We will call
this harmonic (Markovian) dynamics,> where the Hamiltonian and Lindblad operators take the form®°

H = Fyl + F,r* + Fa gt (5.14)
[A/k = €k7of + fk,af (5.15)

for real number Fy, F,, and F,, = Fj, and complex numbers f; o and ¢;,. The Lindblad equation
becomes*! [85,91]

. ' 1 1 1
L [p) = —% Fui® + 5 Fay 7" + ImZKk,ozz,afa,p] + = Zék,af,t,b (f“pfb -3 {fbﬂp}) (5.16)
k

(Bt gl ] — TR EL [ (5 o] 2Bt [ 50 ]), (5.17)

370n the other hand, the form (5.11) has the advantage of taking the explicit divergence form 8, (D%’8y f) which is a self-adjoint
operator with respect to the L2 norm. The form (5.11) is associated with the Itd stochastic calculus, while (5.9) is associated
with the alternative formalism of Stratonovich.

38More precisely, Hamilton’s equation of motion 8;r® = 9%°H = F%r® is linear in the variable r(t) = (z(t),p(t)), so
solutions (trajectories) are closed under linear combinations. Equivalently, when eliminating p, the second order equation
[02 — F%,0; + F*Fu,/2]2(t) = 0 for z is linear.

39This is often called “quantum Brownian motion” (QBM), but that terminology is sometimes also applied to dynamics that
feature non-quadratic Hamiltonians or that do not strictly obey the Markov property.

400r, more explicitly, H = Fo + Fxd + Fpp + Fxxa: + Fxp(Zp + p&) + 5 Fppp and Ly = 4 0+ L xT 4L pp

410ne way to simplify the calculation is to make the Lindblad gauge transformatlon H — H+Im >oulk OL]L and Lk — Lk Ly, 0]
(which has effect Fy — Fo +Im Y, £y off , and €5 g — 0).

1 Aab
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where*2

Ga ‘= Ingk,ogz,aa Aab = ReZanék,b, Fab = ImZ@Zyaﬁk?b (518)
k k k

are real-valued parameters. Note that the scaled diffusion matrix A, and the friction gradient Iy, are the
real and imaginary parts of the positive semidefinite matrix ), U olr,b, sO they are respectively symmetric
and antisymmetric, and A, is furthermore positive semidefinite itself. Eq. (5.17) is the most general possible
open-system quantum dynamics of a single degree of freedom when the Hamiltonian is constrained to be no
more than quadratic in Z and p and the Lindblad operators are constrained to be no more than linear.

The dynamical equation for the Wigner function W, = (27h) ~4Wj[p] equivalent to Eq. (5.17) is*3

LG W) := (2mh) = Wa[L£™ o] (5.19)

h
= | —(F* 4+ ¢")0y — (F% +T%)00" + §Aabaaab W,(a) (5.20)

In other words, £2 o Wy = Wj, 0 L2, We see that this equation for the Wigner function in quantum
harmonic dynamics takes the ezact same form as a Fokker-Planck equation, L[f] = —89,(Uf) + 10,(D*9, f),
if we identify the deterministic drift U%(a) = 0°H +G* = (F* 4 ¢%) + (F'% +T%,)a* and the constant diffusion
D®(a) = hA®. This is because, unlike the general anharmonic case discussed in Section 5.1, there are no
terms of order O(A?) or higher.

So we see that the Hamiltonian drift 0°H (a) = F®+ F% o’ and the friction G%(a) = g* +T'%a® (and hence
the deterministic drift U* = 9*H + G®) are all linear on phase space. Furthermore there is no spurious drift
9y D% /2 because the diffusion D is constant, so the deterministic drift and mean drift coincide: U® = U*.
Since F,, and I'yp are respectively symmetric and antisymmetric by construction, their index-raised forms
F4 = wFy and I'') = w*T'y, are the Hamiltonian and skew-Hamiltonian components of K% = F% +1I'%;.
As will be seen in Section 5.3, K%, controls the non-diffusive component of the dynamics for the covariance
matrix of harmonically evolving Gaussian states.

5.3 Gaussian states and their harmonic evolution

We recall that the covariance matrix of a pure quantum state ¥ with zero mean position and momentum

((¥]2|¥) =0, (¢|py) = 0) is defined as
()L = o F) o

= (rort),, = (<x2>w <mp>W> (5.22)

(zp)w  (P*)w

Here, r(a) = a® is the phase-space coordinate function, W is the Wigner function of v, and expectation
values are (f(a))w = [daW(a)f(a). More generally, when the state p is mixed and the means 7 :=
(Z,p)* := Tr[pr*] = (r*)w are non-zero, the covariance matrix is

o = Te[p{(7 — 1), (F = 7)°}/2) = ((r = 1) (r = 7)")w- (5.23)
A Gaussian distribution over phase space takes the form

exp(—p0,) 8°/2)
(2m)4v/det o

for a positive semidefinite covariance matrix 0% and mean o®. It is the Wigner function of the operator

(5.24)

Tao(a+B) =

Tae = (277)? Opp[Ta o] (5.25)

42Note that while both the real and imaginary parts of >k ly o lkb (Agp and T'yp) appear in the harmonic dynamics, only the
imaginary part of Y, Zk,of;*;,a appears. The real part does not contribute due to the form of the Lindblad equation, and the
same is true for Y, £y o} , (which is real by construction).

43The partial derivative 78a next to K¢ is understood to act on both ab and W (), not just a®.
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that generally takes the form 7, , o e~ ™A™ Where A is a matrix determined by o; when ¢ corresponds to
a pure state 7o, (see below), the corresponding A diverges, and one would instead write 74,0 = |¢a,0){Pa,0]
where |¢ ») has a Gaussian wavefunction. The Gaussian distribution obeys the mixing relation 7o, o, *Tay,00 =
Tor+as,01+025 Where “x” denotes the convolution, fxg(a) = [da f(a—B)g(B) = g f(«). This can be extended
to Gaussian states through linearity of the Wigner function: 7o, oy * Tas,00 = Tai+as,01+0s = Tar,01 ¥ Tas,00
which preserves the normalization and positive semidefinite conditions.

The distribution 74, and 7,,, are always normalized, [da Ty, (o) = Tr[7a,s] = 1, but 74, is only a pure
quantum state state (74,6 > 0, Tr[7a,0] = Tr[72 ] = 1) when 77z is additionally a symplectic matrix (ie.,
hL/QwEL/Q = w). More generally, these equivalent conditions on a positive semidefinite matrix o ensure that

Ta,o 1S a (possibly mixed) quantum state [92,93]:
® Too > 0.

e o > ¢ for some & such that % is symplectic and positive semidefinite, i.e., 74 » can be expressed as a
Gaussian mixture of pure Gaussian states 7, 5.

hiﬂ—i—inO.

e v; > 1, where {1;}2¢, are the Williamson symplectic eigenvalues [94,95] of w73

When rank(7,,,) = 1, the state 74, is more specifically a pure Gaussian state (also called a “squeezed
coherent state”), in which case the inequalities above are saturated.
The above demonstrates why some authors in Gaussian quantum information set i = 2, although we will
not do so in this paper. Instead, we will occasionally work with the rescaled matrix ¢ := h"% for convenience.
A powerful fact about harmonic dynamics is that, in both classical and quantum systems, Gaussians
remain Gaussian for all time, with the centroids following the classical equations of motion and the covariance
matrices obeying linear dynamics* [52,76,85] (see also [73,96]):

Lemma 5.1 (Gaussian harmonic evolution). Let p(t) be the solution to the quantum harmonic dynamics (5.17)
with quadratic Hamiltonian H given by (5.14) and linear Lindblad operators Ly, given by (5.15) with Gaussian
initial state p(0) = Tay,0, centered at o in phase space with covariance matrizv oo. Then p(t) = To),0) with
a(0) = ap, 0(0) = 09, and

da®(t)

T U(a) := 0"H(a) + G(a) = F* + g + (F% +T%)a’ (5.26)
ab
dUdt(t) =85%0) := K%o® + 0% K", + D (5.27)

where 0"H(a) = F* + F%a® and G*(a) =Im ), Li(a)0°L}(a) = g + T'*,a® are linear over phase space
while K% = 0°U, = 0°[0,H () + Gp(a)] = F% +T% and D® = hRe Y, (0°Ly)(a)(0°L})(a) are constant
over phase space.

Proof. This can be checked by direct computation® in the Wigner representation, starting with the chain
rule:

da(t) OTa(t),0 () (B) N do®(t) OTa(t),0(1) (B)

OiTa()0n () = —g o i Derab (5.28)
= [_ (F +9G+Kabab)(_‘7;bl(ﬁ_a)b) ( )
1 5.29
+ i(KGCUCb + Uachc + Dab)(aaiclo—};jl (ﬂ - O‘)C(ﬁ - a)d - O-a_bl)]’ra(t),o(t) (5)
= [ (F* +¢"+ E%8") (=0, (8- )") — K¢,
Loab —1_—1 . 4 1 (5.30)
+ §D (Jac Opd (5 - a) (ﬂ - a) O )] Ta(t),o(t) (5)
= |-U"(8)0. — K*, + %Dabaaab Ta(t),0(t)(B) (5.31)

44Note that with traditional matrix multiplication, (5.27) can be written more transparently as S(c) = Ko + oK " + D.
45 Another approach is to first observe that the Fokker-Planck equation preserves the Gaussian property of distributions and
then compute the time derivatives of the mean and covariance from their definition using integration by parts.
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where in the second equality we used 0qTa,0(8) = 0aTo,0(f — @) = —0870,0(8 — @) = —0pTa,-(5) and, as
shown in Appendix B.1,

2
e T (8) = (08 = @0} (5= ) = 0 ) (8) = 2 ranlat B (532)

With can see (5.31) then satisfies the Fokker-Planck equation (5.9) by noting that 9.D% = 0 and that
0,U% = 0,(0°H + G*) = I'*, = K%, since F'*, = w®F,, = 0 by virtue of the symmetry of the Hessian
Fap = 0,0,H. O

The matrix ¢%° = S describes both expansion (D) of the covarince matrix from diffusion and the local
stretching and skewing (Ko + 0K ") from the Hamiltonian flow and the friction. The deterministic drift
a* = U® describes the movement of the (center of) the Gaussian wavepacket; it includes the symplectic flow
0°H from the Hamiltonian and the friction G* =Im )", L,0"L} from the Lindblad terms. As mentioned in
Section 5.1, for harmonic dynamics the deterministic drift U® and the mean drift U = U® + 8, D /2 coincide
because the spurious drift 9, D" /2 vanishes when D is constant over phase space. As defined in Section 5.4,
for nonharmonic dynamics the local harmonic approzimation at a point « is based on the deterministic drift
U%(«), so it (not the mean drift) is the direction that Gaussians flow under that approximation.

5.4 Local harmonic approximation

We will now define a local harmonic approximation to both quantum and classical dynamics about an
arbitrary point « in phase space. The quantum approximation is a natural extension of Heller’s semiclassical
approximation for closed quantum systems [50,82]. In particular, see Ref. [82] for a discussion of the basic
reason that expanding the Wigner function in powers of A and truncating is often not well-behaved, while the
present technique is: expand the dynamics L in powers of &, truncate, and then evolve the Wigner function
exactly with that. Vladimirov & Petersen considered a local harmonic approximation to Markovian open-
system dynamics with (effectively) linear Lindblad operators [97], although we are unsure if it is equivalent to
our definition in that case.

