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Abstract: In situ tunable photonic filters and memories are important for emerging quantum
and classical optics technologies. However, most photonic devices have fixed resonances
and bandwidths determined at the time of fabrication. Here we present an in situ tunable
optical resonator on thin-film lithium niobate. By leveraging the linear electro-optic effect, we
demonstrate widely tunable control over resonator frequency and bandwidth on two different
devices. We observe up to ∼ 50× tuning in the bandwidth over ∼ 50 V with linear frequency
control of ∼ 230 MHz/V. We also develop a closed-form model predicting the tuning behavior
of the device. This paves the way for rapid phase and amplitude control over light transmitted
through our device.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Tunable couplers for electromagnetic waves have been proposed and demonstrated for a variety of
applications in many regimes, including microwave systems for cavity dumping, catch-and-release,
and photon pulse shaping [1–3], as well as optical systems for spectral compression, pulse storage
and shaping, and optical quantum gates [4–11]. These applications benefit from high-speed
amplitude and phase control over the light in the cavity, which are governed respectively by
the cavity bandwidth and resonant frequency. Whereas previous demonstrations of tunable
resonators on silicon rely on thermo-optic phase shifters or charge injection schemes [12,13],
more recent demonstrations on thin-film lithium niobate (TFLN) leverage the linear electro-optic
effect (“Pockel’s” effect) to achieve faster phase modulation with low loss [14, 15].

Here, we build on this TFLN platform, demonstrating simultaneous and arbitrary control of
both the resonant frequency and bandwidth of optical resonator modes. This dual control is
necessary for achieving arbitrary phase and amplitude control over light transmitted through the
device. We also derive a closed-form model describing the bandwidth and detuning behavior as
a function of the applied voltage. This model is important to calibrate device performance and
model its behavior in pulse shaping applications.

2. Results

2.1. Device Geometry and Operation

Our device comprises a resonator with an output waveguide that incorporates phase-sensitive
feedback to tune the coupling rate. It consists of a TFLN ridge-slab waveguide and racetrack
resonator atop a sapphire handle. A similar device to those measured in this work is pictured in
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Fig. 1. Device geometry and operation. (a) Schematic of the device. Light enters from
the left and can couple into the racetrack resonator at points “1” and “2.” Red and blue
coloring represent two independent paths the light can take, with purple corresponding
to the light in both paths overlapping. Gold represents electrodes. The light can
accumulate a different phase 𝜙1 or 𝜙2 in each path. (b) An alternative, free-space
optics schematic of the system. Black lines are mirrors, and grey lines are tunable
mirrors. Two cavities are formed by the light oscillating in the broad ring and the light
in the small cavity. Interference between the light in both cavities varies the coupling
in and out of the smaller cavity. (c) Optical microscope image of a similar device,
representative of the devices measured in this paper.

Fig.1c. The ridge waveguide is ∼ 1.2 𝜇m wide, ∼ 300 nm tall, and rests atop a ∼ 200 nm-thick
slab layer. It is designed for single-mode operation at telecommunications wavelengths. We
fabricate our device following the techniques developed in [16]; waveguides are patterned via
an HSQ hardmask, exposed with electron-beam lithography (JEOL JBX-6300FS), and etched
using argon ion milling. We pattern Ti:Au electrodes via photolithography and lift-off. Lastly,
we make on-chip wirebonds to ensure proper polarity between the electrodes. The electrodes and
photonic device are positioned in order to align the applied electric field with the TFLN crystal
z-axis, thereby taking advantage of the large 𝑑33 electro-optic coefficient of LN [17].

The racetrack resonator is coupled at two points to the feedback waveguide (Fig.1a). Each
coupling point acts as a beam splitter. At the first coupling point, the light splits into two paths;
one path consists of the bottom half of the racetrack resonator, while the other consists of the
feedback waveguide. The electrodes are positioned both across the racetrack resonator and
the feedback waveguide, with independent voltage control over the bias applied to each set of
electrodes. In each path, the light accumulates a voltage-dependent phase shift,

𝜙𝑖 (𝜔;𝑉𝑖) = 𝛽𝑉,𝑖 (𝜔;𝑉𝑖)𝐿𝑖 . (1)

Here, 𝑖 refers to either the first (racetrack) or second (waveguide) path, and 𝛽𝑉,𝑖 (𝜔;𝑉) is the
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voltage- and frequency-dependent optical propagation constant in each path for a given mode. At
the second coupling point, the light in both paths recombines with a phase differenceΔ𝜙 = 𝜙2−𝜙1.
If the light between the two paths is exactly in-phase (Δ𝜙 = 0), the interference is constructive
and coupling between the racetrack and the waveguide is enhanced. This appears as a broadening
in the mode’s linewidth. If the light is perfectly out of phase (Δ𝜙 = ±𝜋), the interference
is destructive, and the racetrack is completely decoupled from the waveguide. The voltage
thus controls the resonator bandwidth. This coupling can be thought of as an Mach-Zehnder
Interferometer (MZI) with an output port looped back to an input to form a resonator.

2.2. Measurement

We measure our device using the apparatus schematically depicted in Fig.2a. A laser is split
into two arms. One passes through the optical device, whereas the other passes through an
off-chip MZI for the purpose of calibrating the wavelength axis of the device spectrum (see
supplemental section S2). We vary the constant voltage bias across the device electrodes and
record the transmission spectrum for each voltage in different bias configurations. Fig.2b depicts
one such spectrum. In this spectrum, we observe transmission dips corresponding to resonant
frequencies of the racetrack. The dip contrast changes with wavelength across the spectrum,
corresponding to coupling differences of the modes. In this case, with fixed voltage bias, the
change in coupling can be attributed to each mode having a different propagation constant 𝛽,
due to changing the mode wavelength, and therefore a different phase difference accumulated
in the feedback region of the device. Fig.2c presents the evolution of a single mode from this
spectrum as the applied voltage is varied for a particular configuration. It can be seen that this
mode undergoes a frequency shift, as well as bandwidth tuning from very under-coupled, through
critical coupling, to very over-coupled.

