
Quantum Signal Processing with the one-dimensional quantum Ising model

V. M. Bastidas1,∗ S. Zeytinoğlu2,3,† Z. M. Rossi4,2,1,† I. L. Chuang4, and W. J. Munro1

1NTT Basic Research Laboratories & Research Center for Theoretical Quantum Physics,
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa, 243-0198, Japan

2Physics and Informatics Laboratory, NTT Research, Inc., 940 Stewart Dr., Sunnyvale, California, 94085, USA
3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA and

4Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Dated: September 12, 2023)

Quantum Signal Processing (QSP) has emerged as a promising framework to manipulate and determine prop-
erties of quantum systems. QSP not only unifies most existing quantum algorithms but also provides tools
to discover new ones. Quantum signal processing is applicable to single- or multi-qubit systems that can be
“qubitized” so one can exploit the SU(2) structure of system evolution within special invariant two-dimensional
subspaces. In the context of quantum algorithms, this SU(2) structure is artificially imposed on the system
through highly nonlocal evolution operators that are difficult to implement on near-term quantum devices. In
this work, we propose QSP protocols for the infinite-dimensional Onsager Lie Algebra, which is relevant to
the physical dynamics of quantum devices that can simulate the transverse field Ising model. To this end, we
consider QSP sequences in the Heisenberg picture, allowing us to exploit the emergent SU(2) structure in mo-
mentum space and “synthesize” QSP sequences for the Onsager algebra. Our results demonstrate a concrete
connection between QSP techniques and Noisy Intermediate Scale quantum protocols. We provide examples
and applications of our approach in diverse fields ranging from space-time dual quantum circuits and quantum
simulation, to quantum control.

I. INTRODUCTION

Originally inspired by composite pulse sequences in nu-
clear magnetic resonance (NMR), quantum signal processing
(QSP) has emerged as a framework to unify existing quantum
algorithms and discover new ones using well-developed tools
from functional analysis [1–4]. QSP is a successful frame-
work for precisely controlling the evolution of quantum sys-
tems when one is given repeatable access to basic quantum
processes (unitary evolutions). The iterative structure of QSP
appears in many contexts, and suggests the applicability of
similar ideas to improve understanding of control protocols
in many-body quantum systems. Indeed, most explorations
into the non-equilibrium behavior of condensed matter sys-
tems [5, 6], including those studying quantum annealing [7–
13], discrete time crystals [14–17], and space-time dual quan-
tum circuits [18–22], rely on the fact that the dynamics de-
pend on iterated processes. If this structural similarity is suf-
ficient to import QSP techniques and precisely control many-
body quantum systems currently realized in experiments [23],
we can expand both our understanding of non-equilibrium dy-
namics and our capacity to control and manipulate the quan-
tum systems.

The application of QSP protocols in current experimen-
tal platforms is difficult as conventional circuit instantiations
of QSP protocols rely on highly nonlocal unitaries that are
difficult to implement in Noisy-intermediate scale quantum
(NISQ) devices. QSP and its multi-qubit extension, quan-
tum singular value transformation (QSVT) [24], rely on strong
conditions known as qubitization [2, 25], which ensure that
the dynamics of the system can be described as a direct sum
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of two-dimensional subspaces whose dynamics are summa-
rizable in terms of SU(2) operations. The two conventional
methods to impose such a structure rely on the use of highly
non-local interactions [26]. In the first method, qubitiza-
tion [2, 25] can be imposed on the dynamics by implementing
a highly non-local partial reflection operation acting on the
whole system. In the second method, one uses non-local in-
teractions between the system and a single ancilla to condition
the dynamics of the system on the ancilla. Then, the tensor
product structure can be used to endow the overall dynamics
with the desired behavior. More recently, Refs. [23, 27] pro-
pose more natural implementations of QSP protocols. How-
ever, these restricted protocols still rely on highly non-local
interactions between the system and a single ancillary qubit.
Hence, whether the qubitization conditions can be satisfied for
the dynamics of an extended system evolving under local dy-
namics will determine the applicability of QSP to the study
of near-term many-body quantum systems. Moreover, there
are mathematical challenges in trying to use QSP for multi-
qubits systems that are not qubitized and for other Lie groups
beyond SU(2). A recent effort in this direction is the devel-
opment QSP algorithms for continuous variables described by
the SU(1,1) Lie group [28]. Most importantly, QSP is a frame-
work built in the context of finite dimensional vector spaces.
Consequently the validity of applying similar techniques to
the analysis of infinite dimensional systems is not obvious.
We show below that this condition requires us to either sim-
plify how we represent these systems (by identifying under-
lying symmetries) or substantially alter the basic structure of
QSP.

In this paper we apply QSP-inspired techniques to the one-
dimensional quantum transverse-field Ising model (TFIM), a
condensed matter system which is of general theoretical in-
terest from quantum annealing [7] to space-time dual cir-
cuits [18, 21], and one that is routinely realized experimen-
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tally in diverse NISQ platforms [29, 30]. We define QSP se-
quences for the Onsager algebra [31–34]. This is an infinite-
dimensional Lie algebra underlying the solution of the Ising
model that shares some basic traits with the su(2) algebra un-
dergirding conventional QSP. We further determine the con-
ditions under which repeated access to unitary evolutions in-
duced by Hamiltonian terms of the TFIM allows one to imple-
ment generic QSP protocols. Lastly, we highlight the power of
the proposed QSP sequences by applying them to a wide range
of scenarios of current interest, ranging from space-time dual
quantum circuits and Hamiltonian engineering to composite
pulse sequences in spin systems.

To achieve these results, we rely on two core ingredients.
First, we use a Jordan-Wigner mapping [35] between the
TFIM and a non-interacting fermionic model [36]. Because
TFIM is integrable, the associated fermionic Hamiltonian is a
quadratic form in terms of fermionic ladder operators in each
momentum sector. Second, unlike the conventional QSP ap-
proach that is interested in state evolution, we consider the ac-
tion of the Hamiltonian evolution operator on the fermionic
ladder operators in the Heisenberg picture. The terms in
the TFIM Hamiltonian generate SU(2)-like transformations of
fermionic operators. These transformations are then cascaded
into QSP-like iterative protocols, defined by a set of parame-
ters each assigned for one iteration. We then identify the spe-
cial points in the parameter space for which the evolution is as
expressible as standard QSP acting on the space of fermionic
operators.

QSP and its related algorithms are far more flexible than ini-
tially considered. Under specially tuned conditions, the evolu-
tion of many complex condensed matter systems is succinctly
described and controlled by methods that are quite similar to
QSP, even when they are evolving under local dynamics. The
QSP methodology brings new insights into our understanding
of the dynamics of quantum systems and allows us to design
novel control sequences to improve the performance of near-
term quantum devices. We discuss the application of QSP
methods to dual quantum circuits [18–22], which could be
used to define QSP sequences in hybrid quantum circuits com-
posed of unitary operations and measurements[21]. More-
over, we show that the proposed QSP sequences can be used
to control the dynamics of single-particle fermionic excita-
tions by engineering their dispersion relation. Similarly, we
can use this ability to engineer the single-particle dispersion
relation to simulate various spin Hamiltonians which corre-
spond to non-interacting fermionic Hamiltonians.

Our results point towards further challenges for QSP to sub-
sume, as well as avenues toward the utility of QSP protocols in
describing locally interacting multi-qubit systems. Unlike in
the standard case, QSP in the Heisenberg picture can be easily
extended to the non-unitary evolution of the fermionic oper-
ators by using the space-time duality [18–22]. Additionally,
QSP-like sequences of SU(2) transformations will allow us to
design control sequences for a wider range of experimental
scenarios and to strengthen our understanding of iteratively-
evolved quantum mechanical systems.

The structure of our paper is as follows. In section II we
provide a brief summary of conventional QSP using SU(2)

operations. In section III we introduce the Onsager Lie al-
gebra and Krammers-Wannier duality, and define the QSP
sequences terms of the “seed operators” of this Lie algebra.
In section IV we discuss the intimate relation between On-
sager algebra and the Ising model and discuss the physical
implementation of QSP in terms of single- and two-qubit op-
erations. In section V we demonstrate that after a Jordan-
Wigner transformation, we can obtain simple QSP sequences
for fermionic operators in the Heisenberg picture when we
work in momentum space. We also discuss the expressivity of
QSP in the Heisenberg picture. In addition, in section VI we
provide specific examples of QSP sequences using Onsager
algebra in the context of space-time dual quantum systems,
Hamiltonian engineering and composite pulse sequences in
spin chains. Lastly, we provide concluding remarks and an
outlook in section VII.