First we introduce some notation for the Taylor expansion of a function E. Let n := (ny,ng, -+ ,noq) €
(Z>0)*** be a multi-index. We write 97 E to mean 9p1 - - 9pdidpi*" .- 972¢ E and define the factorial n! =

H?L(nj)!- We also define o™ := (x1)™ - - (xq)™ (p1)™d+1 - - - (pg)"2¢. We can then define the approximations

about « of a function E an arbitrary order m:

E[a’m](a+ﬂ) = Z wﬂn (5.33)
il n!
with error
6E[Ot,m] = E(Oé) _ E[avm]' (5.34)

The Taylor remainder theorem gives the bound §E™(8) < 1|8 — a|™ | E| gm1.
The Taylor approximation for the operator, and its error, is then naturally defined using Weyl quantization:

Eloml .= Op, [Elem], SEl™M .= fp — plom] (5.35)
We will in particular make use the second-order approximation to the classical Hamiltonian,
Al = Op, [H2) (5.36)
=Fy() + Foa) (7 — ) + %Fab(a)(f —a)*(F — ) (5.37)
and of the first- and second-order approximations to the classical Lindblad functions,
et = op M) = L () = Li(@) = G a(a)(F — a)® (5.38)

“ric « [ ~ A a 1 A a/a
N = Opy M) = LA (#) = Li(@) = boa(@)(F = @) + Slua(a)(F = a)* (=)’ (5.39)
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where we have defined the shorthand Mk = f/k — L (), which is just the Lindblad operator with its classical
value at « subtracted off. We have introduced

Fy(a) := H(er), Fula):=0,H (), Fap(a):=0,00H (), (5.40)
lro(a) = Ly(a), Llpo(a):=0,Lp(a), {lga(a):=0.00Li(a) (5.41)

where in particular F, and Fy; are the local gradient and Hessian of the classical Hamiltonian H. In a closed
(i.e., Hamiltonian) system, F® = w®F, is the classical flow and F'% = wF},. is the Jacobian.

It is tempting to simply start with the Lindblad equation and replace H with its quadratic approximation
Hl*2 .= Op,[H*2] and L with its lincar approximation L' := Op,[LI*"], and indeed this would give
harmonic dynamics, but it would not give the correct harmonic dynamics. The reason is that quadratic term
in the Taylor approximation to Ly, can still contribute at the same order as the quadratic part of H to wit,
the quadratic term in Ly multiplied by the constant (zeroth order) term in L

So instead, we re-write the eract Lindblad equation (5.1) as

Lip)=—1 |H +ImZLk~(a)(ﬁk - Lk(@))TaP]
) F . (5.42)
T3 > <(£k’ — Li(a))p(Ly, — Li(@))T = B {(ﬁk — Li(a))(Ly, — Lk(@%ﬂ})
k
S Y et o) + 1S (MkpM,j - {M,IMk,p}) (5.43)
k k

Here we are just observing the well-known fact that £ is invariant under the replacements H — H+
Im), Li(e)(Lg — Li()t and Ly — Ly, — L (a), where Im ok Lk(a)Mg is the contribution by the Lindblad
operators to the Hamiltonian part of the dynamics. (Note that M, will be different for different choices of a,
although we do not denote this dependence explicitly. We emphasize that no approximation has yet been
made.)

With this form we can now identify a harmonic approximation L) to the Lindbladian £ near the point
a, where all terms are at most second-order in the phase-space operators:

]- “rla “rlo, ]- “rlo, “rlo,
w5 30 (ke il = g (A} ) (5

£p) 2= | At Y LN
k k

By construction, these dynamics are harmonic. Note the appearance of both M ,£a’1] and M ,LQ’Q], and also that
LE:"O] = Li(«) is just a scalar. Unlike simply replacing the Lindblad operators in the Lindblad equation with
their linear approximations at «, this definition correctly captures the complete harmonic dynamics near a.

On the classical side, we would like a similar approximation to the Fokker-Planck equation (5.9),

Llf) = ~0ul(0H +G*)f] + 50D, (5.45)

= 0, Ka“H +ImZLk8“L}‘;> f (Re Z(&%@(@%;)) 8;,4 (5.46)
k k

(As before, the last line is the exact dynamics re-expressed in an a-dependent way, but no approximation
has yet been made.) With maybe less motivation than the quantum case, we will consider the harmonic
approximation £(® to the classical dynamics £ near the point a to be [98] given by taking the linear
approximation to the transport terms 0*H + G* and the zero-th order approximation to the diffusion term

1
=0,
+ 2
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Deb.
£ [fl=-0, [<6QH[O"2] + G[O"l]“> f} + 18 [D[O"O]aba 4

— <8GH[0¢,2] +Im Z LLCM,O] aaMILCt,Q]*> (aaf) + 0 <f Im Z M]£a71] aaMgga’l]*)
k k

(5.48)
+ 8o, [Re S (M) (001210 f]
2 a k k b
k
We collect these approximations in the following definition:
Definition 5.1 (Harmonic Approximation). Given the classical Markovian dynamics
1
Lclf] == 0a[f(0"H + G*)] + §8a(D“b8bf) (5.49)
we define the classical harmonic approximation to the dynamics at a as
1
LOf] = = 0a[f(0HI*H + Gl + 0, (D100, f) (5.50)

where E®™ denotes the m-th order Taylor approzimation to the phase space function E at «. Likewise,
given quantum Markovian dynamics

Llp) = = [H, o] + %Z (ikpﬁL - ;{ﬂcimp}) (5.51)
k

we define the quantum harmonic approximation to the dynamics at o as

1

E0p) = k|0t 3 B 4 L (e e e e 1) (s
k k
(5.53)
where My, := Ly — LE:"O] and Eleml = WE[E[QW]]. The respective errors are denoted
6L =L — L) 0L =L — L@ (5.54)

Importantly, evolving p with L) g equivalent to evolving its Wigner function W, = Wy|p| with L)

Lemma 5.2 (Quantum-classical harmonic equivalence). Consider the exact classical dynamics (5.49) cor-
responding (in the sense of Definition 3.1) to the exact quantum dynamics (5.51) with H and Ly twice
differentiable. Then their respective harmonic approximations L) and £ at any point o are equivalent in
the sense of being directly related by the Wigner transform:

L) o Wy = Wy 0 L) (5.55)

Proof. By Definition 3.1, £ is the classical limiting dynamics corresponding to £ when G%(«) = Im > Lr0*Lj
and D® = hRe ", (8°Ly)(8°L}), so

Gios1s — S (LT o 1 M g 559
k
D[a,O}ab — K Re Z(aaLLav”)(abLE:‘»l]*) (557)
k

Then (5.55) can be checked through direct computation with the Moyal product (4.16) using, for example,

“rlo “rlo 1 “rlo “rlo
I
— =0, [t (Mf* o a W, | 4 g [Re (@ 21™Y) (0" M) | (0a0WV, ).
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6 Proof of Theorem 3.1

In this section we give a detailed outline of the proof of Theorem 3.1, up to lemmas that are deferred to later
sections.

6.1 Defining the Gaussian mixture p(t)

In this section, we define an evolution

50 = [dado bV (6.1)

for some probability distribution p, () which we will construct to satisfy

= //dadapa,g(t)/:'(“) [Ta.0)- (6.2)

Recall that £(®) is the harmonic approximation to the Lindbladian, defined in Section 5.4.

The double integral sign is used to emphasize that the integral is taken over both phase space, R??, and
the space of all covariance matrices for pure Gaussian states, i.e., positive semidefinite o where o/(h/2) is
symplectic.

We now invoke our lemma from Section 5.3, restated here for convenience, about the evolution of Gaussian
states under harmonic dynamics:

Lemma 5.1 (Gaussian harmonic evolution). Let p(t) be the solution to the quantum harmonic dynamics (5.17)
with quadratic Hamiltonian H given by (5.14) and linear Lindblad operators Ly given by (5.15) with Gaussian

initial state p(0) = Tay,0, centered at o in phase space with covariance matriz oo. Then p(t) = To )0 with
a(0) = ap, 0(0) = 09, and
daa(t) a a a a a a a b
” =U%a) :=0"H(a) + G*(a) = F* 4+ ¢g* + (F% +T%)« (5.26)
doab(t
d dt( ) _ §%(0) i= Koo 4 0™ K, + D (5.27)

where 0"H(a) = F* + F%a® and G*(a) =Im ), Li(a)0*Li(a) = g + T'*;a® are linear over phase space
while K% = 0°U, = 0°[0yH () + Gp(a)] = F% +T% and D® = hRe Y, (8°Ly)(a)(0°L})(a) are constant

over phase space.

By Definition 5.1 and Lemma 5.2, the dynamics L£(®) are harmonic and characterized by quadratic Hamiltonian
Hl>2l Tinear friction Gl*, and constant scaled diffusion Al*9. So it follows from Lemma 5.1 and the chain
rule that*6

Ly o] = 0iFae = [(OH () + G () Dy + S (@, 0)y) 0.0 = [U()0n + S(at,0)05) 700 (6.3)

for all a, where we have introduced the abbreviations A0,0, = A%0,0, = A%0?/0a%da’ and A9, :=
A®9/9o% and where

S“b(a o) = ( )% .0 4+ 0K (o) + D (a) (6.4)
U%(a) :=0"H(a) + G*(a) (6.5)
K% () :=0Up(a) = F(a) + T (a) (6.6)

b(a) = 00, H () (6.7)

re (a) = 0"Gy(a) (6.8)
D®(q) := Rez (0°Ly) () (8°LE)(a) (6.9)
ImZLk )0 L () (6.10)

46Note well that the appearances of H, etc., in Lemma 5.1 refer to the parameters of some harmonic dynamics, while in the
main body H refers to general dynamics with harmonic approximations H["‘*Q], etc., to which the theorem is applied.
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(The third equality in (6.3) is because El®™(a) = E(a) for all m > 0.) Then our desired condition (6.2)
becomes

/ dOédO'Tag pag / dado pa,o(t) [U(a)0q + S(@, 0)00] Tao- (6.11)

We could integrate the right-hand side of (6.11) by parts in ¢ and « to obtain a transport equation
for ps,», but we would quickly lose control of the covariance matrix o which can be stretched by the
evolution. Instead, we observe that a component of the flow in the o direction (toward increasing mixedness
of the state) can also be interpreted as diffusion in the a direction.*” In particular, for Gaussian states

Tao(B) = exp[— (B — o) To~ (B — a)/2]/((27)4V/det o),
80'7—(1,0' = %aaaoﬂ—a,ow (612)

as reviewed in Appendix B.1. Therefore, for any decomposition S = Sp + Sy, we have
1
[Udy + S0s| Tao = {U@a + S0 + 25}3(%64 Ta,o- (6.13)

Plugging this into (6.11) and integrating by parts, we see that (6.2) is satisfied (with p, ., not necessarily
non-negative) so long as pq,o(t) solves

d 1
&pa,a(t) = |:—(9QU(G{) - 8050(0470') + QaaaaSD(ava)] pa,o(t) (614)
in brackets above. Note that the partial derivatives in (6.14) are understood to act on everything to the right
including p,,, outside the brackets.

The main question remaining is the definition of Sy and Sp such that p, »(¢) remains non-negative and
supported on the pure NTS states. This is deferred to Section 7, but we state here the main condition.

Lemma 6.1 (NTS-preservation condition). Suppose that an initial probability distribution p, »(0) is supported
on the set R?*? x Syrs(p) and that

S(a,0) = [F(a) +T'(a)]o + o[F(a) + T'(a)]" + D(«) (6.15)

for matriz-valued function F, T, and D that are Hamiltonian, skew-Hamiltonian, and positive semidefinite,
respectively, and which satisfy D/h+ iTw > 0 (as is guaranteed for all Lindbladian dynamics). Suppose also
that p satisfies

201 max + 113 Xmax < 1 (6.16)

where
Cimax 1= SUD IF@)ID~H ()], (6.17)
Ximax = SUD D@D~ (o), (6.18)

are the respective extremal ratios taken by | F|| and ||D| relative to the minimum eigenvalue Amin[D] =
|D~Y| =Y. (The latter is just the mazimum condition number taken by D over phase space.) It is also
sufficient that T' = 0 and AuCmax < 1. Then there exists a decomposition S = Sy + Sp such that when py +(t)

is evolved according to Opa (1) = C (@) [Py (t)] where
£ pag] = [~0aU(0) ~ 3S0(010) + 500805 (0,0) | [P (6.19)

Pa.o(t) Temains non-negative and supported on R?? x Sxrs(p) for all times t > 0.

