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Soaring birds gain energy from stable ascending currents or shear. However, it remains unclear
whether energy loss due to drag can be overcome by extracting work from transient turbulent
fluctuations. We designed numerical simulations of gliders navigating in a kinematic model that
captures the spatio-temporal correlations of atmospheric turbulence. Energy extraction is enabled by
an adaptive algorithm based on Monte Carlo tree search that dynamically filters acquired information
about the flow to plan future paths. We show that net energy gain is feasible under realistic
constraints. Glider paths reflect patterns of foraging, where exploration of the flow is interspersed
with bouts of energy extraction through localized spirals.

Soaring birds harvest energy by strategically gliding
through atmospheric flows while extracting energy con-
tained in the flows. For soaring birds like herring gulls
and albatrosses, gliding consumes oxygen at a rate ≈30%
lower than flapping [1, 2], which is crucial for making
long-distance migration feasible within metabolic and
aerodynamic constraints [3]. The energetics of different
forms of soaring can be described by a general expression
for the non-dimensionalized rate of energy gained, ε̇, by
a glider (that generates no thrust) in a wind field:

ε̇ = −cDv3 + wz − v.ẇ, (1)

where gravity points in the negative z direction, cD is the
aerodynamic drag coefficient, v = ‖v‖ is the airspeed of
the glider and w = (wx, wy, wz) is the wind velocity [4–
6]. (See Supplemental Material (SM) section SM.II for
details.) In the absence of wind, energy is continuously
lost due to drag and the glider sinks at a constant rate.
Thus, in order to compensate for drag, gliders should
either actively localize at updrafts or align themselves
anti-parallel to rapid gusts and wind shear along the
glider’s trajectory. These two mechanisms correspond to
the second and third terms in Eq. (1) respectively. Birds
exploit both these mechanisms to gain energy, which
correspond to two commonly observed modes of soaring
known as thermal and dynamic soaring.

Thermal soaring relies on ascending currents (thermals)
generated by convection in the atmospheric boundary
layer [7–9]. Thermals are dynamic flow structures that
typically last a few minutes, providing updrafts that en-
able a bird to spiral up the boundary layer and forage for
prey or glide to another thermal during migration [10].
Adult vultures have more control on centering thermals
than juveniles, suggesting that vultures improve their soar-
ing skills through experience [11]. Dynamic soaring allows

for energy-neutral flight over oceans, where thermals are
weak or absent [12–14]. The predominant contribution
to energy extraction during dynamic soaring is through
the third term in Eq. (1) [15], that is, by maintaining an
appropriate heading while the bird manoeuvres through
a stable shear layer generated behind ocean waves.

Nevertheless, both thermal and dynamic soaring rely
on the formation of relatively stable convective plumes or
wind shear. Atmospheric turbulent flows contain short-
lived eddies of multiple time scales with velocity ampli-
tudes comparable to a glider’s typical sink rate, offering
a potential continuous source of energy even in environ-
ments without stable convection or shear [16, 17]. It is
unclear whether energy can be extracted solely from the
rapidly fluctuating wind fields that characterize such tur-
bulent flows [18, 19]. In order to harvest energy effectively,
a glider should first acquire information about the flow,
identify potential energy sources and select its path to
maximize energy gain. However, acquired information
degrades with time in an unsteady flow, which imposes
strong constraints. In the extreme case of an uncorrelated
flow, the value of information degrades immediately; con-
sequently, ε̇ is negative on average, 〈ε̇〉 ' −cDv3. This is
no longer true when the flow has correlations longer or
comparable to the typical control timescale of the glider.
What then is the relationship between the maximal en-
ergy rate, 〈ε̇〉max, the dynamic properties of the flow and
the aerodynamic constraints on a glider? Even if energy-
positive soaring is physically plausible, i.e., 〈ε̇〉max > 0,
can a computational algorithm feasibly attain this limit?

Previous studies have examined navigational strategies
for dynamic soaring in a static shear layer [13, 14] and
thermal soaring in convective flows with [20, 21] and with-
out turbulence [22–24]. In the former case, a classical
result from Rayleigh establishes the environmental condi-
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tions required to achieve energy-neutral flight [25]. For
thermal soaring, reinforcement learning methods have
proved fruitful for identifying useful cues and effective
navigational strategies in the face of turbulence [20, 21].
These settings consider soaring in a convective flow, where
the ascending branch is on the scale of hundreds of meters
and lasts for minutes. Here, turbulence plays a disruptive
role by introducing ‘noise’ when identifying and localiz-
ing within relatively stable thermals [26, 27]. A recent
proposal to extract energy from unsteady flows relies
on a phenomenon known as fast-tracking exhibited by
Stokesian inertial particles [28]. Online algorithms that
learn the flow in real time to adaptively plan subsequent
paths, and more generally, methods for active naviga-
tion in complex flows remain unexplored. In this Let-
ter, we address these questions using a kinematic model
of three-dimensional homogeneous and isotropic turbu-
lence. We consider a glider navigating within this flow
that orients itself in response to its sensory history using
a general-purpose decision-making algorithm that com-
bines statistical inference and long-term planning. We
show that energy-positive soaring is feasible and delineate
the aerodynamic and flow parameters where this can be
achieved.