In order to calibrate the performance of our device and to demonstrate independent bandwidth
and frequency tunability, we repeat these transmission measurements while varying the voltages
on the electrodes. First, we apply a voltage only across the feedback waveguide. For each voltage,
we fit a Fano resonance to a single mode [18]. We define “bandwidth,” 𝜅(𝑉), as the bandwidth
parameter of the Fano lineshape, which corresponds to the 3 dB bandwidth of a symmetric Fano
(i.e., full-width half-maximum of a Lorentzian). We plot in Fig. 3 the “detuning,” Δ(𝜔), between
the mode at the current voltage bias and its frequency under zero applied voltage, as well as the
bandwidth. Both the bandwidth and detuning exhibit near-sinusoidal oscillations on the order of
a few GHz, with a bandwidth extinction ratio (defined as the ratio of maximum bandwidth over
minimum bandwidth) of ∼ 20.

Next, we apply a voltage only to the racetrack electrodes. We again observe near-sinusoidal
oscillation in both bandwidth and detuning, but we also see large linear detuning proportional
to the applied voltage (Fig. 2(b,bot)). From this linear fit, we infer the DC electro-optic
tuning rate, 𝑔𝐸𝑂/2𝜋 ≈ 640 MHz/V. We also note that the oscillation in bandwidth in this
case arises predominantly from the shifting resonant wavelength in the device. That is, as the
resonance frequency of a mode is shifted, its propagation constant varies, thereby altering the
phase-difference the mode accumulates between the racetrack and feedback waveguide.

Table 1 presents the bandwidth extinction ratios and EO tuning strength observed for two
different devices (the device measured in Fig. 2, as well as that presented in supplemental
section S1). We observe that the maximum achievable bandwidth scales with the strength of the
single-pass power coupling at each racetrack-waveguide coupling point (denoted as “𝑟”). This
coupling strength can be increased by making the fabricated racetrack-to-waveguide gap smaller.
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Fig. 2. Measurement Apparatus and Optical Transmission. (a) Simplified schematic of
our measurement setup. The input laser wavelength is swept across multiple resonances
of the device. Two remotely controlled voltage sources are used to simultaneously apply
static voltage bias to either the waveguide or racetrack electrodes. (b) An example of a
normalized transmission spectrum of the device. In this case, a bias voltage of 22 V is
applied to the racetrack electrodes, while a bias of -22 V is applied to the waveguide
electrode. The red arrow indicates a particular mode at ∼ 1603.6 nm, which we track in
(c). (c). Overlaid normalized transmission curves for the mode indicated in (b), plotted
for every two volts from 22 V to 42 V. The color indicates the magnitude of voltage.
The same magnitude but opposite sign is applied to the waveguide electrode versus the
racetrack electrodes.
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Device Number Feedback Length (mm) 𝑟 (%) 𝜅max/𝜅min |𝑔EO,DC |/2𝜋 (MHz/V)

1 2 6.0 20.2 337

2 1.5 14.6 52.2 232

Table 1. Feedback length is the length of the interferometric waveguide between
coupling points, as specified in our device CAD. The term 𝑟 corresponds to the power
coupling across each coupling point, as fit by our model. Importantly, in our model,
this term also includes propagation loss factors, and as reported here, assumes no
propagation loss. It is therefore a lower-bound on the coupling strength as fit by
our model (see supplement section S4). The bandwidth extinction ratio is given by
𝜅max/𝜅min as observed in experiment. For device 2, we could not measure the maximum
bandwidth, and the fit yields an even greater inferred extinction ratio than that reported
here. The linear 𝑔EO,DC is inferred from fitting a linear background to the detuning fit
of the ring bias calibration, and here is reported for a single electrode on the racetrack.
That is, the total detuning of the mode in device 1 is 640 MHz/V, because it has two
electrodes on the racetrack (whereas device 2 has only one electrode; see supplement
section S1).

2.3. Fitting to a Model

In order to fit the tuning curves in Figs. 2, we use scattering matrix theory to derive a full model
of the device transmission (see supplemental section S3). This transmission is given by:

𝑆21 =

����� 𝑡1𝑡2𝑒𝑖𝜙𝑤 (𝜔;𝑉𝑤 ) − 𝑟1𝑟2𝑒
𝑖𝜙𝑟 (𝜔;𝑉𝑟 ) − (𝑟2

1 + 𝑡21) (𝑟
2
2 + 𝑡22)𝑒

𝑖 (2𝜙𝑟 (𝜔;𝑉𝑟 )+𝜙𝑤 (𝜔;𝑉𝑤 ) )

1 − 𝑡1𝑡2𝑒𝑖2𝜙𝑟 (𝜔;𝑉𝑟 ) + 𝑟1𝑟2𝑒𝑖 (𝜙𝑟 (𝜔;𝑉𝑟 )+𝜙𝑤 (𝜔;𝑉𝑤 ) )

�����2 (2)

In equation 10, 𝑟𝑖 (𝑡𝑖) is the amplitude cross-coupling (transmission) coefficient at each coupling
point, 𝑖. In the case of lossless coupling, (𝑟2

𝑖
+ 𝑡2

𝑖
) = 1. The phase 𝜙𝑟 (𝜔;𝑉𝑟 ) corresponds to

the phase accumulated in a single half of the racetrack resonator (i.e., the phase accumulated
between the coupling points in the racetrack), and 𝜙𝑤 (𝜔;𝑉𝑤) is the phase accumulated in the
feedback waveguide between the coupling points. Each accumulated phase is in general complex
and is given by equation 1, where 𝛽(𝜔;𝑉), the complex propagation constant, accounts for both
the resonant frequency as well as propagation loss.

The poles of this transfer function correspond to the complex resonances of the system and
therefore contain information about both the frequency and bandwidth of each resonance. We
solve for the poles by Taylor expanding the denominator close to each resonant frequency, around
a frequency 𝜔0, and set it equal to zero. We make the assumption that higher-order phase
derivatives are negligible (𝛿𝑛𝜙𝑖/𝛿𝜔𝑛 ≪ (𝛿𝜙𝑖/𝛿𝜔)𝑛). This loosely corresponds to the assumption
that the magnitude of the group velocity dispersion is much less than the magnitude of the inverse
group velocity squared ((𝛿2𝛽/𝛿𝜔2) ≪ (𝛿𝛽/𝛿𝜔)2 𝐿). We also assume that the voltage-dependent
portion of the phase is not frequency-dependent close to 𝜔0. In this regime, we arrive at the
following form for the expansion (see supplemental section S3). We omit the argument labels of
the phases (𝜙𝑖 (𝜔0;𝑉𝑖) → 𝜙𝑖) for clarity:

𝑓 (𝜔) ≈ 1 +
∞∑︁
𝑛=0

1
𝑛!