II. QUANTUM SIGNAL PROCESSING (QSP) REVISITED

In nuclear magnetic resonance (NMR) there exist many
composite pulse techniques designed to achieve specific goals,
such as the precise control of the dynamics of quantum sys-
tems [37–41] and the reduction of noise. One can think of
a sequence of parameterized unitary operations, in analogy
to how they are used in NMR, as a means to calculate a re-
sponse function. Recently, Quantum Signal processing (QSP)
has emerged as general theory of composite pulse sequences,
and has proven itself as a versatile approach to design quan-
tum circuits, ultimately permitting the unification and simpli-
fication of most of the known quantum algorithms [1, 2]. In
the language of QSP, a sequence of unitaries allows one to
process an unknown signal encoded in said unitaries, such that
measurement results can depend on said signal in highly-non-
linear, near arbitrary ways [2].

We briefly summarize the major takeaways of QSP in terms
of the su(2) algebra by first defining the signal operator [2]

Ŵ(x) = ei δ2 X =

[
x i

√
1 − x2

i
√

1 − x2 x

]
, (1)

where δ = −2 cos−1 x with x ∈ [−1, 1] while X,Y,Z are Pauli
matrices generating the su(2) Lie algebra. The signal δ is pro-
cessed through a sequence of rotations that do not commute
with the signal operator, defined by

Ŝ (ϕl) = eiϕlZ . (2)

If the sequence contains d + 1 rotations used to process the
signal, it is convenient to organize the angles into a vec-
tor ϕ⃗ = (ϕ0, ϕ1, . . . ϕd). A theorem of QSP establishes that
given QSP sequence parameterization Ûϕ⃗ induces a polyno-
mial transformation of x as follows

Ûϕ⃗ = eiϕ0Z
d∏

r=1

Ŵ(x)eiϕrZ =

[
P(x) iQ(x)

√
1 − x2

iQ∗(x)
√

1 − x2 P∗(x)

]
.

(3)
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Further, there is a sequence of rotations ϕ⃗ for any polynomials
P(x) and Q(x) satisfying mild requirements [2] on parity and
norm. The cornerstone of this result is that, given function
one wishes to apply to x, there exists an efficiently computable
sequence of angles ϕ⃗ encoding a polynomial approximation of
it [41].

In its original form [2], this theorem was defined consider-
ing the structure of the su(2) algebra [X,Y] = 2iZ, [Y,Z] =
2iX, and [Z, X] = 2iY which is finite dimensional and gener-
ates both the signal and signal processing operators belonging
to the compact group SU(2). The simple form of the QSP
operation sequence Ûϕ⃗ is possible due to well-known proper-
ties of the Pauli matrices, e.g., X2 = Y2 = Z2 = 1̂. Previous
works mostly use qubitization to obtain QSP sequences in a
many-qubit system by exploiting the SU(2) dynamics within
two-dimensional invariant subspaces [2, 25]. However, this
procedure either requires controlled versions of n-qubit uni-
taries (requiring extra ancillae) or evolutions generated by n-
qubit reflection operators (which have to be highly nonlocal).
Hence, it is desirable to find QSP-like schemes that are easy
to implement with local interactions.

The question we want to answer in this work is whether
QSP sequences can be defined in infinite dimensional Lie al-
gebras [42] such as the Kac-Moody [43, 44] or the Virasoro
algebra in conformal field theory [45, 46]. These algebras
play an important role in diverse fields ranging from low-
energy regimes (low temperatures and long wavelength ex-
citations) in condensed matter physics [47, 48] to high-energy
physics [49] and string theory [50].

For concreteness, in this work, we focus on the Onsager
algebra appearing in the Ising model, which is an infinite-
dimensional algebra of importance in statistical physics and
the study of critical phenomena [31–34]. For instance, this al-
gebra has representations as transfer matrices of the classical
2D Ising model [31]. In the next section, we briefly summa-
rize the basic aspects of the Onsager algebra and provide its
representation in terms of the quantum Ising model [36].

III. QSP WITH THE ONSAGER LIE ALGEBRA

In the previous section, we discussed how QSP depends
on the su(2) algebra. In this section, we explore an infinite-
dimensional algebra known as the Onsager algebra [31, 33,
34], widely used in statistical physics and theory of integra-
bility [33, 34]. The Onsager algebra is defined in terms of
operators Ân and Ĝn, which are recursively generated from
“seed” operators Â0 and Â1 via the following relations

[Ân, Â0] = 4Gn

[Ĝ1, Ân] = 2(Ân+1 − Ân−1) . (4)

From these relations it is possible to build the complete struc-
ture of the algebra, as follows

[Ân, Âm] = 4Ĝn−m

[Ĝn, Âm] = 2(Âm+n − Âm−n)

[Ĝn, Ĝm] = 0 , (5)

where Ĝ−n = −Ĝn. An important aspect of this algebra is that
the “seed” operators should satisfy the so called Dolan-Grady
conditions [34]

[Â0, [Â0, [Â0, Â1]]] = 16[Â0, Â1]

[Â1, [Â1, [Â1, Â0]]] = 16[Â1, Â0] . (6)

These relations reveal a fundamental symmetry of statistical
mechanics known as the Krammers-Wannier duality [51–53],
which is related to the theory of the two-dimensional Ising
model and the one-dimensional quantum Ising model in a
transverse field. More specifically, the duality means that we
can get an equivalent theory by exchanging the “seeds” of the
algebra as follows: Â0 → Â1 and Â1 → Â0.

Before discussing any particular representation of the On-
sager algebra, let us explore the feasibility of defining a QSP
sequence using the generators Ân, as they are the fundamen-
tal units used to build the full algebra. As the algebra is con-
structed in a recursive fashion, it is reasonable to define a QSP
using the exponential map exp : G → G, allowing one to map
a Lie algebra G to a corresponding Lie group [54]. From now
on, we will assume the existence of an infinite-dimensional
unitary representation of the group G associated to the On-
sager algebra.

Inspired by the definition of QSP in the case of a single
qubit, we define here the signal operator

ŴO(θ) = exp
(
iθÂ1

)
. (7)

Correspondingly, let us also define the signal-processing uni-
tary operator

Ŝ O(ϕr) = exp
(
iϕrÂ0

)
. (8)

Considering the combined action of these two operators, we
can define a QSP variant in terms of Onsager generators:

ÛO
ϕ⃗

(θ) = Ŝ O(ϕ0)
d∏

r=1

ŴO(θ)Ŝ O(ϕr) . (9)

Furthermore, in contrast to previous works in QSP, the Dolan-
Grady conditions [32–34] allow us to build a “Dual Onsager
QSP” sequence

ÛDO
ϕ⃗

(θ) = Ŝ DO(ϕ0)
d∏

r=1

ŴDO(θ)Ŝ DO(ϕr) . (10)

by exchanging Â0 → Â1 and Â1 → Â0 in Eq. 9. Here, ŴDO(θ)
and Ŝ DO(ϕr) are the dual signal and signal processing opera-
tors.

Although the nature of the Onsanger algebra is fundamen-
tally different from that of su(2) in standard QSP, this modi-
fied QSP sequence still exploits the non-commuting character
of the “seed” operators to build up a nontrivial set of physi-
cal operations. We can consider a spin representation of the
Onsager algebra [34] with “seed” operators Â0 =

∑N
j=1 X j and

Â1 =
∑N

j=1 Z jZ j+1 where X j,Y j,Z j are Pauli matrices at a given
site j with periodic boundary conditions XN+1 = X1,YN+1 =
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FIG. 1. QSP with the Ising chain and Krammers-Wannier duality.
Here a) and b) illustrate the Ising chain and its dual. Moreover, c)
and d) depicts the corresponding quantum circuit to implement the
QSP sequence dependent on the Onsager algebra. Under the duality
transformation, lattice sites map to links in the dual lattice and vice-
versa. The dashed lines in a) and b) show the links and sites of the
dual and original lattice, respectively. In terms of a practical imple-
mentation of our ideas in NISQ devices, the lattice sites and bonds
in a) and b) represent the single- and two-qubit gates in c) and d),
respectively.