4TWhen pa,o has support only on a single value of the covariance matrix o, it is essentially the Glauber-Sudarshan P function,
and it has long been known that diffusive dynamics, which would increases the mixedness of a single Gaussian state, can often be
re-cast as diffusion in the P function over pure states [84,99-103]. What makes the present approach distinct is that we are
considering a more general distribution pa,s supported on a large (but restricted) space of pure-state o. Increasing this allowed
space to include o corresponding to mixed states may allow our main result to be generalized further, but we defer that to future
work.
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Thus, under the assumptions of Theorem 3.1, we have defined a trajectory p(¢) that is at all times a
mixture (6.1) of Gaussian states with covariances matrices from the set Sxrs(i). We now turn to proving the
bounds (3.21) and (3.20)

6.2 Bounding ||p — |

First observe what may be understood as a version of Duhamel’s principle,
t A A
pt) = o) = [ dselt9% (0, - £) () (6:20)
0
because the anti-derivative of the integrand (with respect to s) is e(tfs)é[ﬁ(s)] (and p(0) = p(0)). Then

190 = o), = | [ s (0. £) 500

(6.21)

Tr

< [[as et (o~ 2) s, (6:22)
< /0 "ds (0~ £) 13s)]| (6.23)
= [[as | [ aadzrantr (60 £) | (6:24)
_ /0 s / dad (5L )| (6.25)
< / "ds / dadap%g(s)H(SEA(a)[%a,g] N (6.26)

< max max Héﬁ( )Tag
a oeSnts(p)

/ds/dadapac, (6.27)

(6.28)

<tmax max HcSE(O‘) [Ta.0]

a  o€Snts(p) Tr

where (6.23) follows from the fact that e=*)% is a CP map and so cannot increase the trace norm, (6.24)
follows from dynamics (6.2) for 5, in (6.25) we have used £ = £(® + §£(®) in (6.27) we have used the fact
that pa,, is supported on Sxrs(u) which follows from Lemma 6.1 and in (6.28) we have used that p, o is
a probability distribution so that f Da,o = 1. We will now make use of the following lemma on the error
introduced. by the harmonic approximation, proved in Section 8.2:

Lemma 6.2 (Error in harmonic approximation to quantum dynamics). The error 8L in the local harmonic
approzimation to the quantum dynamics acting on coherent state T, , satisfies

llor]l*2

R
where B [H, Ly, h] and Bg,"h[Lk, h,v] are defined in (3.18) and (3.19).

H(m(a) [Fao] H <Cy (Bg“h [H, Ly, h] + B2 Ly, b, ||o—||1/2]) (6.29)

Applying Lemma 6.2 gives

Haﬁ@ [Fao]

< AT (B, L ] B L b o) (6.30)

B2 (By™ H, L, Bl + By L, i o] 2]) (6:31)

IN

for all a and o € Snts(g/2), recalling o € Snrs(p) satisfy [|o|| < (2u)"'h and that Bg,“h[Lkﬁ, V] is a
monotonically increasing function of v, so (6.28) implies

156) = p(8) gy <thY2(20) /2 (BIM[H, Lie, B} + B[y, 1, (20)/201/2)) (6.32)
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6.3 Bounding |[W;[p] — |1

The calculation is similar to the that of the previous subsection. Again we observe a version of Duhamel’s
principle,

Wip(t)] = f(t) = /0 ds e (9, — L) PVil7)(5)] (6.33)

which follows for a similar reason as (6.20). Then we have

IWAla(0)] — (1) = ‘ / s 9% 9, — £) (6 ) (6.34)
< [[as e @ - )], (6.35)
< [[as 1.~ 36N, (6:30)
_ /0 "ds / dads poo(3) (£ £) [r0.] ) (6.37)
_ /0 ' ds / dado pa o ()5L 70 0] B (6.38)
<[ s [ dado pons) 3£ 1], (6.30)

a  oceSNTS

t
/ds/dadapwg(t) (6.40)

(6.41)

< max max HE(O‘)[T%U]
(1)

<{max max Hdﬁ(")[TaJ]
a oeSnTs(n)

where (6.36) follows from the fact that e*=*)¢ (flow and diffusion) does not increase L' norm, (6.37) follows
from Wi[L(®[f4.0]] = L[4 4] (by Lemma 5.2), (6.38) follows from £ = £(®) 4+ §£(®) in (6.40) we used that
Pa,o is supported on Snrs(p) (by Lemma 6.1), and (6.41) follows from [ dado pa,,(t) = 1. We will now make
use of the following bound on the error in the classical dynamics introduced in the harmonic approximation,
proved in Section 8:

Lemma 6.3 (Error in harmonic approximation to classical dynamics). The error 6£(%) := £ — £(®) in the
local harmonic approximation to the classical dynamics acting on coherent state 7o, satisfies

5 rasl| | < 14d%% lo|l¥ B"[H, L] (6.42)

with anharmonicity factor
BI™MH, L] = (|H]ca + |Glez + 1Ala) - (6.43)

depending only on the classical Hamiltonian and Lindblad functions through G* = ImY_, L,0°L;, and
A =Re", (0°Li)(9°L}).

By Lemma 6.3 we have
sl
16£ a0l < 14d%ﬁ o]l BEhH, L] < 14d3 RY2(20)~3/2 B0 1, L] (6.44)
for all « and o € Sxrs(g/2), recalling o € Snts(u) satisfy ||o|| < (2u) 1A, so (6.41) implies

IWlB()] = F (Ol x < 14d2 B> (2u) =2/ BE"" [H, L] (6.45)

32



6.4 Concluding the proof

We construct p(t) as in Section 6.1. We need to choose our class of NTS states such that the condition
sufficiently strong diffusion in Lemma 6.1 is satisfied:

2011 max + U Xmax < 1 if G* # 0 (frictionful) (6.46)
hpCmax < 1 if G* = 0 (frictionless) '
where we recall
- min[A(@)] \ 7'
max ‘= S F D = N —o7 rs 1 5 4
G = sup [F @107l = 7! (int 2 T (6.47)

X 1= sup | D(@) D @) = (inf =70 ) (6.49

Therefore we pick NTS states characterized o € Snrs(p = ¢/2), where we recall:

Definition 3.2 (Relative diffusion strength). Given an admissible tuple (H,{Ly}< |), we define the relative
diffusion strength g to be

o1 Amin|A ()] Amin[A ()] 1/2
¢ :=min { 2 lgf Amax | V2H ()] lnf <)\max[A(Oé)]> } (3.10)

In the special case that the dynamics are frictionless (i.e., when G define by (3.6) vanishes), we define g to be
the larger quantity

:= min 4 in —[ (a)]
g:= { af N[V H ()] 1}. (3.11)

In other words, we choose

(6.49)

g {min {(4h(max) L X;,}L)/(Z} , if G* # 0 (frictionful)
2

M = — =
min { (27max) "1, 1}, if G* = 0 (frictionless)

This choice ensures (6.46), so we have by Lemma 6.1 that the evolution of p given by (6.14) preserves the
property that p, o (t) is always supported on R?? x Syrts(g/2). Then by (6.32) we conclude

15(t) = p()ll, <thg™3 (B H, Ly, b + By (L b v//g)) (6.50)
Likewise by (6.45) we conclude
IWalp®)] = F(O < 14d3t k2 g3 BN [H, L] (6.51)

This concludes the proof of Theorem 3.1, our main result. The proof depended on lemmas concerning
the preservation of the NTS condition (Lemma 6.1, proven in Section 7) and the size of the error from the
classical and quantum harmonic approximations (Lemma 6.2 and Lemma 6.3, proven in Section 8).

7 NTS Preservation

In this section we prove Lemma 6.1, which we now restate.

Lemma 6.1 (NTS-preservation condition). Suppose that an initial probability distribution pe »(0) is supported
on the set R?? x Sxrs(p) and that

S(a,0) = [F(a) +T(a)]o + o[F(a) + T(a)]" + D(a) (6.15)
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for matriz-valued function F, ", and D that are Hamiltonian, skew-Hamiltonian, and positive semidefinite,
respectively, and which satisfy D/h+ iTw > 0 (as is guaranteed for all Lindbladian dynamics). Suppose also
that p satisfies

2 piCimax + 1 Xmax < 1 (6.16)

where
Conax = SUP IF (@)D~ )], (6.17)
Ximax := SUp D@D~ (o), (6.18)

are the respective extremal ratios taken by | F|| and ||D| relative to the minimum eigenvalue Amin[D] =
|D~Y|=Y. (The latter is just the mazimum condition number taken by D over phase space.) It is also
sufficient that T' = 0 and ApCmax < 1. Then there exists a decomposition S = So + Sp such that when py +(t)

is evolved according to Opa o (t) = L (@) [Pa,o ()] where
o 1
L@ [py ] = ~0aU(a) = ,50(,0) + 50000 5p(a,0) | [Pao] (6.19)

Do (t) Temains non-negative and supported on R?? x Sxrs(i) for all times t > 0.

The proof of Lemma 6.1 relies primarily on Lemma 7.1, a statement about just linear algebra which we
use to define the decomposition S = Sy + Sp. To state our decomposition we recall from Section 4.2 that
a matrix A is defined to be symplectic, Hamiltonian, or skew-Hamiltonian when it satisfies the respective
conditions ATwA =w, AT = —wTAw, AT = w" Aw. When A is symmetric, symplectic, and invertible (as is
true for the covariance matrix for all pure Gaussian states) it therefore satisfies w' Aw = A~

Lemma 7.1 (Decomposition of covariance dynamics). Suppose F is a Hamiltonian matriz (FT = —w' Fw),
A+ iTw > 0 is a positive semidefinite matriz with real and imaginary parts A and Tw satisfying A > cal,
and S is the function

S(o) = (F+T)o+o(F+T)" +hA (7.1)

on positive definite matrices o. Suppose moreover that u € (0,1] obeys
ca > 2| Fll + 2]A]. (7.2)

or, alternatively, that T = 0 and p satisfies the weaker condition ca > u||F||. Then there exists a decomposition
S =Sy + Sp satisfying

o “Diffusion positivity”: Sp(c) is positive semidefinite whenever ¢ € Snrs(p);
o “Purity preservation”: Sy(c) is symmetric and o~*So(0) is Hamiltonian; and
e “NTS preservation”: v' Sy(c)v > 0 whenever v is an eigenvector of o with eigenvalue A < (h/2)pu.

Proof. In the following proof, we will let an overline denote division by %/2, so & = o /(%/2). We work with
these normalized quantities because & = w '3 'w > 0 is symplectic exactly when o is the covariance matrix
of a pure Gaussian state. Likewise, 0 € Syrs(p) implies pllag < & < p~Hlag.

The dynamics S(o) generate a very general positivity-preserving linear dynamics for o, and our goal is
to break this up into a piece Sy that additionally preserves the symplectic property (“purity preservation”)
and a remainder Sp that is equivalent to diffusion of the state in phase space (“diffusion positivity”). The
purity-preservation condition is that 0~'Sy(c) = 715y (¢) is Hamiltonian, which is equivalent to the form
So(0) = F(3)5 + 5F(5)T for some Hamiltonian matrix F(7). Intuitively,*® we want I to include the

48Indeed, if the overall dynamics are pure Hamiltonian (i.e., if all Lindblad terms are zero), then we could just make the choice
F(5)=F.
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Hamiltonian part F of the overall dynamics S plus an extra piece Y (5) that will fight against any squeezing
that risks violating the NTS-preservation condition. Therefore we look for F(¢) = F' + Y (5),

So(o) =[F+Y(5)g+a[F+Y(a)",
Sp(o0) =2A+ [ =Y (3)]g + o[l - Y ()] .

In the frictionful case (I" # 0) we make the ansatz

Y(3) = %[A&*l —ow ' Auwl, (7.5)

T

which is the Hamiltonian part of Ag~!. Because & is symplectic, w'ow = 671, so Y (¢) is Hamiltonian by

construction and hence preserves purity. Furthermore,

Sp(0) = A+6w'Aws +TG 460" (7.6)
= % [(1 +iwa) (A + iTw)(1 + iwd) + tp.] (7.7)

is a positive semidefinite because A + iT'w is a positive semidefinite matrix. (Above, “tp.” denotes the
transpose of the preceding expression.) This ensures diffusion positivity. Finally, for v an eigenvalue of & with
eigenvalue A\ < u, we consider

v ' So(o)w =v'[F64+6F" + A —6w' Awa]v, (7.8)
=22 Fo4+v"Av—20"w Awo, .
> —2)||F|| + ca — A|A|| (7.10)

This is guaranteed to be positive, and thus NTS preserving, when (7.2) holds because 0 < A < p < 1.
Alternatively, in the frictionless case (I' = 0) we make the same ansatz (7.5) except with A — 2ca /(1 — u?),
ie.,

_71 —
_ ca o t—-a T
Yo)=|— )] —=Y(0) . 7.11
@=(2) 5=l - (7.11)
Again, Y (7) is a Hamiltonian matrix and so preserves purity. Furthermore,

Sp(o) =2A —2ca (Z) (Zi:i) (7.12)

> 2(A — callyy) (7.13)
>0, (7.14)

ensuring diffusion positivity for o € Syrs(p) because pl <o < p~ 1. Lastly, with v again an eigenvector of
& with eigenvalue A < p < 1, we have

v So(o)w =v' [Fo+aF T +2Y(5)a]v, (7.15)
: A\ AT A
=2\ (v" Fv) + 2ca (> — (7.16)
p) pt—p
> 25 (2 - ) (7.17)
1
This is guaranteed to be positive, and thus NTS preserving, when ca > pl| F||. O

Intuitively, Lemma 7.1 has established that the dynamics (7.1) for the covariance matrix of our Gaussian
states can always be reinterpreted as diffusion of the center of the Gaussian plus Hamiltonian (i.e., purity-
preserving) dynamics that confine the covariance matrix to Snytg(p). We will now make this precise.
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Proof of Lemma 6.1. First, observe that this Lemma’s assumed form for S(«, o) and the constraint on u
(given by (6.15) and (6.16), respectively) ensures that, for any fixed «, S(«, o) satisfies the form for S(«) and
the constraint for y in Lemma 7.1 (given by (7.1) and (7.2), respectively) when taking A = A1 D as expected.
In other words, we can apply Lemma 7.1 freely at all points « in phase space.