Model. We consider a glider navigating in a fluctuating
flow by controlling its bank angle µ while making local
wind velocity measurements w. The equations of the
motion of the glider are given by u̇ = L+D+mg, where
u = v + w is the glider’s velocity with respect to the
ground and L,D are the lift and drag forces on the glider
respectively (see SM.I). Based on the glider’s airspeed
in steady flight, we define the characteristic speed and
control timescales of the glider as vc =

√
2mg/ρS and

tc = vc/g respectively, where ρ is the density of air and
S is the surface area of the wings. For soaring avian

FIG. 1. The numerical simulation of the three-dimensional
homogeneous and isotropic turbulence. The figure shows
vertical wind velocity field. Red and blue indicates large
ascending and descending currents respectively.

migrants, the typical gliding speed is 14 m/s [29, 30];
accordingly, in what follows we set vc = 10 m/s and the
typical control timescale tc = 1 s.

Next, we consider a kinematic model that captures the
broad range of length scales and timescales characteristic
of turbulent flows. The three-dimensional wind field,
w(r, t), at position r and time t is specified in terms of
its Fourier modes [31], which have stochastic dynamics
with energy spectrum E(k) ∼ k−5/3 between the smallest
and largest wavelength modes kmax and kmin (see SM.III).
We use a cubic domain with side length 500 m for the
fluid field, with periodic boundary conditions. The fluid
is simulated using 643 modes. Figure 1 shows an example
of the simulated wind field. The root-mean-square (RMS)
wind speed is set to be 0.5 m/s based on typical amplitudes
of atmospheric wind fluctuations. The modes decay with a
characteristic timescale τ(k) = τ0k

−2/3, with a prefactor
τ0 that sets the overall scale of temporal fluctuations
relative to tc. The statistical properties of the flow are
determined by the stationary, isotropic covariance kernel
of each wind velocity component,

K(r, t) = α

∫ kmax

kmin

k−5/3sinc(kr)e−t/τ(k)dk, (2)

where r = ‖r‖ and α is a constant that sets the RMS
wind speed (see SM.III).

We now describe the navigational strategy, which
maps the glider’s wind velocity and positional history
to one of three bank angle changes, namely, ∆µ =
0◦,±10◦ to a maximum (minimum) of µ = ±40◦. A
glider with memory size M and history Ht at time
t contains the glider’s past locations and wind mea-
surements collected at fixed intervals ∆t = tc/2, that
is, Ht = rt−M∆twt−M∆trt−(M−1)∆twt−(M−1)∆t . . . rtwt.
The glider chooses an action so as to maximize the to-
tal expected energy gained in time d∆t, 〈εt+d∆t〉Ht

− εt,
where d∆t = 10tc sets the planning horizon (see SM.VI
for a discussion of this choice). This maximal expected
energy gained given a particular history, V (Ht), satisfies
the recursive Hamilton–Jacobi–Bellman equation [32],

V (Ht) = max
a∈A

〈εt+∆t − εt + V (Ht+∆t)〉Ht,a, (3)

where the expectation is over wind configurations encoun-
tered along the glider’s trajectory from t to t+ ∆t with
boundary condition V (Ht+d∆t) = 0. The optimal action
is the one that attains the maximum over the set A of all
possible actions that the glider can take. The expectation
implicitly contains the ‘propagator’, i.e., the conditional
probability density of the wind velocity at a new location,
P (wt′ |Ht, rt′) for t′ > t. Computing the optimal action
is generally challenging due to the evaluation of the ex-
ponential number (∼ |A|d) of possible future paths and
the wind configurations encountered along these paths.
We now describe three simplifications made to derive an
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FIG. 2. The glider’s trajectory in a frozen wind field. The color
shows the vertical wind velocity that applied on the glider. (a)
The glider’s trajectory in yz-plane. (b) The glider’s trajectory
in xy-plane. The glider exhibits ‘traversing’ behavior at the
beginning of the searching and a switch to ‘spiraling’ behavior
once an ascending current has been found. The zoomed-in
figures show some examples of the MCTS paths.

efficient, online algorithm from the general expression
Eq. (3) (see SM.IV & SM.V for full details).

First, we observe that the glider’s future trajectory and
energy gain have approximately a linear dependence on w
if w is much smaller than the typical airspeed of the glider
(w � vc). Since the flow is defined by its second-order
statistics in Eq. (2), it is a Gaussian process. We perform
Gaussian process regression to predict wind velocities
in future time and locations with given history Ht, and
then we compute the expected energy gain along a large
number of paths (here, 104 paths).

Second, we numerically evaluate the optimal path using
Monte Carlo sampling. However, the large number of
future paths remains a challenge and efficient pruning
techniques are required to make planning tractable. To
prune sub-optimal paths during planning, we implement a
Monte Carlo tree search (MCTS) [33]. MCTS uses a tree
search algorithm to balance exploration and exploitation
of future paths. The algorithm stochastically samples
different paths, and at each branch chooses an action
based on the expected energy gain. The sampling is
biased toward paths with higher energy gain, but with

an additional exploration bonus to ensure less promising
paths still have a chance of being explored.

Finally, we employ MCTS to find the sequence of ac-
tions a1, a2, . . . , ad that approximately maximize the ex-
pected energy gain, i.e., V (Ht) ≈ maxa1,a2,...,ad〈εt+d∆t −
εt〉Ht,a1,a2,...,ad . Note that this is not equivalent to opti-
mizing Eq. (3) as the max operator is over paths whose
expected energy gain is computed given Ht.

