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Abstract

Coherent Ising Machine (CIM) is a network of optical parametric oscil-
lators that can solve large-scale combinatorial optimisation problems by
finding the ground state of an Ising Hamiltonian. As a practical applica-
tion of CIM, Aonishi et al., proposed a quantum-classical hybrid system
to solve optimisation problems of l0-regularisation-based compressed
sensing. In the hybrid system, the CIM was an open-loop system without
an amplitude control feedback loop. In this case, the hybrid system is
enhanced by using a closed-loop CIM to achieve chaotic behaviour around
the target amplitude, which would enable escaping from local minima
in the energy landscape. Both artificial and magnetic resonance image
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data were used for the testing of our proposed closed-loop system. Com-
pared with the open-loop system, the results of this study demonstrate
an improved degree of accuracy and a wider range of effectiveness.

Keywords: Coherent Ising machine, Compressed Sensing, Bayesian inference,
Magnetic Resonance Imaging, Quantum–Classical hybrid system, LASSO,

Zeeman term, Chaotic-Amplitude Control, Gaussian-approximation,
Closed-loop system, Combinatorial optimisation

1 Introduction

Compressed sensing (CS) is a method of reconstructing a high-dimensional
signal or image based on highly downsampled measurements.

There has been considerable interest in it across a wide range of fields and
applications. Such as in the field of astronomy, a possible way to transmit
data to Earth from spacecraft [1] has been attempted. And there are proposed
methods with CS on astronomical image compression and in compression on
remotely sensed data [2–4] as well. And in radar technologies for the recon-
struction of the target image CS has been used [5]. On the other hand in
the medical field using embedded compression using CS to improve energy
efficiency in Electrocardiogram (ECG) machines has been proposed [6].

x̂ = argmin
x∈RN

‖x‖p subject to y = Ax. (1)

The above equation shows an observed signal y ∈ R
M , an observation

matrix A ∈ R
M×N , and a source signal x ∈ R

N . Hereafter, the ratio of the
number of non-zero entries in x to N is defined as the sparseness a, and
the ratio of M to N is defined as the compression ratio α. Since l1-norm
CS is a convex optimisation problem, there are many efficient algorithms for
optimisation of l1-norm CS that are widely applied in the real-world problems
mentioned above. However, there has been a suggestion that l0-norm CS should
outperform l1-norm CS since the l1-norm penalty does not lead to any solution
shrinkage [7, 8]. In the thermodynamic limit N , M −→ ∞ with α = M/N
kept fixed, an l0-norm CS’s threshold for a, determining whether or not the
problem has a solution with no error, is larger than that of l1-norm CS’s [7, 8].
Nonetheless, the optimisation in l0-norm CS is challenging since it involves
combinatorial optimisation.

Numerous attempts have been made to overcome the issue in l0-norm CS
optimisations. l0-norm CS can be formulated as a two-fold optimisation [9, 10].

(R̂, σ̂) = argmin
σ∈{0,1}N

argmin
R∈RN

(
‖y −A(σ ◦R)‖22

)
subject to ‖σ‖0 ≤ Ω. (2)
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Here R ∈ R
N and σ ∈ {0, 1}N correspond to the source signal and support

vector, respectively. Especially, each entry in the support vector taking either 0
or 1 represents whether each entry in the source signal is zero or non-zero. The
condition ‖σ‖0 ≤ Ω is a sparsity-inducing prior for constraining the number
of non-zero entries to be Ω. Therefore, the optimisation with respect to σ can
be regarded as a quadratic-constrained binary optimisation problem to find
a ground state of a two-state Potts Hamiltonian. Based on this formulation,
simulated annealing (SA) algorithm has been attempted [7]. On the other hand,
Aonishi et al., attempted to solve optimisation problems of l0-norm CS with a
quantum-classical hybrid approach. l0-norm CS implemented with the hybrid
system is given as a regularisation form as follows [11].

(R, σ) = argmin
σ∈{0,1}N

argmin
R∈RN

(
1

2
‖y −A(σ ◦R)‖22 + λ‖σ‖0

)
. (3)

The element-wise representation of Eq. (3) gives the following Hamiltonian.

H =

N∑

r<r′

M∑

k=1

Ak
rA

k
r′RrRr′σrσr′ −

N∑

r=1

M∑

k=1

ykAk
rRrσr + λ

N∑

r=1

σr, (4)

where an element Ak in A, an element yk in y, an element Rr in R and
an element σr in σ. Optimisation with respect to σ in Eq. (4) is a quadratic
unconstrained binary optimisation (QUBO) problem, which is implementable
with a quantum machine such as the coherent Ising machine (CIM) [11–14].
In the quantum-classical hybrid approach to conducting l0-regularised CS, σ
is optimised by the CIM while R is optimised by a Classical Digital Processor
(CDP) (see Fig. 1).

The CIM architecture in the hybrid approach was an open-loop (OL) CIM
with the Zeeman term. The hybrid approach with the OL-CIM is hereafter
referred to as OL-CIM-CDP. Note that the OL means the lack of feedback loop
for amplitude control described below. It has been reported that the imbalance
in the size of the interaction term and the Zeeman term degrades the system
performance [15]. To balance these terms, for the local field, the measured-
amplitudes were binarised. OL-CIM-CDP in this formulation outperformed
SA on the regularisation form [11].

The close-loop CIM, in which the amplitudes of optical parametric oscil-
lator (OPO) pulses are controlled to a target value, have been proposed to
improve the performance of CIM’s ground-state search [16, 17]. Especially,
introducing auxiliary nonlinear dynamics forcefully trying to equalise to a tar-
get value results in chaotic behaviour around the target in the CIM which may
result in escaping from local minima in the energy landscape. This chaotic
method is referred to as chaotic amplitude control (CAC) [16–20]. Recently,
Inui et al., have proposed an approach to efficiently incorporate the Zeeman
terms in CAC-CIM by scaling the Zeeman terms with target amplitude to
match that of the interaction term [17].
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In this paper, following Inui et al.’s approach, we modify the CAC-CIM
for performing QUBO in l0-regularised CS and attempt to improve the per-
formance of the hybrid CIM-CDP system by replacing the OL-CIM with the
CAC-CIM with the Zeeman term (see Fig. 1). The hybrid system proposed
here is hereafter referred to as CAC-CIM-CDP. Firstly, to demonstrate the
effectiveness of CAC-CIM for performing QUBO in the support estimation, we
compare the performance of CAC-CIM to those of OL-CIM and SA. Then, to
demonstrate the effectiveness of CAC-CIM-CDP for performing an alternating
minimisation, we compare the performance of CAC-CIM-CDP to that of OL-
CIM-CDP on artificial random data, as well as magnetic resonance imaging
(MRI) data.

