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Abstract. In this work we present a novel actively secure dishonest majority MPC protocol,
SUPERPACK, whose efficiency improves as the number of honest parties increases. Concretely,
let 0 < ϵ < 1/2 and consider an adversary that corrupts t < n(1 − ϵ) out of n parties.
SUPERPACK requires 6/ϵ field elements of online communication per multiplication gate across
all parties, assuming circuit-dependent preprocessing, and 10/ϵ assuming circuit-independent
preprocessing. In contrast, most of the previous works such as SPDZ (Damgård et al, ESORICS
2013) and its derivatives perform the same regardless of whether there is only one honest party
or a constant (non-majority) fraction of honest parties. A notable exception is due to Goyal et
al (CRYPTO 2022), which achieves 58/ϵ+ 96/ϵ2 field elements assuming circuit-independent
preprocessing. Our work improves this result substantially by a factor of at least 25 in the
circuit-independent preprocessing model.
Practically, we also compare our work with the best concretely efficient online protocol Tur-
bospeedz (Ben-Efraim et al, ACNS 2019), which achieves 2(1 − ϵ)n field elements per multi-
plication gate among all parties. Our online protocol improves over Turbospeedz as n grows,
and as ϵ approaches 1/2. For example, if there are 90% corruptions (ϵ = 0.1), with n = 50 our
online protocol is 1.5× better than Turbospeedz and with n = 100 this factor is 3×, but for 70%
corruptions (ϵ = 0.3) with n = 50 our online protocol is 3.5× better, and for n = 100 this factor
is 7×.
Our circuit-dependent preprocessing can be instantiated from OLE/VOLE. The amount of
OLE/VOLE correlations required in our work is a factor of ≈ ϵn/2 smaller than these required
by Le Mans (Rachuri and Scholl, CRYPTO 2022) leveraged to instantiate the preprocessing of
Turbospeedz.
Our dishonest majority protocol relies on packed secret-sharing and leverages ideas from the
honest majority TURBOPACK (Escudero et al, CCS 2022) protocol to achieve concrete efficiency
for any circuit topology, not only SIMD. We implement both SUPERPACK and Turbospeedz and
verify with experimental results that our approach indeed leads to more competitive runtimes in
distributed environments with a moderately large number of parties.

1 Introduction

Secure multiparty computation (MPC) protocols enable a set of parties P1, . . . , Pn to securely
compute a function on their private inputs while leaking only the final output. MPC protocols
remain secure even if t out of the n parties are corrupted. There are honest majority protocols,
which are designed to tolerate at most a minority of corruptions, or in other words, they assume
that t < n/2. On the other hand, protocols in the dishonest majority setting accommodate t ≥ n/2.
Honest majority MPC protocols can offer information-theoretic security (that is, they do not need
to depend on computational assumptions, which also makes them more efficient), or guaranteed
output delivery (that is, all honest parties are guaranteed to receive the output of the computation).
However, dishonest majority protocols tolerate a larger number of corruptions at the expense of
relying on computational assumptions and sacrificing fairness, and guaranteeing output delivery.

Communication complexity is a key measure of efficiency for MPC. Over the last few decades,
great progress has been made in the design of communication-efficient honest majority proto-
cols [BGW88,DN07,GIP+14,LN17,CGH+18,GS20,BGIN20,GLO+21,EGPS22]. In particular, the re-
cent work [EGPS22] shows that it is possible to achieve constant communication complexity among



all parties (i.e., O(1)) per multiplication gate in the online phase while maintaining linear commu-
nication complexity in the number of parties (i.e., O(n)) per multiplication gate in the offline phase
— which is independent of the private inputs.

Dishonest majority protocols provide the best security guarantees in terms of collusion sizes since
security will be ensured even if all parties but one jointly collude against the remaining honest party.
It is known that in this setting public key cryptography tools are needed. In the seminar work of
Beaver [Bea92] it was shown how to push most of the “heavy crypto machinery” to an offline phase,
hence allowing for a more efficient online phase that can even be information-theoretically secure,
or at least use simpler cryptographic tools such as PRGs and hash functions for efficiency. This
approach eventually led to the seminal works of BeDOZa [BDOZ11] and SPDZ [DKL+13,DPSZ12],
which leveraged the Beaver triple technique from [Bea92] together with message authentication
codes to achieve a concretely efficient online phase with linear communication complexity in the
number of parties per gate. The online phase in SPDZ has been very influential, and there is a large
body of research that has focused solely on improving the offline phase, leaving the SPDZ online
phase almost intact.

Despite the progress of designing MPC in the dishonest majority setting, it remains unclear
whether we can achieve a sub-linear communication complexity in the number of parties per
multiplication gate without substantially sacrificing the offline phase6. This motivates us to study
the following question:

“If a small constant fraction of parties are honest, can we build concretely efficient dishonest majority
MPC protocols that achieve constant online communication among all parties per multiplication gate
with comparable efficiency as the state-of-the-art in the honest majority setting?”

To be concretely efficient, we refer to protocols that do not rely on heavy Cryptographic tools
such as FHE. In particular, we restrict the online phase to be almost information-theoretic except
for the black-box use of PRGs or hash functions. Perhaps surprisingly, it is not clear what benefits
can be achieved if assume instead of all-but-one corruption, but a constant fraction of parties are
honest. In fact, in the case that there are n − t > 1 honest parties — unless these constitute a
majority — the best one can do to optimize communication is removing (n − t − 1) parties so
that, in the new set, there is at least one honest party, which is the only requirement for dishonest
majority protocols to guarantee security. To the best of our knowledge, the only7 exception to
this is [GPS22], which considers the corruption threshold t = n(1 − ϵ) for a constant ϵ in the
circuit-independent preprocessing model and achieves 58/ϵ+96/ϵ2 elements per multiplication gate
among all parties in the malicious security setting8. Despite the constant communication complexity
per multiplication gate achieved in [GPS22], it requires hundreds or even thousands of parties to
outperform SPDZ [DPSZ12].

Given the above state-of-affairs, we see that existing dishonest majority protocols are either not
very flexible in terms of the amount of corruptions — 50% corruptions are as good as 99%, and
having more honest parties do not provide any substantial benefit — or not concretely efficient at
all.

1.1 Our Contribution

In this work, we answer the above question affirmatively: we design the first concretely efficient
dishonest majority MPC protocol SUPERPACK that achieves constant online communication among
all parties per multiplication gate with comparable efficiency as the state-of-the-art in the honest

6 An example is [Cou19] which achieves slightly sub-linear communication complexity in the circuit size at
the cost of increasing the preprocessed data size to be quadratic in the circuit size.

7 There are also the works of [HOSS18b,HOSS18a], which also explore the benefits of having more than one
honest party in the dishonest majority setting. However, their focus is the case of boolean circuits, where
they exploit the additional honest parties in order to allow for shorter authentication keys, which in turn
reduces the cost of generating these keys. Our work focuses on arithmetic circuits over moderately large
fields.

8 The work [GPS22] does not analyze the concrete cost of their malicious protocol. We obtain this number by
counting the amount of communication in their construction. We note that the protocol in [GPS22] also
needs to interact for addition gates. Our reported number assumes that the amount of addition gates is the
same as the number of multiplication gates.
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majority setting [EGPS22]. SuperPack tolerates any number of corruptions and becomes more
efficient as the number of honest parties increases, or put differently, it becomes more efficient as
the percentage of corrupted parties decreases.

More concretely, we show the following theorem.

Theorem 1 (Informal). Let n be a positive integer, ϵ ∈ (0, 1/2) be a constant, and κ be the security
parameter. For an arithmetic circuit C that computes an n-ary functionality F , there exists an n-party
protocol that computes C with computational security against a fully malicious adversary who can
control at most t = n(1−ϵ) corrupted parties. The protocol has total communication O(6|C|n+45|C|/ϵ)
elements (ignoring the terms that are independent of the circuit size or only related to the circuit depth9)
with splitting cost:

– Online Phase: 6/ϵ per multiplication gate across all parties.
– Circuit-Dependent Preoprocessing Phase: 4/ϵ per multiplication gate across all parties.
– Circuit-Independent Preprocessing Phase: 6n+ 35/ϵ per multiplication gate across all parties.

Our construction has the following features:

Online phase (Section 4). The online phase requires circuit-dependent preprocessing (meaning,
this preprocessing does not depend on the inputs but depends on the topology of the underlying
circuit). It relies on information-theoretic tools and as it is typical we also introduce PRGs to
further improve efficiency.

Circuit-dependent offline phase (Section 5). The circuit-dependent preprocessing is instantiated
using circuit-independent preprocessing (meaning, it may depend on the number of certain
types of gates of the circuit, but not on its topology) in a simple and efficient manner. Again,
the protocol makes use of information-theoretical tools together with PRGs to further improve
efficiency.

Circuit-independent offline phase (Section 6). The circuit-independent preprocessing is instanti-
ated by a vector oblivious linear evaluation (VOLE) functionality and an oblivious linear evalua-
tion (OLE) functionality. These two functionalities are realized by protocols in Le Mans [RS22],
which can achieve sub-linear communication complexity in the amount of preprocessed data. In
addition, we manage to reduce the amount of preprocessed data by a factor of ϵn/2 compared
with that in [RS22]. More discussion can be found in Section 2.

Comparison to Best Previous Works. When comparing with [GPS22], which achieves 58/ϵ+ 96/ϵ2

elements per multiplication gate among all parties in the circuit-independent preprocessing phase,
our protocol achieves a factor of at least 25 improvement in the same setting, and a factor of at least
40 improvement in the circuit-dependent preprocessing phase. Since [GPS22] does not realize the
circuit-independent preprocessing phase, we do not compare the cost in the circuit-independent
preprocessing phase.

Since our goal is to optimize the online phase of dishonest majority protocols where there is
a constant fraction of honest parties, we take as a baseline for comparison the existing dishonest
majority protocol with the best concrete efficiency in the online phase. This corresponds to the
Turbospeedz protocol [BNO19], which is set in the circuit-dependent preprocessing model. To
instantiate the preprocessing, we utilize the state-of-the-art [RS22]. Details on this protocol are given
in Section E in the Supplementary Material. The resulting protocol has the following communication
complexity: 2(1 − ϵ)n in the online phase, 4(1 − ϵ)n in the circuit-dependent offline phase, and
6(1− ϵ)n in the circuit-independent offline phase when instantiated using Le Mans [RS22] (ignoring
the calls to the VOLE and OLE functionalities). Again, the VOLE and OLE functionalities can be
properly instantiated with sub-linear communication complexity in the preprocessed data size. And
our protocol even reduces this size by a factor of ϵn/2.

The communication complexity of our protocol and its comparison with respect to Turbospeedz
is given in Table 1. We also measure the number of OLE/VOLE correlations required by our protocol
and by Turbospeedz. We see that our online phase is better than Turbospeedz by a factor of
(nϵ(1− ϵ))/3. Some observations about this expression:

9 The only term that is related to the circuit depth is in the form of O(n · Depth). This is because of the use of
packed secret sharing which requires to evaluate at least O(n) gates per layer. A similar term also occurs in
previous works that use packed secret sharings [DIK10,GIP15,BGJK21,GPS21,GPS22,EGPS22].
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– (Fixing the ratio ϵ) Given a factor ϵ, meaning there is an ϵ× 100% percentage of honest parties
and a (1 − ϵ) × 100% percentage of corrupt parties, our online phase is better as long as the
total number of parties n is at least the constant term 3/(ϵ(1− ϵ)), with the improvement factor
increasing as n grows past this threshold. Furthermore, this term goes down as ϵ approaches
1/2, meaning that the more honest parties/fewer corruptions, the smaller n needs to be for our
online phase to be better. For example, if ϵ = 0.1 (90% corruptions) we see improvements with
n ≥ 34; if ϵ = 0.2 (80% corruptions) then n ≥ 19; and if ϵ = 0.3 (70% corruptions) then n ≥ 15.

– (Fixing the number of honest parties) Given a fixed number of honest parties h, our online
protocol is

(
h
4

)
× better than prior work regardless of the total number of parties n, as long as

n ≥ 4h. This is proven in Section F in the Supplementary Material. This motivates the use of our
protocol over prior solutions for any number of parties, as long as minimal support of honest
parties can be assumed.

Regarding the complete offline phase, our complexity is 6n+ 39/ϵ, while in Turbospeedz it is
10(1 − ϵ)n. This ignores the calls to the OLE and VOLE functionalities, but we remark that this
cost is sublinear in the size of the circuit when instantiating these with pseudorandom correlator
generators, as in [RS22].10 In the limit as n→∞, our offline protocol is approximately a factor of
10(1 − ϵ)/6 times better than Turbospeedz/Le Mans, which ranges between 10/6 ≈ 1.6 for ϵ = 0,
to 5/6 ≈ 0.83 for ϵ = 1/2. As a result, in the limit, our offline phase is only 1/0.83 = 1.2× less
efficient than that of Turbospeedz (and for ϵ close to zero it can be even up to 1.6 better), which is a
reasonable cost taking into account the benefits in the online phase. A more thorough discussion
on the communication complexity and its implications is given in Section F in the Supplementary
Material.

Online CD Offline CI Offline

SuperPack 6/ϵ 4/ϵ 6n + 35/ϵ
Turbospeedz∗ 2(1 − ϵ)n 4(1 − ϵ)n 6(1 − ϵ)n

Table 1. Communication complexity in terms of field elements per multiplication gate of SUPERPACK, and
comparison to the previous work with the best concrete efficiency in the online phase, which is Turbospeedz
[BNO19] (with its offline phase instantiated by Le Mans [RS22]), referred to as Turbospeedz∗. We ignore the
calls to Fprog

OLE and FnVOLE, which can be instantiated with sublinear communication using PCGs.

Passive-to-active costs. When we strip out SUPERPACK from the different components needed for
active security, like MACs and correctness checks, we obtain a passively secure protocol that also
improves over previous works in this setting. Interestingly, the cost of active security is minor:
the online and circuit-dependent preprocessing phases do not change between the passive and
the active version, and the only overhead appears in the circuit-independent preprocessing phase,
where the active protocol requires approximately only a factor of ×3 more communication, on top
of calls to a Vector OLE functionality that are needed for authentication.

Implementation and experimental results. Finally, we implement our protocol entirely—except for the
OLE/VOLE functionalities as they fall outside the scope of our work—and verify that, experimentally,
our protocol outperforms Turbospeedz by the expected amount based on the communication
measures when the runtimes are not computation bound. For example, in a 100 Mbps network, our
online phase is more than ≈ 4.5× better than that of Turbospeedz for 80 parties, where 60% of them
are corrupted. If the network is too fast, then computation becomes a more noticeable bottleneck,
and our improvements are less noticeable. This is discussed in Section 7.

10 Furthermore, our protocol requires fewer OLE/VOLE correlations than previous works, which also makes
computation lighter. We expand on this in Remark 1 in page 21.
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2 Overview of the Techniques

In this section we provide an overview of our SUPERPACK protocol. Recall that in our setting we
have t < n(1 − ϵ). Let F be a finite field with |F| ≥ 2κ, where κ is the security parameter. We
consider packed Shamir secret sharing, where k secrets x = (x1, . . . , xk) are turned into shares as
[x]d = (f(1), . . . , f(n)), where f(x) is a uniformly random polynomial over F of degree at most d
constrained to f(0) = x1, . . . , f(−(k− 1)) = xk. It also holds that [x]d1

∗ [y]d2
= [x ∗y]d1+d2

, where
the operator ∗ denotes point-wise multiplication. In our protocol we would like to be able to multiply
degree-d sharings by degree-(k − 1) sharings (which corresponds to multiplying by constants), so
we would like the sum of these degrees to be at most n − 1 so that the n parties determine the
underlying secrets. For this, we take d + (k − 1) = n − 1. On the other hand, we also want the
secrets of a degree-d packed Shamir sharing to be private against t corrupted parties, which requires
d ≥ t+ k − 1. Together, these imply n = t+ 2(k − 1) + 1 = t+ 2k − 1, and k = n−t+1

2 ≥ ϵ·n+2
2 .

At a high level, our technical contributions can be summarized as two aspects:

1. First, we lift the online protocol of TURBOPACK [EGPS22] from the honest majority setting to
the dishonest majority setting. Our starting point is the observation that the passive version of
the online protocol from TURBOPACK [EGPS22] also works for a dishonest majority by setting
the parameters correctly. To achieve malicious security, however, the original techniques do not
work. This is because in TURBOPACK, all parties will prepare a degree-t Shamir sharing for each
wire value in the circuit. In the honest majority setting, a degree-t Shamir sharing satisfies that
the shares of honest parties can fully determine the secret, and the most that malicious parties
can do is to change their local shares and cause the whole sharing inconsistent (in the sense
that the shares do not lie on a degree-t polynomial). Malicious parties however cannot change
the secret by changing their shares. This property unfortunately does not hold in the dishonest
majority setting.
Instead, in our case, we rely on a different type of redundancy widely used in the dishonest
majority setting: We make use of message authentication codes, or MACs, to ensure that
corrupted parties cannot change the secrets by changing their local shares without being caught.
While a similar technique has also been used in [GPS22], their way of using MACs increases the
online communication complexity by a factor of at least 2 compared with their passive protocol.
We will show how to use MACs in a way such that the online communication complexity remains
the same as our passive protocol.

2. Second, we have to reinvent the circuit-independent preprocessing protocol for SUPERPACK

as the corresponding protocol from TURBOPACK highly relies on the assumption of honest
majority, plus that we also need the preprocessed sharings to be authenticated due to the larger
corruption threshold.
The main preprocessing data we need to prepare is referred to as Packed Beaver Triples, which
are first introduced in [GPS22]. At a high level, a packed Beaver triple contains three packed
Shamir sharings ([a], [b], [c]) such that a, b are random vectors in Fk and c = a ∗ b. To prepare
such a packed Beaver triple, a direct approach would be first preparing standard Beaver triples
using additive sharings and then transform them to packed Shamir sharings. In this way, we
may reuse the previous work of generating standard Beaver triples in a black box way. However,
this idea requires us to not only pay the cost of preparing standard Beaver triples, but also
pay the cost of doing the sharing transformation. The direct consequence is that the overall
efficiency of our protocol will be worse than that of the state-of-the-art [RS22] in the dishonest
majority setting. (And this is the approach used in TURBOPACK [EGPS22].)
We will show how to take the advantage of the constant fraction of honest parties in the
circuit-independent preprocessing phase by carefully using the techniques of [RS22] in our
setting.

In the following, we will start with a sketch of the modified passive version of TURBOPACK,
which is suitable in our setting.

2.1 Starting Point: TURBOPACK

Our starting point is the observation that the passive version of the online protocol from TUR-
BOPACK [EGPS22], which is set in the honest majority setting, also works for a dishonest majority
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by setting the parameters correctly. We focus mostly on multiplication gates. So we ignore details
regarding input and output gates.

Preprocessing. We consider an arithmetic circuit whose wires are indexed by certain identifiers,
which we denote using lowercase Greek letters α, β, γ, etc. Our work is set in the client-server model
where there are input and output gates associated to clients, who will be in charge of providing
input/receiving output. Each multiplication layer of the circuit is split into batches of size k. Similarly,
each input and output layer assigned to a given client are split into batches of size k. The invariant
in TURBOPACK is the following. First, every wire α that is not the output of an addition gate has
associated to it a uniformly random value λα. If a wire γ is the output of an addition gate with input
wires α with wire β, then λγ is defined (recursively) as λα + λβ .

The parties are assumed to have the following (circuit-dependent) preprocessing material: For
every group of k multiplication gates with input wires α,β and output wires γ, the parties have
[λα]n−k, [λβ]n−k, and [λγ ]n−1 (The degree of the last sharing is chosen to be n− 1 on purpose).
In addition, all parties also hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1) for this gate
(Again, the degree of the last sharing is chosen to be degree-(n− 1) on purpose).

