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Spectrally and spatially varying ensembles of emitters embedded into waveguide are ever-present
in both well-established and emerging technologies. If control of collective excitations can be at-
tained, a plethora of coherent quantum dynamics and applications may be realized on-chip in the
scalable paradigm of waveguide quantum electrodynamics (WQED). Here, we demonstrate how
inhomogeneous ensembles embedded into waveguides may be employed as single effective and co-
herent emitters. The symmetric excitation of localized and mescoscopic ensembles benefit from large
collective waveguide coupling, allowing for near-unity and tailorable non-Lorentzian extinction of
waveguide photons overcoming large inhomogeneous broadening. As an initial illustration possible
in currently existing experiments, we demonstrate the classic recreation of the cavity QED (CQED)
paradigm using ensembles of rare-earth ions as coherent mirrors and qubits. This work introduces
coherent ensemble dynamics to WQED and extends the realm to spectrally tailorable emitters.

Introduction. Ensembles of emitters in solid state me-
dia are a valuable resource for shaping light and pro-
cessing information as the matter component of hybrid
optical platforms [1]. Possible long individual coherence
times combined with wide spectral bandwidth [2, 3] of the
inhomogeneous line permit applications from quantum
memories to atomic frequency combs [4, 5]. When col-
lectively addressed, ensembles enjoy large collective cou-
plings to light and can be employed on the mesoscopic
scale as single optical elements [3, 6–9]. Specifically,
ensembles embedded into waveguides benefit from well-
established telecoms technologies [10–13] whilst allowing
for an integrated and scalable optical platform [14, 15].
Despite experimental demonstrations such as potential
quantum memories [5, 16, 17] and atomic frequency
combs [4, 18], on-chip operation in the framework of
waveguide QED [19] remains relatively unexplored the-
oretically in the naturally occurring and experimen-
tally relevant regime when both spectral inhomogene-
ity [20, 21] and finite spatial variation [22] are consid-
ered. In ordered systems of emitters the waveguide QED
paradigm features unique dynamics featuring non-trivial
excitation profiles [23] and many-body states [24–26] en-
abling distinct functionality from CQED, with promise
for photonic state generation [27] and quantum simula-
tion [25]. An analogous realisation in inhomogeneous en-
sembles of solid-state emitters could open the door to a
range of applications benefiting from their unique long
coherence times and broadband nature, whilst exhibit-
ing naturally scalability when compared with ensemble
CQED platforms.

In this work, we establish spatially and spectrally in-
homogeneous ensembles of waveguide-embedded emitters
as candidates for effective and collectively enhanced op-
tical elements in waveguide QED. We present conditions
on spectral and positional inhomogeneity for collective

coherence to emerge [28] and establish the symmetric
bright-state polariton as a effective and coherent emit-
ter excitation. To treat mescoscopic system sizes of 109

emitters, we introduce a method to define collective spins
using bins in both space and frequency, enabling a re-
duction in computational cost and allowing us to demon-
strate the formation of emitter coherence via observations
of broad and near-unit extinction in the transmission
statistics of photons through the waveguide. Interfacing
of multiple such emitters then allows for the realisation
of the WQED paradigm [19] with spectrally tailorable
emitters. As a proof-of-principle we demonstrate the em-
ulation of CQED – including strong coupling – amongst
inhomogeneous ensembles of rare-earth ions in analogy
with the single-emitter case [24, 29]. We show how the
emitter-density threshold required for strong coupling
may be considerably reduced within existing experimen-
tal capabilities by shaping of the inhomogeneous line us-
ing spectral hole burning [30]. Our results suggest that
collective excitations in inhomogeneous ensembles can be
exploited as effective emitters in near-term technologies
within the paradigm of WQED, whilst augmenting this
setting with spectral tailorability to explore new regimes
of collective ensemble interaction beyond CQED.
The model. In this work we consider N two-level emit-
ters that interact with a continuum of waveguide modes
through the standard dipolar light-matter coupling. In
addition to rare-earth ions considered here, the follow-
ing analysis can be applied to systems of hot Doppler-
broadened gases [31], quantum dots [32], and NV cen-
ters [7]. Assuming weak driving, the emitters in the ro-
tating frame experience a distribution of detunings ∆j

with a full-width-at-half-maximum (FWHM) γinh. In the
regime of weak emitter-field coupling, the field within the
waveguide may be traced out to yield the Born-Markov
master equation ˙̂ρS = − i