We will show that for any probability distribution p, . evolved by L (@:9) the total probability mass of
NTS states,

s (t) = / / dadopa o () Ints(0), (7.18)

is non-decreasing. Here InTs(0), is the indicator function enforcing the minimum-eigenvalue condition®® for
the NTS covariance matrices,

1a )\min[a] > (h/2)M
0, Amin[o] < (R/2)p,

which we observe can also be written InTs(0) = O(Aminlo] — (A/2)p), where © is the Heaviside step function.
Therefore

INTS(U) = { (719)

05 InTs(0) = §(Amin[o] — (A/2)1t) 05 Amin[0]. (7.20)

We use this to compute the time derivative of myrs by using (6.19), the definition of £ (), and applying
Lemma 7.1:

%mNTS(t) - / / dado Irs (0) £ @7 [pay (1) (7.21)

- / dado Inrs(o) [—aaU(a)—aoso(a,aH;aaaasD(a,a) pan(t)  (722)
- / / dado Tnrs(0) [0 So(cr, 0)] pae (t) (7.23)
_ / / dado pa o (£)So(ar, )9y Ints (o) (7.24)
— [ 4040 b (050(02,0)6(hminlo] = (8/2)02 Al (7.25)

In Egs. (7.21) and (7.22) we have simply applied the definitions of myrg and L (@) In Eqs. (7.23) and
(7.24) we have integrated by parts in « (against the constant function 1) and in o. Lastly in (7.25) we applied
(7.20).

To conclude we need to show that So(a, 0)0yAmin[c] > 0. Note that

d
So(et, 0)0s Amin[o] = aAmin[U + tSo(a, 0)] =" So(a, 0)v (7.26)
t=0

when ov = Apin[o]v for unit eigenvector v. Using the “NTS preservation condition” of Lemma 7.1, it follows
that v' Sp(a, o)v > 0 when Apinlo] = (B/2)p. Therefore So(ar, )9y Aminlo] > 0, so it follows that

%mNTs(t) Z 0. (727)
We note that p, »(t) > 0 is guaranteed by the “diffusion positivity” condition in Lemma 7.1 (Sp(«, o) > 0)
and that [dado pa,.(t) =1 is conserved, so we have mnrs(t) = 1 for ¢ > 0. Combining this with the “purity
preservation condition” in Lemma 7.1, we conclude that p, »(t) > 0 is supported on the set R24 x Snrs (1)

for all times ¢ > 0.
O

49Note that everywhere we work with covariance matrices of pure states (i-e., hi/z symplectic and positive definite), so it’s not

necessary to enforce those conditions with the indicator function.
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8 Harmonic approximation error

In this section we prove Lemma 6.3 about the error in the harmonic approximation to the classical dynamics

and Lemma 6.2 about the error in the harmonic approximation to the quantum dynamics. In both cases

3 . . .
we find that the instantaneous error scales as # [|o|2, where o is the covariance matrix of the pure state on

which the dynamics act.

8.1 Classical case

Consider the classical state 7, , (a+3) = exp(—3% ;' 8°/2)/((27)%/det o), a Gaussian probability distribution
over phase space centered on « that’s equal to the Wigner function of the quantum state 7, » = |a, o) (v, ol
We want to bound the error

_ ple) - (@)
(= cirad| |, = [6£ a0l (8.1)
due to approximating the true classical dynamics, generated by
1 n
£f] == (0°H) (0u) — 2 [f Y Lo L | + 20, [(c%f) Re 3" (9°Li)(0' L) (52)
k i 2
h
— (0"H) (9uf) = 0a [FG"] + 500 [(00)A""] (8:3)
acting on the state 7, ,, with the linearization L) given by (see Section 5.4)
C(oe) [f] =—0, {f (8(1H[o<,2] + G[a,l]a)} 4 gA[a,O]abaaabf (84)
=0, |f (aaH[af"] +Im (Lk(a)aaM,L“Q]* + M,ga’”a“M,Ea’”*)ﬂ (8.5)
k
h a «, a,l]x
+5 [Re D@ M@ M) | (9u00f) (8.6)
k

where we recall My, = Ly, — Ly(), G, = Im >, Ly0,L;, and A = Re Y, (8°My,)*(0°My,). (As described
earlier, El*™) denotes the m-th order Taylor approximation to E at «.) The main result of this section will
be to prove Lemma 6.3, which we now re-state:

Lemma 6.3 (Error in harmonic approximation to classical dynamics). The error 6£(%) := £ — £(®) in the

local harmonic approximation to the classical dynamics acting on coherent state 7o, Satisfies

Héﬁ(o‘)[r 1| < 14at L o) ® Boobpa, 1y (6.42)
o,o = h c 9 k .

with anharmonicity factor

BE™MH, Li] = (|H|ca + |Glez + 1Ala) - (6.43)
depending only on the classical Hamiltonian and Lindblad functions through G* = ImY_, L,0*L;, and
A% = Re Y, (0°Ly) (' L}).

Proof. In the proof below, because we are after an explicit constant in (6.43), we compute the Gaussian
integrals explicitly.
We start by observing the following identity for the derivative of the Gaussian state 7, q:

0 exp|— ag—13b/9
@erua)le+B) = gz péwfd Tl
__1gd™P (800 B°/2] (8.7)
o (2m)d\/det o

- *mc’ra,a’(a + 5)7
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where m? := (071)%, 8% = w0 ;' 8°. Then expanding L[f] — L(*)[f] using the expressions in (8.2) and (8.4)
with f = 7, ,, and using the triangle inequality,

|5 a0l | < ||raom®@usHD)| 4 |raomesGi | |+ ||raootaGie |
I . 1 1 1 (88)
+§ Ta,amameA[a’O]ab o

where §El»™ = E — Ele™] denotes error on the m-th order Taylor approximation to E.
Starting with the first term on the right-hand side, we use Taylor’s theorem on the derivative of § H(®):

(048 H ™) (a + B) = (8aH)(a + B) — (9aH™)(a + B)

1o, (8.9)
= 588" (0a00aH ) (e + 25)
for some (S-dependent) choice of z € [0, 1]. We can bound this derivative
0, H (@) = 1 [m® 86" (@u,0.H)(0)|* < Hml?I5[* [H 2. (8.10)
using the C3 seminorm defined in (4.7),
|Hla = sup |[VPH(a)|,,, = sup S |81 53850200 H ()] (8.11)

which gives a global upper bound on the third derivatives of the classical Hamiltonian function. Likewise
norms like

Im|* = m*Lapm® = B*(0™"),Mealo™")%B" = B0, 8" = (BT o7 2B) (8.12)

are computed not with the symplectic form but with the Euclidean inner product.®®
We can then perform the Gaussian integral

| TaolmlIB2])5, < ;/3 Tal? (8.13)
— [@Braca+ ) (BTU‘Qﬁ) R (8.14)
= Tr[o " (Tro)? + 2 Tr[o~!] Tr[o?] + 4 Tr[o] Tr[c”] + 8 Tr[o] (8.15)
< B ?2%(d + Dd|o|® + [24(d + 1)d]||o]| (8.16)
< h2125(d + 2)(d + 1)d]| o (8.17)
< h?[2°3d%||o|? (8.18)

where in the first line we have used Cauchy-Schwartz inequality,®® and in the last two lines we have used
d > 1 and the fact that, by the uncertainty principle, ||o|| > h/2 because o is the covariance matrix of a pure
Gaussian state. (The Gaussian integrals we use in this section are recalled in Appendix B.2.) Thus we can
bound the first term on the right-hand side of (8.8):

Ta,gma(aaaH[aﬂ)HLl < B H| o 2030312 0|22 (8.19)

Now we bound the rest of the terms in (8.8) in basically the same way. Using Taylor’s theorem again, we
have

1 ,
SGlN (a4 B) = 55”5631,600@@ + 28)

9°0GL N (a + B) = 5(0"Go) > (a + B) = B°0.0° Gl + 2P) (8.20)
SAIO (a4 ) = 70N (0 + 26)

50Note that, physically, this inner product depends on our choice of units. See Appendix A.
51More specifically, the Cauchy-Schwartz is |(v,w)|? < (v,v)(w,w) and we choose v = \/Ta,o and w = ,/Ta,o|B| s0 ||vw||2L1 =

[[dBv(B)wB)* = |(v,w)[* < (v,v)(w,w) = [dBw(B)|* because (v,v) = [dfTa,0(B) = 1.
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where on each line z € [0, 1] depends separately on 3 on that line. Then applying the C*¥ seminorms as before

m®sGg N (a+ B)| < [ml|B* 1Gle- /2!
|9°6G 5 (a + B)| < 18] 1G] e (8.21)
mamyS A0 (- B)] < |m?|B] |A] e

where analogously to |H|.s in (8.11) we defined

=sup sup |B{B5850.0G| (8.22)

B a igi)=1

Glez =sup |[V*G(a)|

=sup sup |51 A865 T 3 [(0a0hLa)" (@) (@) (@) + 2(0u L) (Do L) (0)
llB:l1= & (8.23)
+ (L) (0)(0u040: L) ()|
|Alo1 :=sup HVlA(a)Hgop = sup Hﬁsvl\llgl |85 853500 b (8.24)
=sup sup BBYASRe [(aaabLk)*(ach) + (abLk)*(a)(aaach)(a)} ‘ . (8.25)
e ill= k

As mentioned in Section 4.3, the C* norm of a rank-r tensor E is the generalized operator norm of the
rank-(k+r) tensor V¥ E of partial derivatives: |E| i« = sup, SUD) 5, ||=1 ’5{‘1 Bt Oy Oay By ansr (a){.
We again use Cauchy-Schwartz (see footnote 51) to get

17a,o 1BII17: < /dﬂm,a(a+5)lﬁ\2 = Tr[o] < 2d)|lo|| < hF7*8d)|lo |

IraalmPI3Il, < [ d87aa(a + )P

= (Tr[o~1)? Tr[o] + 4 Tr[o '] Tr[0] 4 Tr[o] Tr[o 2] + 8 Tr[o 1]
2[24(2d? + 5d + 4)d]| 0|
“2411d% o

(8.26)
<h”
<h

where the relevant Gaussian integrals are recalled in Appendix B.2.
Pulling this all together we can now bound the error (8.8) on the classical harmonic approximation for a
Gaussian state:

o], < 2 [0H1cs + 161 21307+ 61ca (80172 + (h/2) 8] (21142 .
. ||aL|i3/2Bgnh[H7Lk]
where
B H, L] = 14d%% (|H| s + |Glee + Al 1) - (8.28)

is a measure of the anharmonicity of the classical Hamiltonian and Lindblad functions H and Ly (and in
particular does not depent on & or o). It may seem unusual that B2"" depends on |G |2, which in turn can
diverge if the Lindblad functions Lj becomes arbitrarily large without its third derivative vanishing (see
the last term in (8.23)). However, this may be expected due to the fact that the overall dynamics are not
invariant under Ly (a) — Ly () + Lo (in contrast to the case of the Hamiltonian shift H(«a) — H(«a) + Hy,
which does preserve the dynamics).