BUFFER
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(Feedback calculation)

Classical
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Feedback
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Fig. 1: CIM-CDP Architecture

Outline of the system architecture of the the feedback signal including
CAC-loop is calculated in FPGA and is fed into the main ring cavity through
a coupler. In this hybrid system, CIM optimises the support vector and CDP
estimates the source signal in an alternating way. Without the CAC-loop, the
architecture corresponds to the OL-CIM-CDP while with the CAC-loop, it is
the CAC-CIM-CDP. SHG: second harmonic generation, PPLN: periodically
poled lithium niobate, BS: beam splitter, PD: photon detector, PM/IM: phase
modulator/intensity modulator, LO: local oscillator.

2 Results

2.1 Alternating minimisation algorithm

Alternating minimisation procedures on CAC-CIM-CDP and OL-CIM-CDP
are summarised in Algorithm 1 and Algorithm 2, respectively. This type of
minimisation suggests the back-and-forth optimisation performed between the
CIM and CDP. CIM passes the optimisation results to the CDP after optimis-
ing the support, as shown in Fig. 1. The CDP then optimises the signal and
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sends the resulting signal to the CIM for support optimisation. In Algorithm
1 and Algorithm 2, indicate the number of iterations of alternating minimisa-
tion, the initial values and the integration interval for stochastic differential
equations (SDEs) of CIM and so on. The schedules of the pump rate, threshold
and target amplitude are given in section 4.3.

Algorithm 1 Alternating minimisation for l0-regularised CS as a QUBO prob-
lem on CAC-CIM-CDP. The schedules of the pump rate and threshold are
given in Section 4.3

Require: M×N observation matrix: A, M -dimensional observation signal: y;
Ensure: N -dimensional support vector: σ, N -dimensional signal vector: r;
1: Initialise r = rinit, η = ηinit, g

2 = 10−7, K = 1 and τ = 1
2: for i = 0 to 51 do
3: Minimise H with respect to σ by CIM:
4: σ = CIM-support-estimation(R, η)

Initialise µ̃ = 0, V = 0.5 and e = 1 for CAC-CIM-CDP (Wigner) and
µ̃ = 0, n = 0, m = 0 and e = 1 for CAC-CIM-CDP (Positive-P ).
And we increase the photon’s lifetime 20 times.

5: Minimise H with respect to R by CDP using Conjugate Gradient
Descent or Jacobi method:

6: Update η
7: end for

2.2 Outline of the CIM models and injection field for
QUBO on support estimation

On CIM, l0-regularised CS is performed by updating the injection field dictated
by the local field, which is determined by the gradient of the QUBO Hamil-
tonian Eq. (4) with respect to the spin coordinates. Aonishi et al., proposed
OL-CIM-CDP, which is based on an open-loop injection scheme [11]. They
used the CIM model expressed as the Wigner stochastic differential equation
(W-SDE) Eq. (13) and Eq. (14) (in Methods) with the following injection field.

(
dcr
dt

)

inj,r

= (|hr| − η) . (5)

hr = −
N∑

r′=1( 6=r)

M∑

k=1

Ak
rA

k
r′Rr′H(cr′) +

M∑

k=1

Ak
ry

k, (6)

Here, hr is the local field expressed as Eq. (6). Rr is the signal value
estimated by the CDP. cr is the in-phase amplitude of the r-th OPO pulse,
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Algorithm 2 Alternating minimisation on OL-CIM-CDP. The schedules of
the pump rate and threshold are given in Section 4.3

Require: M×N observation matrix: A, M -dimensional observation signal: y;
Ensure: N -dimensional support vector: σ, N -dimensional signal vector: r;
1: Initialise K̃ = 0.25, r = rinit and η = ηinit
2: for i = 0 to 51 do
3: Minimise H with respect to σ by CIM:
4: σ = CIM-support-estimation(R, η)

Initialise the in-phase amplitude as c = 0, and numerically integrate
the W-SDE while increasing the normalised pump rate from 0 to
1.5 for five times the photon’s lifetime when g2 = 10−7.

5: Minimise H with respect to R by CDP using Conjugate Gradient
Descent or Jacobi method:

6: Update η
7: end for

and H(cr) is the binarised in-phase amplitude by the Heaviside step func-
tion as proposed in the discrete simulated bifurcation [21]. η is the threshold
which is related to the l0-regularisation parameter λ by η =

√
2λ according

to the Maxwell rule (see [11] for a detailed explanation). In the local field Eq.

(6), the mutual interaction is J̃rr′ = −∑M

k=1 A
k
rA

k
r′ and the Zeeman term is∑M

k=1 A
k
ry

k. Substituting the observation model Eq. (26) (in Section 4.4) into
Eq. (6) when wnoise = 0 (no observation noise), the local field Eq. (6) can be
expressed as follows.

hr = −
N∑

r′=1( 6=r)

M∑

k=1

Ak
rA

k
r′Rr′H (cr′) +

N∑

r′=1

M∑

k=1

Ak
rA

k
r′xr′ξr′ , (7)

where xr is the true signal value, ξr is the true support taking 1 or 0. The
Zeeman term in the second term of Eq. (7) can be regarded as the matched
filter, in which ATA is calculated. The mutual interaction term in the first
term plays a role in removing off-diagonal elements (r 6= r′) corresponding to
cross-talk noise in the Zeeman term, which are induced by the cross-correlation
among the column vectors A1, ..., AN in A. To obliterate the cross-talk noise,
the in-phase amplitude cr needs to be the same as the amplitude of ξr if
Rr = xr. Hence, cr is binarised to either 1 or 0. In Fig. 2e, a typical evolution
of cr in the open-loop-type W-SDE is illustrated. cr does not keep the same
amplitude as that of ξr and increases with increasing the pump rate.

In this paper, we propose CAC-CIM-CDP, based on a closed-loop injection
scheme with CAC. The idea of CAC for CIM was first introduced by Leleu et
al., [18]. It simply states that forcefully trying to equalise the amplitudes of the
system to a specific value (in CAC, target amplitude τ) may result in a chaotic
behaviour in the system which may result in escaping from local minima in
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the energy landscape. In this paper, we used two CIM models expressed as
W-SDE Eq. (15) and (16) and Positive-P stochastic differential equation (P-
SDE) Eq. (17)-(19) (in Section 4.1) commonly having the following injection
field with CAC feedback.

(
dµr

dt

)

inj,r

= jer

(
Rrhr −

η2

4

√
τ

g2

)
, (8)

d

dt
er = −β

(
g2µ̃2

r − τ
)
er, (9)

µ̃r = µr +

√
1

4j
WR,r , (10)

hr = −
N∑

r′=1( 6=r)

M∑

k=1

Ak
rA

k
r′Rr′

1

2

(
µ̃r′ +

√
τ

g2

)
+

M∑

k=1

√
τ

g2
Ak

ry
k, (11)

where hr is the local field expressed as Eq. (11), er is the auxiliary variable
for the error feedback in the CAC feedback loop, and τ indicates the target
amplitude for the CAC. Rr is the signal value estimated by the CDP, which is
the same as that of OL-CIM-CDP. η is the threshold given by η =

√
2λ, which

is introduced to keep consistency with OL-CIM-CDP. As described in Section
4.1 in Methods, j is the normalised out-coupling rate for optical homodyne
measurement, and g2 is the nonlinear saturation parameter of the CIM which
determines the abrupt jump of the photon number at the OPO threshold and
the amplitude of the quantum noise present in CIM. µ̃r implies the measured-
amplitude, and w(R, r) is the independent real Gaussian noise process, which
is the same as that in W-SDE (15) and P-SDE (17). In the local field Eq.