Main Invariant. The main invariant in TURBOPACK is that for every wire α, P1 knows the value
µα = vα − λα, where vα denotes the actual value in wire α for a given choice of inputs. Notice
that this invariant preserves the privacy of all intermediate wires, since P1 only learns a masked
version of the wire values, and the masks, the λα’s, are uniformly random and they are kept private
with packed Shamir sharings of degree n − k = t + (k − 1). We now discuss how, in the original
TURBOPACK work, this invariant is maintained throughout the circuit execution. We only focus on
(groups of) multiplication gates. Addition gates can be processed locally. Groups of input gates
with wires α make use of a simple protocol in which the client who owns the gates learns the
corresponding masks λα, and sends µα = vα − λα to P1. Groups of output gates are handled in a
similar way.

Maintaining the Invariant for Multiplication Gates. Consider a group of multiplication gates in a
given circuit level, having input wires α,β, and output wires γ. Assume that the invariant holds
for the input wires, meaning that P1 knows µα = vα − λα and µβ = vβ − λβ. Recall that the
parties have the preprocessed sharings [λα]n−k, [λβ]n−k, and [λγ ]n−1. To maintain the invariant,
P1 must learn µγ = vγ − λγ , where vγ = vα ∗ vβ. This is achieved by using the techniques of
packed Beaver triples introduced in [GPS22]. Recall that all parties also hold a fresh packed Beaver
triple ([a]n−k, [b]n−k, [c]n−1). All parties proceeds as follows:

1. All parties locally compute the packed Shamir sharing [λα − a]n−k = [λα]n−k − [a]n−k and let
P1 learn λα − a. Similar step is done to let P1 learn λβ − b.

2. P1 computes vα − a = µα + (λα − a) and computes vβ − b similarly. Then, P1 distributes
shares [vα − a]k−1 and [vβ − b]k−1 to the parties.

3. Using the received shares and the shares obtained in the preprocessing phase, the parties
compute locally

[vγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1.

and [µγ ]n−1 = [vγ ]n−1 − [λγ ]n−1.
4. The parties send their shares [µγ ]n−1 to P1, who reconstructs µγ . It is easy to see that µγ =

vα ∗ vβ − λγ .

Note that the first step can be completely moved to the circuit-dependent preprocessing phase
since both [λα]n−k and [a]n−k are preprocessed data. With this optimization, the online protocol
only requires all parties to communicate 3n elements for k = ϵn/2 multiplication gates, which is
6/ϵ elements per gate among all parties.
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2.2 Achieving Active Security

There are multiple places where an active adversary can cheat in the previous protocol, with the
most obvious being distributing incorrect (or even invalid) [vα − a]k−1 and [vβ − b]k−1 at a group
of multiplication gates, either by corrupting P1, or by sending incorrect shares in previous gates to
P1. This is prevented in TURBOPACK by explicitly making use of the honest majority assumption:
Using the degree-(k − 1) packed Shamir sharings distributed by P1, the parties will be able to
obtain a certain “individual” (i.e. non-packed) degree-t Shamir sharing for each wire value. As we
discussed above, a degree-t Shamir sharing in the honest majority setting allows honest parties to
fully determine the secret. This enables the use of distributed zero-knowledge techniques [BBC+19]
to check the correctness of the computation.

In our case where t ≥ n/2, these techniques cannot be used. Instead, we rely on a different
type of redundancy widely used in the dishonest majority setting, namely, we make use of message
authentication codes, or MACs, to ensure the parties cannot deviate from the protocol execution
when performing actions like reconstructing secret-shared values. We observe that the use of MACs
has the following two advantages:

– With MACs, corrupted parties cannot change the secrets of a degree-(n − k) packed Shamir
sharing without being detected except with a negligible probability.

– In addition to adding verifiability to packed Shamir sharings, we show how to allow all parties
to directly compute MACs of the secret values that are shared by P1 using degree-(k− 1) packed
Shamir sharings. This allows us to directly verify whether vα−a and vβ − b are correct without
doing distributed zero-knowledge like [EGPS22].

Before we describe our approach, let us introduce some notation. We use [x|i]t to denote a
Shamir secret sharing of degree t, where the secret is in position −(i− 1). I.e., the corresponding
polynomial f(x) satisfies that f(−(i−1)) = x. We also use ⟨x⟩ to denote an additive secret sharing of
x. Observe that from a Shamir sharing of x (or a packed Shamir sharing that contains x), all parties
can locally obtain an additive sharing of x by locally multiplying suitable Lagrange coefficients.

To achieve active security, we need the parties to hold preprocessing data of the following form:

– Shares of a global random key ∆ ∈ F in the form ([∆|1]t, . . . , [∆|k]t).
– For every group of k multiplication gates with input wires α,β and output wires γ, recall that

all parties hold a fresh packed Beaver triple ([a]n−k, [b]n−k, [c]n−1). They additionally hold
[∆ · a]n−k, [∆ · b]n−k, and {⟨∆ · ci⟩}ki=1, and also {⟨∆ · λγi⟩}ki=1.

With these at hand, the new invariant we maintain to ensure active security is that (1) as before,
P1 learns µα and λα − a for every group of input wires α of multiplication gates, but in addition
(2) the parties have shares ⟨∆ · µαi

⟩ and ⟨∆ · (λαi
− ai)⟩ for all i ∈ {1, . . . , k}. In this way, the first

part of the invariant enables the parties to compute the circuit, while the second ensures that P1

distributed correct values.

Maintaining the New Invariant. Consider a group of multiplication gates with input wires α,β,
and output wires γ. Assume that the invariant holds for the input wires, meaning that P1 knows
µα = vα − λα and µβ = vβ − λβ as well as λα − a and λβ − b, and also the parties have
{(⟨∆ · µαi

⟩, ⟨∆ · (λαi
− ai)⟩)}ki=1 and {(⟨∆ · µβi

⟩, ⟨∆ · (λβi
− bi)⟩)}ki=1.

The parties preserve the invariant as follows.

– For (1), we follow the passive protocol described above and reconstruct µγ to P1.
– For (2), to be able to compute ⟨∆ · µα′

i
⟩ for some wire α′

i in the next layer, it is sufficient to let
all parties hold ⟨∆ · µγi⟩ for all i ∈ {1, . . . , k}. To this end, we try to follow the procedure of
computing [µγ ]n−1. Recall that

[µγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ ]n−1.

1. For [vα − a]k−1 ∗ [b]n−k and [vβ − b]k−1 ∗ [a]n−k, since all parties also hold [∆ · a]n−k and
[∆ · b]n−k, they may locally compute [vα − a]k−1 ∗ [∆ · b]n−k and [vβ − b]k−1 ∗ [∆ · a]n−k

and convert them locally to ⟨∆ · (vαi − ai) · bi⟩ and ⟨∆ · (vβi − bi) · ai⟩.
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2. For [c]n−1 and [λγ ]n−1, all parties already hold ⟨∆ · ci⟩ and ⟨∆ · λγi
⟩.

3. The problematic part is to obtain ⟨∆ · (vαi
− ai) · (vβi

− bi)⟩. There we use the degree-t
Shamir sharing [∆|i]t as follows. We note that

[∆ · (vαi
− ai) · (vβi

− bi)|i]n−1 = [∆|i]t ∗ [vα − a]k−1 ∗ [vβ − b]k−1.

This follows from the multiplication of the underlying polynomials and the fact that n− 1 =
t+2(k− 1). From [∆ · (vαi − ai) · (vβi − bi)|i]n−1, all parties can locally compute an additive
sharing of ∆ · (vαi − ai) · (vβi − bi).

Summing all terms up, all parties can locally obtain ⟨∆ · µγi⟩.
– For (2), to be able to compute ⟨∆ · (λα′

i
− a′i)⟩ for some wire α′

i in the next layer, it is sufficient
to show how to obtain ⟨∆ · λα′

i
⟩ since all parties can obtain ⟨∆ · a′i⟩ from [∆ · a′]n−k prepared

in the preprocessing data. Note that all parties already hold ⟨∆ · λγi
⟩ for the current layer. By

following the circuit topology, they can locally compute ⟨∆ · λα′
i
⟩ for the next layer.

Checking the Correctness of the Computation. All parties together hold additive sharings ⟨∆ ·µαi⟩ and
⟨∆ · (λαi − ai)⟩, they compute ⟨∆ · (vαi − ai)⟩. On the other hand, all parties hold a degree-(k − 1)
packed Shamir sharing [vα − a]k−1.

It is sufficient to check the following two points:

– The sharing [vα − a]k−1 is a valid degree-(k − 1) packed Shamir sharing. I.e., the shares lie on
a degree-(k − 1) polynomial. The check is done by opening a random linear combination of all
degree-(k − 1) packed Shamir sharings distributed by P1.

– The secrets of [vα − a]k−1 are consistent with the MACs {⟨∆ · (vαi − ai)⟩}ki=1. This is done by
using [vα − a]k−1 and {[∆|i]t}ki=1 to compute another version of MACs: {⟨∆ · (vαi − ai)⟩}ki=1,
and then check whether these two versions have the same secrets inside.

Both of these two checks are natural extensions of the checks done in SPDZ [DPSZ12]. We thus
omit the details and refer the readers to Section 4.4 for more details.

2.3 Instantiating the Circuit-Dependent Preprocessing

The preprocessing required by the parties is summarized as follows.

– A circuit-independent part, which are the global key [∆|1]t, . . . , [∆|k]t and a fresh packed Beaver
triple with authentications per group of multiplication gates ([a]n−k, [∆ · a]n−k), ([b]n−k, [∆ ·
b]n−k), ([c]n−1, {⟨∆ · ci⟩}ki=1).

– A circuit-dependent part that consists of [λα]n−k, [λβ]n−k, ([λγ ]n−1, {⟨∆ · λγi⟩}ki=1). Also P1

needs to obtain λα − a and λβ − b.

For the circuit-independent part, we will focus more on the preparation of the packed Beaver
triples with authentications in the next section since the size of [∆|1]t, . . . , [∆|k]t is independent
of the circuit size. As for the circuit-dependent part, we essentially follow the same idea in TUR-
BOPACK [EGPS22] including the preprocessing data we need from a circuit-independent prepro-
cessing, with the only exception that the preprocessing data should be authenticated. We refer the
readers to [EGPS22] and Section 5 for more details.

On the Necessity of a Circuit-Dependent Preprocessing. At a first glance, it may appear that if the circuit
only contain multiplication gates, then there is no need to have a circuit-dependent preprocessing
phase since all λ values are uniform. We stress that this is not the case. This is because each wire α
is served as an output wire in a previous layer and then served as an input layer in a next layer. We
need all parties to hold two packed Shamir sharings that contain λα, one for a previous layer where
α is an output wire, and the other one for a next layer where α is an input wire. In particular, the
positions of λα depend on the circuit topology since we need the two input packed Shamir sharings
of a group of multiplication gates to have their secrets correctly aligned.
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2.4 Instantiating the Circuit-Independent Preprocessing

Next, we focus on the preparation of authenticated packed Beaver triples:

([a]n−k, [∆ · a]n−k), ([b]n−k, [∆ · b]n−k), ([c]n−1, {⟨∆ · ci⟩}ki=1),

where c = a ∗ b.
To this end, we make use of two functionalities FnVOLE and Fprog

OLE from [RS22]. In [RS22], these
two functionalities are used to efficiently prepare Beaver triples using additive sharings. At a high
level,

1. All parties first use FnVOLE to prepare authenticated random additive sharings. In particular,
– All parties receive an additive sharing ⟨∆⟩ = (∆1, . . . ,∆n) from FnVOLE, where ∆ is served

as the MAC key. (Here ∆i is the i-th share of ⟨∆⟩.)
– Each party Pi receives a vector ui, which is served as the additive shares held by Pi. We

denote the additive sharings by ⟨u1⟩, . . . , ⟨um⟩.
– For every ordered pair (Pi, Pj), they together hold an additive sharing of ui · ∆j . From

these, all parties locally transform them to additive sharings ⟨∆ · u1⟩, . . . , ⟨∆ · um⟩.
2. After using FnVOLE to prepare two vectors of additive sharings, say (⟨a1⟩, ⟨b1⟩), . . . , (⟨am⟩, ⟨bm⟩)

together with their MACs, every ordered pair of parties (Pi, Pj) invokes Fprog
OLE to compute

additive sharings of aiℓ · b
j
ℓ for all ℓ ∈ {1, . . . ,m}. (Here aiℓ is the i-th share of ⟨aℓ⟩ and bjℓ is the

j-th share of ⟨bℓ⟩.) These allow all parties to obtain additive sharings of c = (a1 · b1, . . . , am · bm).
Note that the MACs of ⟨c1⟩, . . . , ⟨cm⟩ are not computed in this step.

3. Finally, all parties authenticate ⟨c1⟩, . . . , ⟨cm⟩ by using random additive sharings (⟨r1⟩, . . . , ⟨rm⟩)
with authentications which can be prepared using Step 1.

As we discussed above, one direct solution would be using the above approach in a black
box way and then transforming additive sharings to packed Shamir sharings. However, the direct
consequence is that we need to not only pay the same cost as that in [RS22], but pay the additional
cost for the sharing transformation as well. In the following we discuss how to take the advantage
of the constant fraction of honest parties when preparing packed Beaver triples.

Obtaining Authenticated Shares ([a]n−k, [∆ · a]n−k). We first discuss how the parties can obtain
[a]n−k and [∆ · a]n−k (and also [b]n−k and [∆ · b]n−k).

Our main observation is that the shares of a random degree-(n− 1) packed Shamir sharing are
uniformly distributed. This is because a random degree-(n−1) packed Shamir sharing corresponds to
a random degree-(n−1) polynomial, which satisfies that any n evaluations are uniformly distributed.
On the other hand, the shares of a random additive sharing are also uniformly distributed. Thus,
we may naturally view the random additive sharings prepared in FnVOLE as degree-(n− 1) packed
Shamir sharings. Concretely, for each random additive sharing (u1, . . . , un), let u denote the secrets
of the degree-(n− 1) packed Shamir sharing when the shares are (u1, . . . , un). Then we may view
that all parties hold the packed Shamir sharing [u]n−1. To obtain a degree-(n− k) packed Shamir
sharing of u, we simply perform a sharing transformation via the standard “mask-open-unmask”
approach following from the known techniques [DN07].

Now the problem is to prepare the MACs for u. We observe that in FnVOLE, for every ordered
pair of parties (Pi, Pj), Pi, Pj together hold an additive sharing of ui ·∆j . Since each secret uℓ in
u is a linear combination of (u1, . . . , un), all parties can locally compute an additive sharing of
uℓ ·∆j for each j ∈ {1, . . . , n} and then compute an additive sharing of ∆ · uℓ. To obtain the MACs
[∆ · u]n−k, we will perform a sharing transformation again via the standard “mask-open-unmask”
approach following from the known techniques [DN07,GPS22].

In this way, to obtain a pair of authenticated sharings ([a]n−k, [∆ · a]n−k), we only need to
perform once the transformation from additive sharings to packed Shamir sharings. In addition,
we essentially obtain such a pair of authenticated sharing from the same data that is only for one
authenticated additive sharing in [RS22]. As a result, the amount of preprocessing data we need
from FnVOLE is reduced by a factor of k = ϵn/2.
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Authenticated Product ([c]n−1, {⟨∆ · ci⟩}ki=1). Once the parties have obtained ([a]n−k, [∆ · a]n−k)
and ([b]n−k, [∆ · b]n−k), they need to obtain ([c]n−1, {⟨∆ · ci⟩}ki=1), where c = a ∗ b.

To this end, we need to reuse the degree-(n − 1) packed Shamir sharings [a]n−1 and [b]n−1

output by FnVOLE. As that in [RS22], every ordered pair of parties (Pi, Pj) invokes Fprog
OLE to compute

additive sharings of ai · bj , where ai is the i-th share of [a]n−1 and bj is the j-th share of [b]n−1.
From additive sharings of {ai · bj}i,j , all parties can locally compute an additive sharing of each
cℓ = aℓ · bℓ for all ℓ ∈ {1, . . . , k}. Finally, we obtain [c]n−1 with authentications by using random
sharings ([r]n−1, {⟨∆ · rℓ⟩}kℓ=1) and follow the standard “mask-open-unmask” approach. Note that
([r]n−1, {⟨∆ · rℓ⟩}kℓ=1) can be directly obtained from FnVOLE by properly interpreting the output of
FnVOLE as we discussed above.

Thus, to prepare the authenticated product ([c]n−1, {⟨∆ · ci⟩}ki=1), we only need to perform
once the transformation from additive sharings to packed Shamir sharings. Again the amount of
preprocessing data we need from Fprog

OLE is also reduced by a factor of k = ϵn/2.

Remarks About Our Techniques. Note that we essentially follow the same steps as those in [RS22] but
interpreting the output differently, and then perform sharing transformations to obtain sharings in
the desired form. We would like to point out that following the same steps as those in [RS22] is crucial
since in [RS22], FnVOLE only outputs random seeds to parties and the parties need to compute
their shares by locally expanding the seeds using a proper PRG. And the same seeds are fed in
Fprog

OLE to compute the product sharings. Only in this way together with proper realizations of FnVOLE

and Fprog
OLE , [RS22] can achieve sub-linear communication complexity in preparing Beaver triples

(without authenticating the product sharing ⟨c⟩). Thus, to be able to properly use the functionalities
in [RS22], we should follow a similar pattern to that in [RS22].

Verification of Packed Beaver Triples. We note that the packed Beaver triples we obtained may
be incorrect. This is because the invocations of Fprog

OLE are between every pair of parties and the
functionality Fprog

OLE does not force the same party to use the same input across different invocations.
Also when the product sharings are authenticated, corrupted parties may introduce additive errors.
The same issues also appear in [RS22].

To obtain correct packed Beaver triples with authentications, our idea is to extend the technique
of sacrificing [DKL+13] and use one possibly incorrect packed Beaver triple to check another
possibly incorrect packed Beaver triple. To improve the concrete efficiency, we show that it is
sufficient to have the sacrificed packed Beaver triple prepared in the form:

([ã]n−1, {⟨∆ · ãi⟩}ki=1), ([b̃]n−1, {⟨∆ · b̃i⟩}ki=1), ([c̃]n−1, {⟨∆ · c̃i⟩}ki=1).

I.e., we do not need to do any sharing transformation for the first two pairs of sharings and only
need to authenticate the product sharing. We refer the readers to Section D.4 for more details.

2.5 Organization of the Document

In Section 3 we present some preliminaries, including basic notation, packed Shamir secret-sharing,
a functionalities for coin tossing and commitments. Section 4 presents the online phase of our
protocol, which makes use of circuit-dependent preprocessing. Section 5 then discuss how to
instantiate this circuit-dependent offline phase, making use of circuit-independent preprocessing.
This is followed by Section 6, which shows precisely how to instantiate the circuit-independent
offline phase making use of OLE and Vector OLE functionalities, which completes the description of
our end-to-end protocol. In Section 7 we discuss our implementation and experimental results.

Supplementary material. Section A includes some extra preliminaries. Section B presents the full
online protocol and its security proof. Section C includes the security proof of the protocol for
circuit-dependent preprocessing. Section D contains some missing proofs of the circuit-independent
preprocessing phase. Section E presents the previous best protocol we use as our point of comparison;
this is a variant of the Turbospeedz protocol from [BNO19], adapted to work in three phases like
ours (circuit-independent, circuit-dependent and online), and also making use of OLE and VOLE.
Section F contains an extra discussion on the communication complexity of our protocol. Section G
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studies what is the overhead of our actively secure protocol with respect to its passively secure
version.

Finally, for easy reference, we include towards the end of the document, in Figure 1 in page 61,
a diagram of the different procedures, protocols and functionalities we consider in the document,
together with their dependencies.

3 Preliminaries

The Model. We consider the task of secure multiparty computation in the client-server model, where
a set of clients C = {C1, . . . , Cm} provide inputs to a set of computing parties P = {P1, P2, . . . , Pn},
who carry out the computation and return output to the clients. Clients are connected to parties,
and parties are connected to each other using a secure (private and authentic) synchronous channel.
The communication complexity is measured by the total number of bits via private channels.