That concludes the proof of Lemma 6.3. O
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8.2 Quantum case

We recall from (5.42) that, for any a, we can express the exact quantum dynamics with My, = Ly — Li(a) as

£l =1 he: ) (MkpM,I -3 {M,IMkvp}) (5.20)

H+ ImZLk(a)Mg,p
k

We emphasize that although we express AEA above in terms of «, the object is independent of a. As discussed
in Section 5.4, the linearized dynamics £(® = £I*2| at «, which of course do depend on «, are

A i 2 rla 1 “rlo Srlo 1 Srlo Srlo
L) =+ [HM +Im Y Li(@) M p| 4 537 (M,L Hpngiet — 2 Lo %}) (8.30)
k k

We want a global (independent of ) bound on the error

H(ﬁ - ﬁ(“))[fa,a]’ (8.31)

T Haﬁ(a)[ﬁl’a] Tr

for the Gaussian state 75, = |, 0){«, o| with covariance matrix o located at o. We can now re-state the
lemma concerning the harmonic approximation which we prove in this subsection:

Lemma 6.2 (Error in harmonic approximation to quantum dynamics). The error SL(Y) in the local harmonic
approzimation to the quantum dynamics acting on coherent state T, , satisfies

o172 ( pon o
o SCa T (B (H, Ly, ] + By (L o] 2)) (6.:29)

o], <t

where B [H, Ly, h] and Bg,"h[Lk, h,v] are defined in (3.18) and (3.19).

Our proof of Lemma 6.2 is more more involved than the classical case (Lemma 6.3) in the previous
subsection. We use many variations of the same basic trick, and we expect (for reasons related to the above
discussion) that a more abstract understanding of how Lindbladians and Liouvillians are Taylor approximated
would make tighter, simpler bounds possible.

In the proof of Lemma 6.2 we will not keep track of the constant Cy, choosing instead to use the notation
A < B to mean that A < CB for some constant C' depending only on dimension. The implicit constant can
change from line to line.

Proof of Lemma 6.2. We have

0L [0 0] = LlFao) = L [Fao]

= | cpr(a ~ron2
== lcSH( )—|—Imzk:Lk(oz)5M,£ },a,a><a,a|]

6Ml£a’1] |, o) (e, o ]\;[,La’lh + M,Ea’l] |, o) (e, o 5M,£O"1]T

1
+%ZI;

. . 1.~ .
+ oM |, o) (o, 0| ST — 5 {5M,£a’1HM,£O"1], o, o) (a,0|}
1 Srio “rlo 1 ~ o AT
-3 {M}L 71]T5M]£ ’1], |ar, o) <a,0|} ) {6M]£ 71]T§M]£ ’1], |a, o) (a,a}}
(8.32)

For any state vectors [¢) and [¢), we have [|[¢) (¢ll|z, = Trl([9){(0l0) ()21 = (w|v)(6lo) = |[4]2lI6],

40



where the unlabeled norms denote Hilbert space norm. Therefore,>?

Héé(a) [%a’g] T

<2 ||are o, o) + ;zkj Li() 5372 o)

]- “rlo “rlo “rlo 2 “rlo, “rlo
> [2H5M,£ Yo, o) |21 ’1]|a,U>H + HaM,L ’1]|a,J>H n HéMlg Ut gk ’”|a,0>H
k

e o i ]

(8.33)

These terms all become small in the classical limit for essentially the same reason: a Gaussian state of
scale i cannot easily “see” the third order corrections to the harmonic approximation. However, since our
current techniques are not strong enough show this rigorously in one fell swoop, we will bound each of these
terms individually. To simplify the bounds we will use the quantities Q" [E] and N}] [E] defined in (3.16)

and (3.17) and recalled below for convenience:

qu Zh(J ‘1/2|E“

_ . VIE(a+ 5)”
T g — (i—q)/2 H gop
h;s,u[ ](04) j;;h s%p (1+V71|5|)5

With this notation we will show that we can bound the terms of (8.33) by
6 o, 0| S llo |2 Q5> H]

La(@)| 500, 0| £ " smp & (BING 15, [L4)(5)

|onzie e, 00| S ol @+ L]

M Sllollt 2 Qb L]

|

)| Sllol/2QM (L] QP (L]

e aze
|l 8N Y o, 0| S 2 QM L] Q3 Ly

M S llol?(QF oLy

[CarSiravi

)
(8.38)
)

(8.40)

Assuming these bounds, the error (8.33) on the quantum harmonic approximation for a Gaussian state

becomes

A 3/2
"6£(a)[%a*”}“q\r§ ||ULL [ 32d+4 JrZ<Q11 22d+3[Lk]+sup\Lk( )|N§ 2d+6
B

(@) o )]

< ||U||3/2 Banh[H L h] +Banh[L B ” ”1/2}
~ h q y Lk q’ ky IV ||O
(8.41)
52For a tighter bound, but only by a constant, we can compute more exactly. Note |[|v){w| — |w){(v]]|
ol el VT= TR B/Tel T, so || 7aol| = [Hladal —layali| = |#la)||y/1 - talftla)2/(alfi2la) =

\/<a|H2\a> — (alHl|a)? = \/Var(H)|a>- And also |||v)(w] — [w){vl[l; = 2 |}v) {w]| = [w)(v]]].
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for the anharmonicity factors B&""[H, Ly, h] and Bg/“h [Li, h, v] defined by (3.18) and (3.19).
Thus, to complete the proof of Lemma 6.2, all we have to do is demonstrate the bounds (8.34-8.40). To
do this we will use the identity >3

1B a,0) |P = Te[E%Fa 0] = / (E » B)(8)7a 0 (8)d5, (8.42)

for any symbol E with Weyl quantization £ = Op;,[E], where * is the Moyal product. To bound this Moyal
product in turn we use the following proposition, which is technically involved and is proved separately in
Section 9.

Proposition 8.1 (Moyal Product Bound). Let SElml — B — Eleml pe the remainder to the m-th Taylor
approzimation El“™ (a + B) = S0 BY - %Dy, -+ D0, B)(@) /K at a of some function E over 2d-
dimensional phase space. Then, for any non-negative integer s and phase-space length scale v > 0,

GBI« SE™ (0 1 B)] < (Cold +m)2CH2Hm (14 =22 |32)
(|82 F2 4 RN LA ] ()2

h;s,v

(8.43)

where N7 [E)(a), defined in (3.17), is an upper bound on the q-th through r-th derivatives of E near «,
h;s,v

weighted by an s-th order polynomial decay in the distance B from «. Likewise for non-negative integer s we
have

|E[a,m]* *E[a,m] *E[a,m]* *E[a,m](a+ﬂ)| < (Co(d+m))4(2d+2+m)(1 + V74s|ﬂ|4s)

m m m+1,2(2d+2+m—+s
(|BIAmH 4 RO AT L2 g )4

(8.44)

for the thrice iterated Moyal product. Above Cy is a large absolute constant which we have not computed.

We will predominantly make use of Proposition 8.1 in the special case of s = 0, in which case the right
hand side simplifies to

|6E[a,m]* % 6E[a,m]<a + 6)| 5 (|6|2(m+1) + hm+1)<le+1,2d+m+2[E])2 (8.45)
and
|E[a,m]* % E[a,m] % E[a,m]* % E[a,m](a + 5)| S/ (|ﬂ|4(m+1) + h2(m+1))(Q;n+172(2d+7n+2) [E])4 (846)

We break up the rest of the proof into parts corresponding to Egs. (8.34-8.40), and we apply Proposition 8.1
in all but one. For the purposes of this proof, we introduce the shorthand ¢, = 9, L () since we consider just
one Lindblad operator at a time and « is just a fixed point we are expanding around.

Also, because we are not carefully computing the constants involved as we did in the classical case, we will
mostly simply use the following bound for the Gaussian integral:

/ ABra(a+ B)IBI* <loll*. (8.47)

Proof of (8.34), (8.36), and (8.40):
Using (8.42),

Haﬁ[aﬂua,@HQ = (@, oG la,0) = Tr [fa,0 (6H1%)?]
(8.48)
_ / 170+ B) (SHE 5 5HI) (a + )

where 7,5 (a+ 8) = exp(fﬂaa;blﬂb/2)/(27r\/ det o), a positive-valued function on phase space, is the Wigner
function of the pure Gaussian state |o, o). (Note that dH(® on the left-hand side is an operator while

53That the expectation value of an operator can be computed by integrating its Weyl symbol against the Wigner function is
generally taken as a defining feature of the Weyl transformation, and it can be confirmed by using the integral definition of the
Weyl transformation in footnote 1.
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SH(®) on the right-hand side is just a classical scalar function of the phase-space location 3.) Applying
Proposition 8.1 with m = 2 gives

H(SH[O‘Qlloz o H (O3 E })Q/dm,g<a+ﬂ>(|/3\6+h3>
<@y H))?|o |2,

The proof of (8.36) follows the same strategy, first applying (8.42), then Proposition 8.1 with m = 1, then
performing the Gaussian integral, and finally applying elementary inequalities:

(8.49)

H(SM,?” v, o) H2 - / dBraq(a + B) ((SM,LO"” * 6M,£°"1]) (a+B) (8.50)
@ IL)? [ dBra o+ BB + 1) (851
(@ (Lo (852

For (8.40), we deploy the triple-Moyal-product part of Proposition 8.1 with m = 1, giving
~ ~ 2 ~ ~ ~ ~
HaM,ga’l]faM,Ea’lHa,@H = (o, oot s A s pr e Vs N o, o) (8.53)
= / ABTa0(a + B) (5M,£“’”* e SM M e st 5M,£""1]) (a+8)  (8.54)

(Q2 4d+6[ })4/d57a,a(a+ﬂ) (h4+|5|8) (855)
S (QEHO[Ly ) o (8:56)

Proof of (8.35):

The presence of leading term Ly(«) on the left-hand side of (8.35) introduces a complication for our goal
of bounding that side with a constant independent of «. In particular, we want our bound to hold in the
special case of linear Lindblad operators, Li(a) = {i.,a®, so we cannot bound |Ly(«)| and ||5M]£a’2]|a,cr>||
separately. It is for this term, and this term only, that we will use the form of Proposition 8.1 with s = 1
rather than s = 0,

|62 a, @HQ _ / A7 (et B) (M2 £ 5M") (a1 ) (8.57)
S Wi L)) / dB7aq(a+B)(IBI° + 1 + 02|81 + v =2h%|5°) (8.58)
SNV ILA @) [llo]? +v2llo )] (8.59)

Then
[Li(a)| |83 %, 0) | S LR @INGEE ILel (@) [l + v~ o] 2 (8.60)
SILL@)NETE LA @)(@) [l 72 + v~ o] ?] (8.61)

Choosing v = |lo/|'/? we obtain (8.35).
Proof of (8.37):

For this we do not actually need Proposition 8.1 because M,Ea’l] (8) = £,(B* — ) is just linear so, by the
explicit Moyal product (4.17),

MY s Mo+ ) = MY (a +ﬁ)2 2 M) 0+ B M @t B) (362)
= .8 + M‘l (8.63)

< |ef (\BI2+5/2) (8.64)

< (QUM(Li)2(IB + h/2) (8.65)
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where we have used the Cauchy-Schwartz inequality and |[¢| = |0Lg ()| < Ci’kl;o = supg (|0« L (B)] + 05 L (B)]-
Therefore

HMIEQJHO%J)HZ _ /d/BTa’g(/B) (M1£ml]* *MILQJ]) (Oc + B) (8.66)
< (QM[Ly)? / ABrao(a+ BB + 1/2) (8.67)
— (QY(L4))(Txlo] + 1/2) (5.68)
<(QY Lo (8.69)

as desired.
Proof of (8.38) and (8.39):
We note that the left hand sides of (8.39) and (8.38) are related by
“rlagl “rlagl “rla, 1] 5[, 1 “rla,l “rlagl
IAL TSN o, )| < 0N AL T o, o) |+ [M 6305 o )] (8.70)
Lets start by expanding the first part of the right-hand side:
1632 A o, 02 = / (50 w50 (ot B) (M s x M) (4 ) B, (8.71)
The first term inside the integrand of (8.71) can be bounded with Proposition 8.1.

