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Excitons –bound electron-hole pairs– play a
central role in light-matter interaction phenom-
ena, and are crucial for wide-ranging applications
from light harvesting and generation to quantum
information processing. A long-standing chal-
lenge in solid-state optics has been to achieve pre-
cise and scalable control over the quantum me-
chanical state of excitons in semiconductor het-
erostructures. Here, we demonstrate a technique
for creating tailored and tunable potential land-
scapes for optically active excitons in 2D semicon-
ductors that enables in-situ wavefunction shaping
at the nanoscopic lengthscale. Using nanostruc-
tured gate electrodes, we create localized elec-
trostatic traps for excitons in diverse geome-
tries such as quantum dots and rings, and arrays
thereof. We show independent spectral tuning of
multiple spatially separated quantum dots, which
allows us to bring them to degeneracy despite ma-
terial disorder. Owing to the strong light-matter
coupling of excitons in 2D semiconductors, we ob-
serve unambiguous signatures of confined exciton
wavefunctions in optical reflection and photolu-
minescence measurements. Our work introduces
a new approach to engineering exciton dynamics
and interactions at the nanometer scale, with im-
plications for novel optoelectronic devices, topo-
logical photonics, and many-body quantum non-
linear optics.

Introduction

The ability to trap and manipulate the quantum me-
chanical state of particles is a central pillar across var-
ious disciplines of quantum science, including ultracold
atoms [1, 2], ion traps [3] and superconducting qubits
[4]. In semiconductor optics, the traditional approach
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FIG. 1. Quantum excitonics in 2D semiconductors.
Schematic illustration of our approach. Upper layer: Nanos-
tructured gate electrodes are positioned in the vicinity (10s
of nm) of a 2D semiconductor. Middle layer Voltages applied
to the gates define lateral distributions of in-plane electric
fields F⃗ (r) and charge densities ρ(r) for itinerant holes (red)
and electrons (blue) in the 2D semiconductor. Lower layer
Exciton confinement occurs due to a combination of electric
field-induced Stark shift and exciton-charge interactions (see
Eq. 1). This enables in-situ control of the center-of-mass ex-
citon wavefunction in arbitrary traps such as quantum rings,
quantum dots and scalable arrays.

to confinement of optical excitations involves nanostruc-
tures such as self-assembled or colloidal quantum dots,
which are typically fabricated through growth or implan-
tation techniques. These methods lead to ensembles of
quantum dots (or rings) with random positions and broad
energy distribution with limited local control [5–7]. The
resulting lack of scalability has hindered their widespread
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technological implementation. In addition to these meth-
ods, alternative material modulation approaches have re-
cently been explored, such as strain engineering [8–12],
electron and ion beam irradiation [13, 14], and moiré po-
tential engineering [15–18], which offer varying degrees of
control on the positions, energies or number of emitters.
Furthermore, electrostatic confinement of spatially indi-
rect excitons in semiconductor heterostructures has been
reported [19, 20]; however, their vanishing coupling to
light limits potential photonics applications. The ability
to precisely control the individual quantum states of op-
tically active excitons with strong light-matter coupling
has thus remained a major experimental challenge.

Recently, a novel technique has been reported for
confining direct excitons purely using electric fields
and charge density gradients in 2D semiconductor het-
erostructures [21]. The method relies on the fact that
in-plane electric fields (F⃗ (r)) induce a quadratic dc Stark
shift of the excitons, and charge density (ρ(r)) leads to an
interaction-induced density-dependent energy shift, ac-
cording to

∆E = −1

2
α|F⃗ (r)|2 + βρ(r), (1)

where α is the dc polarizability of excitons and β is the
exciton-electron coupling constant. Spatial variations of
doping densities and electric fields can thus be used to
trap excitons. Based on this effect, quantum confinement
was demonstrated in a gate-defined lateral p-i-n junction.
However, as the trapping occurs along the gate edges,
the technique has so far been limited to excitonic 1D
quantum wires.

Here, we demonstrate scalable and tunable electro-
static traps of arbitrary shapes for direct excitons in
monolayer Transition Metal Dichalcogenide (TMD) semi-
conductors. We illustrate our approach in Fig. 1. The
crux of our work lies in using lithographically nano-
structured gate electrodes in proximity to the 2D semi-
conductor plane (upper layer). This allows to precisely
define the lateral distribution of in-plane electric fields
F⃗ (r) and density ρ(r) of itinerant holes (red) and elec-
trons (blue) in the 2D semiconductor, with a resolution
down to a few tens of nanometers (middle layer). This in
turn enables tailor-made landscapes for excitons with a
high degree of control on the wavefunction profile (lower
layer). To highlight the versatility of our technique, we
focus on two exemplary trap geometries, namely quan-
tum rings and quantum dots, that may serve as build-
ing blocks for more extended landscapes. Furthermore,
we demonstrate the unprecedented scalability of our ap-
proach by realizing arrays of quantum rings and inde-
pendently controlled quantum dots which is of particular
relevance for future optoelectronics and photonics tech-
nologies.