Y1, and ZN+1 = Z1. In this case, we can explicitly see the non-
trivial character of the duality that maps product states (eigen-
states of

∑N
j=1 X j) to maximally-entangled states (eigenstates

of Â1 =
∑N

j=1 Z jZ j+1).

IV. THE ONSAGER LIE ALGEBRA AND THE ONE
DIMENSIONAL QUANTUM ISING MODEL IN A

TRANSVERSE FIELD

To implement a manybody version of quantum signal pro-
cessing, one needs to build a discrete sequence of physical
operations that can be interpreted as a program to calculate
a desired function. As such to build a discrete sequence of
operations in a manybody system, we focus here on a time
dependent one dimensional quantum Ising model [36]

Ĥ(t) = −ℏg(t)
N∑

j=1

Z j − ℏJ(t)
N∑

j=1

X jX j+1 , (11)

where g(t) is a global time dependent transverse field while
J(t) is a time-dependent interaction strength. At this stage
is important to emphasize that our approach requires some
knowledge of g(t) and J(t) and in terms of a particular im-
plementation, it requires controllability of these parameters.

Recent experiments [29, 30] demonstrate the high degree of
control of the parameters g(t) and J(t) using arrays of super-
conducting qubits. In this way, we can build discrete single-
and two-qubit operations by modulating the parameters g j(t)
and J(t), respectively.

The crucial point of the theory of the quantum Ising model
is that the Hamiltonian Eq. (11) is an integrable model built in
terms of generators of the Onsager algebra [34].

With these elements at hand, we can define a manybody
QSP sequence as follows

Ûϕ⃗(θ) = eiϕ0
∑N

j=1 Z j

d∏
r=1

eiθ
∑N

j=1 X jX j+1 eiϕr
∑N

j=1 Z j . (12)

Now that we have establish the relation between the Ising
model and the Onsager algebra, we can explore the physi-
cal meaning of the duality and understand its nontrivial char-
acter. To do this, let us consider the time independent case
g(t) = g0 and J(t) = J0. When the transverse field strength is
much stronger than the spin interaction, the system is in the
paramagnetic phase. In the opposite regime, the system is in
the ferromagnetic phase, which is characterized by long-range
correlations between the spins. What the Krammers-Wannier
duality does is to exchange the role of the terms giving us the
dual Hamiltonian [53, 55]

ĤD(t) = −ℏg(t)
N∑

j=1

X̃ jX̃ j+1 − ℏJ(t)
N∑

j=1

Z̃ j , (13)

where X̃ j, Ỹ j, Z̃ j are Pauli matrices in the dual lattice. Geo-
metrically, this duality can be understood as replacing links
by nodes and nodes by links in the chain [53]. At the criti-
cal point g0 = J0, the system is self-dual, as the Hamiltonian
looks the same both in the original and dual representations.
This is not only a mathematical curiosity. In fact, as stated
before, the duality can be interpreted as symmetry in statis-
tical mechanics where the self-dual point is a quantum criti-
cal point of the model [36]. Further, the quantum Ising chain
can be mapped to the two-dimensional classical Ising chain.
The quantum critical point naturally maps to the critical tem-
perature at which the classical phase transition occurs in the
classical 2D Ising model [31, 36, 51].

Next, by using the Krammers-Wannier duality, we can de-
fine the dual QSP sequence that exchanges the role of signal
and signal processing operators

ÛD
ϕ⃗

(θ) = eiϕ0
∑N

j=1 X̃ j X̃ j+1

d∏
r=1

eiθ
∑N

j=1 Z̃ j eiϕr
∑N

j=1 X̃ j X̃ j+1 . (14)

Although this expression looks fairly simple, it is highly non-
trivial, due to the non-commuting character of the signal and
signal-processing operators. Moreover, there is a operational
relation between the original and dual quantum circuits de-
picted in Fig. 1 c) and d), which is given by

ÛD
ϕ⃗

(θ) = Û†
−ϕ⃗

(−θ) . (15)

Next, it is important to discuss the experimental feasibil-
ity of our proposal. A recent experiment [29] implemented a
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spin-spin interaction of the form θ
∑

j Z jZ j term and the trans-
verse field ϕ

∑
j X j. In their experiment, they chose values of

the parameters such that θ ∈ [0.5π, 1.5π] and ϕ ∈ [−π, π]. Our
model can be exactly mapped to the model realized experi-
mentally by using spin rotations.

Another important point that we want to emphasize is that
so far, as the Onsager algebra is infinite-dimensional, the al-
gebraic structure of the problem is not related to the su(2) al-
gebra used in the case of the single-qubit QSP. In the next
section, we extend the notion of QSP sequence at the level of
the operators and then map the system to a fermionic repre-
sentation. This allows us to simplify the complexity of the
problem.

V. JORDAN-WIGNER TRANSFORMATION AND QSP IN
THE HEISENBERG PICTURE

In this section, we briefly summarize how to use tools from
the theory of the TFIM to effectively reduce the dynamics of
the model to a pseudo-spin representation in the Heisenberg
picture. This will enable us to work using the su(2) algebra.

One of the most interesting aspects of the one-dimensional
quantum Ising model is that it can be mapped to a system of
non-interacting fermions described by a quadratic Hamilto-
nian [35, 36]. The transformation that allows us to do this is a
non-local mapping known as the Jordan-Wigner (JW) trans-
formation [35]. By working in momentum space, one can
see that the Hamiltonian creates pairs of excitations with op-
posite momenta, which is known as a P-wave superconduc-
tor [56]. This effectively allows us to decompose the dynam-
ics in terms of independent two-level systems in the particle
hole basis [36].

A. Bogoliubov the Gennes Hamiltonian and pseudo-spin
representation

After applying the JW transformation and the discrete
Fourier transformation f̂ j =

e−i π4
√

N

∑
k F̂keik j to the Ising model

in Eq. (11), we obtain a fermionic Hamiltonian [36, 57],

Ĥ(t) =
∑
k≥0

Ψ̂†kHkΨ̂k , (16)

where Ψ̂†k = (F̂†k , F̂−k). In appendix A we provide a detailed
derivation of Eq. (16). The matrix representation

Hk = 2ℏ[g(t) − J(t) cos k]σz + 2ℏJ(t) sin k σx (17)

of the fermionic quadratic form is known as the Bogoliubov de
Gennes Hamiltonian and describes a one-dimensional P-wave
superconductor [56]. Here σx, σy, and σz are Pauli matrices
in the particle-hole basis. Importantly, as the Hamiltonian is
quadratic the Heisenberg equations of motion are linear and
can be written in terms of the entries of the Bogoliubov de
Gennes Hamiltonian as follows

i
d
dt

[
F̂k

F̂†
−k

]
=

[
2(g(t) − J(t) cos k) 2J(t) sin k

2J(t) sin k −2(g(t) − J(t) cos k)

]
.

[
F̂k

F̂†
−k

]
,

(18)

which has a general solution Ψ̂k(t) = Uk(t) · Ψ̂k(0), where

Uk(t) =
[
Uk(t) V∗k(t)
Vk(t) U∗k (t)

]
(19)

is a propagator for the operators in the Heisenberg pic-
ture [57]. In appendix B we provide a detailed explanation
of the relation between the evolution of the fermionic opera-
tors in the Heisenberg picture and the explicit mapping to spin
states in the Schödinger picture.

B. QSP for fermionic operators in the Heisenberg picture

At the formal level, now we can use the propagator of the
fermionic operators in Eq. (19) to do QSP in the Heisenberg
picture. The advantage that we have of working in this frame-
work is that we effectively reduce the problem of the infinite-
dimensional Onsager algebra to an effective su(2) algebra in
the Heisenberg picture. In fact, from the general QSP proto-
col defined in Eq. (12), we can construct a QSP protocol in
the Heisenberg picture by using the Bologiubov de Gennes
Hamiltonian in Eq. (A3) as follows

Uk,ϕ⃗(θ) = e−2iϕ0σz

d∏
r=1

e2iθ(σz cos k−σx sin k)e−2iϕrσz . (20)

This iterative gate sequence resembles the conventional QSP
protocol. However, in order to use the conventional QSP
methods to design and analyze the action of the gate sequence
in the fermionic mode space, we need to identify the signal
and processing unitaries [1] associated with the proposed gate
sequence.