ℏ [Ĥ, ρ̂S]+ L̂coll[ρ̂S]+ L̂ind[ρ̂S] for
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FIG. 1. Binning and formation of a single effective emitter
(blue) for a localized ensemble of emitters (red).

emitter density matrix ρ̂S . The Hamiltonian and Lin-
bladian generating system dynamics are given through
the standard spin operators for the j-th emitter, σ̂±

j and

σ̂ee
j = (σ̂z

j +1̂)/2, as follows [19] (with {Â, B̂} = ÂB̂+B̂Â
the anticommutator, while R[w] = Re[w] and I[w] =
Im[w] such that w = R[w] + iI[w], respectively):

Ĥ = Ĥem + Ĥdrv +
ℏΓ1D

2

N∑
j,k=1

I[Gj,k]σ̂
+
j σ̂

−
k ,

L̂coll[ρ̂S] =
Γ1D

2

N∑
j,k=1

R[Gj,k]
(
2σ̂−

k ρ̂Sσ̂
+
j − {σ̂+

j σ̂
−
k , ρ̂S}

)
L̂ind[ρ̂S] =

Γ′

2

N∑
j=1

(
2σ̂−

j ρ̂Sσ̂
+
j − {σ̂+

j σ̂
−
j , ρ̂S}

)
(1)

Here the single-body effects are present in the frequency
distribution, Ĥem = ℏ

∑N
j=1 ∆j σ̂

ee
j , a weak coherent driv-

ing Ĥdrv = ℏ
∑

j Ωj(σ̂
+
j +σ−

j ) and individual emitter de-
cay with rate Γ′ [33]. Crucially, the waveguide-mediated
emitter-emitter interactions are subject to infinite-range
interactions through the 1D propagator Gj,k = eiβ|zj,k|,
where zj,k = zj − zk with zj being the position of the
j-th emitter. Γ1D is the single-emitter decay rate into
the waveguide, and β = 2π/λ is the wavenumber of the
(assumed single) waveguided mode with wavelength λ.
To address mesoscopic sizes of N = 109 and beyond in
the general presence of inhomogeneity, we approximate
the spatial-spectral density in the large-number limit as a
decorrelated product of position and frequency densities
such that each individual emitter lies in some designated
frequency bin and position bin (Fig. 1). The symmet-
ric states may then form levels of effective emitters (see

Supplemental Material (SM) [34] for details), under con-
ditions and a procedure that follows.
Treating inhomogeneous broadening for single ensembles.
Assuming that there are n frequency bins and m posi-
tional bins with nm = N , we relabel each spin j with
two indices j → (p, q) such that σ̂ee

p,q and σ̂±
p,q corre-

spond to the emitter in the p-th positional bin and the
q-th frequency bin. Noting from Eq. (1) that only fre-
quencies can distinguish spins in a given position bin, we
consider the regime of weak spin saturation where prod-
uct averages decorrelate ⟨σ̂α

j σ̂
β
l ⟩ ≈ ⟨σ̂α

j ⟩⟨σ̂
β
l ⟩ for j ̸= l and

where excited state population is negligible ⟨σee
j ⟩ ≈ 0 for

all j. This allows us to obtain the equations of motion
for averages • := ⟨•̂⟩:

σ̇−
p,q = i∆p,qσ

−
p,q −

Γ′

2
σ−
p,q −A−

p , (2)

where A−
p is a q-independent linear function of all low-

ering operators containing the interactions from Eq. (1).
For each positional bin p we define a symmetric opera-
tor [35] (purple emitter, Fig. 1),

B̂−
p =

1√
n

n∑
q=1

σ̂−
p,q, (3)

and assuming that frequency distributions ∆p,q are iden-
tical for each p, we find in the steady-state that popula-
tion is determined via the linear-response relation:

B−
p = i

√
nγ−1

inhχ(∆c)A−
p , (4)