[
𝐴

(
𝑖(𝐿𝑤 + 𝐿𝑟 )

𝑣𝑔

)𝑛
𝑒𝑖 (𝜙𝑤+𝜙𝑟 ) − 𝐵

(
𝑖2𝐿𝑟

𝑣𝑔

)𝑛
𝑒𝑖2𝜙𝑟

]
𝜁𝑛 (𝜔) ≡ 0 (3)

In the above, we have factored propagation losses, 𝛾𝑖 (the complex component of each phase
𝜙𝑖 = 𝜙𝑖 (𝜔0)) and the amplitude coupling coefficients, 𝑡𝑖 , 𝑟𝑖 into the coefficients 𝐴 = 𝑟1𝑟2𝛾𝑤𝛾𝑟
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Fig. 3. Independent Electrode Bias Calibration. (a) Tuning behavior of the bandwidth
(top) and mode detuning (bot) as a function of voltage applied to the waveguide
electrode. The inset schematically depicts the device and where the voltage is applied.
Blue datapoints represent data with errorbars, and the red line is a fit of our model
to the data, weighted by the errorbars. (b) Tuning behavior of the bandwidth (top)
and mode detuning (bot) as a function of voltage applied to the racetrack electrode.
The inset schematically depicts the device and where the voltage is applied. For this
particular device, however, we have an additional racetrack electrode positioned on the
upper straight-length of the racetrack. The applied voltage is equivalent across both
electrodes. Blue datapoints represent data with errorbars, and the red line is a fit of our
model to the data, weighted by the errorbars. Note the large linear detuning component,
indicated by the overlaid black dashed line.

and 𝐵 = 𝑡1𝑡2𝛾
2
𝑟 . We also define the length of half the racetrack to be 𝐿𝑟 and the length of the

interferometric waveguide between coupling points to be 𝐿𝑤 . 𝑣𝑔 is the group velocity of the
mode, which is taken here to be equivalent in each part of the device.

We then solve this expression to first order to find the complex pole frequency 𝜔𝑝 , such that
the complex detuning, 𝜁 (𝜔𝑝) = 𝜔𝑝 − 𝜔0, from a frequency close to the zero-voltage resonance
𝜔0, results in 𝑓 (𝜔𝑝) = 0:

𝜁 (𝜔𝑝) ≡ 𝜔𝑝 − 𝜔0 = − 1 + 𝐴𝑒𝑖 (𝜙𝑤+𝜙𝑟 ) − 𝐵𝑒𝑖2𝜙𝑟

𝐴

(
𝑖 (𝐿𝑤+𝐿𝑟 )

𝑣𝑔

)
𝑒𝑖 (𝜙𝑤+𝜙𝑟 ) − 𝐵

(
𝑖2𝐿𝑟

𝑣𝑔

)
𝑒𝑖2𝜙𝑟

(4)

In this way, we obtain the complex pole 𝜔𝑝 with real and imaginary parts representing the
detuning from 𝜔0 and half of the linewidth 𝜅. The full model, its fit parameters, and additional
details on the fitting procedure are presented in supplemental section S4. The minimum of the
bandwidth fit corresponds to the completely decoupled resonant linewidth (𝜅𝑖), whereas the
maximum corresponds to the maximally coupled linewidth.
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Fig. 4. Arbitrary bandwidth and frequency control. (a) Simulations of the expected
bandwidth (left, 𝜅) and detuning (right, Δ) of the 𝜆 ∼ 1603.6 nm resonance as a function
of applied voltage across the racetrack (y-axis) and waveguide (x-axis). The simulation
consists of the predictions from our closed form model, using the results of the fits in
Fig. 3. The dashed black line indicates the voltages over which we measure actual
data in (b). (b) Comparison of measured data (blue datapoints) and prediction from
our model (red line) for a “dual bias” configuration. The stars indicate predictions for
the same voltage combinations as those used for the measurement (blue datapoints).
We plot the fit bandwidth against detuning of the mode for each applied voltage. In
this case, equal magnitude voltage is applied to both the racetrack electrodes and the
waveguide electrode, but with opposite polarity. Error bars indicate a 10% change in
the fit error of a Fano fit applied to the resonance from which we extract bandwidth
and resonant frequency. The detuning is measured relative to the zero-voltage resonant
frequency. In many cases, the error bars are so small they are blocked by the plotted
datapoint.
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2.4. Arbitrary Bandwidth and Frequency Control

In order to achieve arbitrary control over bandwidth and frequency of the mode, we can apply
bias simultaneously to both the waveguide and racetrack electrodes. We predict the behavior
of the device by feeding the fit parameters from Figs. 2 into our model, eqs. 19, S15-17, and
simulating the expected bandwidth and detuning of the mode as functions of the applied racetrack
and waveguide voltages. The full list of parameters for the model are presented in supplemental
section S4. The simulated results are presented in Fig. 4. As expected, we observe a periodic
modulation of both the bandwidth and detuning with voltage. For fixed waveguide voltage but
varied racetrack voltage (i.e., a vertical slice in Fig. 4(a)), we observe a strong linear detuning
in the resonant frequency and a modulation in bandwidth. For a fixed racetrack voltage but
varied waveguide voltage (i.e., a horizontal slice), we observe complete modulation between
maximum and minimum coupling, as well as a modulation in detuning. Therefore, by varying
the applied voltages, we can access any bandwidth and frequency within this simulated 2D
space. Furthermore, we can compensate for any undesired detuning modulation arising from the
waveguide bias with linear frequency shift controlled by the racetrack bias.

We verify this simulated result experimentally by applying voltages corresponding to the
dashed diagonal lines in Fig. 4(a). We apply voltages of equal magnitude but opposite polarity
to the waveguide and racetrack electrodes. Sweeping this voltage from 22 V to 42 V, we take
repeated transmission measurements and plot the bandwidth versus detuning of the 1603.6 nm
mode for each voltage (Fig. 4(b)). We observe a close match between our measured device
behavior and the simulated predictions from Fig. 4(a).

3. Discussion

3.1. Experimental Considerations

Overall, we have demonstrated independently tunable control over both the resonant frequencies
and bandwidths of modes of an integrated optical resonator. The achievable frequencies are
limited only by how much bias voltage can be applied to the racetrack. The required voltage for a
desired phase shift can be reduced by making the straight lengths of the racetrack (and therefore
the electrodes) much longer, and also by making the FSR of the racetrack shorter (so that one
could operate on a different mode to achieve a frequency change). The maximum bandwidth
achievable in this device is limited by the amount of power exchange between the racetrack and
the waveguide at each coupling point. We could increase coupling in the future by either reducing
the waveguide-to-racetrack coupling gap or moving to longer coupling regions, as in directional
or pulley couplers.