(11), the mutual interaction is J̃rr′ = −
∑M

k=1 A
k
rA

k
r′ and the Zeeman term is

hz
r =

√
τ/g2

∑M

k=1 A
k
ry

k. Substituting the observation model Eq. (26) into Eq.
(11) when wnoise = 0 (no observation noise), the local field Eq. (11) can be
expressed as follows.

hr = −
N∑

r′=1( 6=r)

M∑

k=1

Ak
rA

k
r′Rr′

1

2

(
µ̃r′ +

√
τ

g2

)
+

N∑

r′=1

M∑

k=1

√
τ

g2
Ak

rA
k
r′xr′ξr′ .

(12)
In Fig. 2a and 2b, the typical evolution of normalised measured-amplitude

gµ̃r are shown. The corresponding error evolution is indicated in Fig. 2c and
2d. Due to the CAC feedback loop, as shown in Fig. 2a and 2b, if the squared-
amplitude of DOPO is smaller than τ , er exponentially increases and vice-versa,
and the measured-amplitude µ̃r′ is maintained around

√
τ/g2. Therefore,

because 1/2(µ̃r′ +
√
τ/g2) in Eq. (12) can take around 0 or

√
τ/g2, the mutual

interaction term and the Zeeman term scales are balanced, and crosstalk noise,
i.e. off-diagonal elements, is eliminated from the Zeeman term as described in
OL-CIM-CDP. Moreover, as shown in Fig. 2a and 2b, it is important to note
that intermediate solutions are destabilised. By doing so, CAC introduced CIM
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is able to keep searching for an answer until the maximum run-time has been
reached. By taking the support vector that is generated by CIM at the end of
each trajectory, we are evaluating the solution to estimate the support for the
simulations in this paper.
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(a) (b)

(c) (d)

(e)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Positive-P)

CAC-CIM-CDP (Positive-P)

OL-CIM-CDP (Wigner)

Fig. 2: Amplitude and Error evolution of each CIM model

(a) and (b) indicates the normalised amplitude gµ̃r evolution of CAC-CIM-
CDP (Wigner and Positive-P ) where τ = 1. With the introduction of CAC
to the system, the chaotic behaviour is recognisable in the CAC-CIM-CDP
models. (c) and (d) corresponds to the error er evolution of CAC-CIM-CDP
(Wigner and Positive-P ). (e) is the in-phase amplitude cr evolution of OL-
CIM-CDP. The system size was set as N = 2000 while the compression and
the sparseness were 0.6 and 0.2 respectively for all the models.



10

2.3 Comparison with Simulated Annealing

Here our purpose is to demonstrate that CAC feedback is effective on CIM by
comparing CAC-CIM to OL-CIM and SA. We follow the Metropolis algorithm
for l0-regularised CS stated in [11]. As same as in [11], 1000 samples of the
observation matrix and source signal and true support vector are randomly
generated according to Section 4.5 under N = 500, α = a = 0.6, wnoise = 0
(no observation noise). With the same observation matrices, source signals,
and support vectors in all models, we statistically evaluate how well CAC-
CIM estimates support in comparison to OL-CIM and SA when all Rr are
fixed to be the source signal xr. To measure the support estimation quality,

we used the direction cosine defined as
∑N

r=1 ξrσr/
√∑N

r=1 ξr
∑N

r=1 σr where

(ξ1, ..., ξN ) is the true support vector and (σ1, ..., σN ) is the estimated one.
When the estimation is perfect, the direction cosine is equal to 1. We selected
η = 0.05 corresponding to l0-regularisation parameter λ = η2/2 = 0.00125 as
in [11].

First, we evaluate the temporal profiles of the optimisation processes for
the support estimation in CAC-CIM (Wigner), CAC-CIM (Positive-P ), OL-
CIM and SA. The upper three graphs (from left to right, CAC-CIM (Wigner),
CAC-CIM (Positive-P ) and OL-CIM respectively) in Fig. 3a show the change
in the direction cosine of the three CIM models depending on the runtime on
the CPU and the wall-clock time of physical CIM. For CAC-CIM (Wigner),
and CAC-CIM (Positive-P ) models, 20× photon’s lifetimes of integral interval
(with 1000 time-steps) for the SDEs are about 105ms and 68ms of run-time
respectively, and for OL-CIM, 5× photon’s lifetime of integral interval (with
50 time-steps) for the SDE is about 11ms. The physical CIM’s wall-clock time
for this optimisation is roughly estimated to be around 0.5ms, which can be
estimated from the round-trip time of N = 500 and the time-steps-to-solution
for the Sherrington-Kirkpatrick problem with N = 500 [20]. The direction
cosine of these CIM models converged to about 1 by these run-times. The lower
two graphs in Fig. 3a show the change in the direction cosine of SA depending
on the runtime on CPU under constant temperature at T = 0 and exponential
cooling scheduling from T = 0.02 to 0.00002. We adjusted the Monte-Carlo
steps of SA (bottom two graphs of Fig. 3a) to accompany the wall-clock time
of physical CIM (0.5ms) and the run-time of CAC-CIM (Wigner) (105ms). In
our computational environment, the number of Monte Carlo steps for SA with
runtimes of 0.5ms and 105ms is about 230 and 46000 steps, respectively. In
SA, the direction cosine converged to about 1 by 105ms, while that did not by
0.5ms.

Next, we compare the histogram of the final states of direction cosines
in CAC-CIM (Wigner), CAC-CIM (Positive-P ), OL-CIM and SA. The upper
three graphs in Fig. 3b indicate the histogram of the three CIM models
(CAC-CIM (Wigner), CAC-CIM (Positive-P ), OL-CIM, respectively), while
the lower two graphs in Fig. 3b show the histograms of SA at run-times of
0.5ms and 105ms under zero temperature and exponential cooling schedules
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respectively. Comparing these graphs, the proportion of the direction cosines of
CAC-CIM (Wigner) and CAC-CIM (Positive-P ) close to 1 is higher than those
of OL-CIM and SA. The two-sample one-sided Kolmogorov-Smirnov test sug-
gests that the histograms of the final direction cosines of CAC-CIM (Wigner)
and CAC-CIM (Positive-P ) are significantly biased toward 1 compared with
all of those of OL-CIM and SA (P-value < 0.0001).