For this derivation, we have taken the continuum limit
such that 1

n

∑
l →

∫
d∆′ρ(∆′) for identical spectral den-

sities ρp(∆c) = ρ(∆c) (defined with respect to detun-
ing ∆c from the average of the inhomogeneous line),
and where the ensemble response function is defined

χ(∆c) = γinh
∫ d∆′ρ(∆′)

∆′−∆c−iΓ
′
2

. Steady-state dynamics corre-

spond to that generated by the effective non-Hermitian
Hamiltonian between bright states:

Ĥnh
eff = −inΓ1D

2

∑m
p,p′=1 Gp,p′ B̂+

p B̂−
p′

+
∑m

p=1(γinhχ
−1(∆c)− iΓ

′

2 )B̂
+
p B̂−

p . (5)

Note that the collective bright-state interactions see
an enhancement by n [28, 36] over the single-body
terms, including broadening. For our system of interest,
bright-state and broadening-induced resonance dominate
narrow single-emitter resonances, Γ′ ≪ γinh, NΓ1D, so in
the following analysis we implicitly take Γ′ → 0+.

Transmission statistics. Extending beyond the case
of Lorentzian emitters [37], we obtain the transmission
coefficient through the waveguide:

t(∆c) =

m∏
µ=1

(
γinhχ

−1(∆c) + iΓ′/2

γinhχ−1(∆c) + iΓ′/2 + Λµ

)
, (6)
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FIG. 2. Single-ensemble transmission. (a) Transmission
through ensembles featuring no positional inhomogeneity as
the collective waveguide coupling efficiency NΓ1D/γinh is in-
creased for each of the three prototypical spectral distribu-
tions. The effect of Γ′ is neglected. (b) Transmission profile
for ensembles of N = 109 emitters with γinh/(2π) = 50GHz,
Γ1D/(2π) = Γ′/(2π) = 100Hz. We consider n = 106 fre-
quency bins and m = 103 positional bins, and show for one
realization of random positions on [0, δz].

where Λµ = ωµ + iΓµ/2 are the complex energy eigen-
values of [ inΓ1D

2 Gp,p′ ]pp′ , i.e., the collective symmetric-
state interaction of Eq. (5). Generally, a large |∆c| ≫
γinh expansion yields the shift ∆c − γinhχ

−1(∆c) ∼
−iπ∆2

cρ(∆c)+O(γ2
inh/∆c) at leading order in Γ′. A well-

known consequence [6, 35] is that the effective decay rate
experienced by finite-variance (i.e., sub-Lorentzian) in-
homogeneous lines such that ∆2

cρ(∆c) → 0 for |∆c| → ∞
are Γ′/2-limited for large detuning, and in our case more
precisely (Γ′+Γµ)/2-limited once |∆c| ⪆ γinh. In applica-
tions, a desired response and effective decay-rate may be
reverse-engineered via the relation ρ(∆c) =

1
π∆I [χ(∆c)] .

Coherent extinction. Similarly to the case of single
emitters [29, 38], an inhomogeneous ensemble of emit-
ters may act as a coherent mirror [39, 40] for waveguided
photons when the collective decay process exceeds the
(effective) single-emitter linewidth. Here, the effective
single-emitter linewidth is approximately set by the in-
homogeneous linewidth. As can be seen from Eq. (6),
then for identical positions with m = 1 the condition

Γµ/γinh = NΓ1D/γinh ≫ 1, (7)

yields an appreciable and broad extinction resonance in
the transmission, as can be seen in Fig. 2(b) for the pro-
totypical spectral distributions of FWHM γinh defined in
the SM. This also coincides with the condition for the
right-hand side in Eq. 4 to become appreciable, and es-
tablish significant polarization B−

p . When Eq. (7), the
collective process dominates and the extinction coeffi-
cient is approximately equal to that of reflection [29]. In
addition, establishing of the resonance is accompanied by
an appreciable phase shift of the transmitted photon [41].
The onset of high quality reflectance can be seen to be
advanced over frequency regions by shaping the spectral
distribution using spectral hole burning. This effect can

greatly relax density requirements for observing coher-
ence, and holds up in the presence of positional fluctua-
tions, treated in the following.
Inclusion of positional inhomogeneity. Positional dis-