Furthermore, when fabricating the device, the physical symmetry of the two coupling points
is important for ensuring the maximum bandwidth extinction ratio. If one coupler allows for
more power transfer than the other, this will appear as a loss channel on the racetrack resonator,
increasing the minimum resolvable bandwidth in the system (see supplemental section S6). This
is similar to the behavior in an MZI in which asymmetric couplers would cause incomplete
extinction of the light in each arm.

In the device exhibited in this work, our wavelength calibration is also tricky. The MZI we
used at the time of measurement has an FSR of approximately 7.65 GHz, which is much larger
than our minimum resonance bandwidth. By calibrating to the peaks, valleys, and zero-crossings
of the MZI, we are able to obtain wavelength references at every ∼ 1.9 GHz, and we interpolate
the wavelengths in between. For our supplemental device 2, we used an MZI with a much
narrower FSR (∼ 325 MHz) and a much more accurate calibration scheme. Both calibration
algorithms work best with a smooth MZI transmisison. Our MZI transmission data features
a regular fast ripple, likely coming from some equipment in the laser path. We smooth the
MZI transmission data prior to calibration to eliminate the ripple. Furthermore, the device 1
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transmission is measured through a preamplifier with an active low-pass filter (this filter is turned
off when measuring supplemental device 2). However, we note that this filtering only serves to
increase our minimum-resolvable bandwidth, thereby placing a lower-bound on the bandwidth
extinction ratio we measure.

3.2. Data Considerations

In Fig. 2, we observe near-sinusoidal tuning behavior in bandwidth and detuning. Previous
demonstrations of feedback-coupled waveguides depicted nearly exact sinusoidal tuning behavior
[12, 13]. We attribute the asymmetry we observe in the oscillation to the large length mismatch
between arms of the feedback coupling region. In order to reduce the voltage necessary to achieve
a complete phase shift in the waveguide, we choose to make the waveguide very long. In future
device iterations, we would make the racetrack straight length similarly long, thereby mitigating
the issues of the length mismatch. We investigate this imbalance more thoroughly via simulation
in supplemental section S6.

We also notice asymmetry in the voltage required for a complete period of bandwidth tuning
in Fig. 2(a). That is, the 𝑉𝜋 of our device is greater at low voltages. We attribute this difference
to charge carriers in TFLN. Along these lines, we expect the tuning period to shift with optical
power, which would alter the rate of free carrier generation. We leave further study of these
effects to studies focused on modulators.

Lastly, we note that our modeling required a first-order approximation for the complex poles
in the device to arrive at semi-analytic expressions for the linewidth and detuning. Therefore,
it is only valid in a narrow region around each resonant frequency, and outside of this region,
the model may predict non-physical behavior. An example of this is shown in Fig. 4b. As the
applied voltage grows very large, (e.g., beyond ∼ 120 V), the predicted bandwidth of the mode
can be negative. We believe this stems from the local nature of our Taylor expansion and the fact
that a high voltage leads to large linear detuning of the mode. However, this warrants further
theoretical and experimental investigation.

3.3. Conclusion

We have presented an approach to tune the transmission properties of integrated photonic
resonators. By leveraging the fast electro-optic effect in TFLN, our approach will also enable
optical pulse shaping, and photon catch and release experiments important for emerging quantum
networks. By developing a closed-form model to calibrate and predict tuning behavior of
this device, we pave the way for these experiments and others that require precise models and
repeatable operation.
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Arbitrary electro-optic bandwidth and frequency
control in lithium niobate optical resonators:
Supplementary Information
5. Additional Device Data: Device 2

Here we present the data and tuning curves for device 2. This device is fabricated with a shorter
interferometric waveguide and smaller racetrack-to-waveguide coupling gaps relative to device 1.
Therefore, we expect larger bandwidth tunability on device 2, which we observe. The tuning
curves are depicted in Fig. 5. We fit our model (derived in section 7) using the techniques in
section 8. This same fitting technique is applied to the device 1 data in the main text.

In Fig. 6, we plot the predicted dual-bias tuning behavior, using the parameters returned from
the fits in Fig. 5. We measure and plot the bandwidth versus detuning for modes under fixed
racetrack voltages while sweeping the applied waveguide voltage. Our model reasonably predicts
the expected tuning behavior for these voltage combinations, as shown in Fig. 6(b).
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Fig. 5. Tuning curves for device 2 under applied bias configurations. (a) Bias applied
along waveguide electrode (“electrode 1”). Bandwidth (top) and detuning (bot) versus
applied voltage. Blue is datapoints, red is fit. (b) Bias applied along racetrack electrode
(“electrode 2”). Bandwidth (top) and detuning (bot) versus applied voltage. Blue is
datapoints, red is fit. The black dashed line indicates the linear tuning component of the
resonant frequency from the applied racetrack voltage. Note that unlike device 1, device
2, shown here, only has a single electrode on the racetrack, leading to approximately
half the linear tuning range for the same applied racetrack voltage as compared to device
1. The error bars are determined using the technique discussed in section 8.4.
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Fig. 6. Dual bias modeling and prediction for device 2. (a) Simulated bandwidth and
detuning for applied racetrack and waveguide voltage combinations. The white-outlined
box indicates a particular region of interest, and the dashed white lines indicate the
voltage combinations used for the data in (b). (b) Measured bandwidth versus detuning
of modes for the indicated fixed racetrack voltages of 20 V and 40 V, highlighted by
the dashed white lines in (a). The waveguide voltage is swept from 0 V to −80 V. The
“model” lines indicate predictions of the expected tuning behavior, and stars indicate
the predictions at the same voltage combinations used for the measured data.

6. Wavelength Calibration

We calibrate the wavelength axis of the data in two different ways, depending on the data. For
device 1, we use an MZI with a larger FSR compared to that used for device 2. At the time of
data collection for device 1 we also used a low-pass filter on our preamplifier. The effect of
this filter, however, would be to increase the minimum resolvable bandwidth on the mode, so
our reported values for minimum bandwidth and bandwidth extinction ratio are conservative
values. Given the similarity between this value and the minimum bandwidth for device 2, for
which we used DC coupling to the preamplifier (bypassing any filtering), we suspect the filtering
has little effect on the measured results. The MZI used for measuring device 1 has an FSR of
approximately 7.65 GHz. Using all peaks, valleys, and zero-crossings as calibration points, this
yields a wavelength reference of roughly every 1.91 GHz. This is much larger than the minimum
bandwidth in our system. On the other hand, for device 2, we use an MZI with an FSR of ∼ 325
MHz, which is comparable to the minimum bandwidth measured in the system. For device 2,
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we also utilize all phase information from the MZI, ensuring more accurate overall wavelength
calibration for these datasets.

