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In closed quantum systems, wavepackets can spread exponentially in time due to chaos, forming
long-range superpositions in just seconds for ordinary macroscopic systems. A weakly coupled en-
vironment is conjectured to decohere the system and restore the quantum-classical correspondence
while necessarily introducing diffusive noise—but for what coupling strength, and under what con-
ditions? For Markovian open systems with Hamiltonians of the form Ĥ = p̂2/2m+ V (x̂) and linear
Lindblad operators, we prove the quantum and classical evolutions are close whenever the strength
of the environment-induced diffusion exceeds a threshold ℏ4/3Ac, were Ac is a characteristic scale of
the classical dynamics. (A companion paper treats more general Hamiltonians and Lindblad oper-
ators.) The bound applies for all observables and for times exponentially longer than the Ehrenfest
timescale, which is when the correspondence can break down in closed systems. The strength of the
diffusive noise can vanish in the classical limit to give the appearance of reversible dynamics. The
4/3 exponent may be optimal, as Toscano et al. have found evidence that the quantum-classical
correspondence breaks down in some systems when the diffusion is any weaker.

We study the macroscopic emergence of classi-
cal mechanics from quantum mechanics in the limit
when ℏ is small compared to the characteristic fea-
tures of the system. This is a well-studied topic in
the case of closed quantum systems – that is to say,
in Hamiltonian systems isolated from any influence
from an external environment – where classical and
quantum observables are known [1–6] by Egorov’s
theorem [1] to match closely for times up to the
Ehrenfest time τE ∼ λ−1

L log(Sc/ℏ). This timescale
is governed by the dominant Lyapunov exponent λL
and the characteristic action scale Sc of the classical
dynamics, and it quantifies the time for a minimal
uncertainty wavepacket to spread significantly due
to chaos. The above correspondence arises essen-
tially because of Ehrenfest’s theorem [7], which im-
plies that a localized wavepacket will approximately
follow a classical equation of motion as long as it
remains well-localized.
For real macroscopic systems, the Ehrenfest time

can be quite short—even seconds or minutes—
because the dependence on ℏ−1 is only logarithmic
[8–10]. In closed systems beyond the Ehrenfest time,
even as ℏ → 0, the correspondence between the clas-
sical and quantum evolution breaks down. In par-
ticular,

(1) superpositions over macroscopic distances are
generated, detectable through delicate interfer-
ence experiments [5, 11–16] (cf. [17–20]); relat-
edly, the Wigner function develops negativity
[9, 21–24] (cf. [25, 26]).

(2) large differences possibly arise between quantum
expectation values and the corresponding classi-
cal predictions even for smooth observables like
x̂2, according to some numerical studies [27, 28]
(cf. [29]).

In other words, the ℏ → 0 and t → ∞ limits do not

commute in closed systems: if one fixes a time dura-
tion t > 0 and takes ℏ → 0, the quantum state tra-
jectory approaches the classical state trajectory, but
if one fixes arbitrarily small ℏ > 0 and takes t→ ∞,
then the quantum trajectory may develop superpo-
sitions over macroscopic distances. (The limit is sin-
gular in the sense of Berry [16, 30–32].)
Despite this theoretical breakdown, macroscopic

systems appear to obey the laws of classical me-
chanics for much longer times. To theoretically jus-

FIG. 1. (a) An initial pure quantum Gaussian state
ρ(t=0) evolves in phase space. (b) At short times the
dynamics admit a local harmonic approximation, squeez-
ing the distribution via classical flow and broadening
it via diffusion D. The state, now mixed, can be ap-
proximated by a mixture ρ̃(t) of pure squeezed Gaussian
states (ellipses). (c) Over intermediate times, the true
distribution ρ(t) bends with radius of curvature L due
to anharmonicity, while maintaining minimum thickness√

D/λL, for classical local Lyapunov exponent λL. Then
ρ(t) can still be approximated by ρ̃(t) if the distribution
ρ(t) can be snugly covered by ellipses of width w and

length v = ℏ/w, which geometrically requires v ≲
√
wL

and w ≲
√

D/λL, or D ≳ ℏ4/3λLL
−2/3. (d) Over long

times the squeezing of the Gaussian decomposition varies
locally but remains bounded as ρ(t) spreads over the ac-
cessible phase space.
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tify a quantum-classical correspondence beyond the
Ehrenfest time, one longstanding suggestion is to
consider decoherence effects from the environment,
acknowledging that macroscopic systems are rarely
well-isolated [12, 13, 15, 33, 34] (cf. [17–19, 29, 35–
41]). Numerical simulations and analytical argu-
ments suggest that decoherence successfully restores
the quantitative agreement between the quantum
and classical evolution of many specific systems
[14, 42–45]. In particular, it was conjectured that
there is a regime where the system-bath coupling
is (i) large enough for decoherence to ensure clas-
sicality by inhibiting long-range coherence in phase
space, but still (ii) small enough that the noise in-
troduced by the bath does not significantly alter the
classical dynamics on fixed time scales [46], so the
system appears well-isolated [43–45].

In this work we prove several aspects of the
quantum-classical correspondence suggested above
using decoherence modeled by the Lindblad equa-
tion. The results presented here apply to Hamilto-
nians of the common form Ĥ = p̂2/2m+ V (x̂) with
linear Lindblad operators and no friction. Such a
system may represent multiple particles in multiple
spatial dimensions, with general position-dependent
interactions [47]. (With N particles in n spatial di-
mensions, we have d = Nn degrees of freedom.)

The case of general Hamiltonians Ĥ(x̂, p̂) and

Lindblad operators L̂k(x̂, p̂) will be presented in a
companion paper. The linear Lindblad operators
used here may be seen as the first-order approxima-
tion of a general environmental interaction, and their
effect is to introduce both decoherence and noise.
The noise manifests as diffusion in phase space, or
“environment-induced diffusion.”

We prove that given sufficient diffusion, for times
t ≪ ℏ−1/2, the quantum evolution under the Lind-
blad equation is well-approximated by the above
classical evolution for all possible observables, in
a sense we will make precise. This timescale is
exponentially longer than the Ehrenfest time. In-
deed, for a macroscopic system with characteris-
tic action scale Sc ∼ 1 kg · m2/s and Lyapunov
exponent λL ∼ 1 s−1, the Ehrenfest timescale is
τE ∼ λ−1

L log(Sc/ℏ) ∼ 1 minute, while the bound
presented below extends to the timescale τ ∼
λ−1
L

√
Sc/ℏ ∼ 1017 s ∼ 1 billion years.