(on2f " xongl™V) ( + 8) S (@ IL)2(BI* + 1), (8.72)

For the second term in the integrand of (8.71), we note that since M,La’l] is linear, M,Ea’l

computed explicitly with the Moyal product (4.17) as

]

* % Ta,s can be

a )
MY 5 7o (a4 B) = €580 0 (0 + B) + %E:@“Ta,g(a + B). (8.73)
Now we recall (8.7),
(acTa,U)(a +8) = —McTa,o (a+B) (8.74)

where m? := (07 1)%, 8 = w0 ;' 87, so

M e 8) = £ 57 = G| o) 879
— [ - F o] Prasta ) (8.76)

Then we can apply the Moyal product with M ,La’l] on the right to get
M,La’l]* X To,o % M,Ea’l](oz +B)

8.77
= Ta,o(a + B) {MGB“F - (8:77)

)| = Ge [ a )] (0 )

We can compute

(M 57 0)] (o + ) = {z: ~ %e;(a—l)ac ~ <f;,3a ~ ’;z;@—l)abﬂb) 0B Taola +8)  (878)
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so now inserting this into (8.77) we have

M]La,l]* *Ta,a*Mlga’l](a'i_ﬁ) _ Ta,o( [‘g Ba|2 4 (gcg* _g*/B(LE(, 71 b+£a*0;blﬂbécﬂc)
((‘1* Bbgc —1pd EC*(U_l)caeaﬂ

B)
2
vy
= rao(a ﬁ)[\e B2 + him (687051 B — (207 /2)
2
T

(8.79)
h‘ (|£a —1 b| gc*o_;llga)}
. 2 . 2
= Ta 0(0‘ + 6) 4 (mwab + hobl) o e <wab Zhabl) g ]
) 2 4 a 2 a
= Ta,a(a + 6) [UO + wzwbﬁaﬁb]
where
wy :=(° (wab - ’;aal}> € C? (8.80)
Vg ::56“ (wab -5 > o = Ewﬂb* e€R (8.81)
which obey
lvol < (B/2)1” (1+ (h/2)lle ™) < (QVH[L])? (B/2 + [|oll) < 2(Q1[Li))?|lo| (8.82)

(wfo"w) =w}(0™) wy = ((Fa™l) + hz(ﬁff””f) < (QUMLD? (o™ || + R2[lo™ 21 /4) < 2(QV[La])?(lo" |
(8.83)

If we insert (8.79) and (8.72) into (8.71) we get
X 0,0) P < (C [ Tl 8) [P0+ B °8° + w0l B+ w3 6°15[1] 45
(8.84)

and then perform the Gaussian integral

lonr Mt aro o, o) |2
(Q223(1,))2

< / Too (a4 B) [W200 + H2wlunBB° + volBI* + wiwnB2B°|84] dB

= voh? + R} (wiow) + vy ((Tro)? + 2 Tr[0?))
+ ((wTow)(Tr 0)? + 2(w'ow) Tr[o?] 4 4 Tr[o](w'o?w) + 8(wT03w))
= (@U[Le])24 [0l + 8(d -+ 12 o]
(@ (Lo
(8.85)
which proves (8.38).
To prove (8.39), we need to handle the commutator in (8.70). Note that M,La’l]

phase space variables 7 = (&, p), so the Wigner transform of (i.e., symbol for) the commutator [Mlga’l]ﬂ (SMILQ"”]

can be computed directly with the Moyal product (4.17) to be ihl:9*6 M, ,La’l]. This is just the remainder from
the zeroth order Taylor approximation to the function ih¢;0%Ly, = ih€}0* M

=, (F*—a®) is linear in the

oMY = erors i = 5(ex 0oLy, (8.86)
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so that it satisfies the prerequisites of Proposition 8.1 with m = 0, which we can apply to get

orlondli ¢ rlend] 72 caar Va0 sipeaar 0]
H[Mk oM} ]|a,a>H =12 [ dBras(a+p) (5(&13 L)l 5 50290 Ly )l )(a+5) (8.87)

S Q42160 Le)) [ dbraata+ 8O + 1) (5.38)
S QM L] QTP (Li])? (Tx[o] + A') (8.89)
SE(QM L)@y L)) o (8.90)
QYL Qy* L))o ® (8.91)
where we have used
QF"[adaLi] < 01QFTH T [Li) < QUML) QETH L] (8.92)

Taking the square roots of (8.85) and (8.91) and inserting into (8.70) gives (8.39).
Having now demonstrated all the bounds (8.34)—(8.39) with the help of Proposition 8.1, Lemma 6.2 is
proved. O

The only remaining task to complete the demonstration of our main result is to justify Proposition 8.1,
which is addressed in the next section.

9 DMoyal product bound

In this section® we prove Proposition 8.1, whose statement we now recall:

Proposition 8.1 (Moyal Product Bound). Let §El®™ = E — El*™] be the remainder to the m-th Taylor
approzimation Bl (a + B) = S0 BY - % (D, -+ Da E)(@) /K at a of some function E over 2d-
dimensional phase space. Then, for any non-negative integer s and phase-space length scale v > 0,

sElm* s GBI (o + B)| < (Co(d + m))?EH2Hm) (1 4 729 3)2%)

m m-+s (843)
(B2 4+ B NG 2 (B ()

q,T

where hs JE) (o), defined in (3.17), is an upper bound on the q-th through r-th derivatives of E near «,
weighted by an s-th order polynomial decay in the distance B from «. Likewise for non-negative integer s we
have

|E[a,m]* *E[a,m] *E[a,m]* *E[a7m](a+5)| < (Co(d+m))4(2d+2+m)(1 + V_48|5|48)

(It + RO NG B )

(8.44)

for the thrice iterated Moyal product. Above Cy is a large absolute constant which we have not computed.

Note that in Proposition 8.1 we do keep track of the dimensional dependence of the constant, so we will no
longer use the < notation in this section. We will however make use of the notation that C' is an unspecified

constant whose value may change from line to line.
We use the following integral formulation of the Moyal product:

ExGla) = (2rh)~¢ / €81 /M) B 4 B/2) G+ /2) dB dy. 9.1)
The proof of Proposition 8.1 splits into two main parts. First, in Section 9.1 we state Lemma 9.1 giving a

bound for F % F'(«) in terms of a convolution of derivatives of F. Then in Section 9.2 we show how Lemma 9.1
implies Proposition 8.1. The proof of Lemma 9.1 is deferred to Section 9.3.

54Note that, due to the regrettably finite size of alphabets, in this section we have re-used variables previously defined for
other purposes elsewhere in the paper. This section should be considered self-contained.
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9.1 Main lemma

In the following lemma pg is the convolution kernel
prc(a) i= K= (h~12|a] +1) 7K.
Note that when K > 2d
[ ex@lalida =17t [(h2a] + 1) ¥ali da
_ hj/Q/(|a| +1)KJaf da
- hj/QCd,K,j

Thus when K > 2d the convolution pg * E is well-defined:

pic + E(@) = [ pic(8)E(a -~ 5)ds. (9.2)
Lemma 9.1. Let F,G € C*®(R?%) be smooth functions, and let Kr, Kg > 0 be nonnegative integers. Then

K Ko
|FG(a)| < (CK)*MC? (Z (pre * ||[B*/2VFF )(a)) (Z (pxc, * ||HE/2V* G

k=0

gop)(a)> . (9.3)

where C' is an absolute constant, and K = max{Kp, Kg}.

Corollary 9.1 (Iterated Moyal bound). Let F € C*(R2%) be a smooth function and let K be a nonnegative
integer. Then

2

) (@) (94

g0p><a>> .

To bound V¥ (F  F) we use the following product rule for the partial derivative 97, defined as 8795 - - - 9524

PUFxF) =" ﬁ (Zé)amF* (0" F).

m<i j=1

2K
|F « FxFxF(a) < (CK)*C? | pg * (Z prc * |[FM/2VTM
m=0

Proof using Lemma 9.1. Using Lemma 9.1 we have

hE2Vk(F « F)

K
|F % F x FxF(a)| < (CK)*(C? <Z(pf< *
k=0

The combinatorial factor [[>%, (™) is bounded by CX, so applying Lemma 9.1 to the terms in the right hand
Jj=1

mj
side we obtain

RE/2||(VIF) % (VEZIF) (o) |

gop
< (CK)*) ¢ (Z pic * ||[RTHD 2yt . (a)> (Z pic * ||Rm D2y RS B o (a))
m=0 m=0

hm/va/QF

won (a)) .

2K

< (CK)* ¢4 (Z PK *
m=0

(9.5)

O
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9.2 Proof of Proposition 8.1 from Lemma 9.1

First we prove a simple estimate for convolutions of functions against the kernel px in terms of the following

weighted supremum
M[F)(e) := Sl;p(l+ﬁ71/2\5—a|)*q|F(5)|- (9.6)

Lemma 9.2. If K > 2d + 1 then
(pxc * F)(a) < CMy > [F)(a) (9.7)

for some absolute constant C'.

Proof. Set ¢ = K —2d — 1. Then

ok * Fla)] < h~ / (1+ 171218 — o) K|F(8)|dB

<HMH(F)() [ (L4 25 ol as (98)

< CMJ[F)(a).
O

We also note two quick facts about the weighted supremum. The first is the weighted supremum of a
monomial my,(a) = |a|*, using that (a + b)¥ < 2%(a* + b*). For ¢ > k we have

M my](er) = sup(1 + h~ /2|3 — af) 79| 8|
< 2%(Jal* +sup(1 + h71?|B — o) o — BI¥) (9.9)
B
< 4*(Jaf* + BF/?),

where in the last step we used that sup,(1 + h~1/2t)=9t* < 2% when ¢ > k.
The second quick fact that we need is the following product rule for the weighted supremum:

MR RG] < M [FIM? (G, (9.10)

We will also use M[A] to refer to M[|| Al «op) When A is a tensor-valued or vector-valued quantity.
Finally, we introduce the weighted supremum at r-scale,

M[F|(a) := Slép(1+vfllﬁ—a|)fq|F(ﬂ)|- (9-11)

Now we are ready to prove Proposition 8.1.

Proof of Proposition 8.1 from Lemma 9.1. The first step is to prove (8.43). First we need a bound for § E[*]
that follows from the Taylor remainder formula,

0-% 100+ o [ =9 ) s (912)
=0
which holds for functions in C*o*1(R). Applying this with f(¢) = E(ta) and evaluating at t = 1 we obtain
E(a) = B (q) 4 kl!/ol(l — 5)Fa®FHD) TR B(sa) ds. (9.13)
Thus we obtain the formula
SEOK (o) = ]:!/01(1 — 5)ka®kHD) YR B(sa) ds.
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Above a®FHD VR E s shorthand for a® --- a9, - - - d,, E with an implicit sum over all indices.
Simply using the triangle inequality and estimating naively , this produces the bound

BECH (@) < sup [VFTIE(B)||af* ! < MG[VFTE](0)(1 + vt a])*[of .
|B1< ]|
We also need bounds for the derivatives with respect to a. When 0 < j < k we have
J
<3 s

gop g 1BI<Ial

HVJSE[O”“] ()

VI B@)|
gop

(9.14)

J
< Z Mi[vk+1+j/E](O)(1 +V*1‘a|)s|a‘k+1+j/*j_
Jj'=0

For higher order derivatives we note that V¥t E0¥ = 0 and therefore VFT1§Ek = VF+1E| 5o that for
j > k+1 we have

HVjéE[OM () < M[VIE)(0)(1 + v~ al)®. (9.15)

< max HVJE(B)H

gop ~ |BI<]al gop

We will estimate pg * [h//2VI6EI%*|(a) in terms of the quantity

2d+ko+s+2 ‘ )
Quos[El = Y ATV E)(0).
Jj'=ko+1
We first work with j < k. We combine Combining (9.14) and Lemma 9.2 along with (9.9) and the product
rule (9.10) to see that for K > 2d + k + s+ 1 and j < ko we have

RI2VISEOH| (o) < CW/PME2471 VIS EDH] ()

gop

PI *

J
< O/ MV EO)MEF (1 + v )|l )
J’'=0

J
< W2 3D M EJOME[(1+ v o] JMEH o414
=0
J
< C(L+vYal)* Do WMV E)0) (Jaftt T g gk /)
=0
J . . . .
< C(1+ v a]) Qu, s|E] Z (h(]*ﬂ /2| i3 || F L 4 h(k+1)/2)
=0

(9.16)

for some constant C. In the final line, note that either /2 > ||, in which case the term Rko+1)/2 dominates,
or else h'/2 < |al, in which case (h'/2?|a|~1)U~7") < 1 so that the first term in the sum is bounded by |a|F+?.
Therefore we can simplify the above bound to

pc * [W2VISEPH|(a) < CQuy s [B)(1 + v Hal)* (Jaf ! + AIHD/Z) (9.17)
For larger derivatives j > k, we simply use (9.15) to see that
pr * |[WPVISECH (o) < WP MEVIE](1+ v al)® < BEHD2Q (B + v a))®.