We focus on functions that can be represented as an arithmetic circuit C over a finite field F
with input, addition, multiplication, and output gates.11 The circuit C takes inputs (x1, . . . ,xm)
and returns (y1, . . . ,ym), where xi ∈ FIi and yi ∈ FOi , for i ∈ {1, . . . ,m}. We use the convention
of labeling wires by means of greek letters (e.g. α, β, γ), and we use vα to denote the value stored
in a wire labeled by α for a given execution. We use κ to denote the security parameter, and we
assume that |F| ≥ 2κ. We assume that the number of parties n and the circuit size |C| are bounded
by polynomials of the security parameter κ.

We study the dishonest majority setting where the adversary corrupts a majority of the parties,
but we focus on the case where the number of corruptions may not be equal to n − 1. Instead,
the adversary corrupts t < n(1 − ϵ) parties for some constant 0 < ϵ < 1/2. For security we use
Canetti’s UC framework [Can01], where security is argued by the indistinguishability of an ideal
world, modeled by a functionality (denoted in this work by the letter F and some subscript), and
the real world, instantiated by a protocol (denoted using the letter Π and some subscript). Protocols
can also use procedures, denoted using the lowercase letter π and some subscripts, which are like
protocols except they are not intended to instantiate a given functionality, and instead, they are
used as “macros” inside other protocols that instantiate some functionality. We refer the readers to
Section A.1 for the details on the security definition.

We denote by FMPC the functionality that receives inputs from the clients, evaluates the function
f , and returns output to the clients. This is given in detail in Section A.2 in the Supplementary
Material. Security with unanimous abort, where all honest parties may jointly abort in the computa-
tion, is the best that can be achieved in the dishonest majority setting. Here we achieve security
with selective abort, where the adversary can choose which honest parties abort, which can be
compiled to unanimous abort using a broadcast channel [GL05]. To accommodate for aborts, every
functionality in this work implicitly allows the adversary to send an abort signal to a specific honest
party. We do not write this explicitly.

Packed Shamir Secret Sharing. In our work, we make use of packed Shamir secret sharing,
introduced by Franklin and Yung [FY92]. This is a generalization of the standard Shamir secret
sharing scheme [Sha79]. Let n be the number of parties and k be the number of secrets to pack
in one sharing. A degree-d (d ≥ k − 1) packed Shamir sharing of x = (x1, . . . , xk) ∈ Fk is a
vector (w1, . . . , wn) for which there exists a polynomial f(·) ∈ F[X] of degree at most d such that
f(−i + 1) = xi for all i ∈ {1, 2, . . . , k}, and f(i) = wi for all i ∈ {1, 2, . . . , n}. The i-th share wi is
held by party Pi. Reconstructing a degree-d packed Shamir sharing requires d+ 1 shares and can be
done by Lagrange interpolation. For a random degree-d packed Shamir sharing of x, any d− k + 1
shares are independent of the secret x. If d − (k − 1) ≥ t, then knowing t of the shares does not
leak anything about the k secrets. In particular, a sharing of degree t+ (k − 1) keeps hidden the
underlying k secret.

11 In this work, we only focus on deterministic functions. A randomized function can be transformed into a
deterministic function by taking as input an additional random tape from each party. The XOR of the input
random tapes of all parties is used as the randomness of the randomized function.
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In our work, we use [x]d to denote a degree-d packed Shamir sharing of x ∈ Fk. In the following,
operations (addition and multiplication) between two packed Shamir sharings are coordinate-wise,
and ∗ denotes element-wise product. We recall two properties of the packed Shamir sharing scheme:

– Linear Homomorphism: For all d ≥ k − 1 and x,y ∈ Fk, [x+ y]d = [x]d + [y]d.
– Multiplicativity: Let ∗ denote the coordinate-wise multiplication operation. For all d1, d2 ≥ k−1

subject to d1 + d2 < n, and for all x,y ∈ Fk, [x ∗ y]d1+d2 = [x]d1 ∗ [y]d2 .

Note that the second property implies that, for all x, c ∈ Fk, all parties can locally compute
[c ∗ x]d+k−1 from [x]d and the public vector c. To see this, all parties can locally transform c to a
degree-(k − 1) packed Shamir sharing [c]k−1. Then, they can use the property of the packed Shamir
sharing scheme to compute [c ∗ x]d+k−1 = [c]k−1 ∗ [x]d. We simply write [c ∗ x]d+k−1 = c ∗ [x]d to
denote this procedure.

When the packing parameter k = 1, a packed Shamir sharing degrades to a Shamir sharing.
Generically, a Shamir sharing uses the default evaluation point 0 to store the secret. In our work, we
are interested in using different evaluation points in different Shamir secret sharings. Concretely, for
all i ∈ {1, . . . , k}, we use [x|i]d to represent a degree-d Shamir sharing of x such that the secret is
stored at the evaluation point −i+ 1. If we use f to denote the degree-d polynomial corresponding
to [x|i]d, then f(−i+ 1) = x.

In this work, we choose the packing parameter to be k = (n− t+ 1)/2 (assume for simplicity
that this division is exact), or equivalently n = t+ 2k − 1 = t+ 2(k − 1) + 1. This implies not only
that a sharing of degree t+ (k − 1) (which keeps the privacy of k secrets) is well defined as there
are more parties than the degree plus one, but also if a sharing of such degree is multiplied by a
degree-(k − 1) sharing, the resulting degree-(t + 2(k − 1)) sharing is also well defined. Also, we
observe that with these parameters, a sharing of degree at most 2(k − 1) is fully determined by the
honest parties’ shares since n− t = 2(k − 1) + 1, which in particular means that such sharings can
be reconstructed to obtain the correct underlying secrets (i.e. the secrets determined by the honest
parties’ shares). Finally, recall that t < n(1− ϵ). We assume that t+ 1 = (1− ϵ)n for simplicity, and
in this case, it can be checked that k = ϵ

2 · n+ 1 = Θ(n).

Some Functionalities. For our protocols we assume the existence of two widely used functionalities.
One is FCoin, which upon being called provides the parties with a uniformly random value r ∈ F.
This can be easily implemented by having the parties open some random shared value ⟨r⟩, and if
more coins are needed these can be expanded with the help of a PRG. The second functionality
is FCommit, which enables a party to commit to some values of their choice towards a given set
of receivers, without revealing this value. At a later point, the party can open their committed
values with the guarantee that these opened terms are exactly the same as the ones committed
to initially. This can be instantiated with the help of a hash function modeled as a random oracle
H (cf. [DKL+13]): a party commits to m towards a set of receivers by sampling r ∈ {0, 1}σ and
sending c = H(m, r) ∈ {0, 1}σ, and later on this party opens m by sending the pair (m, r) to these
receivers, who check that c = H(m, r). The communication complexity of committing a message m
towards one receiver is σ bits, and the communication complexity of opening the commitment of a
message m is |m| + σ bits. Here, σ is a computational security parameter, which can be taken in
practice to be 128.

4 Online Protocol

We begin by describing the online phase of SUPERPACK.

4.1 Circuit-Dependent Preprocessing Functionality

In order to securely compute the given function, our online phase must make use of certain
circuit-dependent preprocessing, which is modeled in Functionality FPrepMal below.
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Functionality 1: FPrepMal

1. Assign Random Values to Wires in C: FPrepMal receives the circuit C from all parties. Then
FPrepMal assigns random values to wires in C as follows.
(a) For each output wire α of an input gate or a multiplication gate, FPrepMal samples a uniform

value λα and associates it with the wire α.
(b) Starting from the first layer of C to the last layer, for each addition gate with input wires α, β

and output wire γ, FPrepMal sets λγ = λα + λβ .
2. Settling Authentication Keys: FPrepMal samples a random value ∆. Then FPrepMal samples k

random degree-t Shamir sharings ([∆|1]t, . . . , [∆|k]t) and distributes the shares to all parties.
3. Preparing Packed Beaver Triples with Authentications: For each group of k multiplication gates,
FPrepMal samples a random packed Beaver triple with authentications as follows:
(a) FPrepMal samples two random vectors a, b ∈ Fk

p and computes ∆ · a,∆ · b. Then FPrepMal

samples two pairs of random degree-(n− k) packed Shamir sharings JaKn−k = ([a]n−k, [∆ ·
a]n−k), JbKn−k = ([b]n−k, [∆ · b]n−k).

(b) FPrepMal computes c = a ∗ b and ∆ · c. Then FPrepMal samples a random degree-(n− 1) packed
Shamir sharing [c]n−1. For all i ∈ {1, . . . , k}, FPrepMal samples a random additive sharing
⟨∆ · ci⟩.

FPrepMal distributes the shares of (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)) to all parties.
4. Distributing λα − a and λβ − b to P1: For each group of multiplication gates, let α,β

denote the batch of first input wires and that of the second input wires respectively. Let
(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) be the packed Beaver triple with authentications asso-
ciated with these gates.
FPrepMal receives two vectors of additive errors δα, δβ from the adversary, computes λα − a+ δα
and λβ − b+ δβ, and sends them to P1. Here λα and λβ are the random values associated with
the wires α and β.
FPrepMal also samples random additive sharings {⟨∆·(λαi−ai)⟩, ⟨∆·(λβi−bi)⟩}

k
i=1 and distributes

the shares to all parties.
5. Preparing Authenticated Packed Sharings for Multiplication Gates: For each group of multipli-

cation gates with output wires γ, FPrepMal samples
– A random degree-(n− 1) packed Shamir sharing [λγ ]n−1,
– k additive sharings {⟨∆ · λγi⟩}ki=1,

and distributes the shares to honest parties.
6. Preparing Random Sharings for Input and Output Gates: For each group of k input gates or

output gates, FPrepMal prepares the following random sharings.
(a) Let α be the output wires of these k input gates or the input wires of these k output gates.
FPrepMal samples

– A random degree-(n− 1) packed Shamir sharing [λα]n−1,
– k additive sharings {⟨∆ · λαi⟩}ki=1,

and distributes the shares to honest parties.
(b) FPrepMal also prepares a random packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) in the same way as Step 3. Later, we will
view b as an authentication key and c as the MAC of a. This allows the input holder to verify
the correctness of a.

Corrupted Parties: When FPrepMal prepares random sharings, corrupted parties can choose their shares.
FPrepMal then samples the random sharings based on the secret it generated and the shares chosen by
the corrupted parties.

4.2 Input Gates

In this section, we give the description of the procedure πInput. This procedure enables P1 to learn
µα = vα − λα for every input wire α, where vα is the input provided by the client owning the input
gate. In addition, the parties output shares of the MAC of this value, namely {⟨∆ · µαi⟩}ki=1. In a
bit more detail, recall that in FPrepMal, all parties have prepared the following random sharings for
each group of input gates:

– A random degree-(n− 1) packed Shamir sharing [λα]n−1 with MACs {⟨∆ · λαi
⟩}ki=1.

– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1).
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The client receives the shares of [λα]n−1 and [a]n−k from all parties and reconstructs the secrets
λα,a. To verify the correctness of a, all parties also send their shares of [b]n−k, [c]n−1 to the client
so that b serves as the MAC key and c serves as the MAC of a. Then the client sends x− a to all
parties, which allows all parties to obtain a packed Shamir sharing of x together with the MAC.
The client also sends µα = x− λα to P1. Note that P1 may receive incorrect µα (either because
an honest client reconstructs an incorrect λα or because a corrupted client sends incorrect µα

to P − 1). However, all parties can locally compute the MAC of µα which allows us to verify the
computation at the end of the protocol. The description of πInput appears below.

Procedure 1: πInput

1. For each group of input gates that belongs to Client, let α denote the batch of output wires of
these input gates. All parties receive from FPrepMal

– A random degree-(n− 1) packed Shamir sharing [λα]n−1 with MACs {⟨∆ · λαi⟩}ki=1.
– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1).

Let vα denote the inputs held by Client.
2. All parties send to Client their shares of [λα]n−1, [a]n−k, [b]n−k, [c]n−1.
3. Client reconstructs the secrets λα,a, b, c and checks whether c = a ∗ b. If not, Client aborts.

Otherwise, Client computes µα = vα − λα and [vα − a]2k−2.
4. Client sends µα to P1 and distributes the shares of [vα − a]2k−2 to all parties.
5. For all i ∈ {1, . . . , k}, all parties locally compute ⟨∆ · µαi⟩ as follows:

(a) Recall that all parties hold [∆|i]t generated in FPrepMal. All parties locally compute [∆ · (vαi −
ai)|i]n−1 = [∆|i]t ∗ [vα − a]2k−2. Then all parties locally transform it to an additive sharing
⟨∆ · (vαi − ai)⟩.

(b) Recall that all parties hold [∆ · a]n−k. All parties locally transform it to an additive sharing
⟨∆ · ai⟩.

(c) Recall that all parties hold ⟨∆ · λαi⟩. All parties locally compute

⟨∆ · µαi⟩ = ⟨∆ · (vαi − ai)⟩+ ⟨∆ · ai⟩ − ⟨∆ · λαi⟩.

Communication complexity of πInput. The communication complexity per group of k inputs gates
consists of:

– (Step 2) 2n+ 2(n− k + 1) = (4− ϵ) · n shares from the parties to the client
– (Step 4) k = ϵ

2 · n+ 1 elements from the client to P1

– (Step 4) n− (k − 1)− 1 = (1− ϵ
2 )n− 1 elements from the client to the parties.

This leads to a total of (5− ϵ) · n elements per group of k input gates. Therefore, per input gate, this
becomes (5−ϵ)n

k = 2(5−ϵ)n
ϵ·n+2 ≤

10
ϵ .

4.3 Computing Addition and Multiplication Gates

After receiving the inputs from all clients, all parties start to evaluate the circuit gate by gate. We
will maintain the invariant that for each output wire α of an input gate or a multiplication gate, P1

learns µα in clear. In the procedure, P1 distributes shares of certain values, which may be incorrect.
To prevent cheating, the parties get additive shares of the MAC of these values, which are used in a
verification step in the output phase to check for correctness.

The evaluation proceeds as follows:

– For each addition gate with input wires α, β and output wire γ, P1 locally computes µγ = µα+µβ ,
and the parties locally compute ⟨∆ · µγ⟩ = ⟨∆ · µα⟩+ ⟨∆ · µβ⟩.

– For each group of k multiplication gates, all parties run the procedure πMult to allow P1 to learn
µγ . Note that, all parties can compute the MACs of vα−a and vβ − b, which allows us to check
whether P1 shares correct values to all parties. Therefore in πMult, all parties further compute
{⟨θαi

⟩, ⟨θβi
⟩}ki=1, which should be additive sharings of 0 if P1 shares correct values. We will

check these additive sharings at the end of the computation.
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Procedure 2: πMult

The procedure is executed for a group of k multiplication gates with input wires α and β, and output
wires γ.

1. All parties hold
– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1).

– A random degree-(n− 1) packed Shamir sharing [λγ ]n−1 with MACs {⟨∆ · λγi⟩}ki=1.
– Additive sharings {⟨∆ · (λαi − ai)⟩, ⟨∆ · (λβi − bi)⟩}ki=1.

And P1 learns
– µα = vα − λα, µβ = vβ − λβ from the previous layers;
– λα − a, λβ − b received from FPrepMal.

2. P1 locally computes vα − a = µα + λα − a. Similarly, P1 locally computes vβ − b. Then P1

distributes shares of [vα − a]k−1 and [vβ − b]k−1 to all parties.
3. For all i ∈ {1, . . . , k}, all parties locally compute ⟨θαi⟩ and ⟨θβi⟩ as follows.

(a) Recall that all parties have computed additive sharings of the MACs of the µ values for output
wires of multiplication gates and input gates in previous layers. By using these additive
sharings, all parties locally compute ⟨∆ · µαi⟩, ⟨∆ · µβi⟩.

(b) Recall that all parties hold ⟨∆ · (λαi − ai)⟩, ⟨∆ · (λβi − bi)⟩. They locally compute

⟨∆ · (vαi − ai)⟩ = ⟨∆ · µαi⟩+ ⟨∆ · (λαi − ai)⟩,
⟨∆ · (vβi − bi)⟩ = ⟨∆ · µβi⟩+ ⟨∆ · (λβi − bi)⟩.

(c) Also recall that all parties hold [∆|i]t. All parties locally compute [∆|i]t ∗ [vα − a]k−1 and
transform it to an additive sharing ⟨∆ · (vαi − ai)⟩. Similarly, all parties locally compute
[∆|i]t ∗ [vβ − b]k−1 and transform it to an additive sharing ⟨∆ · (vβi − bi)⟩.

(d) All parties locally compute ⟨θαi⟩ = ⟨∆ · (vαi − ai)⟩ − ⟨∆ · (vαi − ai)⟩ and ⟨θβi⟩ = ⟨∆ · (vβi −
bi)⟩ − ⟨∆ · (vβi − bi)⟩.

4. All parties locally compute

[µγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ ]n−1.

5. For all i ∈ {1, . . . , k}, all parties locally compute an additive sharing ⟨∆ · µγi⟩ as follows.
(a) Recall that all parties hold [∆|i]t from FPrepMal. All parties locally compute [∆|i]t ∗ [vα −

a]k−1 ∗ [vβ − b]k−1 and transform it to an additive sharing ⟨∆ · (vαi − ai) · (vβi − bi)⟩.
(b) Recall that all parties hold [∆ ·a]n−k and [∆ · b]n−k. All parties locally compute [vα−a]k−1 ∗

[∆ · b]n−k + [vβ − b]k−1 ∗ [∆ · a]n−k and transform it to an additive sharing ⟨∆ · ((vαi − ai) ·
bi + (vβi − bi) · ai)⟩.

(c) Recall that all parties hold ⟨∆ · ci⟩ and ⟨∆ · λγi⟩. All parties locally compute

⟨∆ · µγi⟩ = ⟨∆ · (vαi − ai) · (vβi − bi)⟩
+ ⟨∆ · ((vαi − ai) · bi + (vβi − bi) · ai)⟩
+ ⟨∆ · ci⟩ − ⟨∆ · λγi⟩.

6. P1 collects the whole sharing [µγ ]n−1 from all parties and reconstructs µγ .

Communication complexity of πMult. The communication complexity per group of k multiplication
gates consists of:

– (Step 2) 2(n− 1) shares from P1 to the parties
– (Step 6) n− 1 shares from the parties to P1.

This leads to a total of 3n − 3 elements per group of k = ϵ
2 · n + 1 input gates. Therefore, per

multiplication gate, this becomes 3n−3
k = 2(3n−3)

ϵ·n+2 ≤
6
ϵ .
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4.4 Output Gates and Verification

At the end of the protocol, all parties together check the correctness of the computation. We first
transform the output sharings to sharings that can be conveniently checked by clients. However,
before reconstructing these outputs to the clients, the parties jointly verify the correctness of the
computation by checking that (1) the sharings distributed by P1 in πMult have the correct degree
≤ k − 1, and (2) the underlying secrets are correct, for which the MACs computed in the online
phase are used.

In a bit more detail, first recall that for each group of k output gates, all parties have prepared
the following random sharings:

– A random degree-(n− 1) packed Shamir sharing [λα]n−1 with MACs {⟨∆ · λαi
⟩}ki=1.

– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1).

In addition, P1 learns µα in clear. Similarly to input gates, we shall use b as the MAC key and
c as the MAC of a. This allows the client to check the correctness of a. Thus, our first step is to
allow all parties obtain a degree-(2k − 2) packed Shamir sharing of vα − a. Note that the secrets
of a degree-(2k − 2) packed Shamir sharing are fully determined by the shares of honest parties:
corrupted parties cannot change the secrets without being detected.

To this end, all parties locally compute [λα − a]n−1 = [λα]n−1 − [a]n−k and send their shares
to P1. P1 reconstructs λα − a and shares vα − a = µα + λα − a using a degree-(2k − 2) packed
Shamir sharing. Following the same idea in πMult, all parties compute {⟨θαi

⟩}ki=1 and check whether
they are additive sharings of 0 later.

Before reconstructing the outputs to clients, we need to check the correctness of the computation.
It is sufficient to ensure that

– For each group of multiplication gates, P1 distributes correct degree-(k − 1) packed Shamir
sharings [vα + a]k−1 and [vβ + b]k−1 to all parties. This includes checking the degree of each
sharing is correct and checking the secrets are correct (with respect to the MACs).
We will achieve the verification by checking that the degree-(k − 1) packed Shamir sharings
distributed by P1 in πMult are valid and checking that all additive sharings in the form of ⟨θα⟩
computed in πMult are additive sharings of 0.