7. Scattering Matrix Model

7.1. Deriving the scattering matrix

We can represent our device as four connected regions. Each region is described by a two port
scattering matrix. We refer to the top path (the racetrack) as path 1 and the bottom path (the
feedback waveguide) as path 2. The input and output to each segment are given as ®𝑎𝑖, 𝑗 and ®𝑏𝑖, 𝑗
respectively, where 𝑖 indexes the path, and 𝑗 indexes the segment. We define the following four
scattering matrices:

©«
𝑏1,1

𝑏2,1

ª®¬ = ©«
𝑡1 𝑖𝑟1

𝑖𝑟1 𝑡1

ª®¬ ©«
𝑎1,1

𝑎2,1

ª®¬ (5)

©«
𝑏1,2

𝑏2,2

ª®¬ = ©«
𝑒𝑖𝜙𝑟 0

0 𝑒𝑖𝜙𝑤

ª®¬ ©«
𝑎1,2

𝑎2,2

ª®¬ (6)

©«
𝑏1,3

𝑏2,3

ª®¬ = ©«
𝑡2 𝑖𝑟2

𝑖𝑟2 𝑡2

ª®¬ ©«
𝑎1,3

𝑎2,3

ª®¬ (7)

©«
𝑏1,4

𝑏2,4

ª®¬ = ©«
𝑒𝑖𝜙𝑟 0

0 1
ª®¬ ©«

𝑎1,4

𝑎2,4

ª®¬ (8)

In the above, we have the following definitions:

• 𝑡𝑖 (𝑟𝑖): transmission (cross-coupling) at coupling point 𝑖.

• 𝜙𝑟 ≡ 𝜙𝑟 (𝜔;𝑉𝑟 ): phase accumulated in one half of the racetrack.

• 𝜙𝑤 ≡ 𝜙𝑤 (𝜔;𝑉𝑤): phase accumulated between coupling points in the interferometric
waveguide.

We note that the input to each section is equivalent to the output of the previous section; this
corresponds to the condition that 𝑎𝑖, 𝑗+1 = 𝑏𝑖, 𝑗 . We are interested in the output 𝑏1,4, so we write:

©«
𝑏1,4

𝑏2,4

ª®¬ = ©«
𝑒𝑖𝜙𝑟 0

0 1
ª®¬ ©«

𝑡2 𝑖𝑟2

𝑖𝑟2 𝑡2

ª®¬ ©«
𝑒𝑖𝜙𝑟 0

0 𝑒𝑖𝜙𝑤

ª®¬ ©«
𝑡1 𝑖𝑟1

𝑖𝑟1 𝑡1

ª®¬ ©«
𝑎1,1

𝑎2,1

ª®¬ (9)

We assert the resonance condition, 𝑎1,1 = 𝑏1,4, and then solve for 𝑏2,4 under a normalized
input, 𝑎2,1 = 1, thereby obtaining 𝑆21, the transmitted light for waveguide input:

𝑆21 =

����� 𝑡1𝑡2𝑒𝑖𝜙𝑤 (𝜔;𝑉𝑤 ) − 𝑟1𝑟2𝑒
𝑖𝜙𝑟 (𝜔;𝑉𝑟 ) − (𝑟2

1 + 𝑡21) (𝑟
2
2 + 𝑡22)𝑒

𝑖 (2𝜙𝑟 (𝜔;𝑉𝑟 )+𝜙𝑤 (𝜔;𝑉𝑤 ) )

1 − 𝑡1𝑡2𝑒𝑖2𝜙𝑟 (𝜔;𝑉𝑟 ) + 𝑟1𝑟2𝑒𝑖 (𝜙𝑟 (𝜔;𝑉𝑟 )+𝜙𝑤 (𝜔;𝑉𝑤 ) )

�����2 (10)

We simulate eq. 10 to confirm its validity and plot the results in Fig.7.

7.2. Complex pole analysis

As discussed in the main text, we can obtain information about the resonant frequencies and
bandwidths in the system from the complex poles of the transfer function, eq. 10. We label the
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Fig. 7. Simulated transmission through device under no voltage bias. Here we plot a
simulation of the device, using the resulting fit parameters from the tuning curves of
device 1 in the main text. We assume a propagation loss of 5 dB/cm and plot the 𝑆21
(eq. 10) versus wavelength. This simulated spectrum is qualitatively similar to that of
the fabricated device.

denominator as 𝑓 (𝜔) and define 𝐴 = 𝑟1𝑟2, 𝐵 = 𝑡1𝑡2. We also omit the arguments 𝜔 and 𝑉 from
the 𝜙𝑖 terms for clarity:

𝑓 (𝜔) = 1 − 𝐵𝑒𝑖2𝜙𝑟 + 𝐴𝑒𝑖 (𝜙𝑟+𝜙𝑤 ) (11)

Performing a first-order Taylor expansion around the resonant frequency, 𝜔0:

𝑓 (𝜔) = 𝑓 (𝜔0) + 𝑓 ′ (𝜔0) (𝜔 − 𝜔0) +
1
2
𝑓 ′′ (𝜔0) (𝜔 − 𝜔0)2 + ... (12)

Taking the first few derivatives:

𝑓 ′ (𝜔0) = − 𝑖2𝐵𝑒𝑖2𝜙𝑟
𝑑𝜙𝑟

𝑑𝜔
+ 𝑖𝐴𝑒𝑖 (𝜙𝑟+𝜙𝑤 )

(
𝑑𝜙𝑟

𝑑𝜔
+ 𝑑𝜙𝑤

𝑑𝜔

)
𝑓 ′′ (𝜔0) = − (𝑖2)𝐵

[
𝑖2𝑒𝑖2𝜙𝑟

(
𝑑𝜙𝑟

𝑑𝜔

)2
+ 𝑒𝑖2𝜙𝑟

(
𝑑2𝜙𝑟

𝑑𝜔2

)]
+ 𝑖𝐴

[
𝑖𝑒𝑖 (𝜙𝑟+𝜙𝑤 )

(
𝑑𝜙𝑟

𝑑𝜔
+ 𝑑𝜙𝑤

𝑑𝜔

)2
+ 𝑒𝑖 (𝜙𝑟+𝜙𝑤 )