For a quantum system of finite d degrees of free-
dom, assuming initial state ρ(t=0) that can be well-
approximated by a mixture of coherent Gaussian
states, we consider the quantum evolution ρ(t) under

the Lindblad equation ∂tρ(t) = L̂[ρ(t)] with Lindbla-

dian

L̂[ρ] = −i
ℏ
[Ĥ, ρ] +

1

ℏ
∑
k

(L̂kρL̂
†
k − 1

2
{L̂†

kL̂k, ρ}).

(1)

We treat the case of linear Lindblad operators L̂k =
ℓxx̂

k and L̂k+d = ℓpp̂
k for k = 1, . . . , d. We com-

pare the quantum evolution ρ(t) to the evolution
of a probability distribution f(t) that obeys a cor-
responding classical dynamics, making use of the
Wigner transform W[·] (whose needed properties are
recalled in Appendix B). The initial classical distri-
bution is taken to be the one naturally associated
to the initial quantum state: f(t=0) = W[ρ(t=0)].
The corresponding classical dynamics are given by a
frictionless Fokker-Planck equation ∂tf = L[f ] using
the Liouvillian [48, 49]

L[f ] = −ωab(∂af)(∂bH) +
1

2
Dab∂a∂bf, (2)

where the first term above produces classical Hamil-
tonian flow using H = p2/2m + V (x), while the
second term above produces diffusion with diffusion
matrix

D =

(
|ℓp|21d 0

0 |ℓx|21d

)
. (3)

Above ω =
(

0 1d
−1d 0

)
is the (antisymmetric) sym-

plectic form and ∂a denotes the partial deriva-
tive in phase space, where the indices a, b ∈
{x1, . . . , xd,p1, . . . ,pd} range over the 2d directions
in phase space and repeated indices are summed.

Just as the diffusion equation arises from a ran-
dom walk, the Fokker-Planck equation in (2) could
also be interpreted as arising from a Langevin equa-
tion [50], describing noisy trajectories on phase
space. Thus (2) describes an ensemble of noisy clas-
sical trajectories, each roughly following the classical
equation of motion when D is small.

In order to state the main result, we now identify
some key scales in any Hamiltonian Ĥ = p̂2/2m +
V (x̂). At each position x there is a local harmonic
approximation to the dynamics depending on the
Hessian ∇2V (x) of the potential. The harmonic

time τH :=
√
m/∥∇2V ∥ is the shortest timescale

associated with such local dynamics, where

∥∇jV ∥ := sup
x

sup
∥wi∥=1

∣∣∣∣∣
[

j∏
i=1

(wi · ∇)

]
V (x)

∣∣∣∣∣ (4)

is the maximum over phase space of j directional
derivatives of the potential. Similarly, the as-
pect parameter ηH :=

√
m∥∇2V ∥ = m/τH =

∥∇2V ∥τH (with units of [momentum/length] ∼
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kg/s) picks out a preferred “aspect ratio” in phase
space with respect to which a Gaussian distribu-
tion can be considered circular or unsqueezed. The
anharmonic action sH := η3H/(τH∥∇3V ∥)2 =

m1/2∥∇2V ∥5/2∥∇3V ∥−2 is the action scale above
which anharmonicities of the potential (quantified
by the max third derivative ∥∇3V ∥) are impor-
tant. (It is the unique action scale constructible
from m, ∥∇2V ∥, and ∥∇3V ∥.) The anharmonic

length xH :=
√
sH/ηH = ∥∇2V ∥/∥∇3V ∥ and

anharmonic momentum pH :=
√
sHηH =√

m∥∇2V ∥/∥∇3V ∥ are then preferred scales satis-
fying xHpH = sH . Finally, the pure Gaussian quan-
tum states with the preferred covariance matrix

σ∗ :=
ℏ
2

(
η−1
H 1d 0
0 ηH1d

)
∝
(
xH1d 0
0 pH1d

)
(5)

are the (unsqueezed) coherent states.
We can now state our main result.

Theorem 1. Let ρ(t) solve the Lindblad equation
(1) in d variables with Hamiltonian p̂2/2m + V (x̂)

and 2d Lindblad operators L̂k = ℓxx̂
k and L̂k+d =

ℓpp̂
k for k = 1, . . . , d, corresponding to isotropic dif-

fusion in position and momentum with respective dif-
fusion constants D(x) = ℏ|ℓp|2 and D(p) = ℏ|ℓx|2.
Assume the initial state ρ(t=0) is given by a mix-
ture of Gaussian states that are squeezed relative
to the coherent states by no more than a factor

z := max{ℏ/sH
D0

, 1} ≥ 1 (i.e., with covariance ma-

trix σ s.t. z−1σ∗ ≤ σ ≤ zσ∗) where

D0 := min

{
D(x)

x2H/τH
,
D(p)

p2H/τH

}
(6)

is a dimensionless measure of the diffusion strength.
Finally, let f(t) solve the Fokker-Planck equation (2)
with initial condition f(0) = W[ρ(0)], and assume
the potential V (x) has bounded second and third
derivatives. Then there exists a quantum trajectory
ρ̃(t) which is a mixture of Gaussians satisfying

∥ρ̃(t)− ρ(t)∥Tr ≤ ϵ

∥W[ρ̃(t)]− f(t)∥L1 ≤ ϵ
(7)

with error

ϵ = d
3
2
t

τH

√
ℏ
sH

max

{
ℏ/sH
D0

, 1

} 3
2

. (8)

Recall τH , sH , xH , pH above are just character-
istic scales set by the classical Hamiltonian. In (7),

∥Â∥Tr := Tr[(Â†Â)1/2] is the trace norm on quantum
operators and ∥f∥L1 :=

∫
dα|f(α)| is the analogous

L1 norm on classical phase-space functions; as re-
called in Appendix A, they constrain the probability

of a discrepancy being revealed by any observation
or measurement.