The above results thus demonstrate that CAC-CIM outperformed OL-CIM
on support vector estimation and outperformed SA within the same run-time.
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SA 

(T = 0.02exp(-t/u))
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Fig. 3: Comparison of CAC-CIM with SA in support vector estima-
tion when SA run-time is set to be the same as that of CAC-CIM
(Wigner) model under the same computational environment

(a) comparison of the change of direction cosine is mapped for CAC-CIM
(Wigner) (upper left), CAC-CIM (Positive-P ) (upper middle), OL-CIM (upper
right) and SA (bottom two). For CAC-CIM the photon’s lifetime is increased
for 20× in 105ms of run time. For OL-CIM 5× photon’s lifetime is about
11ms. In SA 0: constant (zero). 0.02 exp (t/u): exponential cooling scheduling
were tested. All graphs show the mean (solid line) and standard deviation
(dashed line) of 1000 samples. In our computational environment, the number
of Monte Carlo steps for SA with a run time of 105ms is about 46000. (b)
Histogram of 1000 final states of the direction cosine is shown (CAC-CIM
(Wigner) (upper left), CAC-CIM (Positive-P ) (upper middle), OL-CAC (upper
right) and SA (bottom two)). ** (Wig) and **(P-P) in the graphs means
that cumulative histograms of these final states are significantly higher than
Wigner and Positive-P models (P-value < 0.0001 on two-sample one-sided
Kolmogorov-Smirnov test) and thus the final states of Wigner and Positive-P
models are biased towards 1 compared to those final states. N = 500, α = a =
0.6. In all CIM, g2 = 10−7.
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2.4 Comparison with ground state predicted with
statistical mechanics on alternating minimisation

We compare CAC-CIM-CDP’s capability to find the ground state with that of
OL-CIM-CDP. In our previous study, we derived the macroscopic parameter
equation (Eq. (26)-(28) in [11]) using a non-equilibrium statistical mechanics
method to show the performance limit of OL-CIM-CDP. In the limit of the
saturation parameter g2 → 0, the macroscopic parameter equation derived in
the previous study is consistent with that for a two-state Potts spin system
defined by the QUBO Hamiltonian Eq. (4). Therefore, the macroscopic param-
eter equation in this limit can predict the ground state of the Hamiltonian.
Through a comparison of solutions of CAC-CIM-CDP and OL-CIM-CDP with
a solution of the macroscopic parameter equation in the limit of g → 0, we
demonstrate the efficacy of CAC feedback on the alternating minimisation for
optimising the Hamiltonian.

The precondition for applying statistical mechanics is that the values of all
entries in the observation model Eq. (26), which is the premise of Eq. (3) and
Eq. (4), are randomly determined as described in Section 4.5. To compare solu-
tions of the models with the ground state predicted with statistical mechanics,
10 samples of the observation matrix and source signal and true support vector
are randomly generated according to Section 4.5 under N = 2000 and various
values of a, α and ν. Here ν indicates the standard deviation of the observa-
tion noise (wnoise). Then, we execute Algorithms 1 and 2 for the alternating
minimisation in CAC-CIM-CDPs (Wigner and Positive-P ) and OL-CIM-CDP
sharing the same samples of observation matrices, source signals and support
vectors. Here for Fig. 4, ηinit = 0.6 and ηinit = 0.8 was used for CAC-CIM-
CDP models and OL-CIM-CDP respectively. ηend was set to 0.18 in Fig. 4a
and Fig. 4b while in Fig. 4c and Fig. 4d ηend was set to 0.35.

The marks in Fig. 4 show the averaged root-mean-square-error (RMSE)

calculated as

√
1/N

∑N

r=1 (Rrσr − xrξr)
2
of sampled solutions obtained from

OL-CIM-CDP, Wigner and Positive-P of CAC-CIM-CDPs. Here σr is calcu-
lated as stated in Eq. (20). The black solid lines in Fig. 4 indicate RMSE at the
ground state corresponding to successful signal retrieval, which is predicted
with statistical mechanics. RMSEs of Wigner and Positive-P CAC-CIM-CDPs
tend to keep a better consistency with that of the ground state compared to OL-
CIM-CDP for various values of a, α and v. Especially as shown in Figs. 4b and
4d, RMSE of OL-CIM-CDP tend to deviate gradually from that of the ground
state as increasing a, while both Wigner and Positive-P CAC-CIM-CDPs keep
up a better consistency with the theoretical prediction.
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(a) (b)

(c) (d)

u = 0.05, a = 0.6 u = 0.05, a = 0.8

u = 0.1, a = 0.6 u = 0.1, a = 0.8

Fig. 4: Comparison of average RMSE of CAC-CIM-CDP models
to the theoretical limit of OL-CIM-CDP when observation noise is
present

(a) and (b) indicates the average performance for N = 2000 system where
α = 0.6 and α = 0.8 respectively for ν = 0.05. (c) and (d) states the average
performance for ν = 0.1. For all graphs ηinit = 0.8 and ηinit = 0.6 was used
for CAC-CIM-CDP models and OL-CIM-CDP respectively. (a) and (b) ηend
was set to 0.18. (c) and (d) ηend was set to 0.35.

2.5 Application to Sparse MRI

We evaluate the performance of CAC-CIM-CDP, OL-CIM-CDP and LASSO
[22] on MRI data.

In the following numerical experiment, we used two different-sized sparse
images (64 × 64 and 128 × 128 pixels) spanned by a Haar basis function.
Detailed explanations of the two images we used as the source images are
given in Section 4.6 in Methods. In accordance with our previous work [11],
we sought to reconstruct the two images from the undersampled k-space data
and by solving the optimisation problem defined in Eq. (27) (see Section 4.6).
To realise the optimisation problem in Eq. (27) on CIM, the Haar wavelet
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transform coefficients are estimated with the mutual interaction term and the
Zeeman term constructed according to Eq. (28) and (29) in Section 4.6. The
compression rate of the k-space data from the 64× 64 and 128× 128 images is
0.4 and 0.3 respectively. And the sparseness of the images is 0.212 and 0.178
respectively. As the solver for CDP, we used the Conjugate Gradient Descent
method (further details on CDP optimisation refer to Section 4.2).

In Fig. 5a and Fig. 5b, for 10 simulations the average RMSE value is
indicated for each threshold η for 64×64 and 128×128 images respectively. As
for the minimum RMSE in the 64×64 case, LASSO (black line), OL-CIM-CDP
(red), CAC-CIM-CDP (Wigner) (green) and CAC-CIM-CDP (Positive-P )’s
(blue) can be stated as, 0.0292, 0.0216, 0.0182 and 0.0182 respectively (for the
corresponding reconstructions see Fig. 6). In the 128× 128 case, the minimum
RMSE is 0.0276, 0.0242, 0.0209 and 0.0209 respectively (for the corresponding
reconstructions see Fig. 7). Comparing the RMSE values acquired it is clear
that CAC-CIM-CDP models have a better average performance compared to
the other approaches in both image sizes. And even after reaching the optimal
reconstruction for the given parameters, CAC-CIM-CDP tends to keep up a
minimal error rate compared to LASSO and OL-CIM-CDP. This indicates
that the effective range of CAC-CIM-CDP is much wider than OL-CIM-CDP.
In both image sizes, the Wigner and Positive-P variations of CAC-CIM-CDP
produce identical RMSE results.