Results. We perform 10 simulations of the wind field,
each containing 20 gliders, making 200 gliders in total.
We simulate for a duration of 500 s. We first consider
gliders navigating in wind fields that remain constant in
time, which have spatial correlations specified by K(r, 0)
in Eq. (2). In Fig. 2, we show a sample path of the glider
along with the trajectories explored at a single instance of
MCTS along its path. The glider exhibits distinct bouts
of localized spiraling behavior during which they gain
height, similar to soaring patterns observed during ther-
mal soaring. These bouts of spiraling punctuated by flat
traversals can be intuitively viewed as ‘foraging’ behav-
ior: the ascending currents that drove spiraling behavior
expire when the height gained in these bouts exceeds the
typical correlation length (' 50 m). Subsequently, the
glider traverses less valuable regions of the flow towards
new energy-rich regions.

Over time scales much longer than than 1 s, since v
remains comparable to vc, energy extracted from the flow
is primarily converted to potential energy (see SM.VII).
We thus use the climb rate c (Fig. 3) of the gliders to
measure the efficiency of energy extraction. We simulate
gliders that execute random actions and gliders that have
full information of the flow to obtain lower (cmin) and
upper bounds (cmax) respectively of the climb rate. The
efficiency of energy extraction is defined as η(c) = (c −
cmin)/(cmax − cmin). The efficiency estimates the value
provided by global knowledge of the flow versus the local
information acquired along the glider’s path. Gliders with
full information of this frozen flow show positive climb
rates cmax = 0.5 m/s, implying that energy-positive flight
is feasible if gliders have sufficient information and the flow
has sufficiently long correlations. Gliders that use partial
information—i.e., the measured wind velocities along their
past trajectory—also show positive climb rates (Fig. 3,
SM.VII) with η = 0.77, 0.81 for memory sizes M = 20, 50
respectively. The information is stored in the memory
every ∆t = 0.5 s and the memory duration is tm = M∆t.

Next, we consider a dynamic wind field that has tempo-
ral correlations denoted by τc. The frozen field considered
above is obtained from the limit τc → ∞. For smaller
τc, the reduced temporal correlations imply that past
experience is less informative when picking out the op-
timal path via MCTS and thus the average climb rate
decreases. Moreover, the intuition behind the spiraling
bouts suggests that each bout will last at most ∼ τc,
thereby reducing the time spent in energy-rich regions of
the flow. When τc is sufficiently small, past information
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FIG. 3. Gliders’ altitude gain in a frozen wind field, us-
ing the partial information acquired from the measured
wind histories, using different memory durations tm =
[2 s, 5 s, 10 s, 15 s, 20 s, 25 s]. All the gliders initially descend,
but start to gain altitude after building a better model for the
wind field. The slope of the altitude gain from 200 s onward
is measured as the climb rate. See SM.VII for details about
the climb rate measurement.

is not predictive of future flow configurations and the net
energy gain should reduce to that of a random glider.

Figure 4 shows that energy-positive flight is feasible
for τc & 60 s for partial information gliders. The net
energy gain increases with τc and has weak dependence on
memory size provided that tm > 10 s. The efficiency of the
gliders increases monotonically with τc even though the
climb rate when gliders have perfect information (cmax)
decreases with τc, implying that the reduced climb rates in
short time scale flows is due to the quicker degradation of
acquired information rather than fewer sources of energy.

Discussion. Soaring birds are believed to use rela-
tively stable large-scale flow structures, such as thermals
or shear layers, to reliably extract energy through efficient
sampling and navigation. Our results show that glid-
ers employing a sampling-based planning algorithm can
achieve energy-positive flight by exploiting transient fluc-
tuations in a kinematic model of fluid turbulence. Rather
than rely on local mechanical cues or optimized flight
patterns, which have been shown to be useful for thermal
soaring and dynamic soaring respectively, our algorithm
uses a adaptive strategy where the recent history of mea-
sured wind velocities is used to predict and estimate the
energy gained along future trajectories. Unlike those
other modes of soaring, a memory of a few tens of seconds
is necessary to achieve energy-positive flight, highlighting
the importance of storing information to map out the
local physical environment.

Most of the energy gained by gliders in our simulations
is through localized updrafts, that is, the second term in
the right hand side of Eq. (1) rather than wind gradients.
The trajectories of gliders reflect patterns of foraging,
where efficient exploration of the flow through relatively

straight paths is followed by energy extraction through
localized spirals where significant updrafts are present.
This picture suggests that the marginal benefit of a mem-
ory of a few tens of seconds is possibly a consequence of
the correlation length scale of the flow (here ∼ 100m): a
glider that travels at 10m/s requires at least a memory
of 10 seconds to acquire two independent samples of the
flow and guide its subsequent decisions.

Neutral conditions in the atmospheric boundary layer
show correlation timescales of 50 s to 100 s with typical
velocity fluctuations of magnitude 1 m/s [34]. Using sim-
ulated gliders that have glide-to-sink ratios (15:1) similar
to soaring birds, our results suggest that energy-positive
flight is indeed feasible at physically relevant timescales.
Modern sailplanes travel at much faster speeds, allow-
ing for more efficient exploration, and reach glide-to-sink
ratios greater than 40:1 [35]. Sailplanes employing the
algorithm devised here can potentially achieve energy-
positive flight under stricter restrictions on atmospheric
scales. The algorithm applies flows with arbitrary correla-
tion structure, which include environments where updrafts
have distinctive spatial arrangements (e.g., cloud streets
in the atmospheric boundary layer [36]). An important
caveat is that the predictive model relies on the second-
order moments of the flow. An interesting open problem
is whether non-Gaussian deviations in atmospheric turbu-
lence [37] significantly affect the algorithm’s performance.
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ter for Mathematical & Statistical Analysis of Biology
at Harvard (award number #1764269) and the Harvard
Quantitative Biology Initiative.
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I. OVERVIEW

This document contains technical details for simulating a glider moving in a model for a turbulent flow
to maximize its energy gain. In Sec. II, we introduce the governing equations for a glider moving in a wind
field. In Sec. III we describe the model for the turbulent wind field, comprised of stochastically evolving
Fourier modes. In Sec. IV we then describe the Gaussian process regression (GPR) that the glider can use
to predict the wind field based on its history of observations. In Sec. V we introduce the Monte Carlo tree
search (MCTS), which the glider uses to control its flight to maximize energy gain.