We turn to the proof after some interpretation.
How much environment-induced diffusion is neces-
sary for Theorem 1 to ensure a close quantum-
classical correspondence? We find Eq. (7) holds with
error ϵ for any

ϵ ≥ d
3
2
t

τH

√
ℏ
sH

, (9)

if the diffusion satisfies

D0 ≥

(
d

3
2 t

ϵ tH

) 2
3 ( ℏ

sH

) 4
3

. (10)

Alternatively, if D0 ≳ (ℏ/SH)
4
3−p for some power

p > 0, we find that the error ϵ in the correspon-
dence (7) is small for times t ≲ tH(sH/ℏ)q, for power
q = min{ 1

2 ,
3p
2 }. Note this time range is exponen-

tially longer than the Ehrenfest time.
See Fig. 1 for a heuristic argument suggesting the

adequacy of condition (10). We illustrate how the
bound might be applied to physical examples in Ap-
pendix F.

Proof of Theorem 1. We will build a trajectory ρ̃(t)
that approximates the true evolution ρ(t) by using a
mixture of Gaussian states τ̂α,σ, each centered at a
point α = (αx, αp) ∈ R2d in phase space with covari-
ance matrix σ ∈ R2d×R2d, that evolve under a local
harmonic approximation to L̂. Thus our trajectory
will be defined through a time-dependent distribu-
tion pα,σ(t) ≥ 0,

ρ̃(t) =

∫∫
dαdσ pα,σ(t)τ̂α,σ, (11)

but with the crucial proviso that pα,σ(t) only sup-
ports covariance matrices σ that are not too
squeezed (NTS) in the sense σ ≤ zσ∗. (The dis-
tribution pα,σ is a generalization of the Glauber-
Sudarshan P function [51–54], which uses a single
fixed σ.) Importantly, we have assumed the true
initial state ρ(t=0) =

∫∫
dαdσ pα,σ(t=0)τ̂α,σ, is a

(possibly trivial) mixture of such states, so that the
true trajectory and our approximation initially co-
incide: ρ̃(t=0) = ρ(t=0).
Completing the proof requires three steps.

Step 1. Constructing the Gaussian mixture ρ̃: If ρ̃(t)
is to approximate ρ(t), which satisfies the Lindblad
equation (1), then we would like to find pα,σ(t) such

that ∂tρ̃(t) ≈ L̂[ρ̃(t)] =
∫∫

dαdσ pα,σ(t)L̂[τ̂α,σ]. To
accomplish this, we will use a harmonic approxima-
tion L̂(α) to L̂ near the point α in phase space, where
harmonic dynamics are characterized by a quadratic
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Hamiltonians and linear Lindblad operators. The
benefit of using this approximation is that harmonic
dynamics exactly preserve the set of Gaussian states
[55–57] (see also [58, 59]). We will find a function
pα,σ(t) that exactly solves

∂tρ̃(t) =

∫∫
dαdσ pα,σ(t)L̂(α)[τ̂α,σ]. (12)

In the present case of linear Lindblad operators and
Hamiltonian Ĥ = p̂2/2m + V (x̂), the harmonic ap-

proximation L̂(α) to L̂ at α is obtained simply by
replacing the potential with its local quadratic ap-
proximation about x = αx, i.e., by replacing V (x̂)
with V [αx,2](x̂) where V [αx,2](x) = V (αx)+(x−αx) ·
∇V (αx)+[(x−αx) ·∇]2V (αx). Before we proceed to
analyze the error between ρ̃(t) and ρ(t), we first show
that a function pα,σ(t) solving (12) can be found.

Under the harmonic approximation about α, a
Gaussian evolves such that [55–57] its centroid α fol-
lows the classical (diffusionless) flow on phase space
with flow vector

U(α) :=

(
αp/m

−∇V (αx)

)
(13)

in the sense that dα(t)/dt = U(α), while the covari-
ance matrix σ evolves by dσ(t)/dt = S(α, σ) where

S(α, σ) := F (α)σ + σF⊤(α) +D, (14)

F (α) :=

(
0 −1d/m

∇2V (αx) 0

)
, (15)

and where D = diag(D(x)1d, D(p)1d) is the diffu-
sion matrix. This describes the skewing (by F ) and
broadening (by D) of the Gaussian; only the lat-
ter increases mixedness. Equivalently, the Gaussian
obeys

L̂(α)[τ̂α,σ] = [U(α) · ∂α + S(α, σ) · ∂σ] τ̂α,σ. (16)

With (11) and (16), our desired condition (12) be-
comes∫∫

dαdσ τ̂α,σ
d

dt
pα,σ(t)

=

∫∫
dαdσ pα,σ(t) [U(α) · ∂α + S(α, σ) · ∂σ] τ̂α,σ.

(17)

We could integrate the right-hand side of (17) by
parts in σ and α to obtain a transport equation for
pα,σ, but we would quickly lose control of the covari-
ance matrix σ, which could be stretched arbitrarily
long by the evolution. Instead, we observe that any
component of the flow in the “positive” σ direction
(which increases mixedness of the state) can also be
re-interpreted as diffusion in the α direction [60–65].

For any choice of decomposition S = SD + S0

we have S · ∂σ τ̂α,σ = [S0 · ∂σ + 1
2SD · ∂α∂α]τ̂α,σ by

the Gaussian derivative identity ∂σ τ̂α,σ = 1
2∂α∂ατ̂α,σ

(reviewed in Appendix E 1). Plugging this into (17)
and integrating by parts [66], we see that (12) is
satisfied (with pα,σ guaranteed to be non-negative
when SD ≥ 0) so long as pα,σ(t) solves ∂tpα,σ(t) =

(

L (α)[pα,σ(t)] with

(

L (α)[pα,σ] :=
[
− ∂α · U(α)− ∂σ · S0(α, σ)

+
1

2
∂α∂α · SD(α, σ)

]
pα,σ

(18)

where the partial derivatives in (18) are understood
to act also on pα,σ.

We have some limited freedom in choosing S0 and
SD; that is, the decomposition of S into skewing
and broadening parts is not unique. We require (i)
SD ≥ 0 so that pα,σ undergoes non-negative diffu-
sion, and we must choose S0 so that both (ii) pα,σ
remains supported on covariance matrices of pure
Gaussian states and (iii) pα,σ remains supported on
NTS covariance matrices. Below, we choose a de-
composition fulfilling these three requirements.