It is worth mentioning that the Krammers-Wannier duality
also has a representation in terms of Bologiubov de Gennes
Hamiltonian in Eq. (A3). We can show that the dual QSP in
Eq. (14) is obtained by exchanging the order of the operations
and roles of the parameters ϕr and θ in Eq. (20), as follows

UD
k,ϕ⃗

(θ) = e2iϕ0(σz cos k−σx sin k)
d∏

r=1

e−2iθσz e2iϕr(σz cos k−σx sin k) .

(21)

The Krammers-Wannier duality becomes extremely simple in
the Heisenberg picture when we use the particle-hole basis.
In fact, the QSP protocols in Eqs. (21) and (20) are related by
the combined action of a rotation and complex conjugation, as
follows

UD
k,ϕ⃗

(θ) = e−i k
2σyU ∗

−k,ϕ⃗
(θ)ei k

2σy . (22)

This relation resembles Eq. (15) for the quantum circuits
shown in Fig. 1.
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C. Expressivity of QSP in the Heisenberg picture

The main difference between the gate sequence in Eq. (20)
and the usual qubitization/QSP setup is that in the proposed
scheme, the rotation axes of the two single-qubit rotations in
each iteration are not orthogonal to one another. Moreover, the
angle between the two rotation axes depends on the momen-
tum k of the fermionic mode. Consequently, the identification
of the signal and processing unitaries is not immediate. How-
ever, this problem can be resolved by noticing the following
identity for the k dependent generator SU(2) rotations

e2iθ(σz cos k−σx sin k) = ei π4σz e−i k
2σx ei2θσz ei k

2σx e−i π4σz . (23)

From this identity we obtain the QSP sequence

Uk,ϕ⃗(θ) = ei(π/4−2ϕ0)σz

 d∏
r=1

e−i k
2σx ei2θσz ei k

2σx e−2iϕrσz

 e−i π4σz .

(24)

The sequence in parentheses is identical to to the QSVT
scheme in Ref. [24], except that the phase sequence is con-
strained by θ. The data processed with QSP are encoded in
the projected unitary

|0⟩k⟨0|kei k
2σx |0⟩k⟨0|k = cos (k/2)|0⟩k⟨0|k. (25)

The achievable set of polynomial functions of cos (k) using
the constrained phase sequence is smaller than that of standard
QSVT. First, it is clear that only even parity functions of the
signal can be implemented. Otherwise, the constraints seem
to be not very strong.

We first show that when θ = π/4, the evolution of the
fermionic creation and annihilation operators for each mo-
mentum sector can be simplified. To obtain the desired sim-
plification, first consider taking σz as the generator of the
processing unitary. Then the the block-encoded signal is
cos (2θ) + i cos (k) sin (2θ) because

e2iθ(σz cos k−σx sin k) = cos(2θ)1̂ + i(σz cos k − σx sin k) sin(2θ) .
(26)

Crucially, the block encoded signal is cos (k) when θ = π/4.
Physically, this value allows to create maximally-entangled
states in arrays of qubits via the Ising interaction [58]. In
terms of experimental implementations, this value of θ is
within reach in currently available arrays of superconducting
qubits [29].

Next, we discuss in more detail the special case mentioned
above. By inspecting Eq. (24), we see that if we set θ = π/4
in Eq. (24) we obtain the QSP sequence in the canonical form

Vk,Φ⃗ = ei(π/4−2ϕ0)σz

 d∏
r=1

e−ikσx ei(π/2−2ϕr)σz

 e−i π4σz

= eiΦ0σz

d∏
r=1

e−ikσx eiΦrσz , (27)

where the signal operator is a rotation along x-axis with an
angle proportional to the quasimomentum k. The signal pro-
cessing can be accomplished through a sequence of rotations
along the z-axis by new angles defined as

Φ⃗ = (Φ0,Φ1,Φ2, . . . ,Φd−1,Φd) , (28)

where this sequence is obtained by defining the endpoints
phasesΦ0 = π/4−2ϕ0 andΦd = π/4−2ϕd andΦr = π/2−2ϕr
for r = 1, . . . , d − 1, where ϕr are the phases of the original
sequence ϕ⃗ = (ϕ0, ϕ1, . . . ϕd).

For convenience, from now on in our paper we use the no-
tation Vk,Φ⃗ = Uk,Φ⃗(π/4) to distinguish this special unitary. We
will also use V̂O

ϕ⃗
= Ûϕ⃗(π/4) to denote the corresponding QSP

sequence in terms of the Onsager algebra. Later on, we will
provide examples to highlight the importance of Vk,Φ⃗ for ap-
plications.

As the signal and signal processing operator are rotations
along orthogonal axis, we can use standard techniques and
exploit Eq. (3) to obtain QSP sequence for Φ⃗

Vk,Φ⃗ =

 P(xk) iQ(xk)
√

1 − x2
k

iQ∗(xk)
√

1 − x2
k P∗(xk)

 . (29)

From this it follows that any (bounded, definite parity) poly-
nomial of xk = cos (k) can be implemented. In turn, for
θ = π/4, the QSP protocol achieves an optimal expressiv-
ity for all the values of k because the axis for the signal and
signal processing rotations are orthogonal. Moreover, as the
QSP sequence Eq. (27) and its dual in Eq. (21) are related via
Eq. (22), the dual QSP sequence also exhibits a high expres-
sivity for θ = π/4. This, follows from Eq. (22) because the the
Y-rotations can be further decomposed into Z-conjugated X
rotations according to k and this means that the dual protocols
have the same form as the original protocols, with the addi-
tion of one additional iterate (signal oracle). This asymmetry
is due to the fact that the general QSP protocol has d signal
operators and d + 1 controllable phases.

Remark. QSP is mainly a statement about the mathematical
form of a product of parameterized SU(2) operations. Usually
we denote the signal by θ, and consider it an unknown [1, 2],
but whenever an unknown appears and parameterizes such a
product, it can be treated in place of θ. In the QSP sequence
Uk,ϕ⃗(θ) of Eq. (24), a new variable (the momentum k) appears
given our problem statement. As we have multiple choices
for the signal, in some situations it makes sense to tune the
(known, and thus controllable) θ dependence, effectively re-
moving it by setting θ = π/4, and leaving the momentum to
be processed within each subspace labelled by k. In the gen-
eral case, one can still use Eq. (24) when θ is unknown, but
one has to determine the expressivity a two-variable QSP se-
quence with not orthogonal axis. In appendix C we discuss a
modified QSP sequence for arbitrary θ and k in such a way
that the signal and signal processing operations are rotations
along orthogonal axis. In contrast to the usual QSP, the axis
of the signal operator is defined by k and θ in a nonlinear
fashion. This is of course an interesting problem by itself, but
it is beyond the scope of our current work.
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VI. APPLICATIONS AND EXAMPLES OF QSP WITH THE
ONSAGER ALGEBRA

At this stage it is important to consider some particular ex-
amples to see how QSP works in the Heisenberg picture by
using the QSP sequence Vk,Φ⃗ of Eq. (27) in momentum space

with angles Φ⃗. As we discussed above, in some cases, it is
useful to fix θ = π/4 to treat the momentum k as the signal to
be processed. This particular value of θ is extremely impor-
tant for applications as it allows the maximum expressivity
for QSP sequences in momentum space. We will start with an
example where we discuss the trivial QSP sequence. In the
second example, we discuss QSP sequences for the Onsager
algebra and the relation to space-time dual quantum circuits,
which are relevant in quantum information processing and in
the study of quantum signatures of manybody chaos [18–22].
The next two examples are related to the use of our scheme
for quantum simulation of Hamiltonians. The last example
reframes a well-known protocol in NMR to synthesize a BB1
sequence [37] for the Onsager algebra [31, 34].