order on the scale δz ⪅ 0.1λ can be achieved in a vari-
ety of optical platforms [42–44], and via ion-implantation
specifically in the case of rare-earth ions [43]. In addi-
tion, well-below subwavelength confinement is available
to microwave-based platforms [7] and so we here restrict
our analysis to the perturbative regime δz ≪ λ. When
small positional inhomogeneity δz along the waveguide is
present, formerly inaccessible resonances attain a finite
linewidth [19, 45], which results in a cascade of narrow
lines within the center of the broad resonances observed
in Fig. 2. In order to maintain coherent mirror-like op-
eration, the broad resonance of the bright state should
be maintained such that any perturbation is limited to
relatively narrow transparency windows. The broadest
resonances feature slowly varying polarizations over the
length of the ensemble, and so remain relatively unper-
turbed with respect for positional fluctuations for large
N. Assuming a uniform density on [0, δz], the approxi-
mate bin-independent eigenvalues of the brightest states
are derived in Appendix to order O(ν2) for ν = βδz ≪ 1:

Λ0 = NΓ1D

2

(
−ν

3 + i
[
1− 4ν2

45

])
, (8)

Λµ = NΓ1D

2

(
2ν

µ2π2 + i 8ν2

µ4π4

)
(1 ≤ µ ≪ m), (9)

and we see that the effect of increasing m (equivalently
N) is to introduce increasingly narrow resonances [45]
that do not concern us here. The N -independent con-
dition on linewidths, I[Λ1] ⪅ I[Λ0], for coherent single-
mode operation is then obtained,

δz ⪅ 2λ/5, (10)

which is well satisfied by δz = 0.1λ already preserving the
broad resonance, as seen in Fig. 2(b). Finally, for a sin-
gle spatially localized ensemble one may form the bright
state (blue emitter, Fig. 1) operator B̂− = 1√

m

∑m
p=1 B̂−

p .

When multiple ensembles are present, expectations of
such bright state operators alone well approximate dy-
namics on sufficiently short time scales. As detailed in
Appendix , a total approximate rate of loss of the bright
state to the narrow resonances is given by NΓ1D

2

(
δz
λ

)
,

which is at least an order of magnitude smaller than the
bright-state processes for our considered δz. In contrast
to inhomogeneous broadening, the collective resonances
due to positional inhomogeneity are enhanced with in-
creasing N , and so the demand (10) must be respected.
When this is the case, coherent processes may occur be-
tween ensembles, as demonstrated in the following.
Emulation of CQED. The combined use of localized

emitter ensembles satisfying the collective threshold con-
dition (7) and the single-moded condition (10) can em-
ulate two mirrors and a qubit placed along the waveg-
uide, forming an in situ optical cavity [24]. Assuming
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FIG. 3. Strong coupling in the effective atom-cavity system. (a) Development of the peak splitting for side-illumination
with increasing emitter number NC in the cavity ensembles. We take waveguide decay rates as in Fig. 2, and broadening
γinh/(2π) = 10GHz, with Γ1D/(2π) = Γ′/(2π) = 100Hz. (b) Transmission spectrum for a single realization of random positions
for fluctuations δz = 0.1λ, γinh/(2π) = 10GHz, 2NQ = NC = 4 × 108. The shaded regions give the bounds of transmission
obtained over 100 realizations of random positions. The qubit ensemble is additionally detuned (in practice can be achieved by,
e.g., surface acoustic waves [3]) to counter the mirror-qubit detuning that arises according to according to Eq. 8, which results
in an effective cavity-qubit detuning and ordinarily asymmetric peaks. (c) Loss of Rabi oscillations of the qubit population
P (t) with increasing positional fluctuations for Lorenztian spectral broadening. A single realization of positions is chosen in
each case. Parameters are identical to (b), but we here choose 2NQ = NC = 1× 109.