It is useful to work with the rescaled matrices
X̄ := σ

−1/2
∗ Xσ

−1/2
∗ for X = σ, S, S0, SD, D. We also

use the asymmetric F̄ := σ
−1/2
∗ Fσ

1/2
∗ (note ± 1/2

exponents) so that S̄ = F̄ σ̄ + σ̄F̄⊤ + D̄. Then we
make the choice

S̄0(α, σ) := [F̄ (α)− g(σ̄)]σ̄ + σ̄[F̄⊤(α)− g(σ̄)],
(19)

S̄D(α, σ) := D̄ + [g(σ̄)σ̄ + σ̄g(σ̄)], (20)

satisfying S̄0 + S̄D = S̄, where

g(σ̄) =

(
D0sH
ℏτH

)
σ̄ − σ̄−1

1− z−2
. (21)

First, a bit of algebra shows that S̄0 = S̄0
⊤ and

(σ̄−1S̄0)
⊤ = −ω⊤σ̄−1S̄0ω (because ω⊤σ̄ω = σ̄−1).

As recalled in Appendix C, this ensures that a co-
variance matrix evolving by S0 remains a legal co-
variance matrix for a pure Gaussian state under the
dynamics (18).

Next, we need to show that with these choices
the distribution pα,σ(t) never develops support on
covariance matrices violating the NTS condition

σ ≤ zσ∗, i.e., that σ̄ = σ
−1/2
∗ σσ

−1/2
∗ ≤ z1d for

any σ such pα,σ ̸= 0. Note that an equivalent
NTS condition is σ ≥ z−1σ∗ because σ/(ℏ/2) and
σ∗/(ℏ/2) are symplectic matrices. (See Appendix C,
Eq. (C15) for an elementary demonstration.) This
equivalent lower-bound condition will be preserved
if ⟨v|S̄0(α, σ)|v⟩ ≥ 0 whenever v is an eigenvector of
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σ̄ with eigenvalue λ ≤ z−1 (σ̄v = λv). From (20) we
compute

⟨v|S̄0(α, σ)|v⟩ ≥ −2∥F̄ (α)∥opz−1 + 2D0sHτ
−1
H ≥ 0

(22)

because z := max{ℏ/sHD0, 1} ≥ ℏ/sHD0 and

∥F̄ (α)∥op ≤
√

∥∇2V ∥/m = τ−1
H by (15). (Here,

∥ · ∥op denotes the operator norm, i.e., the largest
singular value of a matrix.)
This ensures that pα,σ(t) is only supported on

NTS covariance matrices (z−1σ∗ ≤ σ ≤ zσ∗) for

all time. Then using ∥D̄∥op = ∥σ−1/2
∗ Dσ

−1/2
∗ ∥op =

min{D(x)ηH , D(p)/ηH}/(ℏ/2) = 2D0sH/ℏτH we

have by (20) that SD(α, σ) = σ
1/2
∗ S̄D(α, σ)σ

1/2
∗ ≥ 0

for all allowed σ. Therefore the diffusion term in
(18) ensures that pα,σ(t) ≥ 0 for all t ≥ 0, i.e., ρ̃(t)
is always a true mixture of squeezed Gaussians.
To summarize, we have constructed the trajec-

tory ρ̃(t) defined through (12) with the probability
distribution pα,σ(t) over covariance matrices satis-
fying the NTS condition σ ≤ zσ∗ defined through

the dynamics ∂tpα,σ(t) =

(

L (α)[pα,σ(t)] of (18) using
choices (19) and (20).

Step 2. Duhamel bound: Having defined our trajec-
tory ρ̃, we can compare it to the exact evolution ρ(t)
using the Duhamel formula:

ρ̃(t)− ρ(t) =

∫ t

0

ds e(t−s)L̂
(
∂s − L̂

)
[ρ̃(s)] (23)

Then

∥ρ̃(t)− ρ(t)∥Tr (24)

=

∥∥∥∥∫ t

0

dse(t−s)L̂
(
∂s − L̂

)
[ρ̃(s)]

∥∥∥∥
Tr

(25)

≤
∫ t

0

ds
∥∥∥e(t−s)L̂

(
∂s − L̂

)
[ρ̃(s)]

∥∥∥
Tr

(26)

≤
∫ t

0

ds
∥∥∥(∂s − L̂

)
[ρ̃(s)]

∥∥∥
Tr

(27)

=

∫ t

0

ds

∥∥∥∥∫∫ dαdσ pα,σ(s)
(
L̂(α) − L̂

)
[τ̂α,σ]

∥∥∥∥
Tr

(28)

≤
∫ t

0

ds

∫∫
dαdσ pα,σ(s)

∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥
Tr

(29)

≤ sup
σ≤zσ∗

sup
α

∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥
Tr

∫ t

0

ds (30)

= t sup
σ≤zσ∗

sup
α

∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥
Tr
, (31)

where (27) follows from the fact that e(t−s)L̂ is a
completely positive map and so cannot increase the

trace norm, (28) follows from (12) and the nor-
malization of pα(t), and in (29) we have defined

δL̂(α) := L̂ − L̂(α).
If we make the replacements ρ̃ → W[ρ̃], ρ → f ,

τ̂α,σ → τα,σ, L̂ → L, and ∥ · ∥Tr → ∥ · ∥L1 in (23–31),
then identical manipulations give

∥W[ρ̃(t)]− f(t)∥L1 ≤ t sup
σ≤zσ∗

sup
α

∥∥∥δL(α)[τα,σ]
∥∥∥
L1
.

(32)

Here δL(α) := L − L(α) where, analogously to L̂(α),
L(α) is the harmonic approximation to the classical
Liovillian obtained by replacing V → V [αx,2] in (2).

Step 3. Harmonic approximation error: The error
from the harmonic approximation will be small when
the spatial size of the Gaussian state is small com-
pared to the anharmonicity of the potential V . In-
deed, the only modification necessary to obtain the
harmonic approximation to the dynamics involves
replacing the potential with its second-order Taylor
approximation, V → V [αx,2], so the error is propor-
tional to the max leading-order (i.e., third-order)
correction ∆x3∥∇3V ∥ at the characteristic spatial

width ∆x ∼ ∥σxx∥
1
2
op of the wavepacket with covari-

ance matrix σ. (The xx superscript is used to de-
note the upper left block of σ.) More precisely, in
Appendix D we prove the bounds∥∥∥δL̂(α)[τ̂α,σ]

∥∥∥
Tr

≤ µ,
∥∥∥δL(α)[τα,σ]

∥∥∥
L1

≤ µ (33)

where

µ =
√
3 d

3
2 ℏ−1∥σxx∥

3
2
op∥∇3V ∥. (34)

In the quantum case, the ℏ−1 factor above can be
seen to arise from the ℏ−1 in the Schrödinger equa-
tion; in the classical case, it is related to the fact
that the coherent state has area ℏ in phase space.