A. Trivial QSP sequence in momentum space

The simplest example of a QSP sequence can be obtained
by considering Φ⃗ = (0, 0, 0) in Eq. (27). This gives us the
trivial QSP sequence in momentum space

Vk,Φ⃗ = e−i2kσx . (30)

From this, we obtain the associated polynomial transforma-
tion of the input P(xk) = 2x2

k −1. Similarly, for Φ⃗ = (0, 0, 0, 0)
we obtain P(xk) = 4x3

k − 3xk. For a trivial protocol with
length d, one can show that the resulting polynomial trans-
formation is given by the Chebyshev polynomials of the first
kind P(xk) = Td(xk) as in Ref. [2]. The purpose of this ex-
ample is to show the versatility of Eq. (27). As this has the
canonical form of the QSP known in the literature, we can use
it to analyze QSP sequences with rotations Φ⃗ in momentum
space. Then, we can translate those back into angles ϕ⃗ defin-
ing the corresponding QSP sequence for the Onsager algebra.
For example, in the case of Φ⃗ = (0, 0, 0, 0), the original angles
are given by

ϕ⃗ = (π/8, π/4, π/4, π/8) , (31)

and define the QSP sequence V̂O
ϕ⃗

for the Onsager algebra [see
Eq. (12)].

B. Space-time rotation and dual quantum circuits

Now let us consider a more involved example related to
the theory of space-time dual quantum circuits. Motivated
by a recent work [21], we consider dual quantum circuit in
the absence of disorder. Recently space time duality has at-
tracted much attention, with connections to topics ranging

from quantum signatures of manybody chaos [18, 22] to dy-
namical quantum phase transitions [59]. One of the most ap-
pealing aspects of this theory is that it allows one to obtain
analytical results even when dynamics are ergodic [20].

To make the connection between the theory space-time dual
quantum circuits and QSP for the Onsager algebra, we can
consider the sequence of operations in Eq. (12) for fixed θ =
π/4 and ϕ⃗ = [0, π2 (1 − 2ϵ), π2 (1 − 2ϵ), . . . , π2 (1 − 2ϵ)], where
ϵ is an error in the rotation angle [see Eq. (28)]. The QSP
sequence with d time steps for a lattice with N sites reads

V̂O
ϕ⃗
=

d∏
r=1

ei π4
∑N

j=1 X jX j+1 eiϕr
∑N

j=1 Z j (32)

with ϕr =
π
2 (1 − 2ϵ).

To build a space-time dual QSP, we change the roles of
space and time. In other words, the dual QSP sequence cor-
responds to N iterations in time of a Hamiltonian acting on d
sites in space, as follows

V̂DST
⃗̃ϕ
=

N∏
r=1

eiϕ̃r
∑d

j=1 Z̃ j eĩθ
∑d

j=1 X̃ j X̃ j+1 , (33)

where ϕ̃r = −π/4 and θ̃ = −π/4+i/2 log{tan[π/2(1−2ϵ)]} [21].
We note that this has the same form as dual Onsager QSP se-
quence in Eq. (14). The main difference is that the Krammers-
Wannier duality exchanges the roles of signal and signal pro-
cessing sequence, while keeping the evolution unitary [53].
Under the space-time duality, however, the QSP sequence is
not unitary. In terms of the parameter ϵ, there is a special
value ϵ = 1/4 for which the dual quantum circuit is unitary
and θ̃ = −π/4.

Next, let us explore some properties of the QSP sequence
in Eq. (32) by working in quasimomentum space

Vk,Φ⃗ =

d∏
r=1

ei π2 (σz cos k−σx sin k)e−2iπ(1−2ϵ)σz , (34)

As the QSP protocols involve constant phases, at each time
step the evolution is given as a product of two unitaries. Thus
by using Floquet theory, we can extract most relevant informa-
tion from the evolution operator in one period of the sequence,
defining the Floquet operator

Fk = ei π2 (σz cos k−σx sin k)e−iπ(1−2ϵ)σz . (35)

The eigenvalues of the Floquet operator are λk = exp(−iµk)
and µk are the Floquet exponents. For example when k = 0, π,
the Floquet exponents are µ0 = π − 2π|ϵ − 1/4| and µπ =
2π|ϵ − 1/4|. When ϵc = 1/4, there is a π-energy gap for k =
0 and a zero energy gap for the mode k = ±π indicating a
quantum critical point at ϵc that is the self-dual point under
space-time duality [21]. For quasimomentum k = π/2 the
Floquet exponent is independent of the error and is given by
µπ/2 = π/2. In Appendix D we discuss the QSP sequence in
for k = π/2. Figure 2 a) shows the Floquet exponents µk as a
function of the quasimomentum and the error. From this we
can see the 0- and π-gaps indicating the sefl-dual point.
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a)

b)

ε

µ
k

k

k

ε

FIG. 2. Spectral properties of a QSP sequence and its space time
dual. a) Depicts the Floquet exponent µk of the iterator as a function
of the error and the quasimomentum k. There are both 0- and π-gaps
and the Floquet exponents are independent on the error for k = π/2,
as we predicted using QSP methods. The critical point at ϵ = 1/4
are ensured by space-time duality (see main text). b) Depicts the
phase diagram determining the features of the spectrum of the space
time dual QSP sequence. For parameters within the white region
the eigenvalues satisfy the condition |λDST

k | = 1 and the evolution
is unitary. For the self-dual point ϵ = 1/4 of the space time dual
quantum circuit there is a singularity at momenta k = 0 and |k| = π
in correspondence with the gapless excitation spectrum in shown in
panel a).

To obtain more information about the space-time dual QSP
sequence in Eq. (33), we consider the momentum representa-
tion

V DST

k,⃗̃ϕ
=

N∏
r=1

e
iπ
2 σz e2ĩθ(σz cos k−σx sin k) . (36)

Similarly to the QSP sequence in Eq. (D1) discussed above,
due to the periodicity, it is enough to study spectral properties
of the non-unitary version of the Floquet operator

F DST
k = e

iπ
2 σz e2ĩθ(σz cos k−σx sin k) . (37)

In contrast to its unitary version, the eigenvalues λDST
k of the

Floquet operator F DST
k are not restricted to lie along the unit

circle. In fact, depending on the momentum k and the error
ϵ, they may satisfy |λDST

k | < 1 or |λDST
k | > 1. Figure 3 depicts

a region plot in the k − ϵ parameter space where the white

FIG. 3. Probability |⟨+|kUk |+⟩k |
2 = cos2(EkT ) corresponding to the

cluster Hamiltonian Eq. (38) in momentum space. We set parameters
g = J and γ = 0.

region is determined by the condition of unitarity |λDST
k | = 1.

Interestingly, and as we discussed below, the momentum |k| =
π/2 lies in the white region for all values of the error and there
is correspondence between the 0− and π− gaps in Fig. 2 a) and
the behavior of the line ϵ = 1/4. In fact, in the shaded region,
each eigenvalue satisfying |λDST

k | < 1 has an exact partner such
as |λDST

k | > 1. That being said, some modes are amplified [60]
and others are suppressed for parameters within the shaded
region in Fig. 2 b). This spectral properties have important
consequences. For example, due to long-lived quasiparticle
pairs with purely real energy, the dual quantum circuit reaches
a steady state with volume-law entanglement [21].

C. Design of pulse sequences to simulate the response under a
target spin Hamiltonian

In the previous sections, we have been focusing on describ-
ing the general formalism for QSP in terms of the spin rep-
resentation of the Onsager algebra and in the Heisenberg pic-
ture. In this subsection, we will provide an example of a possi-
ble application of QSP to simulate a Hamiltonian by designing
a pulse sequence. With this aim, let us consider the a simple
target Hamiltonian of the form

ĤTarget(t) = −ℏg0

N∑
j=1

Z j − ℏJx

N∑
j=1

X jZ j+1Z j+2Z j+3X j+4

− ℏJy

N∑
j=1

Y jZ j+1Z j+2Z j+3Y j+4 . (38)

It is convenient to introduce the notation Jx = J(1 + γ)/2 and
Jy = J(1 − γ)/2, where γ is a dimensionless parameter char-
acterizing the anisotropy of the interaction. Certainly, it is a
nontrivial task to find a sequence of rotations ϕ⃗ in such a way
that the resulting unitary Ûϕ⃗(θ) from the QSP sequence in the
spin representation of Eq. (12) is close to our desired target
Hamiltonian for arbitrary θ. As the algebra is infinite dimen-
sional in the limit N → ∞, the number of commutators re-
quired makes the procedure impractical. However, as we will
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show below, one can obtain an enormous simplification of the
problem in the Heisenberg picture in the fermionic represen-
tation when we set θ = π/4 and work with the QSP sequences
in Eqs. (27) and (29).