– For each group of output gates, P1 distributes correct degree-(2k − 2) packed Shamir sharings
[vα +a]2k−2 to all parties. This time, we only need to check the secrets are correct (with respect
to the MACs) as the shares of honest parties always form a valid degree-(2k− 2) packed Shamir
sharing.
We will achieve the verification by checking that all additive sharings in the form of ⟨θα⟩
computed when transforming the output sharings are additive sharings of 0.

Due to space constraints, we describe the procedure πOutput in detail in Section B.1 in the
Supplementary Material, including the computation of the output gates, the verification of the
computation (degree and MAC check), and the reconstruction of the outputs.

4.5 Full Online Protocol

Our final online protocol makes use of the procedures πInput (Proc. 1, Section 4.2) to let the clients
distribute their inputs, πMult (Proc. 2, Section 4.3) to process each group of k multiplication gates,
and πOutput (Proc. 4, Section B.1) to verify the correctness of the computation and reconstruct
output to the clients. The online protocol ΠOnline is presented in full detail in Section B.2 in the
Supplementary Material. We prove the following:

Theorem 2. Let c denote the number of servers and n denote the number of parties (servers). For
all 0 < ϵ ≤ 1/2, protocol ΠOnline instantiates Functionality FMPC in the FPrepMal-hybrid model, with
statistical security against a fully malicious adversary who can control up to c clients and t = (1− ϵ)n
parties (servers).
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Communication complexity of ΠOnline. Let I and O be the number of input wires and output
wires, and assume that each client owns a number of input and output gates that is a multiple of k.
We assume for simplicity that n divides each of these terms, and also that n divides the number
of multiplication gates in each layer. Let us also denote by |C| the number of multiplication gates
in the circuit C. The total communication complexity is given by 10

ϵ · I +
24
ϵ ·O + 6

ϵ · |C|, ignoring
small terms that are independent of I, O and |C|.

5 Circuit-Dependent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality for the circuit-dependent prepro-
cessing phase, FPrepMal, presented as Functionality 1. Recall that k = (n− t+ 1)/2. For simplicity,
we only focus on the scenario where t ≥ n/2.

We realize FPrepMal by using a circuit-independent functionality, FPrepIndMal, which is described
below.

Functionality 2: FPrepIndMal

1. Setting Authentication Keys: FPrepIndMal samples a random value ∆. Then FPrepIndMal samples k
random degree-t Shamir sharings ([∆|1]t, . . . , [∆|k]t) and distributes the shares to all parties.

2. Preparing Random Packed Sharings: For each output wire α of an input gate or a multiplication
gate in the circuit C, FPrepIndMal samples a random value as λα and computes λα · 1, where
1 = (1, . . . , 1) ∈ Fk. Then FPrepIndMal samples

– a random degree-(n− k) packed Shamir sharing [λα · 1]n−k,
– and a random additive sharing ⟨∆ · λα⟩,

and distributes the shares to all parties.
3. Preparing Packed Beaver Triples with Authentications: For each group of k multiplication gates,
FPrepIndMal samples a random packed Beaver triple with authentications as follows:
(a) FPrepIndMal samples two random vectors a, b ∈ Fk

p and computes ∆ · a,∆ · b. Then FPrepIndMal

samples two pairs of random degree-(n− k) packed Shamir sharings JaKn−k = ([a]n−k, [∆ ·
a]n−k), JbKn−k = ([b]n−k, [∆ · b]n−k).

(b) FPrepIndMal computes c = a ∗ b and ∆ · c. Then FPrepIndMal samples a random degree-(n − 1)
packed Shamir sharing [c]n−1. For all i ∈ {1, . . . , k}, FPrepIndMal samples a random additive
sharing ⟨∆ · ci⟩.

FPrepIndMal distributes the shares of (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) to all parties.
4. Preparing Random Masked Sharings for Multiplication Gates: For each group of k multipli-

cation gates, FPrepIndMal sets o(1) = o(2) = o(3) = 0 ∈ Fk. Then FPrepIndMal samples three random
degree-(n− 1) packed Shamir sharings [o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1 and distributes the shares to

all parties.
5. Preparing Random Sharings for Input and Output Gates: For each group of k input gates or

output gates, FPrepIndMal prepares the following random sharings.
(a) FPrepIndMal prepares a random degree-(n− 1) packed Shamir sharing of 0 ∈ Fk, denoted by

[o]n−1, in the same way as Step 4.
(b) FPrepIndMal also prepares a random packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) in the same way as Step 3. Later, we will view b
as an authentication key and c as the MAC of a. This allows the input holder to verify the
correctness of a.

Corrupted Parties: When FPrepIndMal prepares random sharings, corrupted parties can choose their
shares. FPrepIndMal then samples the random sharings based on the secret it generated and the shares
chosen by the corrupted parties.

To instantiate the circuit-dependent preprocessing functionality FPrepMal using the circuit-
independent preprocessing FPrepIndMal, we follow the idea in [EGPS22]. Concretely,

– Step 2, Step 3, and Step 6(b) in FPrepMal are prepared directly in Step 1, Step 2, and Step 5(b)
in FPrepIndMal.

– As for Step 1 in FPrepMal, recall that the functionality samples a random value for each output
wire α of an input gate or a multiplication gate. In FPrepIndMal, for each output wire α of an
input gate or a multiplication gate, the functionality prepares a random degree-(n− k) packed
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Shamir sharing [λα · 1]n−k together with the MAC ⟨∆ · λα⟩. We will use the secret value λα

as the random value assigned to α. Then all parties follow Step 1 in FPrepMal and compute
([λα · 1]n−k, ⟨∆ · λα⟩) for every wire α in the circuit.

– To achieve Step 4, we first follow [EGPS22] and compute a packed Shamir sharing of λα as
follows: Recall that for each wire αi, all parties hold ([λαi · 1]n−k, ⟨∆ · λαi⟩). Let ei ∈ Fk

p be the
vector where the i-th entry is 1 and all other entries are 0. Then

[λα]n−1 =

k∑
i=1

ei ∗ [λαi · 1]n−k.

To reconstruct λα−a to P1, all parties locally compute [λα−a]n−1 = [λα]n−1−[a]n−k+[o(1)]n−1

and send their shares to P1. Here both [a]n−k and [o(1)]n−1 are prepared in FPrepIndMal and
o(1) = 0.
To compute ⟨∆ · (λαi

− ai)⟩, all parties transform [∆ · a]n−k to an additive sharing ⟨∆ · ai⟩,
compute ⟨∆ · (λαi − ai)⟩ = ⟨∆ · λαi⟩ − ⟨∆ · ai⟩, and refresh the obtained additive sharing.

– As for Step 5 and Step 6(b), all parties similarly compute [λα]n−1 from {[λαi · 1]n−k}ki=1. Note
that all parties have already obtained {⟨∆ · λαi⟩}ki=1.

We describe the protocol ΠPrepMal below.

Protocol 1: ΠPrepMal

1. All parties invoke FPrepIndMal.
2. Setting Authentication Keys: All parties use {[∆|i]t}ki=1 generated in FPrepIndMal.
3. Preparing Packed Beaver Triples with Authentications: All parties use the packed Beaver triples

with authentications prepared in FPrepIndMal.
4. Distributing λα − a and λβ − b to P1: In FPrepIndMal, for each output wire α of an input gate

or a multiplication gate, all parties obtain a random degree-(n− k) packed Shamir sharing with
authentication in the form of ([λα ·1]n−k, ⟨∆·λα⟩). All parties locally compute ([λα ·1]n−k, ⟨∆·λα⟩)
for every wire α in the circuit.
For each group of multiplication gates, let α,β denote the batch of the first input wires and that
of the second input wires respectively. Let (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) be the packed
Beaver triple with authentications associated with these gates. Let ([o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1)

be the random degree-(n− 1) packed Shamir sharings of 0 prepared in FPrepIndMal. All parties run
the following steps:
(a) All parties locally compute

[λα − a]n−1 =

(
k∑

i=1

ei ∗ [λαi · 1]n−k

)
− [a]n−k + [o(1)]n−1

and send their shares to P1.
(b) P1 reconstructs λα − a.
(c) For all i ∈ {1, . . . , k}, all parties locally transform [∆ · a]n−k to an additive sharing ⟨∆ · ai⟩.

Then all parties locally compute ⟨∆ · (λαi − ai)⟩ = ⟨∆ · λαi⟩ − ⟨∆ · ai⟩. All parties locally
refresh the obtained additive sharing.a As a result, all parties hold a random additive sharing
of ∆ · (λαi − ai).

(d) Repeat the above steps for λβ − b using [o(2)]n−1.
5. Preparing Authenticated Packed Sharings for Multiplication Gates: For each group of

multiplication gates with output wires γ, let ([o(1)]n−1, [o
(2)]n−1, [o

(3)]n−1) be the random
degree-(n − 1) packed Shamir sharings of 0 prepared in FPrepIndMal. Recall that all parties hold
{([λγi · 1]n−k, ⟨∆ · λγi⟩)}ki=1.
All parties locally compute

[λγ ]n−1 =

(
k∑

i=1

ei ∗ [λγi · 1]n−k

)
+ [o(3)]n−1.

6. Preparing Random Sharings for Input and Output Gates: For each group of k input gates or
output gates, let α denote the output wires of these k input gates or the input wires of these k
output gates. Recall that all parties obtain [o]n−1 and (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1) in
FPrepIndMal.
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Also recall that all parties hold {[λαi · 1]n−k, ⟨∆ · λαi⟩}ki=1. All parties locally compute

[λα]n−1 =

(
k∑

i=1

ei ∗ [λαi · 1]n−k

)
+ [o]n−1.

a We discuss how parties locally refresh an additive sharing in Section D

Lemma 1. Protocol ΠPrepMal securely computes FPrepMal in the FPrepIndMal-hybrid model against a
malicious adversary who controls t out of n parties.

Lemma 1 is proven in Section C in the Supplementary Material.

Communication complexity of ΠPrepMal. The only communication in Protocol ΠPrepMal (ignoring
calls to ΠPrepIndMal) happens in Step 4a. This amounts to 2(n− 1) shares sent to P1, per group of k
multiplication gates, so 2n−2

k = 4n−4
ϵ·n+2 ≤

4
ϵ per multiplication gate.

6 Circuit-Independent Preprocessing Phase

In this section, we discuss how to realize the ideal functionality FPrepIndMal for the circuit-independent
preprocessing phase. Recall that k = (n − t + 1)/2. For simplicity, we only focus on the scenario
where t ≥ n/2. Due to space constrains, part of the procedures we use to instantiate FPrepIndMal

appear in Section D in the Supplementary Material. Here, we focus on the fundamental aspects of
the instantiation. Recall that FPrepIndMal is in charge of generating the following correlations:

1. The global random key [∆|1]t, . . . , [∆|k]t;
2. Shamir sharings [λα · 1]n−k and additive sharings ⟨∆ · λα⟩ for every wire α;
3. A tuple (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)) and shares of zero [o(1)]n−1, [o

(2)]n−1, [o
(3)]n−1

for every group of k multiplication gates;
4. A tuple (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)) and a share of zero [o]n−1 for every group of k

input or output gates.

In this section we will focus our attention on how to generate the packed Beaver triples
(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)). All of the remaining correlations are discussed in full detail
in Section D in the Supplementary Material.

Building blocks: OLE and VOLE. It is known that protocols in the dishonest majority setting require
computational assumptions. In our work, these appear in the use of oblivious linear evaluation.
Here, we make use of two functionalities, FnVOLE and Fprog

OLE , which sample OLE correlations as
follows. We consider an expansion function Expand : S → Fm

p with seed space S and output length
m, ultimately corresponding to the amount of correlations we aim at generating.

– Fprog
OLE is a two-party functionality such that, on input seeds sa from party PA and sb from party

PB , samples v ← Fm
p , and outputs w = u ∗x−v to PA and v to PB . Here, u = Expand(sa) and

v = Expand(sb). Notice that in this functionality the parties can choose their inputs (at least,
choose their seeds).

– FnVOLE is an n-party functionality that first distributes ∆i ← F to each party Pi in an initialize
phase, and then, to sample m correlations, the functionality sends si, (wi

j ,v
i
j)j ̸=i to each party

Pi, where si is a uniformly random seed, vi
j ← Fm

p , and wi
j = ui ·∆j −vj

i , and ui = Expand(si).
Notice that in this functionality, the parties do not choose their inputs (seeds), but rather, the
functionality samples the seeds and sends them to the parties.

The functionalities above are presented in full detail in Section D in the Supplementary Material.
At a high level, FnVOLE is used to generate authenticated sharings of a uniformly random value, and
Fprog

OLE , which allows the parties to set their inputs, is used to secure multiply two already-shared
secret values. FnVOLE can be instantiated using pseudo-random correlator generators, as suggested
in [RS22]. On the other hand, for Fprog

OLE we can use the implementation from [RS22]. As we are
using exactly the same functionalities as in [RS22], we refer the reader to that work for instantiations
and complexity measures.
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Omitted procedures. For our triple generation protocol, we will make use of a series of procedures
that are described in full detail in Section D in the Supplementary Material. These procedures are
the following:

– πRandSh (Procedure 5): this procedure generates sharings (under some secret-sharing scheme,
which will be clear from context) of uniformly random values. For this, the trick of using a
Vandermonde matrix for randomness extraction from [DN07] is used.

– πDegReduce (Procedure 6): this procedure takes as input a sharing [u]n−1 and outputs [u]n−k. This
is achieved by using the trick of masking with a random value [r]n−1, opening, and unmasking
with [r]n−k. This random pair is generated using πRandSh.

– πAddTran (Procedure 7): this procedure takes as input sharings (⟨∆·u1⟩, . . . , ⟨∆·uk⟩) and converts
them to [∆ · u]n−k. Once again, the trick of masking with a random sharing ⟨r1⟩, . . . , ⟨rk⟩,
opening, and unmasking with [r], is used. The sharing [r] is obtained using πRandSh, and each
⟨ri⟩ can be derived from it non-interactively.

– πMACKey (Procedure 8): this procedure enables the parties to obtain individual Shamir sharings
of the global MAC key [∆|1]t, . . . , [∆|k]t, starting from additive shares of it ⟨∆⟩ which are
obtained using FnVOLE. This is done by using the standard trick of masking with a random value
⟨r⟩, opening, and unmasking with each [r|i]t. These random sharings are obtained using πRandSh.

– πAuth (Procedure 9): this procedure takes as input sharings (⟨u1⟩, . . . , ⟨uk⟩) to ([u]n−1, {⟨∆ ·
ui⟩}ki=1). The trick here is to mask with ⟨r1⟩, . . . , ⟨rk⟩, open, and adding [r]n−1 to obtain [u]n−1.
The authenticated part can be obtained by first multiplying locally by each [∆|i]t and then
adding each ⟨∆ · ri⟩. The pair ([r]n−1, {⟨∆ · ri⟩}ki=1) is produced using πRandSh.

Preparing packed beaver triples with authentications. The procedure to generate packed Beaver
triples with authentications, πTriple, is described below. This protocol calls πDegReduce twice, πAddTran

twice, and πAuth once per triple.

Procedure 3: πTriple

Initialization: All parties run the following initialization step only once.

1. Each Pi calls FnVOLE with input Init and receives ∆i.
2. All parties invoke πRandSh to prepare random sharings {[r|i]t}ki=1 and then invoke πMACKey and

obtain {[∆|i]t}ki=1.

Generation:

1. Each Pi calls FnVOLE twice with input Extend and receives the seeds sia, s
i
b. Use the outputs to

define degree-(n− 1) packed Shamir sharings {[aℓ]n−1}mℓ=1, {[bℓ]n−1}mℓ=1, where m is the output
length of the expansion function defined in FnVOLE, such that the i-th shares of {[aℓ]n−1}mℓ=1 are
Expand(sia), and the i-th shares of {[bℓ]n−1}mℓ=1 are Expand(sib). All parties locally compute and
refresh {(⟨∆ · aℓ,1⟩, . . . , ⟨∆ · aℓ,k⟩)}mℓ=1 and {(⟨∆ · bℓ,1⟩, . . . , ⟨∆ · bℓ,k⟩)}mℓ=1.

2. Every ordered pair (Pi, Pj) calls Fprog
OLE with Pi sending sia and Pj sending sjb. Fprog

OLE sends back ui,j

to Pi and vj,i to Pj such that ui,j + vj,i = Expand(sia) ∗ Expand(sjb). All parties locally compute
{(⟨cℓ,1⟩, . . . , ⟨cℓ,k⟩)}mℓ=1 where cℓ = aℓ ∗ bℓ.

3. All parties invoke πRandSh to prepare m random sharings in the form of ([r]n−k, [r]n−1). For all
ℓ ∈ {1, . . . ,m}, consume a pair of random sharings ([r]n−k, [r]n−1) and invoke πDegReduce to
transform [aℓ]n−1 to [aℓ]n−k.
Repeat this step for {[bℓ]n−1}mℓ=1.

4. All parties invoke πRandSh to prepare m random sharings in the form of [r]n−k. For all ℓ ∈
{1, . . . ,m}, consume a random sharing [r]n−k and invoke πAddTran to transform (⟨∆ ·aℓ,1⟩, . . . , ⟨∆ ·
aℓ,k⟩) to [∆ · aℓ]n−k.
Repeat this step for {(⟨∆ · bℓ,1⟩, . . . , ⟨∆ · bℓ,k⟩)}mℓ=1.

5. All parties follow Step 1 to prepare m random sharings with authentications in the form of
([r]n−1, {⟨∆ · ri⟩}ki=1). For all ℓ ∈ {1, . . . ,m}, consume a random sharing ([r]n−1, {⟨∆ · ri⟩}ki=1)
and invoke πAuth to transform (⟨cℓ,1⟩, . . . , ⟨cℓ,k⟩) to ([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1).

We remark that the triples produced by πTriple may not be correct, but this can be checked by
running a verification step in which the parties generate an extra triple and “sacrifice” it in order to
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check for correctness. This is described in Section D.4 in the Supplementary Material, where three
procedures πSacrifice, πCheckZero and πVerifyDeg to perform this check are introduced.

Communication complexity of πTriple. This is derived as follows

– (Step 3) Two calls to πRandSh to generate two pairs ([r]n−k, [r]n−1), which costs 2n, and two
calls to πDegReduce, which costs 2(2n− k). These sum up to 6n− 2k

– (Step 4) Two calls to πRandSh to generate [r]n−k and two calls to πAddTran. These add up to
2(n/2) + 2(k · (n− 2) + n+ 1).

– (Step 5) One call to πAuth, which is k · (n− 2) + n+ 1.

The above totals k · (3n− 8) + 10n+ 3.

Remark 1 (On the output size of Fprog
OLE and FnVOLE). We make the crucial observation that, in order

to obtain m packed multiplication triples, we require the Expand function used in Functionalities
Fprog

OLE and FnVOLE to output m field elements. However, since each such packed triple is used for
a group of k multiplication gates, this effectively means that, if there are |C| multiplication gates
in total, we only require Expand to output O(|C|/k) = O(|C|/(ϵn)) correlations. In contrast, as we
see in Section E in the Supplementary Material, the best prior work Turbospeedz [BNO19], when
instantiated with the preprocessing from Le Mans [RS22], would require O(|C|) correlations from
the FnVOLE and Fprog

OLE . As a result, we manage to reduce by a factor of k the expansion requirements
on VOLE/OLE techniques, which has a direct effect on the resulting efficiency since this allows us to
choose better parameters for the realizations of Fprog

OLE and FnVOLE. On the other hand, we require
correlations among n parties whereas the Turbospeedz variant we consider here requires these
correlations among (1− ϵ)n parties. We do not explore the concrete effects in efficiency of these
observations as it goes beyond the scope of our work, but we refer the reader to [RS22] where an
instantiation of Fprog

OLE and a discussion on PCG-based FnVOLE is presented.