Because ρ̃(t) is a mixture of Gaussian states that
are NTS, the harmonic errors appearing in the quan-
tum error (31) and classical error (32) are taken
only over covariance matrices satisfying σ ≤ zσ∗,
so ∥σxx∥ ≤ z∥σxx

∗ ∥ = zℏ/2ηH . Thus applying (33)
we get that quantum and classical errors are both
upper bounded by

ϵ = tµ ≤
√
3 t d

3
2 ℏ−1(zℏ/2ηH)

3
2 ∥∇3V ∥ (35)

giving (8).
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[40] J. Kofler and Č. Brukner, Physical Review Letters
99, 180403 (2007).
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N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd,
Reviews of Modern Physics 84, 621 (2012).

[70] K. B. Petersen and M. S. Pedersen, “The Ma-
trix Cookbook,” Internet Archive (2012), uRL:
https://archive.org/details/K_B_Petersen_

and_M_S_Peders__The_Matrix_Cookbook (version:
2013-10-5).

[71] Some sources will express this for a not-necessarily
invertible matrix Z using the matrix adjugate
adj(Z). A property of the adjugate is that
Z adj(Z) = (detZ)1 so that, when Z is invertible,
adj(Z) = (detZ)Z−1.

[72] E. Joos, H. D. Zeh, C. Kiefer, D. J. Giulini, J. Kup-
sch, and I.-O. Stamatescu, Decoherence and the
appearance of a classical world in quantum theory
(Springer Science & Business Media, 2013).

http://dx.doi.org/10.1007/978-3-642-96807-5
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1103/PhysRev.177.1882
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1103/PhysRevLett.10.277
http://dx.doi.org/10.1103/PhysRevD.2.2161
http://dx.doi.org/10.1103/PhysRevD.2.2161
http://dx.doi.org/10.1103/PhysRevE.69.016204
http://dx.doi.org/10.1103/PhysRevE.69.016204
http://dx.doi.org/10.1088/0305-4470/31/7/014
http://dx.doi.org/10.1088/0305-4470/31/7/014
http://dx.doi.org/10.1007/BF01326573
http://dx.doi.org/10.1007/BF01326573
http://dx.doi.org/10.1007/BF01326197
http://dx.doi.org/10.1007/BF01326197
http://dx.doi.org/10.1007/BF01326496
http://dx.doi.org/10.1007/BF01326496
http://dx.doi.org/10.1109/JQE.1967.1074446
http://dx.doi.org/10.1109/JQE.1967.1074446
http://dx.doi.org/10.1063/1.529185
http://dx.doi.org/10.1063/1.529185
http://dx.doi.org/10.1103/PhysRevLett.85.3552
http://dx.doi.org/10.1103/PhysRevLett.85.3552
http://dx.doi.org/10.1142/8870
http://dx.doi.org/10.1142/8870
http://dx.doi.org/10.1142/8870
http://dx.doi.org/10.1103/PhysRevA.49.1567
http://dx.doi.org/10.1103/PhysRevA.49.1567
http://dx.doi.org/10.1103/RevModPhys.84.621
https://archive.org/details/K_B_Petersen_and_M_S_Peders__The_Matrix_Cookbook
https://archive.org/details/K_B_Petersen_and_M_S_Peders__The_Matrix_Cookbook


8

Appendix A: Norms

For a function f(α) over phase space variable α = (x, p) ∈ R2d, the (Lebesgue) Lq norm is

∥f∥Lq :=

(∫
dα |f(α)|q

)1/q

. (A1)

Our classical error bound on the difference in two distributions f and g is stated with L1 norm: ∥f − g∥L1 :=∫
dα|f(α) − g(α)|. The analogous norm on the quantum side is the trace norm ∥Â∥Tr = Tr[(Â†Â)1/2] =∑
i σi(Â) of an operator Â, i.e., the sum of the singular values σi(Â).
The importance of these two norms follows from their standard variational characterization. For quantum

states ρ and ρ̃, the respective probabilities qq = Tr[Q̂ρ(t)] and q̃q = Tr[Q̂ρ̃(t)] for the measurement outcome

associated with a projector Q̂ ≤ Î are constrained by

|qq − q̃q| = |Tr[Q(ρ(t)− ρ̃(t))]| ≤ ∥Q̂∥op ∥ρ(t)− ρ̃(t)∥Tr ≤ ∥ρ(t)− ρ̃(t)∥Tr (A2)

Likewise, for classical states f and W[ρ̃(t)] the respecive probabilities qc =
∫
dαQ(α)f(t) and q̃c =∫

dαQ(α)W[ρ̃(t)] for the measurement of any classical indicator variable Q(α) ≤ 1 are constrained by

|qc − q̃c| =
∣∣∣∣∫ dαQ(α)(f(t)−W[ρ̃(t)])

∣∣∣∣ ≤ [sup
α

|Q(α)|
]
∥ρ(t)− ρ̃(t)∥L1 ≤ ∥ρ(t)− ρ̃(t)∥L1 . (A3)

Thus, two classical states cannot be readily distinguished when they are close in L1 norm, and two quantum
states cannot be readily distinguished when they are close in trace norm, no matter what measurement is
performed.

Appendix B: Wigner functions

In order to construct our classical approximation to the quantum trajectory, we use the Wigner function.
The Wigner function W[ρ] of a density matrix ρ is a real-valued function on phase space. In this paper, we
will only discuss the Wigner function of mixtures of Gaussian states. Hence we are using W[·] essentially as
a compact notation for discussing Gaussian states and Gaussian distributions, without the Wigner functions
playing a key role in the argument. In particular, we only need to know three facts about the Wigner
function:

1. When ρ is a Gaussian state, W[ρ] is a Gaussian probability distribution on phase space with the same
respective mean and variance: W[τ̂α,σ] = τα,σ.