By applying the Jordan-Wigner transformation and the dis-
crete Fourier transformation of the fermionic operators as we
did in the case of the Ising chain, we can obtain the Bogoli-
ubov de Gennes Hamiltonian

H
Target
k = 2ℏ[g0 − J cos 4k]σz + 2ℏJγ sin 4kσx . (39)

corresponding to Eq. (38). We can rewrite this in the form
H

Target
k = ℏΩknk · σ, where σ = (σx, σy, σz) and

Ωk = 2
√

[g0 − J cos 4k]2 + (Jγ)2 sin2 4k

nk =
2[g0 − J cos 4k]

Ωk
σz +

2Jγ sin 4k
Ωk

σx . (40)

This defines nx(k) = 2Jγ sin 4k/Ωk and nz(k) = 2[g0 −

J cos 4k]/Ωk. After an evolution time T , the quantum evo-
lution under HTarget

k is given by the unitary operator

Uk =

[
cos(ΩkT ) − inz(k) sin(ΩkT ) −inx(k) sin(ΩkT )

−inx(k) sin(ΩkT ) cos(ΩkT ) + inz(k) sin(ΩkT )

]
.

(41)

From this we can see that the matrix elements are functions
that could be approximated using QSP in the Heisenberg pic-
ture. That is, there is a sequence Φ⃗ that acts as a polynomial
transformation of the input

⟨0|kUk |0⟩k = cos(ΩkT ) − inx(k) sin(ΩkT )
≈ ⟨0|kVk,Φ⃗|0⟩k , (42)

where Vk,Φ⃗ was defined in Eqs. (27) and (29). In the previ-
ous discussion we faced a restriction when the signal xk =

cos(k) = ±1, or equivalently, when k = 0, π. In this case the
signal is proportional to the identity and the QSP sequence
turns out to be a single Z-rotation. Keeping this in mind, in
terms of the numerical implementation we can accurately ap-
proximate the function

⟨+|kUk |+⟩k = cos(ΩkT ) ≈ ⟨+|kVk,Φ⃗|+⟩k , (43)

where |+⟩k = (|0⟩k + |1⟩k)/
√

2. Figure 3 shows the behavior
of this response function for different values of k. The expres-
sivity of the QSP sequence in the standard form of Eq. (29)
has been widely investigated. Therefore, there are efficient
ways to obtain a sequence of phases Φ⃗ that gives us a good
polynomial approximation to a desired function. In turn, this
sequence of operations can be used to design a QSP sequence
V̂O
ϕ⃗

in terms of the original Pauli operators to simulate the ac-
tion of the evolution operator Eq (41) that is generated by the
Hamiltonian Eq. (39).

D. Reverse engineering of spin Hamiltonians from response
functions in momentum space

In this subsection let us present another example example
based on the idea of reverse engineering spin Hamiltonians

from a given polynomial transformation in momentum space.
For simplicity, we consider a phase sequence that has a sim-
ple limiting behavior in momentum space and then show that
there is a pre-image spin Hamiltonian in real space which
would induce this evolution.

As a starting point to construct our example, we assume a
simple form for the unitary evolution

Uk = e−iΩkTσx =

[
cos(ΩkT ) −i sin(ΩkT )
−i sin(ΩkT ) cos(ΩkT )

]
. (44)

Clearly, the response function associated to this evolution is
given by ⟨0|kUk |0⟩k = cos(ΩkT ). We can think of defining a
“reversed engineered” Hamiltonian HRE

k = ℏΩkσx. For con-
creteness, we will focus here on an example provided in the
appendix D of Ref. [2] of a phase sequence as a polynomial
approximation for phase estimation function.

cos(ΩkT ) = 2Π(3xk/2) − 1 . (45)

where Π(z) denotes the box distribution (also known as the
Heaviside Pi function). It follows that the angular frequency
dispersionΩk = π/T −πΠ(3xk/2)/T . We now employ Fourier
analysis to obtain the expression

Π

(
3xk

2

)
=

3
4π

∫ ∞

−∞

sin(3ω/4)
3ω/4

eiωxk dω =
3

4π

∞∑
n=−∞

ineinkGn ,

(46)

where Gn =
∫ ∞
−∞

sin(3ω/4)/(3ω/4)Jn(ω)dω with Jn(ω) be-
ing a Bessel function of the first kind [61]. From these rela-
tions, we can obtain a closed form for the Hamiltonian

HRE
k =

ℏ

T

π − 3
2

 ∞∑
n=0

(−1)n cos(2nk)G2n

σx , (47)

where we have exploited the symmetry G2n = G−2n and the
fact that G2n+1 = 0. With all these elements at hand, we can
obtain the fermionic Hamiltonian ĤRE =

∑
k≥ Ψ̂

†

kH
RE
k Ψ̂k, as

follows

ĤRE = −
3ℏ
2T

∑
k≥0

∞∑
n=0

(−1)nG2n

(
cos(2nk)F̂−kF̂k + h.c

)
= −

3ℏi
4T

∑
j

∞∑
n=0

(−1)nG2n( f̂ j−2n f̂ j + f̂ j+2n f̂ j) + h.c . (48)

We will not show the derivation here, but the fermionic terms
can be re-written in terms of Pauli matrices, giving rise to non-
local spin Hamiltonians of the form∑

j

(i f̂ j−2n f̂ j + h.c) =
∑

j

(X j−2nM̂z
jX j − Y j−2nM̂z

jY j) . (49)

Here M̂z
j = Z j−2n+1 · · · Z j−1 arises from the Jordan Wigner

string connecting the sites j − 2n and j. We refer to the in-
terested reader to Ref. [2], that provides the explicit phase se-
quence required to approximate the phase estimation function.
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FIG. 4. BB1 QSP sequence in momentum space and its effect on the
transition probability. The green curve depicts the transition proba-
bility Rk in Eq. (52) without signal processing. The blue curve shows
the transition probability RBB1

k in Eq. (53) after applying the BB1 se-
quence.

The example presented above shows there is always some
pre-image of a QSP transformation in momentum space in the
form of a time-independent spin Hamiltonian in real space that
matches the evolution we achieve. However, in general, the
pre-image spin Hamiltonian is highly non-local, as we can see
from our example. Nevertheless, the QSP sequence in terms
of the Onsager algebra V̂O

ϕ⃗
is given as a sequence of single-

and two-qubit gates.

E. BB1 protocol for the quantum Ising chain

In final subsection our main focus will be to use a paradig-
matic composite sequence from the NMR community in the
context of our QSP sequence in the momentum space. In turn,
our result allows us to define a BB1 protocol for the Onsager
algebra applicable to quantum Ising chains.

To start, let us consider the QSP sequence Vk,Φ⃗ in Eq. (27)
for a fixed angle θ = π/4. Notably, if we forget the physical
meaning of the quasimomentum k, we can interpret it as a
signal and the QSP sequence has the same structure as the
canonical form of QSP sequence for SU(2) in Eq. (3). Naively,
we can use known QSP sequences for su(2) in the literature to
“synthesize” new QSP sequences for the Onsager algebra.