In Fig. 6 and 7 the minimal RMSE constructions are shown for LASSO,
OL-CIM-CDP, CAC-CIM-CDP (Wigner) and CAC-CIM-CDP (Positive-P ).
In Fig. 7, only CAC-CIM-CDP (Positive-P )’s reconstruction is shown because
it is clear that both CAC-CIM-CDP (Wigner) and CAC-CIM-CDP (Positive-
P )’s performance is identical. In the 64×64 image reconstruction when RMSE
values are compared, CAC-CIM-CDP models have better reconstruction accu-
racy. The enlarged portions indicate the difference in pixel identification of
each model compared to the initial resized image. Considering both simula-
tions it is clear that even though the system size increases, proposing models
have the upper hand in performing an accurate reconstruction compared to
other models.
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(b)

(a)

Fig. 5: Average performance of the models when l0-regularisation
parameter varies for different image sizes

(a) Performance on 64 × 64 and (b) Performance on 128 × 128. The black
line indicates the performance on LASSO while the red boxes correspond to
OL-CIM-CDP. Green and blue boxes indicate the performance on CAC-CIM-
CDP Wigner and Positive-P respectively. For different threshold values, the
graphs illustrate the maximum, minimum, 25-th percentile (bottom edge), 75-
th percentile (top edge), and median (central horizontal line) of RMSEs for
each model with box plots. The markers indicate the outliers. The compression
and sparseness for (a) were 0.4 and 0.212 respectively while for (b) were 0.3
and 0.178.
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Fig. 6: Reconstructed Images for 64× 64

(a) Resized 64×64 initial image. The compression and sparseness were 0.4 and
0.212 respectively. (b) Undersampled k-space data (random red points). (c),
(d), (e), and (f) correspond to the reconstructions obtained from LASSO, OL-
CIM-CDP, CAC-CIM-CDP (Wigner), and CAC-CIM-CDP (Positive-P ) with
RMSE values 0.0292, 0.0216, 0.0182 and 0.0182 respectively. The enlarged
image portions indicate the pixel-wise differences between the reconstructions.
For (d) 31 alternating minimisation processes were performed. For (e) and
(f) 11 alternating minimisations were performed. And for (c), (d), (e), and
(f) ηinit = ηend was 0.0003, 0.011, 0.022, and 0.022 respectively.
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(c)

Initial Image k-space 128x128

LASSO

OL-CIM-CDP

(Wigner)

CAC-CIM-CDP

(Positive-P)

Fig. 7: Reconstructed Images for 128× 128

(a) Resized 128× 128 initial image. The compression and sparseness were 0.3
and 0.178 respectively (a) Red dots indicate the sampled k-space from the
(a)’s k-space. (c), (d), and (e) correspond to the reconstructions obtained
from LASSO, OL-CIM-CDP, and CAC-CIM-CDP (Positive-P ) with RMSE
values 0.0276, 0.0243, and 0.0209 respectively. The enlarged image portions
indicate the pixel-wise differences between the reconstructions. For (d) and
(e), 31 and 11 alternating minimisation processes were performed respectively.
And for (c), (d), and (e) ηinit = ηend was 0.0001, 0.006, and 0.013 respectively.
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3 Discussion

In this paper, we have proposed an improved CIM approach to solve l0-
regularised compressed sensing problems. The proposed algorithm has shown
that it can outperform the previously proposed algorithm accuracy-wise in all
the simulations performed. With the OL-CIM algorithm, the CIM model in
use was lacking the CAC feedback for chaotically exploring solutions. There-
fore, CAC-CIM has been able to provide convergence to a better solution than
OL-CIM. One factor to emphasise here is that CAC does not guarantee con-
vergence to the ground state. Even the ground state is reached, due to the
forceful equalisation to τ may prevent from stopping there. Even though this
is the case in this paper, CAC has been shown to be effective especially when
the problem instances are relatively harder in both artificial random data and
MRI data.

3.1 Effect of system size on performance

The introduction of CAC has previously been shown to have better per-
formance with small-scale frustrated Ising problem instances [17]. In this
manuscript, we have demonstrated the applicability of CAC for real-world
combinatorial optimisation problems (in this case Compressed sensing) where
the problem instances with a Zeeman term are mapped to a QUBO formula-
tion that is large-scale. The simulations with random artificial data on various
system sizes are illustrated in Supplementary note 1. Even though the per-
formance increase is present, in very large system sizes such as in 128 × 128,
it is clear that the RMSE gap between CAC-CIM-CDP and OL-CIM-CDP is
smaller compared to 64× 64. This poses the question that whether there is a
system-size threshold for CAC-CIM-CDP in the very-large-scale regime. Con-
sidering the MRI-based simulations require 4096 and 16384 DOPO pulses to
operate (compared to 16 DOPOs in theoretical simulations in [17]), the sys-
tem size of CAC’s applicability is largely improved. Yet the system-size-wise
dependency is yet to be explored.

3.2 Advantages of CAC-CIM architecture

With the use of CDP, the problem which involves quadratic optimisation has
been solved in this hybrid system. As shown in the schematic illustration of
the CAC-CIM-CDP in Fig. 1, proposing approach performs an alternating
minimisation between the CIM and CDP. It is clear considering the results
stated in Section 2.5 that CAC-CIM-CDP has outperformed OL-CIM-CDP
and the generally used approach LASSO which is an l1-regularised method for
solving compressed sensing problems. It is interesting to see that advancements
in CIM architecture can offer better results in real-world problem instances.
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3.3 CAC-CIM-CDP (Wigner) Vs. CAC-CIM-CDP
(Positive-P )

Even though this paper introduces two variants (Wigner and Positive-P )
of CAC-CIM-CDP, the performances have been almost identical between
the models. However, we encountered a deviation when the problem
instances become harder i.e. sparseness/compression ratio becomes higher
when wnoise = 0. The results are presented in Supplementary note 2. As
the models approach a threshold point for optimal reconstruction (a critical
sparseness/compression ratio), beyond that the producing RMSE values are
somewhat different between the models. Performance-wise it is hard to state
that one model is better than the other. Because the significance of Wigner
and Positive-P lies in the density matrix approximation and how it behaves
with a large quantum noise presence. We discuss this in Supplementary note 2.

3.4 Future improvements to the CAC-CIM-CDP

3.4.1 Simultaneous minimisation

One of the major bottlenecks the proposed model (CAC-CIM-CDP) has is the
alternating minimisation process between the CIM and CDP. This is a time-
consuming operation. As a future direction to this model, we plan to improvise
the CIM system to accommodate quadratic optimisation problems and perform
simultaneous minimisation using only the CIM to solve compressed sensing
problems. We believe that the use of ”CIM-only” will have a positive effect on
accuracy as well.