2. When ρ is a mixture of Gaussian states, W[ρ] is a mixture of the respective Gaussian distributions,
because W[·] is a linear mapping.

3. The Weyl trace formula in the special case of the expectation value of a function V of position for a
Gaussian state

Tr[τ̂α,σV (x̂)] =

∫
dα τα,σ(α)V (αx). (B1)

For completeness, we note that for a more general density matrix ρ, the Wigner function is defined as

W[ρ](α) := (2πℏ)d
∫
R2d

dχ Tr
[
eiχ·(r̂−α)ρ

]
, (B2)

=

∫
Rd

dy eiy·p/ℏ⟨x+ y/2|ρ|x− y/2⟩. (B3)

where r̂ = (x̂, p̂) and |y⟩ denotes a position eigenstate. In general it takes both positive and negative values,
often called a “quasiprobability distribution.” For more about the Wigner function, see e.g. the review in
[67].
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Appendix C: Symplectic and Hamiltonian matrices

In this section we recall basic facts about symplectic and Hamiltonian matrices. Our starting point is the
symplectic form

ω =

(
0 1d

−1d 0

)
(C1)

associated with the phase space R2d for d classical degrees of freedom. A symplectic matrix A satisfies

A⊤ωA = ω. (C2)

Note that the symplectic matrices Sp(2d,R) form a group which is a subgroup of the special linear group
SL(2d,R).

For an one-parameter family A(T ) of symplectic matrices,

0 =
d

dt
(A⊤ωA)

= Ȧ⊤ωA+A⊤ωȦ.

(C3)

Taking a family starting at the origin, A(0) = 12d, we see that Lie algebra sp(2d,R) for the symplectic group
Sp(2d,R) is the set of Hamiltonian matrices, which satisfy

F⊤ω + ωF = 0. (C4)

(Hamiltonian matrices should not to be confused with the classical Hamiltonian variable [energy] or the
quantum Hamiltonian operator.) Using ω2 = 12d and ω⊤ = −ω, we can rearrange this as

F⊤ = ωFω = −ω⊤Fω. (C5)

Using the identities ω = A⊤ωA = A−⊤ωA−1 we can see that if F is Hamiltonian and A is symplectic, then
A−1FA is also symplectic.
When A(0) is not the identity we can rearrange (C3) by left-multiplying by A−⊤ and right-multiplying

by A−1:

A−⊤Ȧ⊤ω + ωȦA−1 = 0. (C6)

Thus ȦA−1 is Hamiltonian when A(t) is symplectic. Conjugating by a A we can see that A−1Ȧ is also
Hamiltonian in this case.
When A is additionally symmetric, it follows that Ȧ is also symmetric so we can write

Ȧ = FA+AF⊤ (C7)

for some Hamiltonian matrix F .
In order that σ is the covariance matrices of a pure Gaussian state, it most be positive definite (σ > 0),

and σ/(ℏ/2) must be symplectic (σ⊤ωσ = (ℏ/2)2ω) [68, 69]. As can be checked, the same is true for

σ∗ :=
ℏ
2

(
η−1
H 1d 0
0 ηH1d

)
. (C8)

In the proof of Theorem 1 we work with such covariance matrices σ that additionally satisfy the matrix
inequality

σ ≤ zσ∗. (C9)

for some z ≥ 1. Inverting this (and using the positivity of σ and σ∗) we obtain the inequality

σ−1 ≥ z−1σ−1
∗ . (C10)
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Now rewriting the symplectic conditions on σ/(ℏ/2) and σ∗/(ℏ/2) as

σ−1 = (ℏ/2)−2ω⊤σω, (C11)

σ−1
∗ = (ℏ/2)−2ω⊤σ∗ω, (C12)

we derive from (C10) the inequality

ω⊤σω ≥ z−1ω⊤σ∗ω. (C13)

De-conjugating by the symplectic form ω gives our desired equivalent NTS condition:

σ ≥ z−1σ∗ (C14)

That is, we conclude that for pure Gaussian states being “not too long” is equivalent to being “not too thin”:

σ ≥ z−1σ∗ ⇐⇒ σ ≤ zσ∗. (C15)

More generally, for a pure Gaussian state, the eigenvalues of the covariance matrix σ come in pairs λ and
(ℏ/2)2λ−1 [68, 69].

Appendix D: Harmonic approximation error bound

Lemma 1 (Error in harmonic approximation). For a Lindblad equation (1) with Hamiltonian Ĥ = p̂2/2m+

V (x̂) and linear lindblad operators L̂k, the error δL̂(α) := L̂ − L̂(α) for the local harmonic approximation

L̂(α) to the quantum dynamics at α acting on the pure Gaussian quantum state τ̂α,σ satisfies

∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥
Tr

≤
√

5d3

3
∥∇3V ∥∥σ

xx∥
3
2
op

ℏ
(D1)

Likewise for a Fokker-Planck equation (2), the error δL(α) := L−L(α) for the local harmonic approximation
L(α) to the classical dynamics at α acting on the Gaussian classical state τα,σ satisfies

∥∥∥δL(α)[τα,σ]
∥∥∥
L1

≤
√
3d3∥∇3V ∥∥σ

xx∥
2
3
op

ℏ
(D2)

Proof. We first bound the quantum error∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥
Tr

=
∥∥∥(L̂ − L̂(α))[τ̂α,σ]

∥∥∥
Tr

=

∥∥∥∥− i

ℏ

[
δĤ [α,2], τ̂α,σ

]∥∥∥∥
Tr

≤ 2

ℏ

∥∥∥δĤ [α,2]τ̂α,σ

∥∥∥
Tr

(D3)

for the Gaussian quantum state τ̂α,σ = |α, σ⟩⟨α, σ| with covariance matrix σ and mean α. Here, Î denotes

the identity operator and δĤ [α,2] = Ĥ − Ĥ [α,2] = δV [αx,2](x̂) is the operator error from the harmonic
approximation. By Taylor’s theorem we have the classical remainder from the quadratic approximation

δV [αx,2](αx +∆x) = V (αx +∆x)− V [αx,2](αx +∆x) =
1

3!

[
(∆x · ∇)3V

]
(αx + ξ∆x) (D4)

for some choice of ξ ∈ [0, 1] (depending on αx and ∆x).