The basic structure of our exciton trapping devices
consists of a monolayer TMD semiconductor, such as
MoSe2, encapsulated by hexagonal boron nitride (hBN)
spacers of appropriate thickness. This heterostructure is

stacked on a Si/SiO2 substrate with top (TG) and bot-
tom (BG) gate electrodes, which can either be graphene
(Gr) or metallic thin films. We nanostructure one of the
gate electrodes through a combination of electron beam
lithography and dry etching, which allows for patterning
resolutions of around 50 nm. A global BG is used to
define the charge configuration of the entire monolayer,
whereas the nanostructured TGs enable local control of
charge densities and fields. Even though either of the
gates can be patterned without losing functionality, we
choose to define the structures on the TGs and keep the
BG for global doping, for ease of fabrication. Our devices
are cooled down to ∼ 5K in a closed cycle dry cryostat
with optical access. To characterize the excitonic states
in our system, we mainly rely on optical broadband reflec-
tion and photoluminescence spectroscopy with a spatial
resolution of 0.7µm. A detailed account of our fabri-
cation and experimental procedures is described in the
Supplementary Information (SI C, A).

Excitonic quantum rings

In Fig. 2, we describe our scheme to create ring traps
for excitons. An annular confinement geometry can be
obtained simply by patterning circular holes in the TG,
as shown schematically in Fig. 2a. In order to obtain the
strongest confinement, we apply opposite voltages on the
top and bottom gates to reach the annular p-i-n regime,
where a central p-doped puddle is enclosed in a Fermi sea
of electrons with a ring-shaped neutral region separating
them, as seen in Fig. 2b. The combination of in-plane
fields and charge gradients leads to tight confinement of
excitons in this annular region (1). Furthermore, the
in-plane fields lead to radially polarized in-plane dipolar
excitons as illustrated in Fig. 2 c.

In Fig. 2d, we show results of finite element simula-
tions of the charge and field distributions in the annu-
lar p-i-n configuration for a top gate hole with diame-
ter 600 nm, which provides a quantitative understand-
ing of the electrostatics of the device. We calculate the
confinement potential according to Eq. 1, which shows
the expected Mexican hat-like profile. We note that
the dominant contribution to the potential comes from
the exciton-electron interaction (second term in Eq. 1)
whereas the Stark shift has a relatively mild effect. Solv-
ing the 2D Schrödinger equation in the center-of-mass
(c.o.m) frame of excitons, we obtain discrete radial trap
levels, with a level separation of ∼ 0.3 − 0.8meV. We
present a detailed account of the trap profile as a func-
tion of voltage in the SI (section F).

In order to verify the nature of excitonic states in this
system, we now move on to optical measurements of the
device. In monolayer MoSe2, the onset of electron or
hole doping is associated with the emergence of a bound
trion state and a density-dependent blue shifting exciton
state (repulsive polaron) [22–24]. Therefore, measuring
reflectance spectra as a function of VTG and VBG allows
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FIG. 2. Ring traps for excitons. (a) Dual-gated TMD heterostructure where a nano-hole etched in the top gate defines
quantum ring confinement for excitons. (b) Finite element electrostatic simulations of the device for a 600 nm gate hole with
gate voltage configuration (VBG, VTG) = (−5.0V, 9.5V); Charge distribution shows a globally electron doped semiconductor
with holes trapped in the center of the nano-hole, surrounded by a ring-shaped neutral region. (c) Schematic showing radially
dipolar excitons quantum confined in a ring. (d) Finite element simulations of the charge distribution (upper panel), field
distribution (middle panel) and exciton trapping potential (lower panel) for a 600 nm diameter hole device. The horizontal
gray lines in the lower panel are the c.o.m eigenstates of the 2D Schrödinger equation. Gate voltage configuration is the same
as in (b). (e) First-derivative reflectance contrast spectra as a function of VBG, for fixed VTG = 9.5V. Charging configurations
for each regime (I - V) are illustrated above. (f) Spatially resolved scan of PL emission integrated over the confined states
acquired on a 1 µm diameter hole. (g) Spectral cross cut through the center of the hole (y = 0), showing the trion emission
from regions A and B and neutral exciton emission of ring states. (h,i) Stokes vector analysis of the confined state emission
map in the linear polarization basis, which demonstrates that PL emission of ring states is polarized in the radial-azimuthal
basis. Arrows represent the local linear Stokes vector S = (S1, S2).

to precisely distinguish doping configurations inside and
outside the TG hole. Region A (inside the hole) is pri-
marily affected by the BG, whereas region B (outside the
hole) can be doped using both TG and BG.