(
𝑑2𝜙𝑟

𝑑𝜔2 + 𝑑2𝜙𝑤

𝑑𝜔2

)] (13)

From the definition for 𝜙𝑖 , we have:

𝜙𝑖 = 𝛽0,𝑖 (𝜔)𝐿𝑖 + Δ𝛽0,𝑖 (𝑉𝑖)𝐿𝑖 (14)

In eq. 14, 𝛽0,𝑖 is the propagation constant in segment 𝑖 under zero applied voltage, and Δ𝛽0,𝑖 (𝑉𝑖)
is the shift in the propagation constant resulting from applied voltage,𝑉𝑖 . We obtain the derivative
(dropping the arguments for clarity):

𝛿𝜙𝑖

𝛿𝜔
=

𝛿𝛽0,𝑖

𝛿𝜔
𝐿 + 𝛿Δ𝛽(𝑉)

𝛿𝜔
𝐿 (15)

We apply the following three assumptions:
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1. Higher-order derivatives of the phase, 𝜙𝑖 , are negligible:

𝛿2𝜙𝑖

𝛿𝜔2 ≪
(
𝛿𝜙𝑖

𝛿𝜔

)2

2. The voltage-dependent change in propagation constant is independent of frequency close
to the resonance, 𝜔0:

𝛿Δ𝛽0,𝑖 (𝑉𝑖)
𝛿𝜔

≈ 0

3. The group velocity, 𝑣𝑔, is approximately equal between the racetrack and waveguide paths:

𝛿𝜔

𝛿𝛽0,𝑟
≈ 𝛿𝜔

𝛿𝛽0,𝑤
≡ 𝑣𝑔

From assumption 2, we define the 𝑛’th derivative of 𝑓 (𝜔) as follows:

𝑓 𝑛 (𝜔0) ≈ −(𝑖2)𝑛𝐵𝑒𝑖2𝜙𝑟

(
𝛿𝜙𝑟

𝛿𝜔

)𝑛
+ (𝑖)𝑛𝐴𝑒𝑖 (𝜙𝑟+𝜙𝑤 )

(
𝛿𝜙𝑟

𝛿𝜔
+ 𝛿𝜙𝑤

𝛿𝜔

)𝑛
(16)

From assumption 1, we can rewrite this:

𝑓 𝑛 (𝜔0) ≈ −(𝑖2)𝑛𝐵𝑒𝑖2𝜙𝑟

(
𝛿𝛽0,𝑟

𝛿𝜔

)𝑛
𝐿𝑛
𝑟 + (𝑖)𝑛𝐴𝑒𝑖 (𝜙𝑟+𝜙𝑤 )

(
𝛿𝛽0,𝑟

𝛿𝜔
𝐿𝑟 +

𝛿𝛽0,𝑤

𝛿𝜔
𝐿𝑤

)𝑛
(17)

Lastly, from applying assumption 3, we can write the Taylor expansion as:

𝑓 (𝜔) ≈ 1 +
∞∑︁
𝑛=0

1
𝑛!

[
𝐴

(
𝑖(𝐿𝑟 + 𝐿𝑤)

𝑣𝑔

)𝑛
𝑒𝑖 (𝜙𝑟+𝜙𝑤 ) − 𝐵

(
𝑖2𝐿𝑟

𝑣𝑔

)𝑛
𝑒𝑖2𝜙𝑟

]
𝜁𝑛 (𝜔) (18)

Here 𝜁 (𝜔) = 𝜔 − 𝜔0 and is in general complex.
We can now solve for the pole, 𝜔𝑝 , which corresponds to setting 𝑓 (𝜔𝑝) = 0 and solving for

𝜁 (𝜔𝑝):

𝜁 (𝜔𝑝) = − 1 + 𝐴𝑒𝑖 (𝜙𝑟+𝜙𝑤 ) − 𝐵𝑒𝑖2𝜙𝑟

𝐴

(
𝑖 (𝐿𝑟+𝐿𝑤 )

𝑣𝑔

)
𝑒𝑖 (𝜙𝑟+𝜙𝑤 ) − 𝐵

(
𝑖2𝐿𝑟

𝑣𝑔

)
𝑒𝑖2𝜙𝑟

(19)

The real and imaginary parts of this expression yield the half-bandwidth and detuning of the
pole from the frequency 𝜔0:

𝜅(𝑉) = −2Im[𝜁 (𝜔𝑝)] (20)
Δ(𝑉) = Re[𝜁 (𝜔𝑝)] (21)

8. Fitting the Model to the Data

We fit the data using the model given by eqs. 19-21 in the following way:

1. Fit the model to the waveguide-bias-only data (main text Fig. 3a, supplemental Fig. 5a.

2. Feed the results from (1) into fitting the racetrack-bias-only data (main text Fig. 3b,
supplemental Fig. 5b).

3. Use the results from (1) and (2) to predict the results under dual arbitrary bias, and compare
to measured data (main text Fig. 4, supplemental Fig. 6).
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We adapt eqs. 19-21 into a 12-parameter model, given as follows with fit parameters 𝑝 𝑗 :

𝜁 (𝜔𝑝;𝑉𝑟 ;𝑉𝑤) = − 1 + 𝑝2𝑒
𝑖 (𝜙𝑟+𝜙𝑤 ) − 𝑝3𝑒

𝑖2𝜙𝑟

𝑝2

(
𝑖 (𝐿𝑟+𝐿𝑤 )

𝑝1

)
𝑒𝑖 (𝜙𝑟+𝜙𝑤 ) − 𝑝3

(
𝑖2𝐿𝑟

𝑝1

)
𝑒𝑖2𝜙𝑟

(22)

𝜅(𝜔𝑝;𝑉𝑟;𝑉𝑤) = 2Im[𝜁 (𝜔𝑝;𝑉𝑟 ;𝑉𝑤)] (23)
Δ(𝜔𝑝;𝑉𝑟;𝑉𝑤) = −Re[𝜁 (𝜔𝑝;𝑉𝑟 ;𝑉𝑤)] + 𝑝11𝑉𝑟 + 𝑝12 (24)

In general, the phase 𝜙𝑖 = 𝛽0,𝑖 (𝜔;𝑉𝑖)𝐿𝑖 is complex, and the imaginary part of the phase yields
propagation loss. We lump this loss term into the prefactors, 𝑝2 and 𝑝3. Eq. 22 also incorporates
the following definitions:

• 𝜙𝑤 = 𝛽𝑉,𝑤 (𝜔;𝑉𝑤)𝐿𝑤 = 𝑝4 + 𝑝6𝑉𝑟 + 𝑝7𝑉𝑤 + 𝑝8𝑉
2
𝑤

• 𝜙𝑟 = 𝛽𝑉,𝑟 (𝜔;𝑉𝑟 )𝐿𝑟 = 𝑝5 + 𝑝9𝑉𝑟 + 𝑝10𝑉
2
𝑟

• 𝑉𝑟 = phase applied to one half of the racetrack

• 𝑉𝑤 = phase applied to the interferometric waveguide

The fit parameters, 𝑝 𝑗 , are defined as:

• 𝑝1 = 𝑣𝑔 = Group velocity, fixed as a parameter and not allowed to vary in the fit. This
group velocity is computed from the 0 V spectrum of each device around the mode of
interest, assuming the length of the racetrack to be that specified in CAD. We disregard
any doublet modes in the spectrum when computing this 𝑣𝑔.

• 𝑝2 = 𝐴 = 𝑟1𝑟2𝛾𝑟𝛾𝑤 = power cross-coupling at each coupling point, multiplied by the
propagation losses in each part of the device, 𝛾𝑖 . If the coupling points are symmetric,
𝑟1 = 𝑟2. 𝐴 is a lower-bound on the power coupling across each point.

• 𝑝3 = 𝐵 = 𝑡1𝑡2𝛾
2
𝑟 = power transmission at each coupling point, multiplied by the total

propagation loss in the racetrack. If the coupling points are symmetric, 𝑡1 = 𝑡2. 𝐵 is a
lower-bound on the transmitted power past each coupling point.

• 𝑝4 = 𝛽0,𝑤 (𝜔0) = the zero-voltage propagation constant of the original resonance frequency,
𝜔0, in the interferometric waveguide.

• 𝑝5 = 𝛽0,𝑟 (𝜔0) = the zero-voltage propagation constant of the original resonance frequency,
𝜔0, in the raceetrack.

• 𝑝6 = the change in the waveguide propagation phase, Δ𝛽0,𝑤𝐿𝑤 that comes from shifting
the resonance frequency by applying voltage to the racetrack.

• 𝑝7 = voltage-dependent shift in the waveguide propagation phase, Δ𝛽0,𝑤𝐿𝑤 , arising from
voltage applied across the waveguide

• 𝑝8 = quadratic shift in the waveguide propagation phase, which we attribute to carrier
screening effects

• 𝑝9 = voltage-dependent shift in the racetrack propagation phase, Δ𝛽0,𝑟𝐿𝑟 arising from
voltage applied across the racetrack

• 𝑝10 = quadratic shift in the racetrack propagation phase, which we attribute to carrier
screening effects
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• 𝑝11 = linear shift in the resonant frequency 𝜔0 arising from voltage applied to the racetrack

• 𝑝12 = linear offset in the resonant frequency 𝜔0

We identify the optimal fit with a particle swarm optimization (PSO), based on the cost
function, 𝐹, given in eq. 25. 𝐹 combines the sum of least-squares errors for both the bandwidth
and detuning data over all voltages, weighted by the average of the upper and lower error bounds
at each data point, 𝜖 . We determine the error bounds using the method in section 8.4. 𝐹 is
defined as:

𝐹 =
∑︁
𝑖

1
𝜖𝑖,B

|𝜅(𝜔,𝑉𝑤 , 𝑉𝑟 ) − 𝑦𝑖,B |2 +
∑︁
𝑖

1
𝜖𝑖,D

|Δ(𝜔,𝑉𝑤 , 𝑉𝑟 ) − 𝑦𝑖,D |2 (25)

In eq. 25, the subscripts 𝐵, 𝐷 refer to the “(B)andwidth” and “(D)etuning” of each datapoint.
Furthermore, device 2 in supplemental section 5 only has a single racetrack electrode (as compared
to the two racetrack electrodes on device 1 in the main text). Therefore, when fitting device 2, we
modify the 2𝜙𝑟 phase term to be 𝜙𝑟 + 𝑝5, thereby only including the voltage-dependent phase
shift on one half of the racetrack.

Parameter Device 1 Device 2

𝑝1 1.336 × 108 m/s 1.319 × 108 m/s

𝑝2 0.0602 0.146

𝑝3 0.9281 0.786

𝑝4 −3.1416 0.97

𝑝5 −3.1081 3.012

𝑝6 −0.0953 −0.0161/V

𝑝7 0.0563/V 0.0340/V

𝑝8 −9.2060 × 10−5/V2 4.6345 × 10−6/V2

𝑝9 0.0015/V 2.0588 × 10−4/V

𝑝10 −1.4253 × 10−5/V2 −2.0102 × 10−6/V2

𝑝11 −674.6 MHz/V −231.6 MHz/V

𝑝12 3.9117 GHz 0.7085 GHz

𝐿𝑟 613.3 𝜇m 613.3 𝜇m

𝐿𝑤 2 mm 1.5 mm

Table 2. Fit parameters from the particle swarm optimization. 𝐿𝑟 is the half-length of
the racetrack, and 𝐿𝑤 is the length of the interferometric waveguide between coupling
points. The linear detuning 𝑝11 yields the value of 𝑔EO,DC/2𝜋 reported in the main
text.

8.1. Fitting Waveguide Bias

When fitting the waveguide-bias-only data, we set 𝑉𝑟 to be zero, assuming fluctuations in the
racetrack voltage supply are negligible. This reduces the number of fit parameters in our model.
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We also set the linear detuning rate to be zero (𝑝11 = 0), but we allow the detuning offset, 𝑝12, to
vary.