3.4.2 CAC-CIM-CDP with large quantum noise

While this manuscript solely focuses on combining CAC with CIM for solving
CS problems more accurately, the considered quantum noise present in the
CIM is very low (g2 = 10−7). This opens up a problem of whether CAC-CIM-
CDP can keep up the performance with a large quantum noise presence. For
small-scale frustrated Ising hamiltonians, this has been previously explored in
[17] (N = 16) where it has shown a decrease in success probability for larger
g2 terms. This result is consistent with CAC-CIM-CDP as well as shown in
Supplementary note Fig. ?? for MRI simulations. Recent advances in CIM
research have led to the introduction of a method known as Negative Paramet-
ric Gain (NPG), which accommodates higher quantum noise and at the same
time as maintaining a higher probability of success [23]. This method consid-
ers a negative starting pump rate with large injection field feedback. NPG has
shown promising results in the theoretical simulations [23]. We are planning to
improve the endurance of the CAC-CIM-CDP with NPG for a larger quantum
noise presence.
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3.4.3 CAC-CIM-CDP with the mean-field CIM model

As it is obvious from the perspective of numerical simulations, CAC-CIM-CDP
SDEs are computationally costly to simulate. Even though the shown results
are acquired using a GPU implementation of the SDEs, as a digital simulator,
field-programmable gate arrays (FPGAs) are more suitable (less energy cost,
faster processing etc). As a future direction, we plan on implementing the
mean-field CIM SDEs [18, 20] with CAC on an FPGA to perform compressed
sensing simulations. Due to the fact that CAC-CIM-CDP has relatively low
noise present in the system, we believe that the mean-field SDEs will have
approximately the same or better results but with faster simulation times. This
is mainly due to the simplicity and the negligence of the noise terms in the
mean-field CIM SDEs.

4 Methods

4.1 Stochastic Differential equation in OL-CIM-CDP
and CAC-CIM-CDP

4.1.1 Wigner-type

The CIM model based on the Wigner formulation was introduced in [24, 25].
The c-number Heisenberg Langevin equation [24] was used to overcome the
higher computational cost of simulating the direct density matrix formulation
of CIM and it has been found to be equivalent to the truncated Wigner SDEs.
The density operator master equation expanded by the Wigner function results
in the Kramers-Moyal series including third-order terms. In order to derive the
Langevin equation, we neglect third-order terms [17]. Then, we can formulate
the following Wigner SDEs used for OL-CIM-CDP.

d

dt
cr =

[
−1 + p−

(
c2r + s2r

)]
cr + K̃

(
dcr
dt

)

inj,r

+

g

√
(c2r + s2r) +

1

2
Wr,1,

(13)

d

dt
sr =

[
−1− p−

(
c2r + s2r

)]
sr + g

√
(c2r + s2r) +

1

2
Wr,2. (14)

Here, in-phase and quadrature-phase normalised amplitudes are repre-
sented as cr and sr respectively. p is the normalised pump rate. If p is above
the oscillation threshold (p > 1), each of the OPO pulses is either in the 0-
phase state or π-phase state. The last terms of the upper and lower equations
express the vacuum fluctuations injected from external reservoirs and the pump
fluctuations coupled to the OPO system via gain saturation [11]. Wr,1 and
Wr,2 are independent real Gaussian noise processes satisfying 〈Wr,k(t)〉 = 0
and 〈Wr,k(t)Wr′,l(t

′)〉 = δrr′δklδ(t − t′). g indicates the saturation parameter.
(dcr/dt)inj,r is the optical injection field, which only considers the in-phase
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amplitudes for the calculations. The injection field is defined in Eq. (5) and
Eq. (6). K̃ indicates the normalised feedback strength.

Focusing on the behaviour of the OPO pulses only in the in-phase direction,
the Wigner-type SDE, which is used for CAC-CIM-CDP, can be stated as,

d

dt
µr = − (1− p+ j)µr − g2µ3

r +
√
j

(
Vr −

1

2

)
WR,r +K

(
dµr

dt

)

inj,r

,

(15)

d

dt
Vr = −2 (1− p+ j)Vr − 6g2µ2

rVr + 1 + j + 2g2µ2
r − 2j

(
Vr −

1

2

)2

. (16)

Here µr and Vr are the mean-amplitudes and the variance of the r-th
DOPO pulse. (dµr/dt)inj,r is the optical injection field defined in Eq. (8)-(11).
WR,r is independent real Gaussian noise processes satisfying 〈WR,r(t)〉 = 0
and 〈WR,r(t)WR,r′(t

′)〉 = δrr′δ(t − t′). g, p, j and K indicate the saturation
parameter, pump rate, the normalised out-coupling rate for optical homodyne
measurement and the feedback strength, respectively.

4.1.2 Positive-P -type

Positive-P (P-P) representation [26] is a generalised form of
Glauber–Sudarshan P representation. When the density operator master
equations are expanded using the P-P distribution function, the resulting
Kramers-Moyal series only consists of first and second-order terms. Due to
this factor, there is no truncation needed to derive the Langevin equation.
Because of this one can argue that P-P SDEs might be a better candidate
for density operator approximations. The effectiveness of P-P SDEs has been
demonstrated on CIMs with higher quantum noise presence [17]. We can
formulate the P-P-type SDEs we used for CAC-CIM-CDP.

d

dt
µr = − (1− p+ j)µr − g2µr

(
µ2
r + 2nr +mr

)
+
√
j (mr + nr)WR,r

+K

(
dµr

dt

)

inj,r

,

(17)
d

dt
nr = −2 (1 + j)nr + 2pmr − 2g2µ2

r (2nr +mr)−j (mr + nr)
2
, (18)

d

dt
mr = −2 (1 + j)mr + 2pnr − 2g2µ2

r (2mr + nr)+p

− g2
(
µ2
r +mr

)
− j (mr + nr)

2
.

(19)

Here µr corresponds to the mean-amplitude, mr and nr represent variances
of quantum fluctuations of the r-th DOPO pulse. (dµr/dt)inj,r is the optical
injection field defined in Eq. (8)-(11). WR,r is independent real Gaussian noise
processes satisfying 〈WR,r(t)〉 = 0 and 〈WR,r(t)WR,r′(t

′)〉 = δrr′δ(t − t′). g,p,
j and K are the same as those for the Wigner model.
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4.2 Optimisation in CDP

The CDP performs the optimisation of the Hamiltonian (Eq. 4) with respect
to Rr for a support vector σ given by CIM. σ is obtained by binarising the
measured-amplitude (µ̃r) defined in Eq. (10) (CAC-CIM-CDP) or in-phase
amplitude cr (OL-CIM-CDP) with the Heaviside function stated as,

σr = Heaviside (xr) =

{
1, (xr > 0)

0, (xr ≤ 0) .
(20)

The CDP solve the following system of equations, which is satisfied the
stationary point that minimises H with respect to r.

Rr

M∑

k=1

(
Ak

r

)2
= σrHr, (21)

Hr = −
N∑

r′=1( 6=r)

M∑

k=1

Ak
rA

k
r′Rr′σr′ +

M∑

k=1

Ak
ry

k. (22)

Here, Hr in Eq. (22) is the local field of the CDP, which is the same as Eq.
(4) and (11). For the simulations, we used the Jacobi method or Conjugate Gra-
dient Descent (CGD) method as the CDP optimiser. During the optimisation
in the CDP, all σr are fixed.