In Fig. 2 e, we present the measured reflectance spec-
tra obtained from a 600 nm diameter hole as a function
of VBG, for a fixed VTG = 9.5V. In order to highlight

the faint signatures of quantum confined states, the re-
flectance contrast ∆R/R0 is differentiated with respect
to energy as detailed in SI B. Five distinct regimes can be
identified as the applied back gate voltage VBG is swept.
For positive VBG, the action of the back gate reinforces
that of the top gate, leading to overall n-doping of the
device (regime V in Fig. 2 e). As expected, we observe
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a trion branch at ∼ 1.610 eV, and a repulsive polaron
branch at ∼ 1.635 eV. Decreasing VBG reduces the elec-
tron density, until we reach the i-i-n regime where region
A is neutral (regime IV), as evidenced by the transfer of
oscillator strength from the trion branch to the neutral
exciton state. As we decrease VBG further, we reach the
p-i-n regime where region A is p-doped and region B is
n-doped (regime III), with an annular neutral region in
between. Here, we observe repulsive polaron branches
from both A and B regions, associated to the two types
of carriers. In addition, we observe narrow and discrete
resonances emerging from the neutral exciton state. We
attribute these new resonances to 1D quantum ring states
of different radial mode orders existing at the periphery
of the nanohole. Upon decreasing the bottom gate volt-
age even further, the confined exciton states merge back
with the 2D exciton continuum, as the region B outside
the dot reaches charge neutrality (regime II). The energy
separation between the discrete states is approximately
0.5meV, in agreement with the simulations, which corre-
sponds to a trapping length of ∼ 10 nm.

To investigate the spatial profile of the trap, we now
turn to a larger TG hole of diameter 1µm, which is large
enough to optically resolve the different regions A and
B with a confocal microscope setup. Fig. 2 f shows a
spatially resolved photoluminescence (PL) map of the
hole in the radial p-i-n configuration (VBG = −2.5V,
VTG = +9.0V). The emission is filtered at the energy
of the confined states. As expected, we observe a clear
doughnut-shaped emission profile. The PL spectra taken
along a cross-cut through the center of the hole (Fig. 2g)
shows distinct trionic emission from regions A and B, and
confined states emission from the annular neutral region.

Further insights into the quantum ring states can be
obtained by studying the polarization texture of the emit-
ted photons. Previous studies on 1D confined states
have shown that electron-hole exchange interactions, cou-
pled with tight confinement of the excitonic wavefunction
along one direction, leads to strong polarization split-
ting in a linear basis [21]. Applying this argument to
our circular geometry, the ring confinement should in-
duce polarization splitting in the radial-azimuthal basis.
To investigate this behavior, we record the PL emission
intensity from the lowest confined exciton as a function
of position, for different polarization states (see SI A).
From these measurements, the normalized linear polar-
ization Stokes vectors S ≡ (S1, S2) = (Ix−Iy, Id−Iad)/I0
can be reconstructed as a function of position on the ring,
where Ix, Iy, Id and Iad respectively correspond to PL
intensity along x, y, diagonal (45◦), and anti-diagonal
(−45◦) directions, and I0 is the total PL intensity. In
Fig. 2h and i, we show S1 and S2 for the lowest confined
state which both exhibit two-fold symmetric patterns as
expected for an azimuthally polarized emitter. These ob-
servations clearly demonstrate the quantum confinement
of excitons in ring-shaped potentials, and constitute the
first major result of this work.

Tunable quantum dots

We now turn to the demonstration of tunable quan-
tum dot-like confinement, which has been a major goal
in quantum photonics [25–27]. To generate electrostatic
0D nanotraps, we need a gate geometry that allows for
tight confinement in both lateral directions. While the
gate hole structure described in Fig. 2 may also be used
for this purpose, the tightness of confinement and en-
ergy tunability is significantly limited by fabrication con-
straints. To achieve tunable 0D traps, we design a bow tie
electrode structure as illustrated in Fig. 3a, which con-
centrates electric fields in the nanoscopic gap between the
electrodes. These bow ties are fabricated using electron
beam lithography and deposition of 10 nm Au, with gap
sizes ranging from 30 − 100 nm. An atomic force micro-
scope micrograph of a bow tie (∼ 35 nm gap) is shown
in the inset.

In this geometry, we operate primarily in the neu-
tral regime, where the semiconductor is globally set to
neutrality using the bottom gate, and a bias voltage
∆V = VL − VR is applied between the bow tie electrodes
to obtain in-plane fields in the nanogap. An electrostatic
simulation of the charge and field distributions in the de-
vice is shown in Fig. 3b and c (top and side view, respec-
tively; red: holes, blue: electrons). In general, the top
hBN thickness should be as small as possible (≲ 20 nm)
in order to maximize the in-plane component of the elec-
tric field on the TMD plane in the gap region.

In Fig. 3d, we show the expected 2D trapping potential
for excitons in bow ties computed from Eq. 1. First, we
note that in contrast to the ring traps, the dominant con-
tribution to confinement in the bow tie geometry comes
from the electric field-induced Stark shift (first term in
Eq. 1). Further, the trapping potential features x − y
anisotropy, which can be adjusted by varying the width
of the electrode tip and the gap size. By solving the
2D Schrödinger equation for the exciton c.o.m motion in
such a potential, we obtain the expected dependence of
the quantum confined states energies on ∆V , shown in
Fig. 3 e.