For concreteness, let us consider a paradigmatic composite
pulse sequence in NMR known as the “BB1” sequence [2, 37].
In the context of our QSP sequence in momentum space, we
can do some signal processing of the quasimomentum k, by
considering a sequence of rotations

Φ⃗BB1 = (π/2,−χ, 2χ, 0,−2χ, χ) , (50)

where χ = 1/2 cos−1(−1/4). This has exactly the same form
as the BB1 “composite-pulse” sequence used in NMR. From
Eq. (28) and (50) we can retrieve the original phases

ϕ⃗BB1 =

(
−
π

8
,
χ

2
+
π

4
,−χ +

π

4
,
π

4
, χ +

π

4
,−
χ

2
+
π

8

)
(51)

which allows us to define the BB1 sequence for the Onsager
algebra V̂O

ϕ⃗BB1
= Ûϕ⃗BB1

(π/4) in Eq. (12). In momentum space,
the signal to be processed is the momentum k and we can de-
fine a QSP sequence Vk,Φ⃗BB1

as in Eq. (27). To understand the
effect of the BB1 sequence, it is illustrative to obtain the prob-
ability in the absence of any processing, i.e., for Φ⃗ = (0, 0)
and a given momentum k

Rk = |⟨0|kVk,(0,0)|0⟩k |2 = x2
k . (52)

Now, if we apply the BB1 sequence, we obtain the modified
transition probability

RBB1
k = |⟨0|kVk,Φ⃗BB1

|0⟩k |2

=
1
8

x2
k

[
3x8

k − 15x6
k + 35x4

k − 45x2
k + 30

]
, (53)

where xk = cos(k). In NMR, the BB1 sequence is known
for allowing the two level system to remain unflipped for a
wide range of signals. In our case, in a region around k = 0
and k = π. This sequence shows a sharp transition for |k| ≈
π/3 and |k| ≈ 2π/3. As a consequence, when applying the
BB1 sequence, we obtain a high sensitivity to specific values
of the momentum k. Here it is important to remark that this
step function can be made arbitrarily sharp [2, 37]. The main
benefit of BB1, besides its historical status, is that the protocol
is relatively short, and its achieved polynomial transform is
easy to write down.

But what are the consequences of this sensitivity? Well, the
QSP sequence keeps both long-wavelength (k ≈ 0) and short-
wavelength excitations (k ≈ π) frozen, while it flips excita-
tions with momentum close to k ≈ π/2. That is, if we prepare
an initial spin state |Ψ(0)⟩ =

∏π
k=−π |0⟩k = | ↑, ↑, . . . , ↑, ↑⟩, we

can calculate the probability

R = |⟨Ψ(0)|V̂ϕ⃗BB1
|Ψ(0)⟩|2 =

π∏
k=−π

RBB1
k = 0 . (54)

This turns out to be exactly zero because PBB1
±π/2 = 0.

VII. CONCLUSIONS

In summary, we have investigated QSP protocols for the
Onsager algebra, an infinite dimensional Lie algebra that natu-
rally appears in the theory of the Ising model. We have shown
that by mapping the Ising model to a system of non-interacting
fermions, we can define QSP protocols for the fermionic op-
erators in the Heisenberg picture respecting the su(2) alge-
bra. This naturally allows one to exploit the tools of stan-
dard QSP with SU(2) operations. We then applied such se-
quences to illustrate various examples and applications in di-
verse fields ranging from space-time dual quantum circuits,
quantum engineering of spin Hamiltonians, and composite
pulse sequences in spin chains. These examples highlight the
wide utility of our approach and how one can translate QSP
sequences in momentum space based on su(2) algebra in the
Heisenberg picture to well-defined protocols dependent on the
Onsager algebra in the Schödinger picture.
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There are of course some remaining open questions that are
worth exploring. For example, when we start with the On-
sager algebra in the Schödinger picture, after a set of trans-
formations, the evolution of the operators in the Heisenberg
picture can be entirely described by the standard theory of
QSP. For tuned values of system, we reach the optimal ex-
pressivity for QSP sequences in momentum space. However,
it remains unclear how generalizable this approach is to other
systems defined by other algebras and at other tuned points.
It would be worthwhile to determine which classes of physi-
cal models permit QSP-like control. This could allow one to
make statements about the robustness of QSP in the context
of condensed matter systems and quantum simulation. For
example, it would be interesting to explore QSP sequences in
spin chains such as the XXZ model, which cannot be mapped
to systems of interacting fermions [48, 62]. To deal with this
problem, one can use bosonization to map problems of inter-
acting fermions at half-filling to squeezed collective bosonic
modes [63]. This will of course require one to use recently
developed QSP sequences based on the su(1, 1) algebra for
continuous variables [28]. It would be interesting to explore
the use of QSP methods to treat non-integrable models such
as high-dimensional version of the TFIM. For example, a two-
dimensional lattice can be represented as a family of coupled
one-dimensional TFIMs. In certain regimes, our approach for
the one-dimensional TFIM can provide a good approxima-
tion for a two-dimensional problem. Other possible exten-
sion of our work is to investigate QSP sequences in two-band
topological insulators and topological superconductors which
can be described using a pseudo-spin approach in momentum
space [64].
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Appendix A: Jordan Wigner transformation and P-wave
superconductivity

The Jordan Wigner transformation allows one to represent
the Pauli matrices in terms of fermionic operators. This map-
ping is highly non-local is given by

X j = ( f̂ †j + f̂ j)
j−1∏

m=1

(1 − 2 f̂ †m f̂m)

Y j = −i( f̂ †j − f̂ j)
j−1∏

m=1

(1 − 2 f̂ †m f̂m)

Z j = 1 − 2 f̂ †j f̂ j . (A1)

Here the operators f̂ †j and f̂ j are the fermionic creation and
annihilation operators in real space satisfying the anticommu-
tation relations { f̂i, f̂ †j } = δi, j and { f̂i, f̂ j} = { f̂

†

i , f̂ †j } = 0.
After applying the JW transformation to the Ising model in

Eq. (11), we obtain the fermionic quadratic Hamiltonian

Ĥ(t) = −ℏg(t)
N∑

j=1

(1 − 2 f̂ †j f̂ j) − ℏJ(t)
N−1∑
j=1

( f̂ †j − f̂ j)( f̂ †j+1 + f̂ j+1)

= 2ℏ
∑
k≥

(g(t) − J(t) cos k)(F̂†k F̂k − F̂−kF̂†
−k)

+ 2ℏJ(t)
∑
k≥

sin k(F̂†k F̂†
−k + F̂−kF̂k)

=
∑
k≥

Ψ̂†kHkΨ̂k , (A2)

where Ψ̂†k = (F̂†k , F̂−k). Here F̂†k and F̂k are fermionic cre-
ation and anihilation operators in momentum space. The ma-
trix representation of the fermionic quadratic form is known
as the the Bogoliubov de Gennes Hamiltonian

Hk =

[
2ℏ[g(t) − J(t) cos k] 2ℏJ(t) sin k

2ℏJ(t) sin k −2ℏ[g(t) − J(t) cos k]

]
(A3)

and describes a P-wave superconductor. Here the supercon-
ducting term describes the creation of pairs of fermions with
opposite momenta [56].

Appendix B: Mapping QSP in the Heisenberg picture to the
Schrödinger picture: The BCS ansatz

In the main text, we show that after applying Jordan-Wigner
transformation and the discrete Fourier transform, we were
able to reduce problem to a QSP sequence in the Heisen-
berg picture using SU(2) group. This was possible due to the
pseudo-spin structure in momentum space. The natural ques-
tion is how to map the QSP in terms of spins in real space.

A solution to this problem is to exploit the structure of the
fermionic Hamiltonian Eq. (16) in the reciprocal space. This
Hamiltonian breaks the conservation of particles and allows
the creation of pairs of spinless fermions moving in opposite
directions. The creation of pairs characterized by a time de-
pendent pairing potential ∆k(t) = 2ℏJ(t) sin k is odd under mo-
tion reversal symmetry k → −k, which is a signature of a p-
wave superconductor. As the excitations are created in pairs,
one can show that any state of the system in the Schrödinger
picture can be written using the well known BCS Ansatz from
the theory of superconductivity [57]

|Ψ(t)⟩ =
∏
k>0

[
vk(t) + uk(t)F̂†k F̂†

−k

]
|0⟩k , (B1)

where |0⟩k is the vacuum for the k-th fermionic mode. The key
point of this approach is that the time-dependent coefficients
appearing in the Ansatz can be obtained by using the relation
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and has a general solution[
uk(t)
vk(t)

]
=

[
Uk(t) V∗k(t)
Vk(t) U∗k (t)

]
.