Final circuit-independent preprocessing protocol. In Section D.5 in the Supplementary Material
we present the final protocol, ΠPrepIndMal, that puts together the pieces we have discussed so far,
together with the techniques presented in Section D in the Supplementary Material to generate
the remaining correlations, in order to instantiate Functionality FPrepIndMal. In Section D.6 in the
Supplementary Material, we prove the lemma below. We also analyze the communication complexity
of ΠPrepIndMal and conclude that, per multiplication gate (ignoring terms that are independent of the
circuit size), 6n+ 35

ϵ elements are required.

Lemma 2. Protocol ΠPrepIndMal securely computes FPrepIndMal in the {Fprog
OLE,FnVOLE,FCommit,FCoin}-

hybrid model against a malicious adversary who controls t out of n parties.

7 Implementation and Experimental Results

We have fully implemented the three phases of SUPERPACK, ΠOnline, ΠPrepMal and ΠPrepIndMal, only
ignoring the calls to the Fprog

OLE and FnVOLE functionalities for the implementation of ΠPrepIndMal. In
this section we discuss our experimental results.

Implementation setup. We implement SUPERPACK12 by using as a baseline the code of TURBOPACK

[EGPS22].13 As TURBOPACK, our program is written in C++ with no dependencies beyond the
standard library. Our implementation includes fully functional networking code. However, for
the experiments, we deploy the protocol as multiple processes in a single machine, and emulate
real network conditions using the package netem14, which allows us to set bandwidth and latency
constraints. We use the same machine as in [EGPS22] for the experiments, namely an AWS c5.metal
instance with 96 vCPUs and 192 GiB of memory. For our protocol, we use a finite field F = Fp

where p = 261 − 1. We explore how the performance of our protocol is affected by the parameters
including the number of parties n, the width and depth of the circuit, the network bandwidth and
the values of ϵ such that t = n(1− ϵ) is the threshold for corrupted parties.
12 Available at https://github.com/ckweng/SuperPack
13 Available at https://github.com/deescuderoo/turbopack
14 https://wiki.linuxfoundation.org/networking/netem
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Width # Parties Percentage of corrupt parties

90% 80% 70% 60%

100
16 0.63, 0.07, 1.22 0.56, 0.06, 1.26 0.33, 0.06, 1.25 0.34, 0.06, 1.26
32 0.47, 0.11, 2.86 0.47, 0.11, 2.90 0.75, 0.11, 2.86 0.62, 0.09, 2.87
48 0.35, 0.18, 5.77 0.63, 0.16, 6.41 0.68, 0.15, 6.33 0.68, 0.13, 6.01

1k
16 0.44, 0.21, 2.10 0.45, 0.16, 2.14 0.45, 0.20, 2.1 0.66, 0.16, 2.15
32 0.50, 0.69, 8.38 0.61, 0.63, 9.08 0.58, 0.54, 9.05 0.64, 0.62, 8.78
48 0.59, 1.46, 21.31 0.97, 1.15, 25.93 0.90, 1.05, 24.70 0.69, 1.01, 24.20

10k
16 1.74, 2.03, 14.10 1.49, 1.64, 13.36 1.45, 1.64, 13.39 1.28, 1.43, 12.44
32 2.36, 6.25, 70.71 2.03, 5.60, 73.98 2.26, 4.80, 70.47 2.32, 4.45, 67.16
48 3.24, 12.48, 196.97 3.19, 10.39, 238.32 3.49, 9.49, 227.80 4.14, 7.87, 201.17

100k
16 11.84, 15.39, 147.03 9.60, 12.46, 140.01 9.63, 12.56, 140.18 8.74, 10.68, 129.89
32 19.84, 64.61, 714.02 17.46, 46.56, 749.22 18.39, 38.70, 716.26 19.18, 35.03, 682.54
48 27.62, 124.22, 1978.42 27.56, 103.55, 2374.39 31.55, 92.74, 2256.70 36.98, 78.55, 1998.26

Table 2. Running times in seconds of SUPERPACK across its three different phases, for different circuit widths,
number of parties, and values of ϵ. Each cell is a triple corresponding to the runtimes of the online phase,
circuit-dependent offline phase, and circuit-independent offline phase (ignoring OLE calls), respectively. All the
circuits have depth 10.

End-to-end runtimes. We first report the running times of our SUPERPACK protocol for each of
the three phases: circuit-independent preprocessing, circuit-dependent preprocessing, and online
phase. The results are given in Table 2. In our experiments, we show the running time of our
protocol for different parameters. We throttle the bandwidth to 1Gbps and network latency to 1ms
to simulate a LAN setting. We generate four generic 10-layer circuits of widths 100, 1k, 10k and
100k. For each circuit, we benchmark the SUPERPACK protocol of which the number of parties
are chosen from {16, 32, 48}. After fixing the circuit and parties, the percentage of corrupt parties
varies from 60%, 70%, 80% and 90%. Generally the running time increases as the width and number
of parties increase. As demonstrated in Table 2, the majority of running time is incurred by the
circuit-independent preprocessing. For n = 48 and width larger than 1k, the online phase only
occupies less than 5% of the total running time. Furthermore, it is important to observe that the
runtimes of the online and circuit-dependent offline phases do not grow at the same rate as the
runtimes for the circuit-independent offline phase. This is consistent with what we expect: as can
be seen from Table 1, the communication in the first two phases is independent of the number of
parties for a given ϵ, which is reflected in the low increase rate in runtimes for these phases (there
is still a small but noticeable growth, but this is not surprising since even though communication
is constant, computation is not). In contrast, the communication in the circuit-independent offline
phase depends linearly on the number of parties, which impacts runtimes accordingly.

Experimental comparison to Turbospeedz. Now we compare the online phase of our protocol and
compare it against that of Turbospeedz [BNO19],15 for a varying number of parties n and pa-
rameter ϵ. We fix the circuit to have width 100k and depth 10, but we vary the bandwidth in
{500, 100, 50, 10}mbps. The results are given in Table 3. Notice that we do not report concrete
runtimes but rather the improvement factor of our online phase with respect to that of Turbospeedz.
We also report the communication factors between our protocol and Turbospeedz, for reference.
The exact running time of our online protocol for the same settings will be provided in Table 6 in
the Supplementary Material.

Table 3 shows interesting patterns. First, as expected (and as analyzed theoretically in Table 5
in Section F), our improvement factor with respect to Turbospeedz improves (i.e. increases) as
the number of parties grows—since in this case communication in Turbospeedz grows but in our
case remains constant—or as the percentage of corruptions decreases—since in this case we can
pack more secrets per sharing. Now, notice the following interesting behavior. The last rows next
to the “comm. factor” rows represent the improvement factor of our online phase with respect to
Turbopeedz, in terms of communication. In principle, this is the improvement factor we would expect
to see in in terms of runtimes. However, we observe that the expected factor is only reasonably
close to the experimental ones for low bandwidths such as 10, 50 and 100 mbps. For the larger

15 We implemented the online phase of Turbospeedz in our framework for a fair comparison.
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bandwidth of 500 mbps, we see that the experimental improvement factors are much lower than
the ones we would expect, and in fact, there are several cases where we expect our protocol to be
even slightly better, and instead it performs worse.

The behavior above can be explained in different ways. First, we notice that it is not surprising
that our improvement factor increases as the bandwidth decreases, since in this case the execution
of the protocol becomes communication bounded, and computation overhead becomes negligible.
In contrast, when the bandwidth is high, communication no longer becomes a bottleneck, and
computation plays a major role. Here is where our protocol is in a slight disadvantage: in SUPERPACK,
the parties (in particular P1) must perform polynomial interpolation in a regular basis, while in
Turbospeedz these operations correspond to simple field element multiplications, which are less
expensive. We remark that our polynomial interpolation is very rudimentary, and a more optimized
implementation (e.g. using FFTs) may be the key to bridging the gap between our protocol and
Turbospeedz, even for the case when bandwidth is large. Finally, we remark that SUPERPACK remains
the best option even with high bandwidth when the fraction of honest parties is large enough.

Bandwidth # Parties
Percentage of corrupt parties

90% 80% 70% 60%

500 mbps

16 0.51 0.44 0.42 0.50
32 0.55 0.68 0.68 0.72
48 0.58 0.87 1.00 1.14
64 0.75 0.92 1.30 1.22
80 0.95 1.27 1.57 1.40

100 mbps

16 0.97 1.08 1.05 1.20
32 1.43 1.67 1.88 1.95
48 1.51 2.38 2.78 3.07
64 2.08 2.95 3.37 3.47
80 2.51 3.88 4.57 4.56

50 mbps

16 1.08 1.31 1.31 1.45
32 1.57 1.99 2.43 2.44
48 1.73 2.88 3.43 3.76
64 2.24 3.60 4.55 4.34
80 2.76 4.51 5.30 5.59

10 mbps

16 1.10 1.40 1.39 1.53
32 1.58 2.00 2.53 2.68
48 1.81 3.04 3.61 3.94
64 2.31 3.60 4.73 5.28
80 2.91 4.56 5.73 6.22

Comm. factor

16 0.48 0.85 1.12 1.28
32 0.96 1.71 2.24 2.56
48 1.44 2.56 3.36 3.84
64 1.92 3.41 4.48 5.12
80 2.4 4.27 5.6 6.4

Table 3. Improvement factors of our online protocol with respect to the online phase in Turbospeedz, for a
varying number of parties, ϵ and network bandwidth. The network delay is 1ms for the simulation of LAN
network. The number represents how much better (or worse) our online phase is with respect to that of
Turbospeedz. The circuits have depth 10 and width 10k. In the final five rows we show the corresponding
factors but measuring communication complexity, instead of runtimes.
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Supplementary Material

A Appendix to the Preliminaries

A.1 Security Definition

Security Definition In this work, we focus on the honest majority setting. Let t = (n− 1)/2 be an
integer. Let F be a secure function evaluation functionality. An adversary A can corrupt at most t
parties, provide inputs to corrupted parties, and receive all messages sent to corrupted parties. In
this work, we consider both semi-honest adversaries and malicious adversaries.

– If A is semi-honest, then corrupted parties honestly follow the protocol.
– If A is fully malicious, then corrupted parties can deviate from the protocol arbitrarily.

Real-World Execution. In the real world, the adversary A controlling corrupted parties interacts with
honest parties. At the end of the protocol, the output of the real-world execution includes the inputs
and outputs of honest parties and the view of the adversary.

Ideal-World Execution. In the ideal world, a simulator S simulates honest parties and interacts with
the adversary A. Furthermore, S has one-time access to F , which includes providing inputs of
corrupted parties to F , receiving the outputs of corrupted parties, and sending instructions specified
in F (e.g., asking F to abort). The output of the ideal-world execution includes the inputs and
outputs of honest parties and the view of the adversary.

Semi-honest Security. We say that a protocol π computes F with perfect security if for all semi-honest
adversary A, there exists a simulator S such that the distribution of the output of the real-world
execution is identical to the distribution in the ideal-world execution.

Security-with-abort. We say that a protocol π securely computes F with abort if for all adversary
A, there exists a simulator S, which is allowed to abort the protocol, such that the distribution
of the output of the real-world execution is statistically close to the distribution in the ideal-world
execution.

Hybrid Model. We follow [Can00] and use the hybrid model to prove security. In the hybrid model,
all parties are given access to a trusted party (or alternatively, an ideal functionality) which computes
a particular function for them. The modular sequential composition theorem from [Can00] shows
that it is possible to replace the ideal functionality used in the construction by a secure protocol
computing this function. When the ideal functionality is denoted by g, we say the construction
works in the g-hybrid model.

Client-server Model. To simplify the security proofs, we consider consider the client-server model.
In the client-server model, clients provide inputs to the functionality and receive outputs, and
servers can participate in the computation but do not have inputs or get outputs. Each party may
have different roles in the computation. Note that, if every party plays a single client and a single
server, this corresponds to a protocol in the standard MPC model. Let c denote the number of clients
and n denote the number of servers. For all clients and servers, we assume that every two of them
are connected via a secure (private and authentic) synchronous channel so that they can directly
send messages to each other. The communication complexity is measured in the same way as that
in the standard MPC model.

Security in the Client-server Model. In the client-server model, an adversary A can corrupt at most c
clients and t servers, provide inputs to corrupted clients, and receive all messages sent to corrupted
clients and servers. The security is defined similarly to the standard MPC model.
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Benefits of the Client-server Model. In our construction, the clients only participate in the input phase
and the output phase. The main computation is conducted by the servers. For simplicity, we use
{P1, . . . , Pn} to denote the n servers, and refer to the servers as parties. Let Corr denote the set
of all corrupted parties and H denote the set of all honest parties. One benefit of the client-server
model is that it is sufficient to only consider maximum adversaries, i.e., adversaries which corrupt
exactly t parties. At a high level, for an adversary A which controls t′ < t parties, we may construct
another adversary A′ which controls additional t− t′ parties and behaves as follows:

– For a party corrupted byA,A′ follows the instructions ofA. This is achieved by passing messages
between this party and other n− t′ honest parties.

– For a party which is not corrupted by A, but controlled by A′, A′ honestly follows the protocol.

Note that, if a protocol is secure against A′, then this protocol is also secure against A since
the additional t− t′ parties controlled by A′ honestly follow the protocol in both cases. Thus, we
only need to focus on A′ instead of A. Note that in the regular model, each honest party may have
input. The same argument does not hold since the input of honest parties controlled by A′ may be
compromised.

A.2 Extra Functionalities

Functionality for Secure Computation. We first describe the functionality FMPC below, which
models the task of secure computation, and constitutes the main functionality we wish to implement.
The functionality interacts with the set of clients C = {C1, . . . , Cm}, who provide input and
receive output, and the set of parties P = {P1, . . . , Pn}, who carry out the computation. Let
(Y1, . . . , Ym) = f(X1, . . . , Xm) be an arithmetic circuit, which for modeling purposes we regard as a
set of multivariate polynomials over F, where each Xi has dimension Ii and yi has dimension Oi, for
i ∈ {1, . . . ,m}. Each client Ci provides the inputs xi, and obtains the outputs yi. The functionality
FMPC below models secure computation of the function f .

We remark that this corresponds to a case of non-reactive computation, in which the clients
evaluate the function f , which can only depend on their inputs. In contrast, reactive computation
enables the clients to receive partial outputs, and provide new inputs based on these values, in
order to compute the final result. This is better modeled using the arithmetic black-box model, which
we do not use in our work. We notice however that this is done for the purpose of simplicity, and
our protocol could easily be made to work in the reactive setting as well.

Functionality 3: FMPC

Let (Y1, . . . , Ym) = f(X1, . . . , Xm) be an arithmetic circuit.

– Clients provide inputs. For each i ∈ {1, . . . ,m}, client Ci sends xi ∈ FIi to FMPC, which stores
these values

– Functionality computes. Once all the inputs are received, FMPC computes (y1, . . . ,ym) =
f(x1, . . . ,xm), and stores these values

– Clients receive outputs. For each i ∈ {1, . . . ,m}, client Ci receives the stored values yi ∈ FOi

from FMPC.

B Appendix to Section 4

B.1 Procedure for Output Gates πOutput

Procedure 4: πOutput

Computation of Output Gates

1. For each group of output gates that belongs to Client, let α denote the batch of input wires of
these output gates. All parties receive from FPrepMal

– A random degree-(n− 1) packed Shamir sharing [λα]n−1 with MACs {⟨∆ · λαi⟩}ki=1.
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– A packed Beaver triple with authentications

(JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1).

And P1 learns µα in clear.
2. All parties invoke FCommit to commit their shares of [a]n−k, [b]n−k, [c]n−1 towards Client.
3. All parties locally compute [λα − a]n−1 = [λα]n−1 − [a]n−k and send their shares to P1.
4. P1 reconstructs the secrets λα −a and computes vα −a = µα +λα −a. Then P1 distributes the

shares of [vα − a]2k−2 to all parties.
5. For all i ∈ {1, . . . , k}, all parties locally compute ⟨θαi⟩ as follows.

(a) Recall that all parties have computed additive sharings of the MACs of the µ values for output
wires of multiplication gates and input gates in previous layers. By using these additive
sharings, all parties locally compute ⟨∆ · µαi⟩.

(b) Recall that all parties hold ⟨∆ · λαi⟩ and [∆ · a]n−k. They locally transform [∆ · a]n−k to an
additive sharing ⟨∆ · ai⟩ and compute ⟨∆ · (vαi − ai)⟩.

(c) Also recall that all parties hold [∆|i]t. All parties locally compute [∆|i]t ∗ [vα − a]2k−2 and
transform it to an additive sharing ⟨∆ · (vαi − ai)⟩.

(d) All parties locally compute ⟨θαi⟩ = ⟨∆ · (vαi − ai)⟩ − ⟨∆ · (vαi − ai)⟩.

Verification of the Computation

6. All parties verify that all degree-(k − 1) packed Shamir sharings distributed by P1 are valid.
Suppose all degree-(k − 1) packed Shamir sharings distributed by P1 are denoted by

[x1]k−1, . . . , [xm]k−1.

(a) All parties call FCoin to obtain random values χ1, . . . , χm ∈ F.
(b) All parties locally compute [x]k−1 =

∑m
ℓ=1 χℓ · [xℓ]k−1.

(c) All parties exchange their shares of [x]k−1 and check that the shares of [x]k−1 lie on a
degree-(k − 1) polynomial. If false, all parties abort.

7. Recall that for each input wire α of a multiplication gate or an output gate, all parties have
computed ⟨θα⟩. All parties verify that θα = 0 as follows. Suppose all parties hold ⟨θ1⟩, . . . , ⟨θm⟩.
(a) All parties call FCoin to obtain random values χ′

1, . . . , χ
′
m ∈ F.

(b) All parties locally compute ⟨θ⟩ =
∑m

j=1 χ
′
j · ⟨θj⟩ and locally refresh the obtained additive

sharing.a

(c) All parties call FCommit to commit their shares of ⟨θ⟩ towards each other.
(d) All parties open the commitments of the shares of ⟨θ⟩ and check whether it is an additive

sharing of 0. If not, all parties abort.

Reconstruction of Outputs

8. All parties send to Client their shares of [vα − a]2k−2, and open the commitments of their shares
of [a]n−k, [b]n−k, [c]n−1 to Client.

9. Client reconstructs the secrets vα−a,a, b, c and checks whether c = a∗b. If not, Client aborts.
Otherwise, Client computes and outputs vα.

a We will discuss how parties locally refresh an additive sharing in Section D

Communication complexity of πOutput. The communication complexity per group of k output gates,
ignoring the verification, consists of:

– (Step 3) n− 1 shares from the parties to P1

– (Step 4) n− (k − 1)− 1 = (1− ϵ
2 )n− 1 shares from P1 to the parties.

– (Step 2 and Step 8) n shares from parties to Client, and n commitments with openings, each
being a commitment to 3 field elements. In total this is n + 3n field elements, plus 2nσ bits
from the commitments (nσ from committing, and nσ from opening). The commitments are
independent of the total number of groups of k gates. For simplifying the analysis let us take
σ = 128 and |F| ≥ 2κ ≈ 240, so that these 2nσ bits correspond to 6n field elements.

Suppose that Client owns k ·m output gates, or m groups of k gates each. The total communi-
cation is then m ·

(
(6− ϵ

2 )n− 2
)

field elements, plus 6n field elements. Per output gate, dividing by
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m · k with k = ϵ
2 · n+ 1, we obtain that the cost is (12−ϵ)n−4+12n/m

2k = (12−ϵ)n−4+12n/m
ϵ·n+2 ≤ 12+12/m

ϵ .
As m grows the cost of the commitments is amortized away and this equals 12/ϵ, but for small m
such as m = 1, the cost is 24/ϵ.

We ignore the cost of the verification step, since it is independent of the amount of gates of any
type.

B.2 Full Online Protocol ΠOnline

Protocol 2: ΠOnline

The parties compute the circuit in a layer-by-layer manner. The parties call FPrepMal to obtain the
following:

– Sharings ([∆|1]t, . . . , [∆|k]t);
– For every group of k multiplication gates with inputs α and β, and outputs γ:
• A tuple (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)),
• A pair {⟨∆ · (λαi − ai)⟩, ⟨∆ · (λβi − bi)⟩}ki=1,
• A packed Shamir sharing [λγ ]n−1 and additive sharings {⟨∆ · λγi⟩}ki=1,
• P1 obtains λα − a+ δα and λβ − b+ δβ.