To experimentally observe quantum dot states in the
bow tie structure, we measure reflectance spectra in the
gap region as a function of ∆V . These spectra are ac-
quired from a bow tie with a gap size of ∼ 35 nm. Since
the gap size is much smaller than the diffraction limit,
we expect that any confined states will have a strongly
diminished oscillator strength as compared to the 2D ex-
citon resonance. In Fig. 3 f , we show the first-derivative
reflectance contrast spectra d(∆R/R0)/dE as a function
of ∆V . For simplicity, we apply symmetric voltages on
the two bow tie electrodes; eg. to obtain ∆V = 20V, we
apply VL = −10V and VR = +10V. In addition to the
broad neutral 2D exciton background (centered around
X2D ∼ 1.638 eV) and the blue-shifting polaron branches
from the gated regions, we observe much narrower res-
onances emerging below the neutral exciton (linewidth
Γ ≲ 300µeV). These states clearly red shift with ∆V ,
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FIG. 3. Bow tie traps for excitons. (a) Dual-gated TMD heterostructure with top gate structured as a bow tie. Inset:
AFM map of a 35nm bow tie gate. (b - d) Electrostatic simulations with (VL, VR, VBG) ≡ (5.0V,−5.0V, 0V). (b) Top view
(xy) of charge density and in-plane electric field at the TMD plane, showing n-doped (blue) and p-doped (red) regions. (c)
Side view (xz) of the electric field at a vertical cut along y = 0. (d) Confining potential for excitons in the gap region. (e)
Calculated dependence of resonance energy of ladder of states as a function of ∆V = VL − VR. (f) First-derivative reflectance
contrast spectroscopy of the bow tie gap region, as a function of ∆V . The inset shows vertical cross-cuts from ∆V = 11V
(dark blue) to ∆V = 13V (light blue). The red line is a guide to the eye following the confined state. (g) First-derivative
reflectance contrast of a 100 nm gap bow tie, as a function of ∆V , showing a ladder of confined states. (h) Spatial dependence
of the first-derivative reflectance contrast, integrated over the 0D exciton signal at ∆V = 9.9V. Here, VBG = 1.5V is applied in
order to further energetically separate the 0D state from the X2D signal. This leads to a slight elongation of the states towards
the left electrode (SI H).

with a similar dependence to Fig. 3 e. This observed volt-
age dependence is in excellent quantitative agreement
with our simulations (see SI G). Line cuts at different
∆V are shown in the inset. The energy dependence of
these states on the electric field across the bow tie is
strong evidence that they occur in the gap region (see
SI G, H). A further compelling signature of quantum
confinement in such electrical traps is the emergence of
a ladder of states corresponding to discrete energy levels
in the trap [21]. In Fig. 3 f , such signatures are barely
apparent possibly due to the small gap size leading to
vanishing oscillator strength of excited states. To con-
firm this, we perform the same reflectance measurement
on a bow tie with a larger gap size (∼ 100 nm), as shown
in Fig. 3g. Here we do observe a clear ladder of excitonic
states emerging below the 2D exciton continuum, which

supports our hypothesis.

To further confirm that the observed resonances in-
deed originate in the gap region, we perform a spatially
resolved scan of reflectivity in the vicinity of the bow
tie. For this measurement, a small voltage VBG = 1.5V
is applied in order to further energetically separate the
0D state from the X2D background, which facilitates the
analysis (see SI H). The first-derivative reflectance con-
trast map, integrated over the narrow exciton resonance,
is shown in Fig. 3h which demonstrates that this reso-
nance only appears close to the gap region and vanishes
as we move away. We have reproduced these observa-
tions across different bow ties in the same device, as well
as on several different devices (see SI I), which under-
lines the robustness of our technique. Taken together,
our measurements unambiguously demonstrate electri-
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cally tunable 0D quantum confinement in bow tie elec-
trode structures, which constitutes the second key result
of this work.

Scalable arrays of quantum dots and rings

The most important advantage of our approach for
electrical nanoscale control of exciton wavefunctions is
the potential for scaling up to more complex structures.
The quantum dot and ring trapping schemes that we pre-
sented above can be seen as the building blocks for larger
systems. Now, we demonstrate how a variety of nano-
structures can be realized in a single TMD heterostruc-
ture simply by lithographically defining the desired gate
patterns (Fig. 4). Figure 4ashows a micrograph of a pat-
terned heterostructure, demonstrating how different gate
geometries can be defined on the same device. In Fig. 4b,
we show an AFM scan of a 3 × 3 array of 400 nm diam-
eter holes, with a 600 nm pitch that allows to optically
resolve individual lattice sites. A spatially resolved scan
of the PL emission, integrated over the quantum ring
state resonances, is shown in Fig. 4 c. We clearly observe
the emission profile of the ring array that matches ex-
cellently with the gate pattern. Since the hole diameters
are smaller than the diffraction limit, we do not resolve
the ring shape of the emission patterns (see Fig. 2 f for
comparison). This shows that ring traps can be scaled
up arbitrarily in a single monolayer.

Next, we demonstrate the scalability of electrically
tunable quantum dots. An important motivation for our
work is the realization of multiple quantum dots with
identical energies, which is a crucial and basic ingredient
for several applications, including photonic quantum in-
formation processing and quantum communications [28].
This has so far remained a hurdle to achieve since exist-
ing material modulation approaches are drastically lim-
ited by material disorder and process variation [29]. We
address this problem by fabricating an array of bow ties
with independent control for each. An AFM scan of our
structure with three bow ties with approximate gap size
of 50 nm and a separation of 1µm is shown in Fig. 4d.
We electrically short the left-hand side electrodes of the
three bow ties (BT0), while maintaining individual con-
trol on each of the right-hand side electrodes (BT1, BT2,
BT3). This allows to reduce the number of control gates
per quantum dot to only one, thus enhancing scalability
without compromising on the control over each site. As
shown in SI I, we observe the quantum dot confinement
signatures described in Fig. 3 f in each of the bow ties.