Several aspects of the simulation—notably the evolution of the turbulent wind field, and the large num-
ber of GPR evaluations required for MCTS—are computationally intensive. Our simulation is therefore
written as a custom C++ code, making use of the OpenMP library to accelerate many aspects of the com-
putation using multithreading. Throughout this document, we discuss algorithmic complexity, details of
the implementation, and numerical tests that we have performed. In Sec. VI we describe the specific set of
simulations that we ran, and in Sec. VII we provide tables of results to supplement the data available in the
main paper.

II. GLIDER AERODYNAMICS

A. Governing equations for the glider

We simulate a glider moving in a global (x,y,z) coordinate system where the z axis points upward. The
glider moves with time-dependent position r(t) and velocity u(t) relative to the ground, experiencing a
local wind velocity w(t). The glider’s motion relative to the wind is therefore given by v = u−w, and the
airspeed is given by v = ‖v‖. As shown in Fig. 1, there are three forces acting on the glider: lift, drag, and
weight. Lift is a component of the aerodynamic force, and is directed perpendicular to the flight direction.
The magnitude of the lift force is given by

L =
1
2

cLρSv2, (1)

where ρ is the density of air, S is the surface area of the wing, v is the airspeed and cL is the dimensionless
lift coefficient which has complex dependencies on wing shape. The drag is another component of the
aerodynamic force, directed opposite to the flight direction. It scales similarly to lift, and has magnitude

D =
1
2

cDρSv2 (2)

where cD is a dimensionless drag coefficient. Figure 1 also defines two orthogonal vectors (e1,e2) in the
horizontal plane, with e1 pointing in the same direction in the xy-plane as the glider body. Note however
that the glider may also be tilted, so that its direction vector has an additional vertical component.

As shown in Fig. 2, the glider’s orientation can be described using three angles. The bank angle µ
sets the tilt of the wing surfaces from vertical, and can be controlled by the glider itself. The glide an-
gle γ measures the angle of the glider’s motion from horizontal and is given by γ = sin−1 vz/v. The az-
imuth angle measures the direction of the glider in the horizontal plane and is determined so that (vx,vy) =
(vcosγ cosψ,vcosγ sinψ).

∗ danyunhe@g.harvard.edu
† chr@math.wisc.edu
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FIG. 1. Diagram of the glider, marking the directions of the three forces, lift L, drag D, and weight that it experiences.
The global coordinate system is (x,y,z), with the positive z direction pointing vertically upwards. The e1 vector
points horizontally in the direction that the glider faces, although the glider direction may also have an additional z
component. The vector u is the glider’s velocity relative to the ground. The vector e2 is horizontal, and is perpendicular
to e1.

FIG. 2. Diagrams of the glider from several different directions using the global (x,y,z) coordinate system and (e1,e2)
coordinate system defined in Fig. 1. The angles determine the glider’s orientation. (a) Bank angle µ is how much the
glider rolls from the vertical. (b) Glide angle γ is the angle between the heading and the horizontal. (c) Azimuth angle
ψ is the angle between the projection of the air velocity vector onto the horizontal plane and the x-axis.

With these definitions, the glider’s governing equations are given by

mu̇x = Lcos(µ)sin(γ)cos(ψ)−Lsin(µ)sin(ψ)−Dcos(γ)cos(ψ), (3)

mu̇y = Lcos(µ)sin(γ)sin(ψ)+Lsin(µ)cos(ψ)−Dcos(γ)sin(ψ), (4)

mu̇z = Lcos(µ)cos(γ)+Dsin(γ)−mg, (5)

ṙ = u, (6)
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where m is the mass of the glider and g is the gravitational acceleration. The energy is given by

E =
1
2

mv2−mg · z. (7)

Taking the time derivative of Eq. (13) and substituting in Eqs. (9)–(12) shows that the change in energy is
given by

Ė = mv · v̇−mg ·u
= mv · (u̇− ẇ)−mg · (v+w)

= v · (mu̇−mg)−mg ·w−mv · ẇ
=−vD+mgwz−mv · ẇ, (8)

which is given as Eq. (1) in the main text. As described in the main text [1], the first term in this equation
corresponds to energy loss by drag. The other two terms in this equation correspond to energy loss by drag,
energy gain from altitude increase and energy gain from local wind gusts, both of which are exploited by
soaring birds.