4.3 Schedule of pump rate, threshold and target
amplitude for optimisation in CIM

A rough parameter search was used to determine the schedules for each of the
following parameters in the experiments. The pump rate p for both Wigner and
P-P type CAC-CIM-CDPs was scheduled depending on the time t as follows.

p = (pthr − d) +
2d

1 + e
−

(

t− 4

2

) . (23)

Here, pthr = 1 for all simulations of both Wigner and P-P type CAC-CIM-
CDPs. For artificial random data and MRI data simulations, d was set at 0.6
and 0.4 respectively.

In accordance with [11], the pump rate p for OL-CIM-CDP was scheduled
depending on the time t as follows.

p = 1.5×
(
t

5

)2

. (24)

The pump rate becomes equal to 1.5 when t = 5. We used this pump rate
schedule for all simulations of OL-CIM-CDP. In both CAC-CIM-CDP and
OL-CIM-CDP, the threshold η was scheduled depending on the alternating
iteration time i as follows.
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ηi = max

[
ηinit

(
1− i

velo

)
, ηend

]
. (25)

Here velo = 51 for all simulations of both CAC-CIM-CDP and OL-CIM-
CDP in artificial random data. For the MRI data, velo = 31 and velo = 11
were used in OL-CIM-CDP and CAC-CIM-CDP respectively. For synthesised
random data (Figs. 3, 4, and Supplementary note Fig. ??), the threshold η was
linearly lowered from ηinit to ηend as the alternating minimisation proceeds.
ηinit and ηend are adjusted to maximise the performance of those models.
On the other hand, for MRI data (Figs. 5, 6, 7, Supplementary note Fig. ??
and Supplementary note Fig. ??), the threshold η was constant by setting as
ηinit = ηend. The values of ηinit and ηend used for each simulation are shown
in the figure captions.

In both Wigner and P-P type CAC-CIM-CDPs, the target amplitude of
CAC, τ , was constant with respect to the time t. For the simulations in Fig.
4a and Fig. 4b, τ = 0.21 was used while in Fig. 4c and Fig. 4d τ was set to
0.15. For other simulations, τ was 1.

4.4 Observation model for Compressed Sensing

The observation model that is the premise of Eq. (3) and Eq. (4) is defined as
follows.




y1

y2

...
yM


 =




A1
1 A1

2 · · · A1
N

A2
1 A2

2 · · · A2
N

...
...

. . .
...

AM
1 AM

2 · · · AM
N







ξ1x1

ξ2x2

...
ξNxN


+




w1
noise

w2
noise

...
wM

noise


 . (26)

Here, A ∈ R
N×M is the observation matrix, y ∈ R

M implies the observation
signal, x ∈ R

N and ξ ∈ (0, 1)N are the true source signal and true support,
respectively. wnoise ∈ R

M indicates the observation noise satisfying 〈wk
noise〉 =

0 and 〈wk
noisew

k′

noise〉 = ν2δkk′ . ν2 is the variance of the observation noise.

4.5 Artificial random data

To verify the performance of the proposed models statistically and moreover
compare those results with ground states predicted with statistical mechanics
[11], we used many samples of artificial random data y ∈ R

M synthesised from
the observation model Eq. (26) in which the values of all entries were randomly
determined as follows. Each entry of the observation matrix A ∈ R

M×N is ran-
domly generated from an independent and identical normal distribution with
the variance of 1/M , which satisfies 〈Ak

r 〉 = 0 and 〈Ak
rA

t′

r′〉 = 1/Mδrr′δ(kk
′).

Each entry of the true source signal x ∈ R
N is randomly generated from an

independent and identical normal distribution with the variance of 1, which
satisfies 〈xr〉 = 0 and 〈xrxr′〉 = δrr′ . a×N elements of ξ ∈ (0, 1)N are randomly
selected and assigned 1 while others are assigned 0. a is the sparseness defined
in the Introduction.
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4.6 Simulations with MRI data

To evaluate the performance of the proposed models on realistic data, we used
MRI data provided from the fastMRI datasets [27]. The initial brain MRI used
here was a 320× 320 image. To reduce the problem size, we resized the image
to 64×64 and 128×128 images with the BILINEAR interpolation method. We
applied the Haar-wavelet transform (HWT) to the two different-sized images
and in Fig. 6 and Fig. 7 we set 78.8% and 82.2% of the HWT coefficients
to zero to create two different-sized sparse images (64 × 64 and 128 × 128
pixels) spanned by Haar basis functions with a sparseness of 0.212 and 0.178,
respectively. Then, we applied the discrete Fourier transform (DFT) to the
two different-sized sparse images to obtain 64×64 and 128×128 k-space data,
respectively. Finally, we undersampled 1638 and 4915 points from the 64× 64
and 128×128 k-space data at random red points (Fig. 6b and Fig. 7b) to create
two observation signals with a compression rate of 0.4 and 0.3 respectively.

In accordance with our previous work, we sought to reconstruct the
source signals from the undersampled k-space data by solving the following
optimisation problem with CAC-CIM-CDP and OL-CIM-CDP.

x = argmin(‖y − SFx‖22 +
1

2
γ‖∆vx‖22 +

1

2
γ‖∆hx‖22 + λ‖Ψx‖0). (27)

Here, x is a source signal, and y is the observation signal constructed
through the above steps. F indicates the DFT matrix and Ψ is the HWT
matrix. F and Ψ are orthogonal matrices and their transpose matrices corre-
spond to inverse DFT and inverse HWT, respectively. S is an undersampling
matrix executing undersampling at random red points shown in Fig. 6b and
Fig. 7b. ∆v and ∆h are the matrices discretely representing the vertical and
horizontal second-order derivative operators, respectively. γ and λ are the l2
and l0 regularisation parameters.

To implement the optimisation problem in Eq. (27) on CIM, we estimate
the HWT coefficients instead of the pixel values of the image. Applying the
HWT r = Ψx to Eq. (27), the mutual interaction matrix J and the Zeeman
term vector hz for CIM are given as

hz = SFΨTy, (28)

J̃ = ΨFTSTSFΨT + γΨ∆T
v ∆vΨ

T + γΨ∆T
h∆hΨ

T . (29)

Here, the observation matrix is given as A = SFΨT . The second and
third terms in J̃ are from the l2 regularisation terms. After the alternating
minimisation, the output of the CDP, r, is transformed to the image, x, with
the inverse HWT x = ΨT r. γ is set to 0.0001. K̃ for OL-CIM-CDP was set to
0.25 while K for CAC-CIM-CDP was 0.01. Here we use LASSO’s solution as
the initial condition for the CIM simulation.
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Supplementary Note 1: Performance dependence on sys-

tem size

This section compares how the performance of each model differs as the system size increases.

In this case, N is in the range of [200, 5000], with compression α = 0.6 and sparseness a = 0.2.