In Fig. 4 e, we report the fitted energy of the 0D states
as a function of individual gate voltages VBT1, VBT2 and
VBT3, while keeping the common counter electrode at
VBT0 = 15V. The energy of the 2D exciton X2D is shown
with blue dots and the linewidth is indicated by the blue
shaded regions. The three bow ties show different de-
pendence with voltage, possibly due to material disorder
and variations due to fabrication uncertainties. Never-

theless, the three quantum dots can be simultaneously
tuned to degeneracy (horizontal dashed line) by apply-
ing the suitable voltages across the bow ties (vertical
dashed lines). This is clearly evident in the spectra shown
in Fig. 4 f , taken at VBT1 = −11.2V, VBT2 = −4.6V,
and VBT3 = −3.5V respectively, which show three quan-
tum dot states resonantly tuned in energy. The ability
to combine position-controlled lithographically defined
quantum dots, with simultaneous and independent en-
ergy tunability into scalable arrays of quantum sites, con-
stitutes the third main result of this work.

Outlook

We have demonstrated new fundamental building
blocks for quantum excitonics. Our approach enables
continuous control of the c.o.m wavefunctions, from mi-
cron sized extended states all the way down to quantum
confinement into nanoscale dots and rings. Our approach
is intrinsically scalable to independently tunable arrays,
which is an important feature for future applications. A
key advantage of this method is that arbitrary landscapes
for excitons can be defined in a non-intrusive manner
while retaining the pristine properties of the active ma-
terial. Hence it can be extended to different semiconduc-
tors, including perovskites [30] and metal chalcogenide
compounds [31]. Furthermore, improvements in fabrica-
tion techniques - in particular in lithography - will enable
even smaller trapping length scales and better spatial
control.

Our work opens up several avenues for further re-
search. On the fundamental level, an important question
is the nature of the confined excitonic state in the rela-
tive coordinates, which may be investigated by applying
a combination of strong electric and magnetic fields [32].
Moreover, a detailed study of lifetime and coherence
time will provide insights into exciton dynamics in
such potentials. The fact that excitons confined in
such nanoscopic traps still retain substantial oscillator
strength is a major advantage, as this will enable strong
coupling to light in microcavities [33] with expected Rabi
splitting in the meV range. Arrays of such electrically
confined quantum dots and rings may be combined
with microcavity arrays to realize Bose-Hubbard model
of photons [34]. The potentially enhanced optical
nonlinearity of confined exciton systems may allow to
go beyond the mean field regime and explore the strong
correlations regime, where exotic phases such as Mott
insulators are expected. Along the same lines, trapping
radially dipolar excitons in ring potentials may have
immediate relevance for effecting artificial gauge fields
for optical excitations [35, 36], which is key to realizing
topological effects such as a photonic fractional quantum
Hall state. From the technological perspective, these
configurable exciton landscapes could be of relevance for
development of active photonic metamaterials [37] and
novel light sources [38].
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FIG. 4. Scalable arrays. (a) Optical micrograph of a van der Waals heterostructure featuring Au bow tie electrodes (red
dashed lines) and patterned few layer graphene top gate (black dashed lines). The blue dashed line indicates the 400 nm
diameter hole array, and the green one highlights the 1 µm diameter hole studied in Fig. 2. The gray dashed lines indicate the
contacts to the TMD. (b) AFM topography of the 400 nm hole array. (c) PL map of the hole array, filtered at the confined
state emission energy. (d) AFM topography of a bow tie array. BT1, BT2 and BT3 are three independent electrode while the
counter electrode BT0 is common to the three bow ties. (e) Fitted energies of the 2D exciton (blue dots) and 0D confined
states (brown, red, orange dots) for a fixed counter electrode voltage VBT0 = 15V, as a function of the independent electrode
voltages (VBT1, VBT2, VBT3). The shaded blue area indicates the FWHM of X2D. Rightmost panel: Confined states spectra
acquired under resonance tuning conditions (VBT0 = 15V, VBT1 = −11.2V, VBT2 = −4.6V, VBT3 = −3.5V)
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SUPPLEMENTARY INFORMATION

A. Experimental setup

Figure S1 depicts our experimental setup. The sam-
ple is kept at ∼ 5K using an attoDRY800 closed-loop
cryostat from Attocube. The sample is fixed on a cus-
tom made PCB board, which is mounted on a position-
ing piezo stack composed of three piezo stepper (two At-
tocube ANPx101/RES/LT and one ANPz102/RES/LT)
and a piezo scanner (ANSxyz100std/LT). A cryo-,
vacuum-compatible, high numerical aperture (NA =
0.81) objective (Attocube LT-APO/NIR/0.81) is used
within the cryostat space. Voltages are applied to
the sample gates using a Source Measure Unit (SMU)
from Hewlett Packard (HP4142B) fitted with HP 41422B
(41420A) modules.