– For every group of k input gates or output gates, let α be the output wires of these k input gates
or the input wires of these k output gates. All parties prepare:
• A tuple (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)),
• A packed Shamir sharing [λα]n−1 and additive sharings {⟨∆ · λαi⟩}ki=1.

The parties proceed as follows:

1. The parties begin by executing Procedure πInput, which results in P1 learning µα and the parties
obtaining additive shares {⟨∆ · µαi⟩}ki=1, for every input batch with input wires α.

2. For every addition gate with input wires α and β, and output wire γ, P1 locally computes
µγ = µα + µβ , and the parties locally compute ⟨∆ · µγ⟩ = ⟨∆ · µα⟩+ ⟨∆ · µβ⟩

3. For every group of k multiplication gates with input wires α,β and output wires γ, the parties
run procedure πMult, which results in P1 learning µγ and the parties obtaining additive shares
{⟨∆ · λγi⟩}ki=1. The parties also obtain sharings ⟨θαi⟩ and ⟨θβi⟩ for i ∈ {1, . . . , k}, as explained in
Procedure πMult (Proc. 2).

4. The parties call Procedure πOutput to (1) maintain the invariant for the output gates, (2) verify the
correctness of the computation (using the sharings ⟨θαi⟩ and ⟨θβi⟩ from the multiplication gates
above), and (3) reconstruct the output to the clients.

Theorem 2. Let c denote the number of servers and n denote the number of parties (servers). For
all 0 < ϵ ≤ 1/2, protocol ΠOnline instantiates Functionality FMPC in the FPrepMal-hybrid model, with
statistical security against a fully malicious adversary who can control up to c clients and t = (1− ϵ)n
parties (servers).

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. Recall that in the client-server
model, it is sufficient to only consider the scenario where the number of corrupted parties is exactly
t = (1 − ϵ) · n. Also recall that k = (n − t + 1)/2. In the following, for a value v, we use η(v) to
denote additive error of v due to the malicious behaviors of corrupted parties. For a vector of values
v = (v1, . . . , vk), we simply write η(v) = (η(v1), . . . , η(vk)).

The simulator S works as follows. In the beginning, S emulates the ideal functionality FPrepMal

as follows.

– For sharings ([∆|1]t, . . . , [∆|k]t), S receives the shares of corrupted parties.
– For every group of k multiplication gates with inputs α and β, and outputs γ:
• S receives the shares of (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)) of corrupted parties.
• S receives the shares of {⟨∆ · (λαi

− ai)⟩, ⟨∆ · (λβi
− bi)⟩}ki=1 of corrupted parties.

• S receives the shares of [λγ ]n−1 and additive sharings {⟨∆ · λγi
⟩}ki=1 of corrupted parties.

• S receives two additive errors δα, δβ. S samples two random vectors as λα − a and λβ − b,
and computes λα − a+ δα and λβ − b+ δβ. If P1 is corrupted, S sends these two vectors
to P1.
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– For every group of k input gates or output gates, let α be the output wires of these k input gates
or the input wires of these k output gates.
• S receives the shares of (JaKn−k, JbKn−k, ([c]n−1, {⟨∆ · ci⟩}ki=1)) of corrupted parties.
• S receives the shares of [λα]n−1 and additive sharings {⟨∆ · λαi⟩}ki=1 of corrupted parties.

Then S proceeds to simulate the whole protocol:

1. In Step 1, S simulates πInput as follows. For each group of k input gates that belong to some
Client, let α denote the output wires of these input gates. When Client is corrupted,
(a) In Step 2 of πInput, S randomly samples λα,a, b and computes c = a ∗ b. Then S randomly

samples the shares of [λα]n−1, [a]n−k, [b]n−k, [c]n−1 of honest parties based on the secrets
S just generated and the shares of corrupted parties. Next, S sends these shares to Client

on behalf of honest parties.
(b) In Step 4 of πInput, S receives the shares of [vα − a]2k−2 of honest parties. S reconstructs

the whole sharing [vα − a]2k−2 using the shares of honest parties and recovers the secrets
vα − a. Then S computes the inputs vα of Client and learns the shares of [vα − a]2k−2 of
corrupted parties.
If P1 is honest, S also receives µα (which is to distinguish from the correct values µα = vα−
λα). Note that both the corrupted Client and S learns µα. S computes η(µα) = µα − µα.

(c) In Step 5 of πInput, S follows the protocol and computes the shares of ⟨∆ · µαi
⟩ of corrupted

parties for all i ∈ {1, . . . , k}.
When Client is honest,
(a) In Step 2 of πInput, S receives the shares of [λα]n−1, [a]n−k, [b]n−k, [c]n−1 of corrupted

parties.
– For each of [λα]n−1, [c]n−1, S defines a degree-(n− 1) packed Shamir sharing such that

the shares of corrupted parties are the differences between the shares received from
corrupted parties and those they should hold, and the shares of honest parties are 0.
Then S reconstructs the secrets, denoted by η(λα), η(c).

– For each of [a]n−k, [b]n−k, S defines a degree-(n− k) packed Shamir sharing such that
the shares of corrupted parties are the differences between the shares received from
corrupted parties and those they should hold, and the shares of honest parties are 0.
Then S checks whether all shares lie on a degree-(n− k) polynomial. If not, S aborts
on behalf of the honest Client. Otherwise, S reconstructs the secrets, denoted by
η(a), η(b).

If any of η(a), η(b), η(c) is not an all-0 vector, S aborts on behalf of the honest Client.
(b) In Step 4 of πInput, S samples two random vectors as vα − a and µα. Then S computes and

distributes the shares of [vα − a]2k−2 to corrupted parties. S also sets η(µα) = −η(λα) and
computes µα = µα + η(µα). If P1 is corrupted, S sends µα to P1.

(c) In Step 5 of πInput, S follows the protocol and computes the shares of ⟨∆ · µαi
⟩ of corrupted

parties for all i ∈ {1, . . . , k}.
At the end of this step, S sends to FMPC the inputs of corrupted clients and receives their
outputs.

2. In Step 2, for each addition gate, S computes µγ = µα + µβ and the shares of ⟨∆ · µγ⟩ of
corrupted parties. If P1 is honest, S also computes µγ = µα + µβ .

3. In Step 3, for every group of k multiplication gates with input wires α,β and output wires γ, S
simulates πMult as follows. When P1 is honest,
(a) In Step 2 of πMult, S computes vα − a = µα + (λα − a+ δα). S also computes vα − a =

µα+λα−a. Similarly, S computes vβ − b and vβ−b. S sets η(vα−a) = vα − a−(vα−a)
and η(vβ − b) = vβ − b − (vβ − b). Then S distributes the shares of [vα − a]k−1 and
[vβ − b]k−1 to corrupted parties on behalf of P1.

(b) In Step 3 of πMult, S follows the protocol and computes the shares of ⟨θαi⟩ and ⟨θβi⟩ of
corrupted parties. Note that θαi

= ∆ · η(vαi
− ai) and θβi

= ∆ · η(vβi
− bi).

(c) In Step 4 of πMult, S computes the shares of [µγ ]n−1 of corrupted parties. In Step 5 of πMult,
S follows the protocol and computes the shares of ⟨∆ · µγi

⟩ of corrupted parties for all
i ∈ {1, . . . , k}.
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(d) In Step 6, S samples random values as the shares of [µγ ]n−1 of honest parties. Then S
reconstructs the secrets µγ . S also receives the shares of corrupted parties on behalf of
P1. S uses the shares of corrupted parties he received and the shares of honest parties to
compute the secrets µγ and sets η(µγ) = µγ − µγ .

When P1 is corrupted,
(a) In Step 2 of πMult, S computes vα−a = µα+λα−a and vβ− b = µβ +λβ− b. S receives

the shares of [vα − a]k−1 and [vβ − b]k−1 of honest parties. Then S uses the shares of the
first k honest parties to reconstruct the whole sharings and computes the secrets vα − a
and vβ − b. If the shares of [vα − a]k−1 of honest parties do not lie on a degree-(k − 1)
packed Shamir sharing, or the shares of [vβ − b]k−1 of honest parties do not lie on a degree-
(k − 1) packed Shamir sharing, S marks the execution as abort. Later, S will abort in the
verification step.
S sets η(vα − a) = vα − a− (vα − a) and η(vβ − b) = vβ − b− (vβ − b).

(b) In Step 3 of πMult, S follows the protocol and computes the shares of ⟨θαi⟩ and ⟨θβi⟩ of
corrupted parties. Note that, when the execution is not marked as abort (i.e., all degree-
(k − 1) packed Shamir sharings distributed by P1 are valid), θαi

= ∆ · η(vαi
− ai) and

θβi
= ∆ · η(vβi

− bi).
(c) In Step 4 of πMult, S computes the shares of [µγ ]n−1 of corrupted parties. In Step 5 of πMult,
S follows the protocol and computes the shares of ⟨∆ · µγi

⟩ of corrupted parties for all
i ∈ {1, . . . , k}.

(d) In Step 6, S samples random values as the shares of [µγ ]n−1 of honest parties. Then S
reconstructs the secrets µγ . S also sends the shares of [µγ ]n−1 of honest parties to P1.

4. In Step 4, S simulates πOutput as follows. S emulates FCommit and receives the shares of
([a]n−k, [b]n−k, [c]n−1) of corrupted parties. S first simulates the first part of πOutput: for each
group of output gates with input wires α,

– Case 1: P1 is an honest party.
(a) In Step 3 of πOutput, S computes the shares of [λα − a]n−1 of corrupted parties. S

samples random values as the shares of honest parties and reconstructs the secrets
λα − a.
S receives the shares of [λα − a]n−1 of corrupted parties on behalf P1. S uses the
shares of corrupted parties he received and the shares of honest parties he generated to
compute the secrets λα − a.

(b) In Step 3 of πOutput, S computes vα − a = µα + λα − a. S also computes vα − a =
µα + λα − a. S sets η(vα − a) = vα − a − (vα − a). Then S randomly samples and
distributes the shares of [vα − a]2k−2 to corrupted parties on behalf of P1.

(c) In Step 4 of πOutput, S follows the protocol and computes the shares of ⟨θαi
⟩ and ⟨θβi

⟩
of corrupted parties. Note that θαi

= ∆ · η(vαi
− ai).

– Case 2: P1 is a corrupted party.
(a) In Step 2 of πOutput, S computes the shares of [λα − a]n−1 of corrupted parties. S

samples random values as the shares of honest parties and reconstructs the secrets
λα − a.
S sends the shares of [λα − a]n−1 of honest parties to P1.

(b) In Step 3 of πOutput, S computes vα − a = µα + λα − a. S receives the shares of
[vα − a]2k−2. Then S uses the shares of honest parties to reconstruct the whole sharing
and computes the secrets vα − a. S sets η(vα − a) = vα − a− (vα − a)

(c) In Step 4 of πMult, S follows the protocol and computes the shares of ⟨θαi
⟩ and ⟨θβi

⟩
of corrupted parties. Note that, when the execution is not marked as abort (i.e., all
degree-(k−1) packed Shamir sharings distributed by P1 are valid), θαi

= ∆ ·η(vαi
−ai).

S then simulates the second part of πOutput. For Step 5, note that S has generated or learnt
the shares of honest parties of all degree-(k − 1) packed Shamir sharings distributed by P1. S
honestly emulates FCoin and FCommit, and honestly follows Step 5. If this execution has been
marked as abort but all parties accept the check. S aborts.
For Step 6, S honestly emulates FCoin and FCommit. S follows this step and computes the shares
of ⟨θ⟩ of corrupted parties. Recall that for all j ∈ {1, . . . ,m}, S has computed some ηj such
that θj should be equal to ∆ · ηj . S computes η =

∑m
j=1 χ

′
j · ηj and randomly samples ∆. Then

S computes θ = ∆ · η and randomly samples the shares of ⟨θ⟩ of honest parties based on the
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secret θ and the shares of corrupted parties. S follows the rest of steps. If there exists j such
that ηj ̸= 0 but all parties accept the check, S aborts.
S finally simulates the last part of πOutput. For each group of k output gates that belong to some
Client, let α denote the input wires of these output gates. When Client is corrupted,

– S computes a = vα − (vα − a). Then S randomly samples b and computes c = a ∗ b.
Based on the secrets and the shares of corrupted parties, S randomly samples the shares of
[a]n−k, [b]n−k, [c]n−1 of honest parties. Finally, S emulates FCommit and opens the shares of
honest parties to Client.

When Client is honest,
– S receives the shares of [vα − a]2k−2, [a]n−k, [b]n−k, [c]n−1 of corrupted parties. Then S

checks the following:
• The shares of [vα − a]2k−2 received from corrupted parties are the same as those

computed by S when simulating Step 3 of πOutput.
• For each of [a]n−k, [b]n−k, S defines a degree-(n− k) packed Shamir sharing such that

the shares of corrupted parties are the differences between the shares received from
corrupted parties and those they should hold, and the shares of honest parties are 0.
Then S checks whether all shares lie on a degree-(n− k) polynomial. If not, S aborts
on behalf of the honest Client. Otherwise, S reconstructs the secrets, denoted by
η(a), η(b).

• For [c]n−1, S defines a degree-(n − 1) packed Shamir sharing such that the shares of
corrupted parties are the differences between the shares received from corrupted parties
and those they should hold, and the shares of honest parties are 0. Then S reconstructs
the secrets, denoted by η(c).

• If any of η(a), η(b), η(c) is not an all-0 vector, S aborts on behalf of Client.

This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of ΠOnline.
Hybrid0: In this hybrid, S honestly follows the protocol. This corresponds to the real world.
Hybrid1: In this hybrid, S checks the degree-(k − 1) packed Shamir sharings distributed by P1

as described above. If there exists some degree-(k − 1) packed Shamir sharing such that the shares
of honest parties do not lie on a degree-(k − 1) packed Shamir sharing, S marks the computation as
abort. S simulates Step 5 ofπOutput as described above. If S has marked the computation as abort
but no honest party aborts in Step 5 of πOutput, S aborts.

Recall that χ1, . . . , χm are random values in F and p ≥ 2κ. Thus, if there exists some degree-
(k − 1) packed Shamir sharing such that the shares of honest parties do not lie on a degree-(k − 1)
packed Shamir sharing, with overwhelming probability, [x]k−1 in Step 5 is not valid. Thus, Hybrid1

is statistically close to Hybrid0.
Hybrid2: In this hybrid, FPrepMal is emulated by S as described above. Note that the emulation

does not generate the shares of honest parties. S pushes the generation of the shares of honest
parties to whenever they are needed. When needed, S prepares the shares of honest parties as
follows:

– S follows Step 1 of FPrepMal to compute a value λα for each wire α.
– S samples a random value as ∆.
– For each group of multiplication gates with input wires α,β and output wires γ, S has generated
λα − a,λβ − b and λα,λβ. S computes a and b, and then computes c = a ∗ b.

– S generates the shares of honest parties following from FPrepMal.

Observe that the only difference is the generation of a, b for each group of multiplication gates. In
Hybrid1, a, b are randomly sampled and then λα−a,λβ−b are computed accordingly. In Hybrid2,
S first randomly samples λα −a,λβ − b and then computes a, b. Note that the distribution of these
values remains the same in both hybrids.

Thus, the distribution of Hybrid2 is identical to that of Hybrid1.
Hybrid3: In this hybrid, when Client is corrupted, πInput is simulated by S as described above.

Note that S essentially does not change the behaviors of honest parties. From the messages S
received from Client, S extracts the inputs of Client. The distribution of Hybrid3 is identical to
that of Hybrid2.
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Hybrid4: In this hybrid, when Client is honest, πInput is simulated by S as described above.
Note that the simulation does not generate the shares of honest parties. S pushes the generation of
the shares of honest parties to whenever they are needed. When needed, S computes the shares of
honest parties by using the inputs of Client.

We first show that in Step 3 of πInput, the probability that S aborts in Hybrid4 but not in Hybrid3

is negligible.

– When checking the degree of [a]n−k, [b]n−k, observe that if corrupted parties use their correct
shares, then the whole sharings are valid degree-(n− k) packed Shamir sharings. In Hybrid3,
S checks these two sharings directly while in Hybrid4, S checks the difference between the
sharing received from all parties and the sharing all parties should hold (in particular, the shares
of honest parties in two cases are identical). Thus, S aborts in Hybrid4 if and only if S aborts in
Hybrid3.

– When checking whether c = a ∗ b, in Hybrid3, S directly checks the relation of these three
vectors. In Hybrid4, S first computes the additive errors due to the malicious behaviors of
corrupted parties, which are denoted by η(a), η(b), η(c). Since a, b are random vectors and
c = a ∗ b, therefore

c− a ∗ b = η(c)− η(a) ∗ η(b)− η(a) ∗ b− η(b) ∗ a.

It is not hard to see that, when at least one of η(a), η(b), η(c) is not an all-0 vector, the
probability that c− a ∗ b = 0 is negligible. Thus, the probability that c = a ∗ b but at least one of
η(a), η(b), η(c) is not an all-0 vector is negligible.

Therefore, the probability that S aborts in Hybrid4 but not in Hybrid3 is negligible.
We then show that the messages sent from Client to all parties have the same distribution in

both hybrids. Since λα and a are random vectors, vα − λα and vα − a are also random vectors. In
Hybrid3, S sends vα−λα to P1 and distributes [vα−a]2k−2 to all parties. In Hybrid4, S randomly
samples vα − λα and vα − a and then does the same as that in Hybrid3.

In summary, Hybrid4 is statistically close to Hybrid3.
Hybrid5: In this hybrid, S simulates the behaviors of honest parties when evaluating addition

gates. Note that S essentially follows the protocol. Therefore, the distribution of Hybrid5 is identical
to that of Hybrid4.

Hybrid6: In this hybrid, when P1 is honest, πMult is simulated by S as described above. Note that
in Step 2, S honestly follows the protocol to simulate the behaviors of P1. In Step 6, S randomly
samples the shares of [µγ ]n−1 of honest parties. In Hybrid5, since [λγ ]n−1 is a random degree-(n−1)
packed Shamir sharing and

[µγ ]n−1 = [vα − a]k−1 ∗ [vβ − b]k−1 + [vα − a]k−1 ∗ [b]n−k

+ [vβ − b]k−1 ∗ [a]n−k + [c]n−1 − [λγ ]n−1,

[λγ ]n−1 is a random degree-(n− 1) packed Shamir sharing.
Thus, the distribution of Hybrid6 is identical to that of Hybrid5.
Hybrid7: In this hybrid, when P1 is corrupted, πMult is simulated by S as described above. In

Step 6, S randomly samples the shares of [µγ ]n−1 of honest parties. With the same argument as
above, the shares of honest parties have the same distribution as that in Hybrid6.

Thus, the distribution of Hybrid7 is identical to that of Hybrid6.
Hybrid8: In this hybrid, when P1 is honest, the first part of πOutput is simulated by S as described

above. In Step 2, S samples random values as the shares of [λα − a]n−1 of honest parties. In
Hybrid7, since [λα]n−1 is a random degree-(n− 1) packed Shamir sharing of λα and a is a random
vector, the sharing [λα − a]n−1 = [λα]n−1 − [a]n−k is a random degree-(n − 1) packed Shamir
sharing. Thus, the shares of [λα−a]n−1 of honest parties have the same distribution in both hybrids.

In Step 3, S honestly follows the protocol to simulate P1. Thus, the distribution of Hybrid8 is
identical to that of Hybrid7.

Hybrid9: In this hybrid, when P1 is corrupted, the first part of πOutput is simulated by S as
described above. In Step 2, S samples random values as the shares of [λα − a]n−1 of honest parties.
With the same argument as above, the shares of honest parties have the same distribution as that in
Hybrid8. Thus, the distribution of Hybrid9 is identical to that of Hybrid8.
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Hybrid10: In this hybrid, Step 6 of πOutput is simulated by S as described above. We first argue
that the shares of ⟨θ⟩ prepared by S are computationally indistinguishable from those in Hybrid9.