NQ emitters in a designated qubit ensemble with bright
state polarization B−

Q, and NC emitters each in two des-
ignated cavity mirror ensembles, then when the mirror
ensembles are spaced λ/2+ rλ (integer r) with the qubit
ensemble at their midpoint, the qubit interaction with
the photonic component of the eigenstates formed by
the mirrors is Hamiltonian. For illustration, assuming
Lorentzian broadening and forming the cavity dark state
polarization B̂−

C as the bright state of the mirror bright
states, the equations of motion describing CQED are ob-
tained as initially proposed in [29]:

Ḃ−
Q = [i∆c − (

NQΓ1D+γinh

2 )]B−
Q + i

√
2NQNC

Γ1D

2 B−
C ,(11)

Ḃ−
C = (i∆c − γinh

2 )B−
C + i

√
2NQNC

Γ1D

2 B−
Q. (12)

The analogy to CQED is made with qubit decay rate γ,
cavity decay rate κ, and coupling g respectively:

γ = NQΓ1D + γinh κ = γinh, g =

√
NQNC

2
Γ1D.

Notably, for Nq ∼ Nc ∼ N we have additionally have
g ∼ NΓ1D, a square root enhancement in N over con-
ventional cavities [35]. In the strong-coupling regime,
the two eigenvalues

Λ± = ±Γ1D

2

√
8NQNC −N2

Q − i

(
NQΓ1D

4
+

γinh
2

)
,(13)

are present. For finite-variance mirror-symmetric inho-
mogeneous lines one may approximate decay rates about
the peaks as γinh → πR[Λ±]2ρ (R[Λ±]) , which limits
γ and κ to NQΓ1D (into the waveguide) and 0 respec-
tively. Whilst the generic conditions to be well within the

strong coupling regime approximately read
√
NCNQ ≫

γinh

Γ1D
, 2NC ≥ NQ, there is then significant variation in

the onset of peak visibility for differing spectral distribu-
tions. Applying a side illumination scheme to avoid ex-
citing the broad mirror resonance [24], this effect can be
observed in Fig. 3(a), first considering the case of δz = 0.
For conservative parameters γinh/(2π) = 10GHz, and
Γ1D/(2π) = Γ′/(2π) = 100Hz corresponding to the opti-
cal Erbium transition Y1 → Z1 implanted into YSO [3] or
grown in rare-earth oxides [4, 46], peaks are established
in the Gaussian and uniform case for individual ensemble
numbers as low as N = 108, which for emitters localized
in a region of size δz × λ2 = 0.1λ × λ2 = 0.1λ3 cor-
responds to doping concentrations below the achievable
1022cm−3 [46]. Reintroducing positional inhomogeneity,
we see in Fig. 3(b) that for the experimentally accessi-
ble regime of δz ≈ 0.1λ, high visibility peaks are still
retained, with the effect of finite spatial extent limited
to narrow central resonances. The corresponding Rabi
oscillations of the bright state population in Fig. 3(c)
are preserved for regimes of smaller spatial extent even
in the lowest-fidelity Lorentzian case and illustrate co-
herent population transfer between the two modes. Note
that by using, e.g., photonic crystal waveguides [47, 48] or
plasmonics [49] to enhance Γ1D, the density requirements
for constant peak visibility can be reduced by 1-2 orders
of magnitude, or peak visibility enhanced for constant
N . With optical wavelengths on the order of µm and
possible waveguide lengths on the order of mm, the lo-
cal density within a single ensemble can be reduced even
further orders of magnitude by employing commensurate
ensembles along the waveguide as a single unit [29]. For
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microwave transitions the long wavelength allows orders
of magnitude more emitters in a given wavelength, and
also offers a promising platform for observing strong cou-
pling.

Conclusion. In this work we demonstrated that the
bright states of ensembles of spatially localized and in-
homogeneously broadened rare-earth ions can be em-
ployed as coherent and spectrally tailorable emitters in
the paradigm of waveguide QED and in currently ac-
cessible and near-term experimental platforms. When
sufficiently localized in space and when the linewidth
of a collective resonance exceeds that of inhomogeneous
broadening, the single resonance becomes accessible in
the spectrum, allowing for the formation of coherent op-
tical elements. As such, the strong coupling regime of
CQED can be readily accessed with low emitter concen-
trations when spectral hole burning is additionally em-
ployed. These results suggest the potential of the inho-
mogeneous ensembles for coherent dynamics in optical
waveguides beyond extended bulk applications, and ad-
vance the theory of mesoscopic systems of optical emit-
ters.
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(s = l) distributions with a FWHM γinh respectively as
follows:

Wg(∆c) = −
√
π

iγinh/2

√
ln2

2
erfcx

(√
ln2

2

∆c + iΓ′/2

iγinh/2

)
(14)

Wu(∆c) = − 1

iγinh/2
arctan

(
iγinh/2

∆c + iΓ′/2

)
(15)

Wl(∆c) = − 1

∆c + i(Γ′ + γinh)/2
, (16)

where the densities read

ρg(∆c) =
1

(γinh/
√
ln2)

√
π
e−∆2

c/(γinh/
√
ln2)2 (17)

ρu(∆c) =
χ[−γinh/2,γinh/2]

γinh
(18)

ρl(∆c) =
(γinh/2)

π

1

(γinh/2)2 +∆2
c

, (19)

with the indicator function χ[a,b] taking value 1 in [a, b]
and 0 otherwise.

Eigenvalue approximation

To obtain analytical expressions we consider the distri-
butions of atoms uniform on [0, δz] and with equal spac-
ing δz/M . At the expense of neglecting to treat states
with smaller decay rates, the eigenvalues of the pseudo-
random, equally spaced system can well reproduce be-
haviour on the shorter time scales associated with the
brighter states even in the fully random system. This
is due to the fact that the brightest states are associ-
ated with long-wavelength spin waves, which are negli-
gibly perturbed by the positional fluctuations on much
shorter length scales. Assuming emitter density is high
(i.e., many emitters in a given wavelength), we move to
the continuum limit:

iNΓ1D

2

∫ δz

0

dz′

δz
exp(iβ|z − z′|)σk(z

′) = λkσk(z), (20)

which can be transformed to the unit interval:

iNΓ1D

2

∫ 1

0

dZ ′ exp(iν|Z − Z ′|)σ̃k(Z
′) = λkσ̃k(Z), (21)

where Z = z/(δz) and σ(z) is the spin profile at contin-
uum position z, and σ̃l(Z) = σk(z). Whilst the uniform

distribution is considered here, the corresponding expres-
sion for general distribution immediately shows that in
the high density limit the existing eigenvalues of the sys-
tem are unchanging up to a scaling with m, regardless of
the underlying positional distribution. Similarly to the
discrete case [50], the spin profile

σ̃µ(Z) = Nµ

(
eikµZ + eiϕµe−ikµZ

)
, (22)

yields the eigenvalue

Λµ =
iNΓ1D

2

2iν

ν2 − k2µ
(23)

subject to the consistency condition(
kµ + ν

kµ − ν

)2

= e2ikµ = e2iϕµ , (24)

for normalization factor Nµ, which holds for arbitrary
ensemble extent in the high density limit. The limit ν = 0
yields kµ = µπ, µ = 0, 1, . . ., corresponding tom−1 states
with zero decay rate and the single bright state (for which
a more careful limiting argument is required). Assuming
ν ≪ π, one may perturbatively solve (24) for µ ≥ 1 to
yield the approximate spin wavenumbers

kµ = µπ − 2i

µπ
ν +

4

µ3π3
ν2 +O(ν3), (25)

whilst for µ = 0, kµ scales as
√
ν. One can carry out

the perturbation analysis or just note the trace property∑∞
µ=0 Λµ = iNΓ1D

2 . Inserting kµ into the eigenvalue and

using this relation (and standard identities for
∑∞

s=1
1
s2 ,

etc.,) gives the eigenvalues in presented in the main text.

Perturbative coupling to dark states

In the limit ν → 0, the spin profiles tend to σ̃kµ
(Z) =

(1/Nµ) cos(µπZ) for µ = 0, 1, . . . . The coupling between
the even and odd µ states are zero due to parity consid-
erations, but the coupling of the bright state to even-µ
dark states is given by

i
√
2mnΓ1D

2

∫
[0,1]2

dZdZ ′ cos(µπZ) exp(iν|Z − Z ′|) =
mnΓ1D

2
√
2µ2π2

ν. (26)

A rudimentary rate of loss to decoherence of the bright-
state is then given as the sum of these rates for µ = 1, . . .,
i.e., NΓ1D

12
√
2
ν which yields the result of the main text upon

replacement of ν and approximation π/(3
√
2) ≈ 1.
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