The white light reflectivity measurements are per-
formed using a Superluminescent Light Emitting Diode
(SLED Exalos: EXS210065-01). A 720 nm Ti:Sa continu-
ous wave tunable laser (Matisse C from Spectra Physics),
is used for photoluminescence measurement. The sig-
nal beam is collected through a single mode optical fiber
(Thorlabs 630HP) that we use as a confocality pin hole.
The corresponding collection area on the sample surface
has a FWHM of 0.7µm which sets the spatial resolu-
tion of our optical setup. The fiber output is directed to

an imaging spectrometer (Andor SR-750-D1 with SR5-
GRT-0600-0500, 600 line per mm grating) equipped with
a Peltier cooled CCD camera (Andor DU940P-UV).

Polarization resolved experiments are performed using
a set of broadband polarization optics in the excitation
and detection arms, both consisting of linear polariz-
ers (Thorlabs LPVIS100-MP2), half wave plates (Thor-
labs AHWP10M-980), and quarter wave plates (Thor-
labs AQWP10M-980). Linear Stokes vector maps are
obtained by recording PL spectra in different linear po-
larization basis at each point on the sample:

S0 = ⟨E2
x⟩+ ⟨E2

y⟩ = ⟨E2
d⟩+ ⟨E2

a⟩
S1 = (⟨E2

x⟩ − ⟨E2
y⟩)/S0

S2 = (⟨E2
d⟩ − ⟨E2

a⟩)/S0

where ⟨E2
x(y)⟩ is the intensity of light polarized along x

(y) direction, and ⟨E2
d(a)⟩ is the intensity of light polar-

ized along the diagonal (antidiagonal) direction. S0 is
the total intensity of the signal.

AFM topographies are obtained in tapping mode, us-
ing ScanAsyst-air AFM probes on a MultiMode-8-HR
AFM from Bruker.

B. Differential reflectivity data analysis

Differential reflectivity spectra ∆R/R0 = (R−R0)/R0

are obtained from the measured reflectivity R by sub-
tracting and dividing by the background spectrum R0,
measured at the same spot with strong homogeneous
doping. This is achieved by keeping the local top gates
at 0V and applying 10 V to the global back gate. Where
needed, the differential reflectivity spectra are numeri-
cally differentiate with respect to energy (d(∆R/R0)/dE)
in order to increase the visibility of the confined states
resonances.

In Fig. 4 e, the energy of the 2D exciton and 0D
exciton are shown. Those are extracted from fits of
d(∆R/R0)/dE series. The reflectivity spectral line-
shape (S(E)) of heterostructures as studied here are
well approximated by the sum of a pure and dispersive
Lorentzian lineshapes (L0 and LD respectively), defined
as follow:

L0(E) =
AΓ

2 [(E − E0)2 + (Γ/2)2]

LD(E) =
A(E − E0)

2 [(E − E0)2 + (Γ/2)2]

S(E) = cos(θ)L0(E) + sin(θ)LD(E)

with A the Lorentzian amplitude, Γ the Full Width at
Half Maximum (FWHM), E0 the central energy of the
mode and θ the phase between the pure and dispersive
Lorentzian. This Lorentzian is then numerically differ-
entiate and fitted to the data, using the least_squares
routine from the python library scipy.optimize.

https://doi.org/10.1016/S0167-9317(02)00598-1
https://doi.org/10.1038/s41586-019-1709-y
https://doi.org/https://doi.org/10.1002/qute.202000052
https://doi.org/https://doi.org/10.1002/qute.202000052
https://doi.org/10.1103/PhysRevLett.121.227402
https://doi.org/10.1088/1367-2630/abe2bf
https://doi.org/10.1088/1367-2630/abe2bf
https://doi.org/10.1016/0039-6028(92)91144-Z
https://doi.org/10.1016/0039-6028(92)91144-Z
https://doi.org/10.1002/lpor.201300024
https://doi.org/10.1002/lpor.201300024


10

FIG. S1. Schematic of the optical setup.

The spectra present different features: the trapped ex-
citon signal and a broad resonance for the 2D exciton.
Three complex Lorentzian are used to fit the spectra, us-
ing the same phase parameter θ. Two Lorentzians are
needed to fit the 2D exciton, most likely due to local
strain in the TMD layer. Fig. S2 present an example of
fit for the three different bow ties.

C. Fabrication method

All hBN, graphite, and MoSe2 flakes used in this work
are produced with mechanical exfoliation using scotch
tape. The high-quality hBN crystal is from NIMS, and
the MoSe2 crystal is from HQ graphene. The vdW het-
erostructure is assembled using the standard PC (poly-
carbonate) dry transfer method in an ambient environ-
ment. The heterostructure is then dropped down to a
SiO2/Si substrate at 180C. Multilayer graphite flakes are
picked up as contacts to the MoSe2 monolayer.