Note that after step 5 of πOutput, all degree-(k − 1) packed Shamir sharings distributed by P1

are valid. Therefore, the only attack an adversary can do is to change the secrets of degree-(k − 1)
packed Shamir sharings (by either instructing corrupted parties to send incorrect shares to P1 or
instructing the corrupted P1 to distribute incorrect degree-(k − 1) packed Shamir sharings). For
each j ∈ {1, . . . ,m}, S has computed ηj such that θj = ∆ · ηj . S follows the protocol and computes
η =

∑m
j=1 χ

′
j · ηj . Then, S randomly samples ∆ and randomly samples the shares of ⟨θ⟩ of honest

parties based on the shares of corrupted parties and the secret θ = ∆ · η.
In Hybrid9, ⟨θ⟩ has been refreshed by all parties. The refresh step ensures that, given the

shares of corrupted parties and the secret, the distribution of the shares of ⟨θ⟩ of honest parties is
computationally indistinguishable from that of a random additive sharing of θ = ∆ · η. Thus, the
shares of ⟨θ⟩ prepared by S are computationally indistinguishable from those in Hybrid9.

We then show that the probability that S aborts in Hybrid10 but not in Hybrid9 is negligible.
Since χ′

1, . . . , χ
′
m are random elements in F and p ≥ 2κ, if there exists ηj ̸= 0, with overwhelming

probability, η ̸= 0. Then θ ̸= 0. In Step 6(c), corrupted parties can only change their shares without
learning ∆, which translates to an additive error to the secret θ. Thus, the probability that the secret
(θ) = 0 is negligible.

Thus, the distribution of Hybrid10 is computationally indistinguishable from that of Hybrid9.
Hybrid11: In this hybrid, S simulates the last part of πOutput as described above. We consider the

following two cases:

– When Client is honest, S only accepts when corrupted parties use their correct shares of
[vα − a]2k−2 and the additive errors to a, b, c are all 0s. We show that, with overwhelming
probability, this is also the case in Hybrid10.
Regarding [vα − a]2k−2, note that the whole sharing is determined by the shares of honest
parties. If corrupted parties do not use their correct shares, then the degree-(2k − 2) packed
Shamir sharing Client received is not valid, and S aborts in Hybrid10.
Regarding the additive errors to a, b, c, in Hybrid10, Client checks whether c = a ∗ b. It is
equivalent to η(c)− η(a) ∗ (η(b) + b)− η(b) ∗a = 0. Note that corrupted parties should commit
their shares before all parties sending [λα−a]n−1 to P1. At that moment a, b are uniform vectors
and unknown to the adversary. Therefore, the probability that at least one of η(a), η(b), η(c) is
a non-zero vector and c = a ∗ b is negligible.
In summary, with overwhelming probability, S also aborts in Hybrid10.

– When Client is corrupted, S learns the outputs vα of Client from FMPC. S computes a from
vα,vα − a, randomly samples b, and computes c = a ∗ b. Then S randomly samples the shares
of honest parties based on the secrets and the shares of corrupted parties. Note that the shares
of honest parties are identically distributed to those in Hybrid10.

Thus, the distribution of Hybrid11 is statistically close to Hybrid10. Note that Hybrid11 is
the execution in the ideal world. We have that the distribution of Hybrid11 is computationally
indistinguishable from the distribution of Hybrid0, the execution in the real world. Therefore,
protocol ΠOnline securely computes the ideal functionality FMPC in the {FPrepMal,FCoin,FCommit}-
hybrid model against a fully malicious adversary who controls t corrupted parties and up to c
clients.

C Proof of Lemma 1

Lemma 1. Protocol ΠPrepMal securely computes FPrepMal in the FPrepIndMal-hybrid model against a
malicious adversary who controls t out of n parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.
S emulates the ideal functionality FPrepIndMal and receives the shares of corrupted parties. For

Step 2, Step 3, and Step 6(b) in FPrepMal, S provides the shares of corrupted parties to FPrepMal.
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Recall that from Step 2 in FPrepIndMal, for each output wire α of an input gate or a multiplication
gate, S receives the shares of ([λα · 1]n−k, ⟨∆ · λα⟩) of corrupted parties. For each wire α in the
circuit, S computes the shares of ([λα · 1]n−k, ⟨∆ · λα⟩) of corrupted parties by following Step 1 in
FPrepMal.

Then to simulate Step 5 and Step 6(a) in FPrepMal, S follows the protocol to compute corrupted
parties’ shares of

[λα]n−1 =

(
k∑

i=1

ei ∗ [λαi
· 1]n−k

)
+ [o]n−1.

S provides the shares of corrupted parties to FPrepMal.
As for Step 4 in FPrepMal, S first follows the protocol to compute corrupted parties’ shares of

[λα − a]n−1 =

(
k∑

i=1

ei ∗ [λαi
· 1]n−k

)
− [a]n−k + [o(1)]n−1.

Depending on whether P1 is honest, there are two cases.

– If P1 is honest, S receives the shares of [λα − a]n−1 from corrupted parties. Then S sets the
shares of [δα]n−1 as follows:
• For each corrupted party Pi, Pi’s share is set to be the difference between the share of
[λα − a]n−1 received from Pi and the share computed by S.
• For each honest party Pi, Pi’s share is set to be 0.
S reconstructs the secrets δα and sends the errors to FPrepMal.

– If P1 is corrupted, S sends δα = 0 to FPrepMal and receives λα − a. Then S randomly samples
the shares of [λα − a]n−1 of honest parties based on the shares of corrupted parties and the
secrets λα − a. Finally, S sends the shares of [λα − a]n−1 of honest parties to P1.

Note that S has computed the shares of {⟨∆ · λαi
⟩}ki=1 of corrupted parties. And S also receives the

shares of {⟨∆ · ai⟩}ki=1 of corrupted parties when emulating FPrepIndMal. S follows the protocol to
compute the shares of {⟨∆ · (λαi

− ai)⟩}ki=1 of corrupted parties and then provides them to FPrepMal.
This completes the description of the simulator S.
Now we use hybrid arguments to prove the security of ΠPrepMal.
Hybrid0: In this hybrid, S honestly follows the protocol. This corresponds to the real world.
Hybrid1: In this hybrid, S emulates FPrepIndMal and receives the shares of corrupted parties.

Regarding the shares of honest parties, when needed, S follows FPrepIndMal to generate the shares of
honest parties. The distribution of Hybrid1 is identical to that of Hybrid0.

Hybrid2: In this hybrid, S uses corrupted parties’ shares of ([λα ·1]n−k, ⟨∆ ·λα⟩) for each output
wire α of an input gate or a multiplication gate to compute their shares of ([λα · 1]n−k, ⟨∆ · λα⟩) for
every wire α in the circuit.

Then S computes the shares of corrupted parties in Step 5 and Step 6(a) in FPrepMal. Observe
that S does not change the behaviors of honest parties and just follows the protocol to compute the
shares of corrupted parties. Therefore, the distribution of Hybrid2 is identical to that of Hybrid1.

Hybrid3: In this hybrid, S simulates Step 4 as described above. We consider two cases:

– Case 1: P1 is honest. In this case, honest parties do not need to send any message to corrupted
parties. We only need to focus on the output of P1. In Hybrid2, P1 reconstructs the secrets of
[λα − a]n−1 from the shares received from all parties. In Hybrid3, S computes [δα]n−1 which
is equal to the difference between the sharing where the shares of corrupted parties are those
received from them and the sharing where the shares of corrupted parties are those they should
hold. Therefore, the secrets δα correspond to the additive errors due to the malicious behaviors
of corrupted parties. S passes δα to FPrepMal, who will add the errors to λα − a and return to
the honest party P1. Then the output of P1 is identically distributed in both worlds.

– Case 2: P1 is corrupted. We only need to show that the messages sent from honest parties
to corrupted parties are identically distributed. In Hybrid2, these messages are the shares of
[λα − a]n−1 of honest parties. Note that they are uniformly distributed given the shares of
corrupted parties and the secrets λα since the whole sharing is masked by a random degree-
(n− 1) packed Shamir sharing of 0, [o(1)]n−1. In Hybrid3, S computes the shares of [λα−a]n−1
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of corrupted parties and receives the secrets λα − a from FPrepMal. Then S uniformly samples
the shares of [λα − a]n−1 of honest parties based on the shares of corrupted parties and the
secrets. Therefore, the messages sent from honest parties to corrupted parties are identically
distributed.

In both cases, S finally follows the protocol to compute the shares of {⟨∆ · (λαi − ai)⟩}ki=1

of corrupted parties and then provides them to FPrepMal. In Hybrid2, the additive sharings {⟨∆ ·
(λαi

− ai)⟩}ki=1 are locally refreshed by all parties. The refresh step ensures that, given the shares of
corrupted parties and the secret, the distribution of the shares of honest parties is computationally
indistinguishable from that of a random additive sharing. Thus, the shares of honest parties
in Hybrid2 are computationally indistinguishable from those generated by FPrepMal. Thus, the
distribution of Hybrid3 is computationally indistinguishable to that of Hybrid2.

Observe that Hybrid3 is the execution in the ideal world. Therefore, ΠPrepMal securely computes
FPrepMal in the FPrepIndMal-hybrid model against a malicious adversary who controls t out of n
parties. ⊓⊔

D Missing Details for the Circuit-Independent Offline Phase

D.1 Preparing Random Sharings for a Given Linear Secret Sharing Scheme

Let Σ be a linear secret sharing scheme in F. To prepare random Σ-sharings, we follow a similar
approach to that in [DN07] and describe the procedure in πRandSh.

Procedure 5: πRandsh(Σ)

1. All parties agree on a Vandermonde matrix MT of size n× (n− t) in F.
2. Each party Pi randomly samples a random Σ-sharing S(i) and distributes the shares to other

parties.
3. All parties locally compute (R(1), . . . ,R(n−t))T = M(S(1), . . . ,S(n))T and output

(R(1), . . . ,R(n−t)).

Note that each output sharing R(i) is a linear combination of {S(j)}nj=1. The correctness follows
from the fact that Σ is a linear secret sharing scheme. Thus, all parties will output valid Σ-sharings
in the above approach. The security follows from the fact that any sub-matrix of size (n− t) · (n− t)
of an n× (n− t) Vandermonde matrix is invertible. Therefore, given the random sharings prepared
by corrupted parties, there is a one-to-one map from the random sharings prepared by honest
parties and the output sharings. Thus, the output sharings are also random.

Using Pseudorandom Generators to Reduce the Communication. We adapt the approach of using
pseudorandom generators (PRGs) [LN17,NV18,BBC+19,GLO+21], [GSY21,RS22] to reduce the
communication complexity when preparing random sharings. Concretely, each pair of parties agree
on a random PRG seed at the beginning of the protocol. Whenever a party needs to send a random
field element to the other party, these two parties evaluate the PRG and obtain a common random
field element.

In the following we discuss how to prepare the random sharings we need in our construction
and analyze the communication complexity.

Preparing Random Sharings in the Form of [r · 1]n−k. Considering the following generating process.

1. The dealer samples a random value r and sets the secret to be r · 1.
2. The dealer sets the shares of the first t parties to be random values.
3. For the underlying polynomial of [r · 1]n−k, t+ k = n− k + 1 evaluation points are fixed. The

dealer reconstructs the whole sharing by using the shares of the first t parties and the secrets
r · 1.

4. Finally, the dealer distributes the shares to all other parties.

Observe that except the shares of [r · 1]n−k of the last (n− t) parties, the rest of shares are uniform
elements. Therefore, when using PRG, the dealer only needs to send (n− t) elements to distribute
[r · 1]n−k. The communication complexity of preparing random sharings in the form of [r · 1]n−k

using the above approach is (n− t) · n/(n− t) = n elements per sharing.
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Preparing Random Degree-(n − 1) Packed Shamir Sharings of 0 ∈ Fk
p. Considering the following

generating process.

1. The dealer sets the secret to be 0.
2. The dealer sets the shares of the first n− k parties to be random values.
3. For the underlying polynomial of [0]n−1, n− k + k = n evaluation points are fixed. The dealer

reconstructs the whole sharing by using the shares of the first n− k parties and the secrets 0.
4. Finally, the dealer distributes the shares to all other parties.

Observe that except the shares of [0]n−1 of the last k parties, the rest of shares are uniform elements.
Therefore, when using PRG, the dealer only needs to send k elements to distribute [0]n−k. The
communication complexity of preparing random packed Shamir sharings of 0 using the above
approach is k · n/(n− t) ≈ n/2 elements per sharing. Here we use the fact that k = (n− t+ 1)/2.

Preparing Random Additive Sharings of 0. In our construction, we will need to refresh an additive
sharing by adding a random additive sharing of 0.

Consider the following generating process:

1. The dealer first samples random values as the shares of ⟨0⟩ of the rest n− 1 parties.
2. The dealer locally computes his own share such that all shares together form an additive sharing

of 0.
3. The dealer distributes the shares to all other parties.

Relying on PRGs, the dealer does not need to send any message to other parties. Thus, all parties
can locally prepare additive sharings of 0. This also means that parties can locally refresh their
additive sharings.

Preparing Random degree-(n− k) Packed Shamir Sharings [r]n−k. In our construction, we will use a
random degree-(n− k) packed Shamir sharing to transform k additive sharings to a degree-(n− k)
packed Shamir sharing. Consider the following generating process:

1. The dealer sets the shares of [r]n−k of the first n− k + 1 parties to be random values.
2. For the underlying polynomial of [r]n−k, n − k + 1 evaluation points are fixed. The dealer

reconstructs the whole sharing by using the shares of the first n− k + 1 parties.
3. Finally, the dealer distributes the shares to all other parties.

Observe that except the shares of [r]n−k of the last k − 1 parties, the rest of shares are uniform
elements. Therefore, when using PRG, the dealer only needs to send k − 1 elements to distribute a
random degree-(n− k) packed Shamir sharing [r]n−k. The communication complexity of preparing
random degree-(n−k) packed Shamir sharings using the above approach is (k−1) ·n/(n− t) = n/2
elements per sharing. Here we use the fact that k = (n− t+ 1)/2.

Preparing Random Sharings in the Form of ([r]n−k, [r]n−1). In our construction, we use a pair of
random sharings ([r]n−k, [r]n−1) to reduce the degree of a degree-(n− 1) packed Shamir sharing.
Consider the following generating process:

1. The dealer first samples random values as the shares of [r]n−1 for all parties.
2. The dealer reconstructs the secret r.
3. The dealer sets the shares of [r]n−k of the first t parties to be random values.
4. For the underlying polynomial of [r]n−k, t + k = n − k + 1 evaluation points are fixed. The

dealer reconstructs the whole sharing by using the shares of the first t parties and the secrets r.
5. Finally, the dealer distributes the shares to all other parties.

Observe that except the shares of [r]n−k of the last (n− t) parties, the rest of shares are uniform
elements. Therefore, when using PRG, the dealer only needs to send n− t elements to distribute
a pair of random sharings ([r]n−k, [r]n−1). The communication complexity of preparing random
sharings in the form of ([r]n−k, [r]n−1) is (n− t) · n/(n− t) = n elements per sharing.
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Preparing Random Sharings in the Form of {[r|i]t}ki=1. In our construction, we will only use one
tuple of such random sharings to transform the MAC key to the desired form. The cost of preparing
only one tuple of such random sharings does not affect the efficiency of the whole construction.
Thus, we do not try to optimize this step. All parties simply follow the above approach to prepare
random sharings in the form of {[r|i]t}ki=1.

D.2 Preparing Random Packed Triples with Authentications

Here we present details of the building blocks in Section 6 for the generation of random packed
triples with authentication, which is instantiated by πTriple (Procedure 3 in page 20). There, we
make use of the following two functionalities Fprog

OLE , FnVOLE from [RS22].

Functionality 4: Fprog
OLE

Parameters: An expansion function Expand : S → Fm
p with seed space S and output length m. The

functionality runs between parties PA and PB .

On receiving sa from PA and sb from PB , where sa, sb ∈ S:

1. Computing u = Expand(sa),x = Expand(sb) and sample v ← Fm
p .

2. Output w = u ∗ x− v to PA and v to PB .

Corrupted Party: If PB is corrupted, v may be chosen by A. If PA is corrupted, w can be chosen by A
(and v is computed by u ∗ x−w).

Functionality 5: FnVOLE

Parameters: An expansion function Expand : S → Fm
p with seed space S and output length m. The

functionality runs between parties P1, P2, . . . , Pn.

Initialize: On receiving Init from Pi for i ∈ {1, . . . , n}, sample ∆i ← F, send it to Pi, and ignore all
subsequent Init command from Pi.
Extend: On receiving Extend from every Pi ∈ {P1, . . . , Pn}:

1. Sample seed seedi ← S for all Pi.
2. Compute ui = Expand(seedi).
3. Sample vj

i ← Fm
p for all Pi and j ̸= i. Retrieve ∆j and compute wi

j = ui ·∆j − vj
i .

4. Output
(
seedi, (wi

j ,v
i
j)j ̸=i

)
to Pi for all Pi ∈ {P1, . . . , Pn}.

Corrupted Party: A corrupted party Pi can choose ∆i and seedi. It can also choose wi
j (and vj

i is
computed by ui ·∆j −wi

j) and vi
j .

Global Key Query: If Pi is corrupted, receive (query,∆′) from A with ∆′ ∈ Fn
p . If ∆′ = ∆, where

∆ = (∆1, . . . ,∆n), send success to Pi and ignore any subsequent global key query. Else, send
(abort,∆) to Pi, abort to Pj and abort.

In [RS22], Rachuri and Scholl use these two functionalities to prepare authenticated Beaver
triples in the form of additive sharings. Concretely,

1. All parties first use FnVOLE to prepare authenticated random additive sharings. In particular,
– ∆ = (∆1, . . . ,∆n) is viewed as an additive sharing of the MAC key ∆ =

∑n
i=1 ∆

i.
– For each party Pi, ui = Expand(seedi) are the additive shares held by Pi.
– Since for every Pi, Pj , they together hold an additive sharing of ui · ∆j , all parties can

locally transform them to additive sharings such that the secrets are (
∑n

i=1 u
i) ·∆, which

are interpreted as the MACs of the additive sharings (u1, . . . ,un).
2. After preparing two vectors of additive sharings, say ⟨a⟩, ⟨b⟩ together with their MACs, every

ordered pair of parties invoke Fprog
OLE to compute additive sharings of ai ∗ bj . Then, all parties

can locally transform them to additive sharings of secrets a ∗ b, which are interpreted as ⟨c⟩.
Note that the MACs of ⟨c⟩ are not computed in this step, which we will discuss later.
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To use these two building blocks in our protocol, we encounter the following two problems:
First, the natural output of these two building blocks corresponds to authenticated Beaver triples
in the form of additive sharings. However, our online protocol requires to prepare packed Beaver
triples. Second, the MACs of ⟨c⟩ are NOT prepared in the preprocessing phase. Instead, Rachuri and
Scholl compute the MACs of ⟨c⟩ in the online phase. Ideally, we want to have them prepared in the
preprocessing phase rather than the online phase.

To address these two problems, a straightforward solution is to transform the additive sharings
to packed Shamir sharings and move the computation of the MACs of ⟨c⟩ to the preprocessing phase.
However, doing it directly would incur a large communication complexity in the preprocessing
phase:

– Computing the MACs of ⟨c⟩ requires to communicate 2 · n elements per Beaver triple.
– As we will discuss later, transforming a group of k additive sharings to a packed Shamir sharing

would require to communicate k · n elements. Since we need to transform each additive sharing
and each MAC sharing in the Beaver triples, this step costs 6 · k · n elements.

– As we will mention later, the Beaver triples prepared by Fprog
OLE may not be correct. In [RS22],

each Beaver triple is verified by another (possibly incorrect) Beaver triple. The verification costs
another 6 · n elements per Beaver triple.

Note that to obtain a packed Beaver triple with authentications, the first step and the third step
needs to be done for k authenticated Beaver triples in the form of additive sharings. Summing
them up, the communication complexity in the preprocessing phase would be as large as 14 · k · n
elements per packed Beaver triple. In our work, instead, we prepare the desired packed Beaver
triples with an amortized cost of 4 · k · n elements.