B. Non-dimensionalized equations

Define the speed scale vc =
√

2mg/ρS and the corresponding time scale tc = vc/g and length scale lc =
v2

c/g. We non-dimensionalize all velocities, lengths and times with respect to these three scales. Retaining
the same notation, Eqs. (3)–(6) become

u̇x = cLv2 cos(µ)sin(γ)cos(ψ)− cLv2 sin(µ)sin(ψ)− cDv2 cos(γ)cos(ψ), (9)

u̇y = cLv2 cos(µ)sin(γ)sin(ψ)+ cLv2 sin(µ)cos(ψ)− cDv2 cos(γ)sin(ψ), (10)

u̇z = cLv2 cos(µ)cos(γ)+ cDv2 sin(γ)−1, (11)

ṙ = u. (12)

We use Eqs. (9)–(12) in the numerical implementation. The non-dimensionalized energy is given by divid-
ing Eq. (7) by a factor of mv2

c , so that

ε =
1
2

v2 + z. (13)

The non-dimensionalized rate of energy gain is

ε̇ =−cDv3 +wz−v · ẇ. (14)

III. SIMULATIONS OF TURBULENT FLOW

A. Model of turbulent flow using Fourier modes

For the wind field w(r, t), we consider a homogeneous and isotropic turbulent flow that can be described
by a Fourier transform,

w(r, t) = (2π)3/2
∫ ∞

−∞
d3keik·rw̃(k, t), (15)

where w̃(k, t) is the complex-valued amplitude of the wave with wave number k at time t. We simulate
a turbulent field that reproduces the second-order Kolmogorov statistics [2] where the energy contained in
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waves of magnitude k = ‖k‖ scales like E(k) ∼ k−5/3. In our numerical implementation, using the non-
dimensionalization introduced in Sec. II B, the wind velocity is computed in a periodic box [0,2π)3 using
a discrete N×N×N complex Fourier modes w̃αβζ . Define a lattice spacing h = 2π/N. For a lattice point
r = (h j,hk,hl), the wind velocity is given by the discrete Fourier transform

w(r, t) =
N−1

∑
α=0

N−1

∑
β=0

N−1

∑
ζ=0

w̃αβζ (t)e
2πi( jα+kβ+lζ )/N . (16)

We treat the complex Fourier modes as indexed periodically, so that w̃(α+N),β ,ζ = w̃αβζ , with similar re-
lations for β and ζ . In order to ensure that w̃(r, t) is real-valued, the discrete Fourier coefficients must
satisfy

w̃αβζ = ¯̃w−α,−β ,−ζ . (17)

Due to the periodicity of the complex Fourier modes, the sums in Eq. (16) can be reordered. Define M =
bN

2 c, and

f (n) =

{
1 if |n|= N/2,
0 if |n|< N/2.

(18)

Then for a lattice point r = (h j,hk,hl), Eq. (16) is equivalent to

w(r, t) =
M

∑
α=−M

M

∑
β=−M

M

∑
γ=−M

f (α) f (β ) f (γ)w̃αβζ (t)e
2πi( jα+kβ+lζ )/N . (19)

When N is odd, each sum has exactly N terms. When N is even, each sum has exactly N + 1 terms, but
f function causes the two extremal indices at ±M to be counted with half weighting. Those two extremal
indices have the same Fourier mode coefficient, due to the periodicity. Thus in both cases the sums evaluate
the same terms as in Eq. (16).

Equations (16) & (19) are equivalent at lattice points, but this relies on cancellation of factors of e2πi. At
off-lattice points they are not the same, since Eq. (16) involves a sum over rapidly oscillating exponentials.
By contrast, Eq. (19) provides a representation of the Fourier exponentials in the lowest frequencies. Since
the gliders move across arbitrary locations, we therefore make use of Eq. (19) to evaluate the wind field at
any position r.

We now identify w̃(k) = w̃αβζ for k = (α,β ,ζ ). Following the model of Fung et al. [2] we assume that
each Fourier mode evolves as an Ornstein–Uhlenbeck process with time scale τ(k) so that

dw̃(k, t) =−w̃(k, t)
dt

τ(k)
+a(k)dW (t), (20)

where W (t) denotes the Wiener process. To match Kolmogorov scaling, we require τ(k)∼ k−2/3. a(k) is set
such that the energy spectrum E(k) ∼ k−5/3. The specific expressions for a(k) and τ(k) are derived below
in Section III C.

B. Numerical implementation

To visualize the wind field, it is useful to perform a standard discrete Fourier transform at lattice locations
using Eq. (16). This was used to create the wind plots in Fig. 1 in the main text. To perform this, we make
use of the FFTW library, and in particular the c2r transforms for transforming complex Fourier modes
into a real field. Because of the restriction on the modes given by Eq. (17), FFTW represents the modes
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FIG. 3. The energy spectrum in simulations using different number of modes (N = [16,32,64,128,256,512]) captures
Kolmogorov’s 5/3 law. (a) The initial wind field at t = 0. (b) The wind field at t = 100s.

in a N×N×bN+1
2 c array, where the other modes are implicitly defined. FFTW represents each complex

number using a custom fftw complex data type, consisting of an array of two double precision floating
point numbers (occupying 16 bytes). We therefore use this three-dimensional array as primary storage for
the Fourier modes that describe the wind field.

We use a custom fftw plan to perform the fast Fourier transforms for all three velocity components
together, which due to vectorization provides some improvements in speed over doing three sequential com-
putations. FFTW also performs multithreading computation and evaluates the complete three dimensional
discrete Fourier transform in O(N3 logN) time.

To evaluate the wind field at a single off-lattice glider position, we wrote a custom routine for computing
Eq. (19), which can be performed in O(N3) time. Because all the modes make independent computations
to the sum in Eq. (19), this computation can be efficiently multithreaded with OpenMP. Since this only has
to compute a single velocity instead of a complete three-dimensional grid of velocities, it is considerably
faster than the FFTW computation. In some cases, we consider a set of G gliders within the same wind
field, and we wrote an additional routine for computing G velocities simultaneously. Since all of the O(N3)
Fourier modes only need to be read from memory once, this routine is faster than performing G individual
wind evaluations.