Nanometer-scale features are generated with e-beam
lithography (Raith Voyager, 50 keV) using a thin PMMA
layer of 100 nm thick. For the quantum ring sam-
ples, the vdW heterostructure consists of hBN capping
layer/top Gr gate/top hBN/MoSe2 monolayer/bottom
hBN/bottom Gr gate. After e-beam patterning, the
hBN capping layer and the graphite top gate are etched
by reactive ion etching (Oxford Plasma Pro 80) sequen-
tially. 10 sccm CHF3/10 sccm Ar/2 sccm O2 is used to
etch hBN, and 10 sccm O2 is used to etch graphite. For
the bow tie samples, the heterostructure consists of top
hBN/MoSe2 monolayer/bottom hBN/bottom Gr gate.
The same e-beam lithography process is used to pattern
the nanogap, then a thin layer of metal (3 nm Ti/10 nm
Au) is deposited as the top gates with a Kurt J. Lesker
high vacuum e-beam evaporator.

The leads and bonding pads to the patterned gates
and the sample contacts are formed by 5 nm Ti/45 nm
Au, with patterns generated by either e-beam lithogra-
phy (with 200 nm PMMA) or photo-lithography (ML3
MicroWriter).

The thicknesses of the top and bottom hBN of the
devices discussed in the main text is listed in table S1.

TABLE S1. Top and bottom hBN thicknesses of the devices
discussed in the main text.

Relevant figure top hBN [nm] bottom hBN [nm]
Fig. 2b,d, e 40 40

Fig. 2 f - i, Fig. 4a-c 40 20
Fig. 3, Fig. 4d, e 15 25

D. Electrostatic simulation method

The electrostatic simulation is done with COMSOL
multiphysics electrostatic modeling on a 3D grid using
finite element method. The TMD monolayer is modeled
as a semiconductor, sandwiched in two insulating hBN
slabs. The bottom gate is global and the top gate is set
to be certain geometry. See ref.[21] for detailed parame-
ters.

After the trapping potential is obtained from COM-
SOL simulation, the confined state energy and wavefunc-
tion is obtained by solving the 2D Schrodinger equation
numerically in the c.o.m frame.
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FIG. S2. Representative fitting results for the three different bow ties. The blue curve is the differential reflectivity spectrum
∆R/R0, the green one is its energy derivative, d(∆R/R0)/dE, and the red one is the triple dispersive Lorentzian fit. The thin
grey lines represent each individual derivated Lorentzian used to fit the derivative differential reflectivity.

FIG. S3. Doping diagram for a dual gated TMD with a hole
in the top gate. Each region separated by a solid black line
correspond to a different doping state of the TMD. This dop-
ing state is sketched in the squares, that are charge density
map, from hole doped in red to electron doped in blue, pass-
ing by white at neutrality. The thick red triangles highlight
the PiNiP and NiPiN region, where the TMD 2D exciton can
be trapped into a ring. The bold Roman numerals correspond
to the doping regime in Fig. 2 of the main text. The two red
triangles correspond to the region where ring confinement oc-
curs.

E. Doping diagram

Fig. S3 presents a sketch of the top and bottom gate
voltage dependence of the doping for a nanohole struc-
ture. First, the sample can be separated into two differ-
ent region, the dual gated region outside the hole (region

B in the main text), and the single gated region inside
the hole (region A in the main text).

In region A, only the bottom gate acts to set the charge
density of the TMD. Therefore, within the hole, the dop-
ing will switch from p- to n-doped due to the sole bottom
gate. This result in the vertical lines on the doping di-
agram (Fig. S3), which are the bottom gate voltage at
which the TMD switch from neutral to p- or n-doped.

The dual gated region however, one can tune sepa-
rately the vertical electric field and the TMD doping.
An opposite voltage between the top and bottom gate
will result in an out of plane electric field and no doping,
which is the central diagonal line of Fig. S3. On each side
of this diagonal, p- and n-doped region of the outter hole
appears.

Since the trapping of 1D edge states occurs in the p-i-n
regions, the excitonic ring trap only appear in the upper
left and bottom right red triangles (Fig. S3), where the
doping in the hole is of a different kind than the doping
outside it.

In addition, a weaker trap can be present in theory for
the repulsive polaron, when both top gate and bottom
gate are positive or negative. In this case, the inner part
of the hole would be less doped, which will results in
a lower energy polaron in the hole, and a higher one
outside. The dashed line in Fig. S3 shows the limit at
which the top gate voltage changes it sign which will
induce a lower charge density outside of the hole and a
larger one within. This latter configuration lead to an
anti-trap for the repulsive polaron.

F. Trapping potential vs VBG in the 600 nm hole

Fig. S4 shows the simulated trapping potential at dif-
ferent VBG in a 600 nm hole. Here VTG is set to be 9.5V,
the same as in Fig. 2 e. A ring-shaped trap is only formed
when VBG is from −9V to −1V, which agrees with our
observation in Fig. 2 e that the trapped states only show
up in regime III.
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FIG. S4. Electrostatic simulation of the trapping potential at
different VBG in the 600 nm hole. VTG is set to be 9.5V, the
same as in Fig. 2e.

G. Simulation results for tunable 0D states in the
bow tie

Electrostatic simulation for a nano-gap structure made
with thin metal layers can be tricky. Due to the small
size of the electrode and reduced conductivity, the volt-
age applied from the source-measurement unit might not
reflect the actual voltage drop across the bow tie. This
results in a much larger energy dispersion in the simula-
tion compared to the measurements.