Recalling that ∥|ψ⟩ ⟨ϕ|∥2Tr = ∥ψ∥2∥ϕ∥2, we have∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥2
Tr

≤ 4

ℏ2
∥∥∥δĤ [α,2]|α, σ⟩

∥∥∥2 (D5)

=
4

ℏ2
Tr
[
τ̂α,σ(δV

[αx,2](x̂))2
]

(D6)

=
4

ℏ2

∫
dβτα,σ(α+ β)

[
δV [αx,2](αx + βx)

]2
(D7)
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where τα,σ(α+β) = W[τ̂α,σ](α+β) = exp(−βaσ−1
ab β

b/2)/[(2π)d
√
detσ] (a positive-valued function on phase

space) is the Wigner function of the pure Gaussian state τ̂α,σ = |α, σ⟩⟨α, σ|. In Eq. D7 we have made use
of the Weyl trace formula in the particularly simple case of the expectation value of an operator that is a
function of position: Tr[ρV (x̂)] =

∫
dαW[ρ](α)V (αx). Next we apply the approximation (D4) from Taylor’s

theorem: ∥∥∥δL̂(α)[τ̂α,σ]
∥∥∥2
Tr

≤ 4

ℏ2

∫
dβτα,σ(α+ β)

[
1

3!
[(βx · ∇)3V ](αx + ξ(βx)βx)

]2
(D8)

≤∥∇3V ∥2

9ℏ2

∫
dβτα,σ(α+ β)|βx|6 (D9)

=
∥∇3V ∥2

9ℏ2

∫
dβτα,σ(α+ β)(β⊤Pxβ)

3 (D10)

=
∥∇3V ∥2

9ℏ2
[
(Trσxx)3 + 6(Trσxx) Tr((σxx)2) + 8Tr((σxx)3)

]
(D11)

≤∥∇3V ∥2

9ℏ2
∥σxx∥3op

(
d3 + 6d2 + 8d

)
(D12)

≤5∥∇3V ∥2

3ℏ2
∥σxx∥3opd3 (D13)

where Px :=
(
1d 0
0 0

)
projects onto the x block. In (D9) we have used the Cauchy-Schwartz inequality, in

(D11) we have performed the Gaussian integral (as recalled in Appendix E 2) and in (D12) we have used
Tr[An] ≤ ∥A∥nopdn for d× d positive semidefinite matrix A. Eq. (D12) implies Eq. (D1) because d ≥ 1.

Now we turn to the classical harmonic error:∥∥∥δL(α)[τα,σ]
∥∥∥
L1

=
∥∥∥(L − L(α))[τα,σ]

∥∥∥
L1

=
∥∥∥−ωab∂a(τα,σ∂bδH

[α,2])
∥∥∥
L1

=
∥∥∥(∇pτα,σ) · (∇xδV

[αx,2])
∥∥∥
L1

(D14)

=
∥∥∥−τα,σ(σ−1β)p · (∇xδV

[αx,2])
∥∥∥
L1

(D15)

= ∥τ1/2α,σ∥2L2 ∥τ1/2α,σ (σ
−1β)p · (∇xδV

[αx,2])∥2L2 (D16)

where the Gaussian derivative ∂aτα,σ = −σ−1
ab β

bτα,σ is recalled in Appendix E 1 and where in the last line
we have used the Cauchy-Schwartz inequality. (Here, β in the norm is understood to represent the function

f(α+ β) = β.) Then because ∥τ1/2α,σ∥2L2 =
∫
dβ |τα,σ(α+ β)| = 1 we have∥∥∥δL(α)[τα,σ]

∥∥∥2
L1

=

∫
dβ τα,σ(α+ β)

∣∣∣(σ−1β)p · [(∇xδV
[αx,2])(αx + βx)]

∣∣∣2 (D17)

=

∫
dβ τα,σ(α+ β)

∣∣∣∣(σ−1β)p · 1

2!
[(βx · ∇x)

2∇xV ](αx + ξ(βx)βx)

∣∣∣∣2 (D18)

=

∫
dβ τα,σ(α+ β)

∣∣∣∣ 12! [(βx · ∇x)
2((βσ−1)p · ∇x)V ](αx + ξ(βx)βx)

∣∣∣∣2 (D19)

≤ ∥∇3V ∥2

4

∫
dβ τα,σ(α+ β)

[
|βx|2|(βσ−1)p|

]2
(D20)

≤ ∥∇3V ∥2

4

∫
dβ τα,σ(α+ β)(β⊤Pxβ)

2(β⊤σ−1Ppσ
−1β) (D21)

≤ ∥∇3V ∥2

4

[
(Trσxx)2 Tr(σ−1

pp ) + 2Tr(σ−1
pp ) Tr[(σ

xx)2]
]

(D22)

=
∥∇3V ∥2

4
d2(d+ 2)∥σ−1

pp ∥op∥σxx∥2op (D23)

where we have again used the Cauchy-Schwartz inequality and the Gaussian integrals reviewed in Ap-
pendix E 2. (In particular, Tr[σσ−1Ppσ

−1] = Tr[σ−1
pp ] and Tr[σPxσσ

−1Ppσ
−1] = Tr[PxPp] = 0.) When σ

is the covariance of a pure Gaussian quantum state, its the eigenvalues come in pairs λ, ℏ2/(4λ) that are
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associated with symplectically conjugate directions (Appendix C). This means ∥σ−1
pp ∥op = (4/ℏ2)∥σxx∥op so

that ∥∥∥δL(α)[τα,σ]
∥∥∥2
L1

≤ ∥∇3V ∥2

ℏ2
d2(d+ 2)∥σxx∥3op (D24)

which implies (D2) because d ≥ 1.

For N particles in n spatial dimensions with k-wise interactions, the dimension is d = Nn but the d
3
2

dimensional factor in Lemma 1 can be replaced with a factor of only k
3
2n

3
2 , a more favorable scaling. One

therefore expects extensive error for many-body systems. This growth in error is analogous to that of
the orthogonality catastrophe, and therefore a more local notion of error seems to be needed to study the
quantum-classical correspondence in many-body systems.