Finally, we wrote a routine for updating the Fourier modes according to Eq. (20). We make use of the
GNU Scientific Library (GSL) for computing the Gaussian random variables, with the Tausworthe random
number generator [3, 4]. This update can be multithreaded efficiently, with each thread using its own
generator initialized with different seeds.

In Fig. 3, we show that the energy spectrum of the wind fields at the initial state and a later state
t = 100s. Since the wind field is initialized at steady state, it satisfies Kolmogorov’s power law that E(k)∼
k−5/3. The later wind field also satisfies Kolmogorov’s law, which demonstrates that that our stochastic
differential equation in Eq. (20) preserves the modes at equilibrium. As the number of modes N is increased,
Kolmogorov’s law is extended to a larger range of k.

C. Spatio-temporal covariance

In the later sections, we are going to infer the wind information at unknown locations and times with the
partial knowledge of the field. Thus, we need to know the correlation of the wind function. To compute the
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spatio-temporal covariance function, we first write

〈w(0,0),w(r, t)〉= (2π)−3
∫ ∫

d3kd3k′ eik′·r〈w̃(k,0), w̃(k′, t)〉

= (2π)−3
∫ ∫

d3kd3k′ eik′·r(12δ (k+k′)e(k)e−|t|/τ(k) (21)

where the second step comes from

〈w̃(k,0), w̃(k′, t)〉= 〈w̃R(k,0), w̃R(k′, t)〉−〈w̃I(k,0), w̃I(k′, t)〉
+ i〈w̃R(k,0), w̃I(k′, t)〉+ i〈w̃I(k,0), w̃R(k′, t)〉
= (δ (k−k′)+δ (k+k′))6e(k)e−|t|/τ(k)

− (δ (k−k′)−δ (k+k′))6e(k)e−|t|/τ(k)+0+0

= 12δ (k+k′)e(k)e−|t|/τ(k) (22)

Integrating out k′ gives

〈w(0,0),w(r, t)〉= 3
2π3

∫
d3ke(k)e−ik·re−|t|/τ(k)

=
3

π2

∫ 1

−1
d(cosθ)

∫ kmax

kmin

dk k2e(k)eikr cosθ e−|t|/τ(k). (23)

The largest length-scale L is set to unity, then we have the smallest wave-number kmin =
√

3π/L =
√

3π .
The largest wave-number is determined by the smallest resolved length-scale, which is 1/N in an N3 grid,
therefore, we have the largest wave-number kmax =

√
3π/(1/N) =

√
3πN. Let k2e(k) = αk−5/3 where α

will be set such that the variance of each component is 1. Then we have

〈w(0,0),w(0,0)〉= 1 =
3

π2

∫ 1

−1
d(cosθ)

∫ kmax

kmin

dk αk−5/3

=
6α
π2

∫ kmax

kmin

dk k−5/3

=
9α
π2 (k

−2/3
min − k−2/3

max ) (24)

which gives

α =
π2

9
(k−2/3

min − k−2/3
max )−1,

e(k) = αk−11/3 =
π2

9
k−11/3(k−2/3

min − k−2/3
max )−1,

a(k) =
√

4e(k)/τ(k) =
2
3

3−1/6π1/3k−3/2
√

(k−2/3
min − k−2/3

max )−1. (25)

The covariance function for each component is K(r, t) = 〈w(0,0),w(r, t)〉, and

K(r, t) =
6α
π2

∫ kmax

kmin

dkk−5/3 sinc(kr)e−|t|/τ(k). (26)

Due to the translation invariance of the wind field, for any two locations r1,r2, times t1, t2, we compute
r = ‖r1− r2‖, t = |t1− t2| and apply Eq. (26) to get their correlation.

The analytical correlation function K(r, t)is illustrated in Fig. 4, where the correlation decreases expo-
nentially as difference in time or distance increases. There is significant correlation when r < 0.5 and t < 1.
The correlation of the wind field simulation K̂(r, t) matches the analytical values K(r, t).
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FIG. 4. Illustration of the kernel function. (a) The correlation function with respect to time t and distance r when
τc = 1s. (b) The correlation function with respect to r at t = 0 and t = 1 when τc = 1s. The correlation of the
simulated wind field K̂(r, t), which is computed using 128 wind fields, each has 1024 samples at random locations.
(c) The correlation function with respect to r at t = 10s when τc = [1s,16s,32s,64s,128s].

IV. GAUSSIAN PROCESS REGRESSION

A. Wind prediction with GPR

We define the mean function m(x) and the covariance function k(x,x′) of a Gaussian process f (x) as [5]

m(x) = E[ f (x)], (27)

f (x)∼ GP(m(x),k(x,x′)). (28)

Suppose we have an observed dataset X of size M, and define f = f (X). Let f ∗ be unobserved data at X∗.
Then the joint distribution of f and f ∗ is

[
f
f ∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
K(X ,X) K(X ,X∗)
K(X∗,X) K(X∗,X∗)

])
(29)

Conditioning the joint Gaussian prior distribution on the observations, we have

f ∗| f ,X ,X∗ ∼ N(K(X∗,X)K(X ,X)−1 f ,K(X∗,X∗)−K(X∗,X)K(X ,X)−1K(X ,X∗)). (30)