Here we present a way to calibrate the actual ∆V with
respect to the applied ∆V . In the reflectivity spectra
in Fig. 3 f , we observe both the 0D states and the blue-
shifting repulsive polaron (RP) emerging from charg-
ing the TMD below the left and right electrodes. The
blueshift of the RP corresponds to the second term in
Eq.1, which can be calculated from the simulated charge
density. By comparing it to the measured RP blueshift,
we determine a reduction factor that overlaps the sim-
ulated polaron shift to the measured polaron shift, as
shown in Fig. S5 (here ∆Vactual = 0.33∆Vapplied). Then
we use the same reduction factor to calculate the trap-
ping potential and solve the energy dispersion of the 0D
states (shown in red dots in Fig. S5). It agrees reasonably
well with the measurement.

H. Transition from 0D confinement to 1D
confinement in the bow tie

Here in Fig. S6, we show the simulation results for
the potential landscape in the bow tie structure, as a
function of the backgate voltage. The left and right
bow tie electrodes are at +5 V and -5V respectively, i.e.

FIG. S5. Comparison of the calculated 0D trapped state dis-
persion and the measurement. The ∆V for the simulation
input is calibrated using the blue shifted repulsive polaron
state.

∆V = 10V. It demonstrates a continuous transition from
the 0D dot confinement (VBG = 0V) to 1D edge con-
finement wrapped around the right (left) electrode when
VBG is tuned to negative (positive) values. This 0D to 1D
transition is observed experimentally as well, see Fig. S7.

Fig. S8 shows a VL − VR dual gate reflection contrast
scan at VBG = 0V. Panel a is the integrated reflection
map, and the vertical (horizontal) stripe shows the gates
range where the 2D exciton under the right (left) bow
tie electrode is kept neutral. Panel b is the ∆R/R0 line
cut along the solid line in panel a which corresponds to
applying ∆V across the bow tie. As expected, signature
for 0D trapped states is present. Panel c is the ∆R/R0

line cut along the dashed line in panel a, corresponding
to ∆V = 0V. No 0D state is observed because no trap
is formed when the same voltage is applied to both bow
tie electrodes.

Fig. S9 shows a VL − VR dual gate scan map of reflec-
tivity at VBG = 10V. Panel a is the integrated reflection
map, and the vertical (horizontal) stripe indicates the
gates range where the 2D exciton under the right (left)
bow tie electrode is tuned to neutrality. This is at a nega-
tive voltage now because VBG is set to be positive. Panel
b is the ∆R/R0 line cut along the solid line at VR = 0V,
showing 1D confined states around the left bow tie elec-
trode (as shown in the inset). Panel c is the ∆R/R0

line cut along the dashed line at VL = 0V, showing 1D
confined states around the right bow tie electrode. Panel
d plots the line cut along the dashdot line, displaying two
groups of 1D confined states around both bow tie elec-
trodes. The two sets of 1D confined states can also be
tuned to resonance. This shows that bow tie structures
are very versatile and can host both 0D and 1D tunable
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FIG. S6. Simulation results for the evolution of the potential landscape with the backgate voltage at (VL, VR) = (5V,−5V).
It shows a continuous transition from the 0D dot confinement (VBG = 0V) to 1D edge confinement wrapped around the right
(left) electrode when the backgate is tuned to negative (positive) voltage.

FIG. S7. Reflectivity spectra in the bow tie structure as a function of VBG at (VL, VR) = (5V,−5V).
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FIG. S8. VL − VR dual gate scan map of reflectivity at VBG = 0V. (a) The integrated reflection map, the vertical (horizontal)
stripe shows the gate range where the 2D exciton under the right (left) bow tie electrode is neutralized. (b) The ∆R/R line
cut along the solid line in (a) which corresponds to applying ∆V across the bow tie. As expected, signature for 0D trapped
state is present. (c) The ∆R/R line cut along the dashed line in (a) corresponding to ∆V = 0V, where no trapped state is
observed.

confined exciton.

I. 0D trapped states in multiple samples

The 0D trapped state is consistently observed in vari-
ous bow tie structures on multiple samples, as shown in
Fig. S11. For some bow ties, we only see 0D state on one
side of ∆V , possibly due to charge inhomogeneity around

the nano-gap region.

J. Polarization dependence of the 0D states

In Fig. S10, we show the polarization dependence of the
0D trapped states in the bow tie structure. The trapped
state follows a linear polarization basis, consistent with
the anisotropy of the trapping potential shown in Fig. 3d.
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FIG. S9. VL −VR dual gate scan map of reflectivity at VBG = 10V. (a) The integrated reflection map, the vertical (horizontal)
stripes shows the gates range where the 2D exciton under the right (left) bow tie electrode is neutralized. (b) The ∆R/R line
cut along the solid line at VR = 0V, displaying 1D confined states around the left bow tie electrode (as shown in the inset).
(c) The ∆R/R line cut along the dashed line at VL = 0V, displaying 1D confined states around the right bow tie electrode.
(d) The ∆R/R line cut along the dashdot line, showing 1D confined states around both bow tie electrode.

FIG. S10. Polarization dependence of the 0D trapped states in the bow tie structure.
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FIG. S11. 0D confined states measured in bow tie structures on multiple samples.
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