As explained in the main text, the dataset consists of the extrapolated bandwidth and detuning
of the resonance from Fano fits of the mode spectrum at each applied bias. Before fitting the
tuning curves, we filter this data, removing any datapoints for which the Fano fit is clearly
inaccurate or appears untrustworthy. This is most relevant at datapoints with very high or very
small bandwidth, where the mode blends with the spectrum background and is no longer a true
Fano resonance (Fig 8). We also disregard any datapoints that exhibit an error in the wavelength
calibration.
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Fig. 8. Examples of fits rejected for being “bad” fits. Blue is data, red is the fit
returned by our algorithm, and the black arrows indicate approximate mode locations.
All data corresponds to waveguide-only bias at the indicated voltages. (a) Device
1, under-coupled. The bandwidth of the mode is so small that it blends with the
background and is difficult to fit. (b) Device 1, over-coupled. The bandwidth of the
mode is so large that it blends with the background. (c) device 2, over-coupled. (d)
device 2, doublet. Here we see a doublet beginning to form due to the coupling of the
mode of interest with another mode in the background, which is only visible as the
coupling of the mode to the waveguide decreases. We discard any fits corresponding to
modes that have a clearly visible doublet.
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8.2. Fitting Racetrack Bias

We repeat for the racetrack bias the same process as for fitting waveguide bias data, feeding
forward and fixing parameters that are mutual to both datasets (i.e., 𝑝1-𝑝5). We also set all 𝑉𝑤

coefficients to zero to reduce the number of fit parameters, and we allow 𝑝11 and 𝑝12 to vary.
All of our Fano fits are processed and filtered in the same way as for waveguide bias data, and

we repeat the weighted least-squares optimization.

8.3. Dual Bias

Lastly, we can predict the tuning behavior under arbitrary bias by feeding the combined results
of the waveguide and racetrack bias fits (i.e., the parameters 𝑝 𝑗) into our complete model in
eqs. 22-24. We compute the values for bandwidth and detuning under various voltages 𝑉𝑤 and
𝑉𝑟 , yielding the simulated results in main text Fig. 4 and supplemental Fig. 6. We also then
predict the bandwidth and detuning for the specific voltages used in measurement, obtaining the
predictions plotted against the simulated data.

8.4. Error Bars

For all fits, we determine error bounds, which are used as the weights, 𝜖 , in the cost function
given by eq. 25. This is most relevant in the high-bandwidth regime in which the mode spectrum
begins to merge with the background. In these cases, although a least-squares Fano fit of the
mode might have very low fit error, the fit itself may be inaccurate. It is unclear whether the
resulting Fano fit yields the true bandwidth and resonant frequency of the mode. Reflecting this,
we vary the parameters of the Fano fit independently and calculate the change in the least-squares
error for each parameter change. We interpolate the upper and lower values of the parameter for
which the Fano fit least-squares error changes by ±10%. These values then constitute the upper
and lower error bounds we plot for the bandwidth. For the detuning, the errorbars are calculated
similarly. We determine the error bars on the resonant frequency of the Fano fit and add this
error in quadrature with the error in the zero-voltage resonant frequency. Fig. 9 shows examples
of fits and errors for waveguide-only bias data in various coupling regimes. Here we plot for an
error bound of ±50% for visualization purposes, to make the error bounds clearer to the reader.

The error weights, 𝜖𝑖 in eq. 25, are given by the average of the upper and lower error bounds
on each data point int he tuning curves for bandwidth and detuning.

9. Asymmetry Analysis

As discussed in the main text, there are a few physical asymmetries in the device architecture.
The first of these is the length difference between the feedback waveguide and the bottom half of
the racetrack connecting the two coupling points. We attribute the asymmetric periodicity in the
tuning behavior of the device with this length imbalance. In order to explore this, we conduct a
number of simulations of the expected tuning behavior for waveguide-only bias, using the fit
parameters presented in table 2. The results are shown in Fig. 10. For a racetrack half-length 𝐿𝑟 ,
we sweep the feedback waveguide length. We notice that the asymmetry in the tuning period
decreases as the lengths are more closely matched. When the length of the feedback waveguide
is negligible (𝐿𝑤 = 0), we recover a sinuosoid, as indicated by fitting the simulation data (given
by the dashed black line in Fig. 10).

We also explore asymmetry in the coupling points. As depicted in Fig. 11, when the
two coupling points have an unequal amplitude coupling strength, the minimum measureable
bandwidth increases. Therefore, asymmetry in the coupling points emerges as an additional
effective loss in the racetrack resonator. We can reason this by way of imperfect Mach-Zehnder
Interferometers (MZIs). In this case, asymmetry in the couplers leads to a decrease in the
MZI extinction ratio. Similarly, asymmetry in the couplers in our device leads to incomplete
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Fig. 9. Examples of error-bounded fits for a 50% error bound. We choose such a large
error bound to make the resulting parameter adjustments clearly visible to the reader.
Blue is data, red is the fit. Grey shading corresponds to all other possible fits as the
appropriate fit parameter is adjusted within the 50% error bounds. (a) device 1 resonant
frequency adjustment (left) and bandwidth adjustment (right). In this case, the original
fit is very accurate, and any changes to the resonant frequency or bandwidth are so
minor that we cannot see them on the plots. (b) device 2 resonant frequency adjustment
(left) and bandwidth adjustment (right). Here we observe grey shading corresponding
to possible fits within the 50% error bounds.

interference of the optical modes in the racetrack and waveguide. Therefore, there will always
be some amount of power coupling between the racetrack and the waveguide, which broadens
the bandwidth of the racetrack resonance. Furthermore, by keeping one coupler transmission
amplitude fixed and sweeping the transmission at the other coupler, we observe a change in
the bandwidth extinction ratio. For 𝑡2/𝑡1 > 1, we are simply increasing total transmission and
therefore loss from the ring, leading to a growing 𝜅max. We observe an optimal point in the
asymmetry at which this extinction ratio is maximized given the increasing 𝜅max and increasing
𝜅min.
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Fig. 10. Simulated bandwidth (left) and detuning (right) versus voltage for different
lengths of the interferometric waveguide. 𝐿𝑟 refers to the half-length of the racetrack
resonator. The dashed black lines are fits of cosine functions to the 0𝐿𝑟 curves. As the
interferometric waveguide vanishes, the tuning asymmetry vanishes and the behavior
becomes sinusoidal. The results of the device 1 calibration are used to simulate device
performance. Only waveguide bias is “applied” to the device in the simulation, and we
neglect the quadratic voltage dependence in the phase for this simulation.

Fig. 11. Predicted minimum bandwidth (blue) and bandwidth extinction (BE) ratio
(red) as a function of coupler asymmetry. 𝑟𝑖 is the amplitude cross-coupling at coupling
point 𝑖, and 𝑟1 is kept fixed while 𝑟2 is swept to generate the 𝜅min curve. In order to
generate the red BE curve, we fix 𝑡1, the transmission at coupling point 1, and sweep
𝑡2. Asymmetry in the cross-coupling (or transmission) coefficients is reflected as an
increase of intrinsic loss (change in extrinsic loss) in the resonator. We observe an
optimal asymmetry point where the bandwidth extinction ratio is maximized.
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