Since our wind components are generated from many random modes that evolve as a Gaussian process,
we use Gaussian process regression to perform wind inference, that is, we can apply Eq. (30) to perform
wind predictions using a history of observations. We calculate the kernel function directly from the wind
model Eq. (26). Figure 5 gives an example of the wind predictions with sparse sampling in the wind field. It
recovers the large scale features in the wind field. To validate the accuracy of the GPR prediction, we set 10
frozen wind fields, and the let 20 gliders randomly explore for tm =25 s, with the glider storing information
(w,r, t) in memory every ∆t = 0.5s. When the memory is full, we perform predictions after 0.1, 1, and 10 s,
where 10 s is the planning horizon of gliders. Figure 6 demonstrates that the GPR prediction is accurate over
short distances and times, and has large errors over long times where the correlation is weak. Increasing
the duration of memory collection helps improve the performance of the GPR prediction. Increasing the
number of modes brings more fine details into the wind field, which makes the prediction harder.
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FIG. 5. Illustration of GPR prediction. (a) Vertical wind velocity in 128× 128 xz-plane computed using the FFTW
library as described in Sec. III B. (b) Coarse 24×24 samples of the wind field (c) Four lines of samples of the wind
field on a 4×24 gird. (d) The corresponding GPR predictions of wz using the samples in (b). (e) The corresponding
GPR predictions using the samples in (c).

B. Efficient Gaussian process regression

Write X = [x1,x2, · · · ,xM]. Evaluating the mean in Eq. (30) requires computing K(X ,X)−1, which will
change on each step. Directly inverting K(X ,X) each time, such as by using the LU decomposition [? ],
will require O(M3) operations, which will become prohibitively expensive. We therefore accelerate the
computation of these inverses.

As gliders explore the field, the new memory replaces the old memory. When a new observation xM+1
is added to X , the oldest observation x1 is deleted, then we have X ′ = [xM+1,x2, · · · ,xM]. We can compute
the new inverse of covariance function K(X ′,X ′)−1 using K(X ,X)−1 efficiently by applying the Woodbury
formula. Let A = K(X ,X),v = K(xM+1,X), and suppose A−1 is known. Write

K(X ′,X ′)−1 = (A+ evT+ veT)−1.

Where e is a unit vector that e1 = 1. According to the Woodbury formula

(A+ evT+ veT)−1 = A−1−A−1U(C+VA−1U)VA−1

where

U = [e|v], V =UT, C =

[
0 1
1 0

]

The updating step requires O(M2) time, which is more efficient than computing the inverse of the matrix
directly.

V. MONTE CARLO TREE SEARCH

Monte Carlo tree search is an efficient method for planning into the future and making decisions. The
key idea is to randomly build a search tree of possible actions into the future. In the method, many random
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FIG. 6. The relative errors of wind prediction on the frozen wind field in the future time. There are 200 gliders
randomly travel in the frozen wind field. In the first 25 s, they collect information and store in the memory with
M = 50. Then they use GPR to do predictions at their current locations after 0.1 s, 1 s and 5 s. The figure shows the
relative errors between the wind prediction ŵ and actual wind velocities w.

play-outs of the search tree are considered, where more promising branches are visited more often, but
there is still exploration of less fruitful options. After each play-out, the final reward is used to update the
rewards at each node along the path of that play-out. After playing out many simulations, the tree provides
an estimation of the best trajectory.

Define the sequence of k actions Ak = a1a2a3 · · ·ak, where each action is a change in bank angle. Specif-
ically each a j will be ∆µ = ±10◦, and µ ranges from −40◦ to 40◦. The value function V (Ak) denotes the
estimated average energy gain from Ak till terminate. N(Ak,ak+1) denotes the number of visited times of
ak+1 from Ak. For node i of the tree, it stores the information of the action sequence Ai, the value function
V (Ai) and the total number of visits N(Ai−1,ai). The UCT algorithm selects the action that maximizes the
upper confidence bound [6]

U(Ak,ak+1) =V (Ak∪ak+1)+2C

√
2ln(∑a N(Ak,a))

N(Ak,ak+1)
. (31)

The first term in the UCT bound encourages choosing high-value action, while the second term encourages
exploring the less visited actions. C = 0.5 is the exploration parameter that can be varied if more exploration
is desired.

In one Monte Carlo simulation, a sequence of actions is selected using the UCT algorithm, then the
energy gain is estimated using Eq. (14) and propagated back to update V (Ak). To estimate the energy gain,
the wind velocities in future times and locations are needed. We perform the GPR prediction to estimate
wind and then compute the estimated energy gain. A sufficient amount of Monte Carlo simulations are
played out and the action that has the highest value is chosen to be the actual action.

VI. SIMULATION SETUP

We simulate gliders soaring in the wind field. They collect information during exploration, and then
use MCTS planning scheme with GPR prediction to choose the optimal action and move forward. The
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gliders may know the full region wind field or only the part they have experienced. We define them as a full
information glider and partial information glider accordingly.

A. Glider setup

a. Full information glider. We define the full information glider to be the glider that knows the wind
velocities in the whole region at the current time. In the MCTS planning part, it uses the precise wind
velocities w(r, t) in the current time. When planning, it uses w(r, t) to predict w(r, t +∆t) with Eq. (32),
which only involves temporal correlations in the wind field, so that

K(0, t) =
|t|

τ(kmin)− τ(kmax)

(
Γ
(
−1,

|t|
τ(kmin)

)
−Γ

(
−1,

|t|
τ(kmax)

))
. (32)

b. Partial information glider. The partial information glider refers to the glider that only knows
the wind velocities at its visited locations. It stores limited wind information with memory size M =
10,20,30,40,50. In the planning part, it uses GPR to predict the wind at unknown locations and times
using the prior knowledge in memory.