Fig. S1 illustrates the acquired results. Black, blue and red marks indicate the log average

RMSE values acquired for 10 random hamiltonian simulations for OL-CIM-CDP, CAC-CIM-

CDP (Wigner) and CAC-CIM-CDP (Positive-P ) respectively.
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Figure S1: Performance on different System Sizes

(a) Log average RMSE values for 10 random Hamiltonians for each system size. For CAC-

CIM-CDP (Wigner and Positive-P ) j = 1.0, and β = 1.0 were used. ηinit and ηend assigned

as 0.9 and 0.01 respectively. For OL-CIM-CDP ηinit and ηend were set as 0.6 and 0.01 respec-

tively. (b) Log average Hamming loss values for 10 random Hamiltonians for each system size

calculated according to Eq. (S1) which calculates the average support estimation accuracy.

As a measure of model performance, we have used average RMSE (Root Mean Squared

Error) and average Hamming loss of support estimation from CIM. Using the following formula

(S1), we calculated the hamming loss.

Hamming Loss =
1

N

(
N∑

r=0

|σCIM

r
− ξr|

)
. (S1)

Here ξr corresponds to the correct support while σCIM
r is the estimation produced by CIM

models. Based on the RMSE values in the top graph of Fig. S1, we can state that even when the

size of the system changes, CAC-CIM-CDP models maintain a lower average RMSE value than

OL-CIM-CDP. In addition, the corresponding hamming loss values (bottom graph of Fig. S1)

are consistent also with the RMSE results. This suggests that CAC-CIM-CDP has performed

a more accurate sparse reconstruction.

Thus, we can conclude that CAC-CIM-CDP provides better results than OL-CIM-CDP,

regardless of system size.
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Supplementary Note 2: Performance difference on rela-

tively harder problem instances

Here we discuss the observation we had on the amplitude evolution of CAC-CIM-CDP models

when the a/α ratio is higher (after exceeding the critical threshold).

The difference in performance is clear in normalised measured-amplitude gµ̃r and error er

as well. In Fig. S2 and Fig. S3 N = 2000 system is considered with α = 0.6. Fig. S2a and

Fig. S2b a = 0.2 is used while Fig. S2c and Fig. S2d use a = 0.4. It is clear that in the

a = 0.4 case, the amplitude evolution is more chaotic compared to a = 0.2 in both models.

The corresponding er evolution is illustrated in Fig. S3. Even though a = 0.2 has identical

evolution for CAC-CIM-CDP, with a = 0.4 the evolution is slightly different.

(a) (b)

(c) (d)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Positive-P)

CAC-CIM-CDP (Positive-P)

Figure S2: Normalised measured amplitude gµ̃r evolution for easy and harder prob-

lem instances

(a) and (b) indicates the normalised amplitude gµ̃r evolution of CAC-CIM-CDP (Wigner and

Positive-P ) with a = 0.2 and α = 0.6. (c) and (d) indicates the normalised amplitude gµ̃r

evolution of CAC-CIM-CDP (Wigner and Positive-P ) with a = 0.4 and α = 0.6.

S3



(a) (b)

(c) (d)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Wigner)

CAC-CIM-CDP (Positive-P)

CAC-CIM-CDP (Positive-P)

Figure S3: Error er evolution for easy and harder problem instances

(a) and (b) indicates the error amplitude er evolution of CAC-CIM-CDP (Wigner and Positive-

P ) with a = 0.2 and α = 0.6. (c) and (d) indicates the error amplitude er evolution of

CAC-CIM-CDP (Wigner and Positive-P ) with a = 0.4 and α = 0.6.

Supplementary Note 3: Performance with larger satura-

tion parameters

With the same parameters used for CAC-CIM-CDP (Wigner and Positive-P ), here we con-

ducted an experiment on how the performance varies when the saturation parameter g2 changes.

Parameter g2 corresponds directly to the quantum noise present in the CIM system. The higher

the g2, the more quantum noise is present. In the MRI experiments mentioned previously,

g2 = 10−7 was used. Which is quite small. In Fig. S4, we compare CIMs performance with

g2 = 10−2, g2 = 10−3, and g2 = 10−7. Red lines indicate the CAC-CIM-CDP (Wigner) and the

blue dashed line corresponds to the CAC-CIM-CDP (Positive-P ) model. Vertical lines are the

error bars for each threshold η value.
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(a) (b)

(c)

Figure S4: Performance of CAC-CIM-CDP models with large quantum noise present

(a), (b), and (c) illustrates the performance of CAC-CIM-CDP models when g2 is 10−2, 10−3

and 10−7 respectively for 64× 64 image reconstruction.

Results indicate that both CAC-CIM-CDP models tend to perform similarly in all the

cases. Yet when g2 = 10−2, reconstruction fails. Compared to other g2 values (which have

better reconstruction), it implies that for CIM performance there is a threshold saturation

parameter value.

Supplementary Note 4: Performance change in sparseness

Here we consider different sparseness a values. For the simulations 64× 64 images were used.

Reconstruction becomes harder when the a/α ratio becomes larger. In Fig. S5, we show-

case the results on how the performance of LASSO, OL-CIM-CDP and the two CAC-CIM-CDP

models change when a is increased for a constant α value with respect to η. The green boxplot

indicates the CAC-CIM-CDP (Wigner) and the blue boxplot corresponds to the CAC-CIM-

CDP (Positive-P ) model. The black line and red boxplot indicate the LASSO algorithm and

OL-CIM-CDP respectively. Based on different threshold values, box plots illustrate the maxi-

mum, minimum, 25th percentile (bottom edge), 75th percentile (top edge), and median (central

horizontal line) of RMSEs for each model. In the markers, outliers are identified.
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(b)(a)

(c)

Figure S5: Average performance of LASSO, OL-CIM-CDP, CAC-CIM-CDP

(Wigner) and CAC-CIM-CDP (Positive-P ) models when sparseness varies for 64×64

MRI image

(a), (b), and (c) correspond to the reconstructions obtained from LASSO, OL-CIM-CDP, and

CAC-CIM-CDP (Positive-P ) with sparseness values 0.212, 0.255, and 0.280 respectively. For

every model compression ratio was 0.4. The black line indicates the performance on LASSO

while the red boxes correspond to OL-CIM-CDP. Green and blue boxes indicate the performance

on CAC-CIM-CDP Wigner and Positive-P respectively. For different threshold values, the

graphs illustrate the maximum, minimum, 25-th percentile (bottom edge), 75-th percentile

(top edge), and median (central horizontal line) of RMSEs for each model with box plots. The

markers indicate the outliers.

With the above results, it is clear that CAC-CIM-CDP models tend to perform better

than OL-CIM-CDP. However, when a increases the reconstruction accuracy worsens in all

three CIM-CDP models and LASSO. Even though the accuracy deteriorates, CAC-CIM-CDP

models still perform better than OL-CIM-CDP. This indicates that even though the problem

becomes more challenging, CAC-CIM-CDP is still a better CIM model than the OL-CIM-CDP

for l0-regularised CS.
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