Appendix E: Gaussian derivatives and integrals

1. Gaussian derivatives

The Gaussian probability distribution with mean α and covariance matrix σ is

τα,σ(α+ β) =
e−β⊤σ−1β/2

(2π)d
√
detσ

=
1

(2π)d
√
detσ

exp

(
−1

2
βaσ−1

ab β
b

)
(E1)

Let us consider this a real-valued function of any vector β and any invertible matrix σ, including non-
symmetric ones, so that σab and σba are independent variables for the purposes of partial derivatives. How-
ever, at the end we will evaluate these derivatives on the subspace where σ is symmetric. Recalling our
notation ∂c = ∂/∂βc so ∂cβ

a = δ a
c , we have

∂d
(
βaσ−1

ab β
b
)
= σ−1

db β
b + βaσ−1

ad (E2)

∂c∂d
(
βaσ−1

ab β
b
)
= σ−1

dc + σ−1
cd . (E3)

We also deploy the standard [70] matrix derivative identities[71]

∂ detZ

∂y
= (detZ) Tr

[
Z−1 ∂Z

∂y

]
, (E4)

∂Z−1

∂y
= −Z−1 ∂Z

∂y
Z−1 (E5)

for an invertible matrix Z, so in particular

∂ detZ

∂Zab
= (detZ)Z−1

ba , (E6)

∂Z−1
cd

∂Zab
= −Z−1

ca Z
−1
bd . (E7)

Combining these we get

∂a∂bτα,σ(α+ β) = (σ−1
ac β

cσ−1
bd β

d − σ−1
ab )τα,σ(α+ β) = 2

∂

∂σab
τα,σ(α+ β), (E8)

when evaluated for symmetric σ. (As expected, this is singular when σ is non-invertible.) Weyl quantizing
both sides with Opℏ = W−1 gives the corresponding quantum expression ∂a∂bτ̂α,σ = 2 ∂

∂σab
τ̂α,σ.
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2. Gaussian integrals

Here we recall the evaluation of some Gaussian integrals, as can be done with Wick’s theorem. We define
the shorthand:

⟨(β⊤Aβ)⟩σ :=

∫
dβτ0,σ(β)(β

⊤Aβ)

=

∫
dβτα,σ(α+ β)(β⊤Aβ)

=Aab

∫
dβτα,σ(α+ β)βaβb

=Aabσ
ab

=Tr[σA].

(E9)

for any positive semidefinite matrix A. (The covariance matrix σ is also positive semidefinite, of course.)
Likewise, for B and C also positive semidefinite, we have

⟨(β⊤Aβ)(β⊤Bβ)⟩σ :=

∫
dβτα,σ(α+ β)(β⊤Aβ)(β⊤Bβ)

=AabBcd

[
σabσcd + 2σadσbc

]
=Tr[σA] Tr[σB ] + 2Tr[σAσB ]

(E10)

and

⟨(β⊤Aβ)(β⊤Bβ)(β⊤Cβ)⟩σ :=

∫
dβτα,σ(α+ β)(β⊤Aβ)(β⊤Bβ)(β⊤Cβ)

=AabBcdCef

[
σabσcdσef + 2

(
σabσcfσde + σafσcdσbe + σadσbcσef

)
+ 4

(
σadσbeσcf + σafσbcσde

) ]
=Tr[σA] Tr[σB ] Tr[σC ] + 2Tr[σA] Tr[σBσC ] + 2Tr[σB ] Tr[σCσA]

+ 2Tr[σC ] Tr[σBσA] + 8Tr[σAσBσC ].

(E11)

Appendix F: Applications to physical examples

Previous studies have estimated the strength of the environment-induced diffusion for real physical systems:
a grain of dust being decohered by the cosmic microwave background, a large molecule being decohered by
sunlight, and so on.
We encounter a difficulty when plugging these physical estimates into our bound. In many naturally

occurring interactions between system and bath, only the position variables are coupled to the bath, with
no direct coupling to momentum. Thus D(x) = ℏ|ℓ|2p = 0 while D(p) = ℏ|ℓx|2 ̸= 0, i.e., there is diffusion in
momentum but not position. On the other hand, if we unpack the constants in Eq. (8),

ϵ = tℏ2d
3
2

∥∇3V ∥
(∥∇2V ∥m)

3
4

max

{
1/m

D(x)
,
∥∇2V ∥
D(p)

,
1

ℏ

} 3
2

, (F1)

one can see our bound deteriorates if either D(x) or D(p) become too small. At first glance, this problem may
seem irreparable. The diffusion in position variables, which is missing in most natural models of system-
bath interactions, corresponds to decohering superpositions in the system’s momentum variables. Yet if
superpositions of momentum are allowed to persist, why should we expect classical behavior?
Physically, the remedy is that even if a superposition |ψ1⟩ + |ψ2⟩ of two coherent states with different

momenta but overlapping positions is not immediately decohered by purely positional decoherence, they
will ultimately evolve into a superposition of two states with different positions as well, at which point the
positional decoherence takes effect. Thus heuristically, we can model an effective positional diffusion D(x),eff
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as D(x),eff ∝ D(p) even when D(x) is actually zero. In particular, simple dimensional analysis suggests we
can model D(x),eff as

D(x),eff ∼
D(p)

∥∇2V ∥m
. (F2)

In that case, we ignore the first argument in the min{·} of (F1), or equivalently take D0 = D(p)τH/p
2
H in (6).

We emphasize this substitution is heuristic, though it is justified by work in progress.
With this substitution, we can apply our bound to examples using Table 3.1 of [72], which provides

estimates for the “localization rate” Λ(x) ∼ ℏ−2D(p), quantifying positional decoherence. As an example,

we consider a dust particle with diameter 10µm and mass 10−11 kg decohering in the sunlight, for which
Λ(x) ∼ 1025m−2s−1.

Consider a particle with characteristic energy E ∼ mv2 for characteristic velocity v, and characteristic
length scale s for the variation of the potential. That is, we take ∥∇2V ∥ ∼ Es−2 and ∥∇3V ∥ ∼ Es−3. Then
we have

∥ρ̃(t)− ρ(t)∥Tr ≲ tℏ−1v
7
2mΛ

− 3
2

(x) s
− 9

2 , (F3)

i.e. the bound is useful for time

t ≲ ℏv−
7
2m−1Λ

3
2 s

9
2 . (F4)

For the 10 micron dust particle in sunlight, with characteristic velocity v = 1m/s in a potential varying on
the length scale of s = 1m, the error ∥ρ(t)− ρ̃(t)∥ ≪ 1 is small for three million years.
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