Taking K = 2d + ko + s + 2 we have

K
Y (or * [WPVISEPH ) () < CQug o[ E)L + v |al)*) (laf ot 4 Aot D/2), (9.18)
§=0
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The proof of (8.43) now follows from an application of Lemma 9.1.
To prove the bound on the triple Moyal product (8.44), we use the stronger quantity

4d+2ko+2s5+4
Qi slEl = > hUTR DALY E)(0).
j=ko+1

Then taking (9.18) with K’ = 4d 4 2ko + 2s + 4, squaring both sides, and convolving with pg/, we have

K’ 2
PK * (ZpK, % || R/ § Blekol g0p> < C(Qy s[EN? (1 4 v |af?*) (Ja R0 2 4 pFot), (9.19)
§=0
Then (8.44) follows from Corollary 9.1. O

9.3 Proof of the Moyal product bound

Proof of Lemma 9.1. The main idea is to use the following identity to integrate by parts in the « variables in
order to obtain decay in the § variables:

oiBa™/(2R) _ 72%(5&)713%eiﬁav“/(%)_ (9.20)

Symmetrically, we can integrate by parts in the g variables to obtain decay in the -y variables.
To do this we introduce a partition of unity

1= x0(t) + Y x;(1)
j=1

where xo € C°(R) is a smooth function supported in [~%'/2, h1/2] and y; € C®(R) are supported in
{t e R| 277 h1/2 < |t| < 27+2h1/2}. We choose this partition of unity so that it satisfies the bounds

d* ;
sup ‘dthj(t)‘ < CR27IkpR/2, (9.21)
t

for k < K := max{Kp, Kg} and some constants Cy. It is possible to take Cy = (CK)¥, as can be seen from
constructing x; as an iterated convolution of the form x = ¢*¥ * yo where g is an indicator function and g
is a C'! function supported on [-1/K,1/K] and which integrates to 1.

For such x;, we also have

k

ik (t_an(t))‘ < C, 27 ke (kta)/2, (9.22)

bup ‘

This follows from (9.21), the product rule, and the bound

dt _
sup 7t a 2a+l(a+€)£(2jh1/2)fa—£
20-1p1/2< |¢|<20+2h1/2 dt
Then C,  can be chosen to be
ak<z< )QGH a+j) (CK)*7 <2 a+ k + CK)". (9.23)

Applying this partition of unity to each variable we we obtain the identity

2d 0o 2d oo
(v T [Eve )= % T nga : (9.24)
a=1 7=0 b=1 7=0 JB,J’Y [Qd]%Na 1
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The latter sum is over pairs of tuples j? = (jl ,j2 . ,de) =01 73, " Jag)-
We use this to split the moyal product F x G into terms indexed by j# and j,

FxG = (FxGs (9.25)

ARl

where
2d
(F % Q) jo(a) := (27h) = / P N E (o + B/2)G(a+7/2) [] X2 (Ba) 11 iz (va) dBady®. (9.26)
a=1 a=1

We estimate the quantity (F'x G);s j» differently depending on whether j? =0 and/or j7 = 0. We thus
split into four terms:

FxG=(FxG)oo+ Z(F*G)j[i,o + Z(F*G)o&w + Z(F*G)jﬁ’jw-
jP#0 JjY#0 A

The first term, with j® = j7 = 0 being all zeros, can be bounded simply using the triangle inequality:

[(F'x Goo()] < h_Qd/IF(a+5/2)||G(a+7/2)\HXo(Ba)dB

< (h_d/ |F(O/)‘d0[’) (h_d/ |G(a')|do/) (927)
o/ —a|<h1/2 o/ —a|<h1/2

< 2RETEE (pgeg | Fl(@)) (prcp * |Gl(a)-

In the last line the factor 25¢+Xr appears from the use of the fact that 25 px(a) > 1 when |a| < B!/

For the remaining terms we integrate by parts using (9.20). We will assume for this part that j® # 0 and
j7 # 0 (this being the most technical case to handle). Let ap = argmax j® and by = argmax j” be the indices
for which J? := j# and J7 := Jy, are maximized.

We integrate by parts first K¢ times in the y®° variable to obtain decay in 3,,, obtaining

(F x G (@) = (2mh) 242y [ 0"/ 5 K6 (ot 612015 (v, (1°)Gla+7/2)

(9.28)

xHx (Ba) TT x57 (1) dBa dy™.
b#ag

Next we integrate by parts K times in S, to obtain decay in ~0 then use the product rule to split up
the derivatives

(F*G)jﬁ,j”‘ (a) _ (QWh)_zd(Qih)KG (QZh)KF /eiﬁa’Ya/(W’l)aKF (/Bll_()KGXjEO (ﬁbO)F(OZ+5/2))
x (") TR 05 (2, (1) Gla+7/2))
< T x;08a) T] x57(7") dBady®

a;éb() b#ao

Kp
‘ ‘ e Ke\ crco o
— ()24 2y iy r [ ene/an 'y ( ;f) O (B2 x5 (Bu)) O, Flar+ B/2)
k=0

Ka
— K / a ’
X (yr0)~Kr 3 ( ,j)aKc Xz, ()P Gla +7/2))

k! =

X || X ;¢ (Ba) || X7 (v *) B, dvy".
a;ébo b#ao
(9.29)
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In the quantity (’9{55_’“(5(;0KGX].50 (Bb,)) there are two cases to consider. If ag = by then we use (9.22), and

if ag # by then the derivative only falls on x and we use (9.21). Regardless we have the bound (using
Bay > 2J’3h1/2)
TR (57 X o (Buy))| < (CR)KrhoI Ko p(Ke b Ko—i/2 (9.30)
0

Now we use the estimates (9.22) and (9.21) (using that 4% ~ 277 kY2 and B4, ~ 2‘][3711/2) to bound the
derivatives hitting y, and then apply the triangle inequality

Kp
_ KF _ _JB _ _ _
|(F*G)j[f,ja(01)‘ S4KhKG+KF 2d/§ < . >(CK)KF k2 J Kch (Kr—Kg k)/2|6§b0F(a+B/2)|
k=0
% 9—J Kr p—Kr/2

o (9.31)
k'=0

X H %Jg (5&) H %j;’ (’Yb) dBa d’ya'
a b

Above X, is the indicator function for the support of x,. Collecting the constants, using (Ik( ) < 2K and
combining factors of 2 and A we arrive at

Kr Kg

|(F % G)gs jo ()] < (CE)*H DN " h> / 27" Kok 2|08, Fla+ 6/2)]

k=0 k’=0
% 27J’YKFhk//2‘a’lyg;0G(a_'_,V/Q)’ (932)

< [T 5,0 Ba) [T X7 (%) dBa dy”.
a b

Since J? > j8 for any other index a and on the support of the integrand above 3, ~ h!/ 294 (and similarly
for ~, it holds that

2~ K" < R (h1218) + 1) < hlpic(B)

and similarly
— vy — —
27K < O (2| + 1)K < hlok (7).

Recalling that p(8) = h~4(h'/?|8| + 1)~ %, and then noting that we can sum over all multi-indices j® and j7
using

> Il <

j a

we can simplify the above bound to
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|(F*G)(o)| < (CK)*$n2d 7 [ o7 Ke k2o F(a+ 8/2)]

3B g

x 2= T Ke jF 2|0k, G(a + 7/2) |HX 5(Ba) ij *)dBady*

Kr
< (CK)*< / P (ARA(Y [V*F(a+ 8/2)]

k=0

x prc (7 ﬁk/QZHVk (@ +7/2) H ZHM BaH 2(7"))dBady*

k’=0

< (CK)*K /PKG (ﬁ)hk/Q(i HV’“F(a - B/Q)Hgop)

k=0

)

gop

<o PSS [P Gla /2|y
k'=0

vl G

Kr Ko
<(CRKPCMY "N (pro *

k=0k’=0

(a)) (pKF *

gop

(@),

gop

(9.33)

as desired. The remaining terms (with j® # 0 and j7 = 0 or vice versa) are handled similarly and bring
smaller constants. O

A Physical units, symplectic covariance, and a corollary

In this section we offer some informal discussion of symplectic symmetry and the relationship to units. To
illustrate this, we then define some preferred choices of units and use them to state and prove Corollary A.1
of Theorem 3.1. This corollary generalizes the main result from our companion paper [45] to Hamiltonians
not restricted to the form H = p?/2m + V(&) at the expense of introducing the uncomputed constant Cy.

A.1 Symplectic transformations of the main result

For a symplectic matrix Z (ZTwZ = w) representing a linear symplectic transformation, we will use Z as
a superscript on scalar functions over phase space to denote the composition equivalent to the change of
coordinates associated with the matrix: EZ(a) := (E o Z)(a) = E(Za). The same notation is used for tensor
functions, except we must additionally transform the indices, e.g., (E%)%, (a) := (271)¢ 2% E°,(Za).

The general Fokker-Planck equation for a classical open system,

0uf = ~Du[f(0"H + G + J0.(D"01 ), (A1)

and the Wigner representation of the Lindblad equation

j 1 1 1
HW, = — %(H*Wp—WP*H)JrﬁZ (Lk*wp*L;;— 2L,’;*Lk*wp—2wp*L;*Lk> (A.2)
k

are both covariant under linear symplectic transformations. This means (A.1) is unchanged under H — H?Z,
G - G?, D — D? and f — fZ because 9,f% = 2°,0,f. Likewise (A.2) is unchanged under under
H — H?, Ly — Lf, and W, — W7 because AZ x B% = (A x B)Z, a basic property of the Moyal product.
If the data (H,{L}X ) are adnusable under Assumption 3.1, then the transformed data (HZ,{L# }< )
are also admissible. Now suppose an the initial state can expressed as a mixture of NTS states (¢ > §0.)
and also as a mixture of Z-transformed NTS states (o > %’Z’la*Z’T), where g and gz are the relative
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diffusion strengths (3.10) computed with the original and transformed data. Then we can apply Theorem 3.1
to the original and transformed data and both sets of bounds will hold. These will generally be distinct
bounds because the anharmonicity measures B2, Bgnh, and Bg,“h are not invariant under linear symplectic
transformations of the data.®®

A.2 Units

Given a phase-space vector with mixed units like & = (z¢ m, pp kg-m/s), where xy and po are dimensionless
numbers, we can transform this to a vector with uniform units using a symplectic matrix like Z~=! = diag(n,n~!)
with 7 = \/(kg-m/s)/(m) = \/kg/s. Specifically, Z~'a = (20, po)[m\/kg/s]. Given such a choice of Z and
a real, physical Hamiltonian H(x,p) taking as input dimensionful positions z and momenta p, we can then
apply Theorem 3.1 to the transformed functions H® (a) := H(Za) and LZ (o) := Lj(Za), which will accept
vectors with uniform units. Now, there is generally no symplectic matrix that can make an arbitrary unitful
vector unitless. Still, a choice like Z above is sufficient to ensure that all of the manipulations in this paper
(such as taking the Euclidean®® norm of Za for mixed-unit vector a) are physically meaningful once such a
choice of units has been made.

The symplectic matrices are closed under multiplication (being a group) and so the choice of units does not
exhaust the freedom to choose Z. For instance, the skewing matrix Z = (} 1) is symplectic and mixes position
and momentum in a way that does not correspond to a choice of units.®” Thus, the fact that multiple bounds
can be derived using Theorem 3.1 by applying difference choices of Z is not removed by a choice of units.
Although the trajectory p(t) constructed in different cases will generally be different, note that the existence
of such a trajectory is a units-independent statement; the bounds (3.20), (3.21) are on unitless norms, which
in turn constrains the maximum (unitless) difference in outcome probability for any measurement.

Ideally the choice of Z could be optimized for the best bound (since coherent states 7, would correspond
to covariance matrices satisfying o = %ZTZ). Alternatively, to name a concrete choice, one might choose e.g.