B. Wind setup

We have two wind settings: the frozen wind field and the dynamic wind field. We simulate the wind
using N = 64 and the box size is 500m×500m×500m. In the frozen wind field, we assume the wind does
not change over time, which is equivalent to the limit τ(k)→ ∞. In the dynamic fields, we consider time
scales τ(k) = 2i(k/

√
3π)−2/3, where i are integers from 1 to 8.

C. MCTS setup

We can customize MCTS by choosing the depth of the planning tree and number of simulated paths.
The planning horizon is chosen to let the glider sufficiently explore the field. We set the planning horizon to
be 10 s for two reasons: first, the planning horizon is sufficient for the glider to make a full circle to explore
the field; second, there is reasonable correlation of wind within 10 s (Fig. 4). As shown in Fig. 6, the gliders
cannot gather accurate information in after 5 s. We set the number of paths to be 104, which is sufficient to
select the optimal action and is computationally efficient.

VII. RESULTS

A. Climb rate and efficiency

To evaluate the performance, we measure the average climb rates of the gliders based on the alti-
tude gained from 200 s to 500 s. We consider the frozen wind fields and dynamic wind fields where
τc = 16s,32s,64s,128s. We then have full information gliders and partial information gliders with dif-
ferent memory sizes M = 4,10,20,30,40,50. Table I summarizes the details of the climb rates.

The full information gliders set an upper bound on the gliders’ performance and the sink rate sets the
lower bound. Thus, we define the efficiency as

η(c) =
c− cmin

cmax− cmin
. (33)

Table II presents the efficiencies of partial gliders in dynamic wind fields and frozen wind fields.
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TABLE I. Summary of climb rates (m/s) of partial information gliders and full information gliders in dynamic wind
fields and frozen wind fields.

τc(s)
tm(s) random 2 5 10 15 20 25 Full info.

16 −0.67 −0.581 −0.507 −0.428 −0.432 −0.441 −0.422 0.437
32 −0.67 −0.375 −0.247 −0.150 −0.175 −0.060 −0.038 0.486
64 −0.67 −0.270 −0.074 0.065 0.117 0.086 0.079 0.394
128 −0.67 −0.115 0.012 0.095 0.119 0.146 0.162 0.388

frozen −0.67 −0.024 0.092 0.145 0.161 0.170 0.176 0.398

TABLE II. Summary of efficiencies of partial information gliders in dynamic wind fields and frozen wind fields.

τc(s)
tm(s) 2 5 10 15 20 25

16 7.74% 14.45% 21.66% 21.25% 20.44% 22.20%
32 25.30% 36.37% 44.79% 42.62% 52.65% 54.54%
64 37.35% 55.28% 68.27% 73.12% 70.24% 69.54%
128 52.32% 64.33% 72.24% 74.49% 77.06% 78.62%

frozen 60.38% 71.25% 76.23% 77.81% 78.66% 79.16%

B. Components of energy gain

To investigate the composition of energy gain, we compute each component in Eq. (14). Figure 7
shows that the contributions from wind fluctuations are insignificant. The energy gained is mainly due to
upcurrents.

FIG. 7. The components of average energy gained. We simulated 200 gliders for τc = 16,32,64,128s with M = 40
and show the average energy gained in Eq. (14) separately. The wz term dominates the energy contribution.
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FIG. 8. Examples of gliders trajectories in dynamic wind fields. Top view of gliders 100×100m2 xy-plane. The red
star indicates the initial positions of the gliders.

C. Gliders’ trajectories

The partial information gliders demonstrate different exploration strategies under different field dynam-
ics. As shown in Fig. 8, for more fluctuating fields, the gliders discover and stop at different locations, while
in more steady fields, the gliders behave more stably.
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TABLE III. Parameters used throughout the paper.

Symbol Description Value
Glider parameters
t Time
r Glider’s position
u Glider’s ground velocity ‖u0‖= 10m/s
w Wind velocity
w Magnitude of wind velocity, w = ‖w‖ w̄ = 0.5m/s
v Glider’s air velocity, v = u−w
v Glider’s air speed, v = ‖v‖
ρ Air density
S Surface area of the wing
cL Dimensionless lift coefficient 15
cD Dimensionless drag coefficient 1
L Magnitude of the lift
D Magnitude of the drag
m Mass of glider
g Gravitational acceleration
µ Glider’s bank angle [−40◦,40◦],∆µ =±10◦

γ Angle of the glider’s motion from horizontal
ψ Glider’s azimuth angle
vc Speed scale

√
2mg/ρS

tc Time scale vc/g
lc Length scale v2

c/g
E Total energy of glider
ε Dimensionless total energy of glider
G Number of gliders in the same wind field 20
Wind parameters
k Wave number
k Magnitude of wave, k = ‖k‖
kmin Smallest wave number

√
3π

kmax Largest wave number
√

3πN
w̃ Complex-valued amplitude of the wave
E(k) Energy contained in waves
N Number of complex Fourier modes in one dimension
τc Temporal correlations of the dynamic wind field 16 s, 32 s, 64 s, 128 s
τ(k) Time scale of the of the stochastic process τc(k/

√
3π)−2/3

K(r, t) Correlation function of each wind component Eq. (26)
GPR parameters
M Memory size 4, 10, 20, 30, 40, 50
∆t Time interval for one memory storage 0.5 s
tm Memory duration 2 s, 5 s, 10 s, 15 s, 20 s, 25 s
MCTS parameters
Ht Glider’s history at time t
V (Ht) Maximum expected energy gained given Ht
d Planning depth 20
Result parameters
c Climb rate of partial information glider from 200 s to 500 s Table I
cmin Sink rate −1/15
cmax Climb rate of full information glider Table I
η Efficiency of partial information glider Table II
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