[
uk(0)
vk(0)

]
. (B2)

The propagator in this equation is the same as the propaga-
tor Uk(t) in Eq. (19) for the operators F̂k(t) and F̂†k (t) in the
Heisenberg picture. One can think of this approach in terms
of a pseudo spin approach, where the state of the two level
system is described by a spinor ψT

k (t) = [uk(t), vk(t)].
To have an intuitive understanding of this it is instructive

to consider a simple example. Next we focus on the Ising
Hamiltonian Eq. (11) in the case of a constant transverse field
g(t) = g0 and in the absence of interactions J(t) = 0. In
this case the Bogoliubov de Gennes Hamiltonian Eq. (A3)
is diagonal Hk = 2ℏg0σz and the propagator is Uk(t) =
exp (−iHkt/ℏ). Now we can exploit the pseudospin picture to
understand the physics of the problem. For example, when
the states ψT

k = (0, 1) with negative energy E(−)
k = −2ℏg0

are fully populated, we obtain the ground state of the sys-
tem |0⟩ =

∏
k>0 |0⟩k = | ↑, ↑, . . . , ↑⟩ with | ↑⟩ and | ↓⟩ being

the eigenstates of Z j. In the theory of the Ising model this is
known as the paramagnetic ground state. In terms of fermions,
this state describes a system with no pairs of counterpropagat-
ing excitations. The recipe to build up the excited states is to
populate states with positive energies for a given wave vec-
tor k0. That is, to create a pair of excitations with the desired
momentum

|1k0 , 1−k0⟩ = F̂†k0
F̂†
−k0
|0⟩ = i

∑
i, j

eik0(i− j) f̂ †i f̂ †j |0⟩

=
i
2

∑
s,r

eik0r f̂ †s f̂ †s+r | ↑, ↑, . . . , ↑⟩

=
i
2

∑
s,r

eik0r | ↑, ↑, ↓s, ↑↑ . . . ↑↑, ↓s+r, ↑⟩ , (B3)

where f̂ †s = (Xs + iYs)/2
∏s−1

m=1 Zm and f̂ †s+r =(∏s+r−1
m=1 Zm

)
(Xs+r + iYs+r)/2. As X2

m = 1, we obtain the

expression f̂ †s f̂ †s+r = 1/4(Xs + iYs)
(∏s+r−1

m=s Zm

)
(Xs+r + iYs+r).

The operator
∏s+r−1

m=s Zm is the Pauli string connecting the
sites s and s + r. To obtain this equation, we used the inverse
Fourier transform F̂k =

ei π4
√

N

∑
j f̂ je−ik j to write the fermionic

operators F̂†k0
in terms of real space fermionic operators f̂ †j .

We also inverted the Jordan- Wigner transformation Eq. (A1)
in order to write the fermionic operators f̂ †j in terms of spin
operators in real space. From the perspective of the pseudo
spin, this is equivalent to apply a spin flip to the negative
energy state with momentum k0 to obtain a positive energy
state ψT

k0
= (1, 0). In terms of the original spins in real space,

this corresponds to the creation of a quantum superposition
of localized spin flips.

Alternatively, we can also study wave packets directly
in the momentum representation. For example, for a two-
particle initial state |Ψ(0)⟩ =

∑
k G(k)F̂†k (0)F̂†

−k(0)|0⟩ with
momentum distribution G(k), the time evolution |Ψ(t)⟩ =

∑
k G(k)F̂†k (t)F̂†

−k(t)|0⟩ can be obtained by considering the evo-
lution of the operators in the Heisenberg picture

F̂†
−k(t) = Vk(t)F̂k +U

∗
k (t)F̂†

−k , (B4)

where Vk(t) and U∗k (t) are matrix elements of the propaga-
tor Uk(t) in Eq. (19) for the operators F̂k(t) and F̂†k (t) in the
Heisenberg picture. Thus, the time evolution of the wave
packet can be written as

|Ψ(t)⟩ =
∑

k

G(k)V−k(t)U∗k (t)|0⟩

+
∑

k

G(k)U∗k (t)U∗−k(t)|1k, 1−k⟩ . (B5)

Importantly, this wave packet can be interpreted as a quan-
tum superposition of the paramagnetic ground state and
a wavepacket of two spin flip excitations by considering
Eq. (B3).

These simple examples captures the essence of our ap-
proach. To design a QSP sequence using the generators of
the Onsager algebra in the Schrd̈inger picture is a cumber-
some task. However, we can easily design a QSP sequence
in the Heisenberg picture for the operators F̂k and F̂†k using
the SU(2) pseudo spin representation. In turn, QSP sequences
giving the propagator Uk(t) in the pseudo-spin representation
can be directly mapped to operations in real space using the
BCS Ansatz in Eq. (B1).

Appendix C: QSP Sequences for general θ

In this appendix, we discuss QSP sequences for general val-
ues of k and an unknown θ. As we are processing two indepen-
dent variables, the QSP sequence is more complicated that the
one discussed in the main text. In our manuscript, one of the
restrictions we found is that the signal and signal processing
operations are rotations along non-orthogonal axes. To over-
come this restriction, we can define a modified QSP sequence
for the Onsager algebra

ÛM
ϕ⃗

(θ) =
d∏

r=1

eiθ
∑N

j=1 X jX j+1 ei π4
∑N

j=1 Z j e−iθ
∑N

j=1 X jX j+1 eiϕr
∑N

j=1 Z j .

(C1)

In arrays of superconducting qubits, if the parameter θ is
known, its sign can be controlled using microwave control
lines [29]. When the parameter θ is unkown, its sign can be
effectively changed from positive to negative by applying π/2
rotations along the Z axis to the even or odd sites. Next, let us
explore the form of our modified QSP sequence in momentum
space, which reads

UM
k,ϕ⃗

(θ) =
d∏

r=1

e2iθ(σz cos k−σx sin k)e−2iθ(σz cos k+σx sin k)e−2i(ϕr+π/4)σz .

(C2)

It is worth noting that the rotation ei π4
∑N

j=1 Z j maps to a pseudo
spin rotation e−i π2σz in momentum space. Also, the first two
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terms in the QSP sequence are rotations along an the axis n̂k =

[− sin k, 0, cos k] and its reflection m̂k = [− sin k, 0,− cos k]
along the x axis. By using the fundamental properties of
SU(2) rotations, we obtain the general QSP sequence

UM
k,ϕ⃗

(θ) =
d∏

r=1

eiΩk(Akσx+Bkσy)e−2i(ϕr+π/4)σz , (C3)

where cosΩk = cos2(2θ) + cos(2k) sin2(2θ) and the new axis
is defined by the parameters

Ak = −
sin k sin(4θ)

sinΩk

Bk =
sin(2k) sin2(2θ)

sinΩk
. (C4)

Even if the parameter θ is unknown, this QSP sequence is
composed by rotations along orthogonal axis. However, in
contrast to the QSP sequence discussed in the main text, here
the signals parameters k and θ define the rotation axis in the
x − y plane in a nonlinear fashion, while the signal processing
takes place along the z axis.

Appendix D: Space-time Dual QSP for k = π/2

In this appendix, we discuss the QSP sequence Vk,Φ⃗ for the
space-time dual quantum circuit in the main text. As a first

step, it is useful to consider the QSP sequence in momentum
space

Vk,Φ⃗ = eiπ/4σz

 d∏
r=1

e−ikσx e−i π2 (1−4ϵ)σz

 e−iπ/4σz , (D1)

where we took ϕr = π/2(1− 2ϵ) in the definition of Φ⃗ accord-
ing to Eq. (27).

We notice that the evolution e2iθ(σz cos k−σx sin k) in Eq. (26) of
the fermionic operators under the Ising interaction becomes
e∓iπ/2σx = ∓iσx when k = ±π/2 and θ = π/4. Then, we can
write the composite pulse sequence (up to a constant phase)
as

V
∓π/2,Φ⃗ = (∓i)dσxe−iπ(1−2ϵ)σzσxe−iπ(1−2ϵ)σz · · ·σxe−iπ(1−2ϵ)σz

∝

{ I if d ∈ even
σxe−iπ(1−2ϵ)σz if d ∈ odd (D2)

Hence, the resulting unitary approximates the dynamics up to
an error ϵ in the phase rotation.
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