_ T]ld 0
Zo = ( 0 T11d> (A.3)
where 7 = \/r,/r) for characteristic scales ., 7, defined by ;% = sup, sup,,erd |y =1 (Wadz,)*H(a) and
r,? = sup, supweRd’”wﬂzl(waapa)zH (er), which quantify the maximum second derivatives of H with respect

to position and momentum, respectively.

A.3 Corollary

To illustrate the above informal discussion, we will apply Theorem 3.1 to a special case with linear Lindblad
operators (diffusion matrix homogeneous over phase space) and no friction. We will ask: given a physical
system with (unitful) Hamiltonian H, how much environmental noise must we add to ensure that the quantum
and classical dynamics cannot be distinguished up to some tolerable error? We will first identify the relevant
characteristic timescales and action scales of the Hamiltonian. They will be constructed from the Hamiltonian’s
derivatives, and in particular we recall from Eq. (3.16) the seminorm

QU B} =3 s sup V(D) = 3750 |El .
Ji=q ¢ j=q

(A.5)

55Note that HZ is quadratic if and only if H is quadratic, and LkZ is linear if and only if Lj is linear, so whether the
anharmonicity measures vanish will generally be invariant under linear symplectic transformations.

56 An alternative way to think about this is that the choice Z defines an inner product: (&, B)Z = dT(ZZT)’lﬁ =o' .- p for
uniform-unit vectors a = Z~1a, g = Z_IB.

57In order that an arbitrary symplectic matrix Z~1 correctly makes all units uniform, the entries Zx;,x; and Zp, x; must
1/2 and the entries Zx,;,p; and Zp, p; must have units of [momentum/length]'/2. This ensures
1/2

have units of [length/momentum]

that all elements of the vector Za have units of [length - momentum]|'/#, where «a is a physical phase-space vector with units of
[length] in the first d elements and [momentum] in the other d elements.
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which bounds the g-th through r-th derivatives, where |H |, = sup,, |}VjH(a)||gop is the C* seminorm and

where
J
i=1

is the generalized operator norm for a j-th order tensor A, as discussed in Section 4.3. For our main result, we

used s = £ to get the tightest bound, but here it will be instructive to use a (macroscopic) action scale s > .
58

= sup

I8:1=1 = sup [B1 - B Ay, | (A.6)

1Al gop S

Definition A.1 (Characteristic classical scales). For any classical Hamiltonian H with bounded partial
derivatives of degree k =2,...,2d+ 4 and any symplectic matriz Z, we define the harmonic time Ty as the
inverse of the mazimum operator norm taken by the Hessian of HZ over phase space,®

= [HZ o2 = Q*%[HZ] = sup |(V?HZ) (o) (A7)

H gop

The anharmonic action sy of H is given by the ratio of the largest second and third directional derivative:

2 2
We use the anharmonic action sa to define the modified anharmonic action®® of H
5y = (THQS,de[HZ])*Q — <922[HZ]>2 (A.9)
L)

Given 1y, Z, and Sa, we furthermore have a natural choice of characteristic diffusion matrix given by
Dc = (§A/TH)ZZT.

Intuitively, the harmonic time 7y is the shortest timescale associated with the local harmonic approximation
at any point in phase space. When the harmonic time is long, the classical dynamics are slow compared to
the quantum scale set by A, and we expect they well approximate the quantum dynamics they correspond to.

The anharmonic action sy and modified anharmonic action §5 are not measures of the accessible phase
space. Rather, they measure the phase-space scale on which the anharmonicity of the potential is important
over the harmonic time 7. For cubic potentials, 54 = sa because the higher-order seminorms in (A.9) vanish.
Introducing the higher order terms increases the denominator in 55, so 5p < sp always holds.

We now prove a corollary of Theorem 3.1 making use of the scales defined in Definition A.1. The seminorm
Q2’2d+4 [HZ] naturally arises in Theorem 3.1, but through §5 we will upper bound it with the factor of
Q32444 Z] > 9?4 Z (assuming sx > h). This loosens the bound, essentially throwing out the detailed
information about how the anharmonic factors depend on higher powers of the action scale, but has the
benefit of isolating the leading #*/? dependence, with everything else expressed in terms of (h-independent)
macroscopic properties of the classical Hamiltonian.

Corollary A.1 (Minimum diffusion for correspondence). For d degrees of freedom, let H be a quantum
Hamiltonian function with bounded partial derivatives of degree j = 2,...,2d + 4 and corresponding classical
Hamiltonian H = Wy[H). Let Z a symplectic matriz and let 7y = 1/Q>2[HZ], sp = (Q>2[HZ]/Q>3[HZ])2,
5a = (Q*?[HZ]/ Q32 [HZ])?, D¢ = (5a/mu)ZZ" be the harmonic time, anharmonic action, modified
anharmonic action, and characteristic diffusion matriz of H from Definition A.1. Assume sp > h. Assume an
initial state quantum state p(t=0) given as a mizture of Gaussian states with covariance matriz o = (h/2)ZZ".

581n a future version I'd probably want to reduce the amount of notation we have here, if possible. Lots of slightly different
ways of writing the same thing.

59For linear Hamiltonians, 7y = oo by convention. This indicates that there is no natural time scale because the (real or
imaginary) frequency of the local harmonic dynamics is zero everywhere in phase space.

60For quadratic Hamiltonians, sy = §p = oo by convention. This is the case of harmonic dynamics where quantum and
classical evolution is identical on phase space.
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Finally, let p(t) and f(t) be the corresponding quantum and classical trajectory for the frictionless dynamics
specified by H and a homogenous (i.e, constant over phase space) diffusion matriz D. Then for any tolerable
error growth rate € satisfying
C h
e> 24 )= (A.10)
TH V SA

3 3
Dz(cd) (ﬁ) De (A1)
THE SA

guarantees there exists a quantum trajectory p(t) with strictly positive Wigner function Wy[p(t)] such that

the diffusion strength constraint

a. p(t) cannot be distinguished from p(t) with probability greater than et by any quantum measurement; and
b. Wr[p(t)] cannot be distinguished from f(t) with probability greater than et by any classical variable.
Above, Cyq is the same universal dimensionless constant depending only on d from Theorem 3.1.

Proof. We can consult the definitions of the anharmonic factors in Egs. (3.15), (3.18), and (3.19) to see that
in the special case of linear Lindblad operators (Lj = £ %) they reduce to just

B HZ, by g0) = Q% [H7] (A.12)
anh[HZ7€k,aaa, h) = Q2’2d+4[HZ} (A.13)
BiM [l 00 hv] =0 (A.14)

The dynamics are taken to be frictionless, so we will apply Theorem 3.1 with Eq. (3.11) from Definition 3.2
for the relative diffusion strength. The key quantity is

Amin [AZ (a)]

i > b Ain [DZ .
A Rl (V2] = T Al () e
e 2/3 /b \4/3
> == — in[DE :
2 () (2Y s e
2 1/3
> (ﬁ) (A7)
E°THSA
> 1 (A.18)

where we have sequentially applied the definitions 7y = Q*2[H%] and D = hA, the diffusion constraint (A.11),
the fact that A\ [Dg] = Amin[(8a/71)1] = 5a /7T, and the error rate constraint (A.10). This means that the
relative diffusion strength g = 1 so that, by Egs. (3.20) and (3.21) of Theorem 3.1 we have that ||5(t) — p(¢)||
and ||Wrx[p(t)] — f(t)|| . are both upper bounded by

Cathz Q0™ [H?] < et (A.19)
because 55 = (ru Q324 [HZ])~% and Q¥ is an increasing function of an action 55 > h. O

This corollary is more general than the result in our companion paper [45] because here we do not restrict
to Hamiltonians of the form H = p?/2m + V(z), but it is weaker in that special case because it involves an
unknown constant Cj.

B Gaussian derivatives and integrals

B.1 Gaussian derivatives

The Gaussian probability distribution with mean « and covariance matrix o is

e=BTo7B/2 1 1
pl—

— — ~pa _—172b
Taolatf) = (2m)d/deto  (2m)4/deto . %ar P ) (B

2
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Let us consider this a real-valued function of any vector 8 and any invertible matrix o, including non-symmetric
ones, so that o, and oy, are independent variables for the purposes of partial derivatives. However, at the end
we will evaluate these derivatives on the subspace where o is symmetric. Recalling our notation 9. = 9/93¢
so 0.0% =9, we have

8d (Bao—;blﬁb) _ U&}Bb + Bao,;dl (B2)
0c0a (B%0qy B") = 00 + 00y (B.3)

We also deploy the standard [104] matrix derivative identitiesS!

Odet Z 07
=(det2)Tr |Z7' = B.4
o a2yt 2152 (B.4)
0z~1 0z
=-z1'—=z1! B.5
9 ay (B.5)
for an invertible matrix Z, so in particular
ddet Z
a;ab = (det 2)Z,, (B.6)
07} o
azcjb =77 (B.7)
Combining these we get
e — _ 0
aaab'ra}o—(a + /8) = (G‘acl O’bdlﬁd _ o‘ab1>7'a,o—(a + ﬁ) = 2@7-&’0—(@ + /3)7 (B8)

when evaluated for symmetric o. (As expected, this is singular when o is non-invertible.) Weyl quantizing
both sides with Op; = W, ! gives the corresponding quantum expression 000Ta,0 = 2%%,0.
B.2 Gaussian integrals

Here we recall the evaluation of some Gaussian integrals, as can be done with Wick’s theorem. We define the
shorthand:

(BT AB))y = / 0,0 (8) (8T AB)

- / ABran(a+ B)(BTAB)
(B.9)
— Ay, / ABrag(o+ B)B6"

_ ab
—Aaba-

=Tr[o A].

for any positive semi-definite matrix A. (o is also positive, of course.) Likewise, for B, C, and D also positive
semi-definite, we have

(BTAB)(8TBB))y := / B o (a+ B)(BTAB)(BT BS)

:AabBcd [O.aba_cd + 2O_ad0_bc]
=Tr[cA] Tr[oB] + 2 Tr[c Ao B]

(B.10)

61Some sources express will express this for a not-necessarily invertible matrix Z using the matrix adjugate adj(Z). A property
of the adjugate is that Z adj(Z) = (det Z)1 so that, when Z is invertible, adj(Z) = (det Z)Z 1.
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and

(BT AB)BTBB)(BTCB))s ::/dﬂm,a(a+5)(5TA5)(ﬂTBﬂ)(ﬂTCﬂ)

:AabBchef |:O'ab0'CdO'ef +2 (O,abo,cfa_de + a_afo,cda,be + O,ada,bco,ef)
B.11
+4(0_ad0_beo_cf_~_a_afo_bco_de)} ( )
=Tr[ocA] Tr[oB] Tr[oC| 4+ 2 Tr[c A] Tr[o BoC| 4+ 2 Tr[o B] Tr[cC o A]
+2Tr[oC] Tr[oBoA] + 8 Tr[c Ao BoC].

and
(BTAB)BTBA)(BTCB)BTDB))s
~ [ (e BT AR BT CH)(5T DY)
=AuBcaCer Dy, [aabaCdJefagh
+2(0%0 gt 4 gbae gl goh | gocgbdgel pah
0595 gt 1 goegedghl pah L o ged pel pbhy
+4(0% oMo 0 4 5955t gl 4 59 gee gl Gbh)
+8(0% 0o g 4 59615 g0 1 gocgedglaght 4 gabyceqfaghd)
+ 16<0_ac0.deo.fg0.hb 4 gaegfeqda ghb O_aca_dgo_heo.fb)}
=Tr[ocA] Tr[o B] Tr[cC] Tr[c D]+
+ 2(Tr[cA] Tr[o B] Tr[cCo D] + Tr[o A] Tr[o D] Tr[o BoC] + Tr[cC] Tr[o D] Tr[o Ao B]+
Tr[o A] Tr[oC] Tr[o Bo D] + Tr[o B] Tr[o D] Tr[c Ao C] + Tr[o B] Tr[cC] Tr[o Ao D])
+ 4(Tr[o Ao B] Tr[oCo D] + Tr[oc AcC] Tr[o Bo D] + Tr[o Ao D] Tr[o BoC])
+ 8(Tr[c Ao BoC] Tr[o D] + Tr[c Ac Bo D] Tr[oC] + Tr[o AcCo D] Tr[o B] + Tr[c BoCo D] Tr[oc A))

+16( Tr[c Ao BoCoD] + Trjoc AcCoBo D] + TY[UAO’BUDUC])}
(B.12)
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