Obtaining Packed Shamir Sharings with Authentications. Recall that all parties can prepare
authenticated random additive sharings by using FnVOLE. The output from FnVOLE is used as the
first two sharings in the authenticated Beaver triples in [RS22]. Since our construction needs to
prepare authenticated random packed Shamir sharings, instead of first computing the authenticated
random additive sharings and then transforming them to packed Shamir sharings, we consider to
generate authenticated random packed Shamir sharings directly from FnVOLE.

The main observation is that the shares of a random degree-(n− 1) packed Shamir sharing are
uniformly distributed. This is because a random degree-(n−1) packed Shamir sharing corresponds to
a random degree-(n−1) polynomial, which satisfies that any n evaluations are uniformly distributed.
On the other hand, the shares of a random additive sharing are also uniformly distributed. Thus,
we may naturally view the random additive sharings prepared in FnVOLE as degree-(n− 1) packed
Shamir sharings. Concretely, for each random additive sharing (u1, . . . , un), let u denote the secrets
of the degree-(n− 1) packed Shamir sharing when the shares are (u1, . . . , un). Then we may view
that all parties hold the packed Shamir sharing [u]n−1.

To obtain a degree-(n−k) packed Shamir sharing of u, we will perform a sharing transformation
with the help of a pair of random packed Shamir sharings ([r]n−k, [r]n−1) as described in πDegReduce.
This transformation requires to communicate 3n elements (including the cost of ([r]n−k, [r]n−1)).

Procedure 6: πDegReduce

Input: All parties hold a degree-(n− 1) packed Shamir sharing [u]n−1 and a pair of random sharings
([r]n−k, [r]n−1).

1. All parties locally compute [u+ r]n−1 = [u]n−1 + [r]n−1 and send their shares to P1.
2. P1 locally reconstructs u+ r and reshares the secrets by [u+ r]2k−2.
3. All parties locally compute [u]n−k = [u+ r]2k−2 − [r]n−k.

Now the problem is to prepare the MACs for u. We observe that in FnVOLE, for every ordered
pair of parties (Pi, Pj), Pi, Pj together hold an additive sharing of ui ·∆j . Since each secret uℓ in u
is a linear combination of (u1, . . . , un), all parties can locally compute an additive sharing of ∆ · uℓ.
To obtain the MACs [∆ · u]n−k, we will perform a sharing transformation with the help of a random
degree-(n− k) packed Shamir sharing [r]n−k as described in πAddTran.
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Procedure 7: πAddTran

Input: All parties hold k additive sharings {⟨∆ · uℓ⟩}kℓ=1 and a random sharing [r]n−k.

1. For all ℓ ∈ {1, . . . , k}, all parties locally transform [r]n−k to an additive sharing ⟨rℓ⟩ and locally
refresh the obtained additive sharing.

2. For all ℓ ∈ {1, . . . , k}, all parties locally compute ⟨∆ · uℓ + rℓ⟩ = ⟨∆ · uℓ⟩ + ⟨rℓ⟩ and send their
shares to P1.

3. For all ℓ ∈ {1, . . . , k}, P1 locally reconstructs ∆ · uℓ + rℓ. Then P1 reshares the secrets by
[∆ · u+ r]2k−2.

4. All parties locally compute [∆ · u]n−k = [∆ · u+ r]2k−2 − [r]n−k.

In summary, to obtain packed Shamir sharings with authentications, we interpret the output
of FnVOLE as packed Shamir sharings, and apply sharing transformations to reduce the degree and
obtain packed Shamir sharings for the MACs. It is worth to note that our approach also reduces the
output size of FnVOLE: In [RS22], each additive sharing output by FnVOLE is only used to store one
secret. In our approach, each additive sharing output by FnVOLE is interpreted as a packed Shamir
sharing which stores k secrets. Effectively, we reduce the output size of FnVOLE by a factor of k.

Communication complexity of Procedure πDegReduce. The communication involved in πDegReduce is the
following:

– (Step 1) n− 1 elements from the parties to P1

– (Step 2) n − (k − 1) sharings from P1 to the parties (for a degree-2(k − 1) sharing of a k-
dimensional vector, k − 1 shares can be set to zero)

This leads to a total of 2n− k.

Communication complexity of Procedure πAddTran. In πAddTran the communication is the following:

– (Step 2) k · (n− 1) shares from the parties to P1,
– (Step 3) n− (k − 1) sharings from P1 to the parties,

The total is then k · (n− 2) + n+ 1.

Obtaining Shamir Sharings of the Authentication Key. In FPrepIndMal, we want to obtain k degree-
t Shamir sharings {[∆|i]t}ki=1. Note that all parties hold an additive sharing ⟨∆⟩ received from
FnVOLE. We transform ⟨∆⟩ to {[∆|i]t}ki=1 by using a tuple of random sharings {[r|i]t}ki=1 as described
in πMACKey. Since πMACKey is only invoked once, the cost of πMACKey does not affect the overall
communication complexity.

Procedure 8: πMACKey

Input: All parties hold an additive sharing ⟨∆⟩ and a tuple of random sharings {[r|i]t}ki=1.

1. All parties locally transform [r|1]t to an additive sharing ⟨r⟩ and locally refresh the obtained
additive sharing.

2. All parties locally compute ⟨∆+ r⟩ = ⟨∆⟩+ ⟨r⟩ and send their shares to P1.
3. P1 reconstructs the secret ∆+r and reshares the secret by [(∆+r)·1]2k−2. Note that [(∆+r)·1]2k−2

can be viewed as [∆+ r|i]2k−2 for all i ∈ {1, . . . , k}.
4. For all i ∈ {1, . . . , k}, all parties locally compute [∆|i]t = [(∆+ r) · 1]2k−2 − [r|i]t.

Obtaining Packed Beaver Triples with Authentications. Recall that our procedure for triple
generation is πTriple (Procedure 3 in page 20). As [RS22], we continue to use Fprog

OLE to obtain the
third sharing in a Beaver triple. After preparing two random packed Shamir sharings [a]n−1, [b]n−1,
every ordered pair of parties (Pi, Pj) invoke Fprog

OLE to compute ai · bj , where ai is the i-th share of
[a]n−1 and bj is the j-th share of [b]n−1. Note that this step is identical to that in [RS22]: we only
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interpret (a1, . . . , an), (b1, . . . , bn) as packed Shamir sharings while they are interpreted as additive
sharings in [RS22].

From {ai · bj}i,j , all parties can locally compute an additive sharing of each cℓ = aℓ · bℓ for
all ℓ ∈ {1, . . . , k}. To obtain a packed Shamir sharing of c with authentications, we first prepare
a random degree-(n− 1) packed Shamir sharing with authentications using FnVOLE as described
above. This time we keep the MAC part in the form of additive sharings, i.e., ([r]n−1, {⟨∆ · rℓ⟩}kℓ=1).
The missing block for the description of πTriple is the procedure πAuth below, which produces precisely
these random sharings.

Procedure 9: πAuth

Input: All parties hold k additive sharings {⟨cℓ⟩}kℓ=1 and an authenticated random sharing ([r]n−1, {⟨∆·
rℓ⟩}kℓ=1). All parties also hold {[∆|ℓ]t}kℓ=1.

1. For all ℓ ∈ {1, . . . , k}, all parties locally transform [r]n−1 to an additive sharing ⟨rℓ⟩ and refresh
the obtained additive sharing.

2. For all ℓ ∈ {1, . . . , k}, all parties locally compute ⟨cℓ + rℓ⟩ = ⟨cℓ⟩+ ⟨rℓ⟩ and send their shares to
P1.

3. For all ℓ ∈ {1, . . . , k}, P1 locally reconstructs cℓ + rℓ. Then P1 reshares the secrets by [c+ r]2k−2.
4. All parties locally compute [c]n−1 = [c+ r]2k−2 − [r]n−1.
5. For all ℓ ∈ {1, . . . , k}, all parties locally compute [∆ · (cℓ + rℓ)|ℓ]n−1 = [∆|ℓ]t · [c+ r]2k−2.
6. All parties locally transform [∆ · (cℓ + rℓ)|ℓ]n−1 to an additive sharing ⟨∆ · (cℓ + rℓ)⟩ and compute
⟨∆ · cℓ⟩ = ⟨∆ · (cℓ + rℓ)⟩ − ⟨∆ · rℓ⟩. Finally, all parties locally refresh ⟨∆ · cℓ⟩.

Communication complexity of πAuth. In the protocol the following interaction happens:

– (Step 2) k · (n− 1) shares from the parties to P1,
– (Step 3) n− (k − 1) shares from P1 to the parties

This results in k · (n− 2) + n+ 1.

D.3 Preparing Random Sharings with Authentications

In this section, we show how to prepare random sharings in the form of ([r · 1]n−k, ⟨∆ · r⟩). We
make use of the functionality FnVOLE from [RS22].

The idea is to first use FnVOLE to prepare random sharings in the form ([r]n−1, {⟨∆ · ri⟩}ki=1).
Then for all i ∈ {1, . . . , k}, we transform ([r]n−1, ⟨∆ · ri⟩) to ([ri · 1]n−k, ⟨∆ · ri⟩) by using a random
packed Shamir sharing [ρ · 1]n−k, which can be prepared by using πRandSh. We describe the protocol
πRandAuth as follows. The amortized communication complexity per sharing is 2n+ n/k elements.

Procedure 10: πRandAuth

1. Each party Pi calls FnVOLE with input Extend and receives invokes the seed si. Use the outputs to
define degree-(n− 1) packed Shamir sharings {[rℓ]n−1}mℓ=1, where m is the output length of the
expansion function defined in FnVOLE, such that the i-th shares of {[rℓ]n−1}mℓ=1 are Expand(si). All
parties locally compute and refresh {(⟨∆ · rℓ,1⟩, . . . , ⟨∆ · rℓ,k⟩)}mℓ=1.

2. All parties invoke πRandSh to prepare k · m random sharings in the form of [ρi · 1]n−k. For all
ℓ ∈ {1, . . . ,m} consume k fresh random sharings {[ρi · 1]n−k}ki=1 and run the following steps.
(a) All parties locally compute [rℓ+ρ]n−1 = [rℓ]n−1+

∑k
i=1 ei∗[ρi·1]n−k, where ρ = (ρ1, . . . , ρk).

Then all parties send their shares of [rℓ + ρ]n−1 to P1.
(b) P1 reconstructs the secrets rℓ + ρ and sends the secrets to all parties.
(c) For all i ∈ {1, . . . , k}, all parties locally compute [rℓ,i · 1]n−k = (rℓ,i + ρi)− [ρi · 1]n−k. Recall

that all parties hold ⟨∆ · rℓ,i⟩. Therefore all parties hold ([rℓ,i · 1]n−k, ⟨∆ · rℓ,i⟩).
3. Finally all parties check whether P1 sends the same values to all parties:

(a) Suppose P1 distributes τ1, . . . , τm to all parties.
(b) All parties call FCoin to obtain random values χ1, . . . , χm ∈ F.
(c) All parties locally compute τ =

∑m
ℓ=1 χℓ · τℓ.

(d) All parties exchange their results τ and check whether all results are identical. If not, all
parties abort.
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Communication complexity of πRandAuth. In Procedure πRandAuth the following is communicated per
authenticated random sharing produced. We ignore the cost of Step 3, as it is independent of the
amount of random sharings desired.

– (Step 2) One call to πRandSh to generate k sharings of the form [ρ · 1]n−k. This costs k · n.
– (Step 2a) n− 1 shares reconstructed to P1

– (Step 2b) k · (n− 1) reconstructed secrets sent by P1 to the parties.

In total, the communication equals k(2n− 1) + n− 1.

D.4 Verification of Packed Beaver Triples

In [RS22], the Beaver triples obtained from Fprog
OLE may be incorrect. This is because a corrupted

party Pi may use different shares ai, ãi when invoking Fprog
OLE with different honest parties Pj , Pj′ .

And Pi may also locally change his share of ⟨c⟩ before computing the MAC of c.
To ensure that the online protocol uses correct Beaver triples, Rachuri and Scholl [RS22] follow

the idea in [CGH+18] and evaluate a randomized version of the target circuit in addition to the
standard version. Concretely, for each wire value w, all parties will compute an authenticated
additive sharing of w and a randomized version r · w, where r is a hidden secret generated at
the beginning of the computation. At the end of the protocol, all parties together verify whether
the randomized wire values correctly correspond to the real wire values before reconstructing the
final output. Note that the evaluation of a randomized version of the target circuit requires to use
fresh Beaver triples. Therefore, equivalently, the protocol in [RS22] uses two Beaver triples per
multiplication gate.

Our idea is to verify the correctness of (packed) Beaver triples in the preprocessing phase
following from the technique of sacrificing [DKL+13]: We will prepare two possibly incorrect
packed Beaver triples and use one packed Beaver triple to verify the other one. We describe the
procedure πSacrifice as follows.

Procedure 11: πSacrifice

1. Suppose all parties hold m packed Beaver triples with authentications, denoted by

{([aℓ]n−k, [∆ · aℓ]n−k), ([bℓ]n−k, [∆ · bℓ]n−k),

([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1)}mℓ=1.

2. All parties run Step 1, 2, 5 of Generation in πTriple to prepare m packed Beaver triples with
authentications in the following form:

{([ãℓ]n−1, {⟨∆ · ãℓ,i⟩}ki=1), ([b̃ℓ]n−1, {⟨∆ · b̃ℓ,i⟩}ki=1),

([c̃ℓ]n−1, {⟨∆ · c̃ℓ,i⟩}ki=1)}mℓ=1.

3. All parties invoke FCoin and generate a random element ρ ∈ F.
4. For all ℓ ∈ {1, . . . ,m}, all parties locally compute [ãℓ − ρ · aℓ]n−1 = [ãℓ]n−1 − ρ · [aℓ]n−k and

[b̃ℓ − bℓ]n−1 = [b̃ℓ]n−1 − [bℓ]n−k and send their shares to P1.
5. For all j ∈ {1, . . . ,m}, P1 locally reconstructs the secrets ãℓ − ρ · aℓ and b̃ℓ − bℓ and reshares the

secrets by [ãℓ − ρ · aℓ]k−1, [b̃ℓ − bℓ]k−1.
6. For all j ∈ {1, . . . ,m}, all parties locally compute

[θℓ]n−1 = [ãℓ − ρ · aℓ]k−1 ∗ [b̃ℓ − bℓ]k−1 + [ãℓ − ρ · aℓ]k−1 ∗ [bℓ]n−k

+ ρ · [b̃ℓ − bℓ]k−1 ∗ [aℓ]n−k + ρ · [cℓ]n−1 − [c̃ℓ]n−1.

7. For all i ∈ {1, . . . , k} and for all ℓ ∈ {1, . . . ,m},
(a) Recall that all parties hold {[∆|i]t}ki=1. All parties locally compute [∆ · (ãℓ,i − ρ · aℓ,i) ·

(b̃ℓ,i − bℓ,i)|i]n−1 = [∆|i]t · [ãℓ − ρ · aℓ]k−1 · [b̃ℓ − bℓ]k−1. Then, all parties locally transform
[∆ · (ãℓ,i − ρ · aℓ,i) · (b̃ℓ,i − bℓ,i)|i]n−1 to an additive sharing ⟨∆ · (ãℓ,i − ρ · aℓ,i) · (b̃ℓ,i − bℓ,i)⟩.

(b) Recall that all parties hold [∆ ·aℓ]n−k, [∆ ·bℓ]n−k. All parties locally compute [∆ ·(ãℓ−ρ ·aℓ)∗
bℓ]n−1 = [ãℓ−ρ·aℓ]k−1∗[∆·bℓ]n−k and ρ·[∆·(b̃ℓ−bℓ)∗aℓ]n−1 = ρ·[b̃ℓ−bℓ]k−1∗[∆·aℓ]n−k.
Then, all parties locally transform these two packed Shamir sharings to additive sharings
⟨∆ · (ãℓ,i − ρ · aℓ,i) · bℓ,i⟩ and ⟨∆ · ρ · (b̃ℓ,i − bℓ,i) · aℓ,i⟩.
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(c) Recall that all parties hold additive sharings ⟨∆ · cℓ,i⟩ and ⟨∆ · c̃ℓ,i⟩.
(d) All parties finally compute an additive sharing ⟨∆ · θℓ,i⟩ by

⟨∆ · (ãℓ,i − ρ · aℓ,i) · (b̃ℓ,i − bℓ,i)⟩+ ⟨∆ · (ãℓ,i − ρ · aℓ,i) · bℓ,i⟩
+ ⟨∆ · ρ · (b̃ℓ,i − bℓ,i) · aℓ,i⟩+ ρ · ⟨∆ · cℓ,i⟩ − ⟨∆ · c̃ℓ,i⟩.

Note that when cℓ = aℓ ∗ bℓ and c̃ℓ = ãℓ ∗ b̃ℓ, we have

θℓ = (ãℓ − ρ · aℓ) ∗ (b̃ℓ − bℓ) + (ãℓ − ρ · aℓ) ∗ bℓ
+ ρ · (b̃ℓ − bℓ) ∗ aℓ + ρ · cℓ − c̃ℓ

= ãℓ ∗ b̃ℓ − c̃ℓ

= 0.

Thus, it is sufficient to verify that θℓ is an all-0 vector. A subtle issue with the sacrifice approach
given above is that we also must verify that P1 distributes correct degree-(k − 1) packed Shamir
sharings. For this, we use Procedure πVerifyDeg described below.

Procedure 12: πVerifyDeg

Input: All parties hold m degree-(k − 1) packed Shamir sharings distributed by P1, denoted by

[x1]k−1, . . . , [xm]k−1.

All parties hold an additive sharing ⟨∆⟩. For each ℓ ∈ {1, . . . ,m}, all parties also hold {⟨∆ · xℓ,i⟩}ki=1

1. All parties call FCoin to obtain random values χ1, . . . , χm ∈ F.
2. All parties locally compute [x]k−1 =

∑m
ℓ=1 χℓ · [xℓ]k−1 and compute ⟨∆ ·xi⟩ =

∑m
ℓ=1 χℓ · ⟨xℓ,i⟩k−1

for all i ∈ {1, . . . , k}.
3. All parties exchange their shares of [x]k−1 and check that the shares of [x]k−1 lie on a degree-(k−1)

polynomial. If false, all parties abort.
4. All parties reconstruct the secrets x. For all i ∈ {1, . . . , k}, all parties locally compute ⟨δi⟩ =
⟨∆ · xi⟩ − xi · ⟨∆⟩ and refresh the additive sharing ⟨δi⟩.

5. For all i ∈ {1, . . . , k}, all parties call FCommit to commit their shares of ⟨δi⟩ towards each other.
6. For all i ∈ {1, . . . , k}, all parties open the commitments of the shares of ⟨δi⟩ and check whether it

is an additive sharing of 0. If not, all parties abort.

Finally, we verify that θℓ is an all-0 vector by making use of the procedure πCheckZero below.

Procedure 13: πCheckZero

Input: All parties hold m degree-(n− 1) packed Shamir sharings, denoted by

[θ1]n−1, . . . , [θm]n−1.

All parties hold an additive sharing ⟨∆⟩. For each ℓ ∈ {1, . . . ,m}, all parties also hold {⟨∆ · θℓ,i⟩}ki=1

1. All parties call FCoin to obtain random values χ1, . . . , χm ∈ F.
2. All parties invoke πRandSh to prepare a random degree-(n−1) packed Shamir sharing of 0, denoted

by [0]n−1.
3. All parties locally compute [θ]n−1 = [0]n−1 +

∑m
ℓ=1 χℓ · [θℓ]n−1 and compute ⟨∆ · θi⟩ =

∑m
ℓ=1 χℓ ·

⟨θℓ,i⟩k−1 for all i ∈ {1, . . . , k}. Then all parties locally refresh the additive sharings {⟨∆ · θi⟩}ki=1.
4. All parties call FCommit to commit their shares of [θ]n−1 towards each other.
5. All parties open the commitments of the shares of [θ]n−1 and check whether it is a degree-(n− 1)

packed Shamir sharing of 0. If not, all parties abort.
6. For all i ∈ {1, . . . , k}, all parties call FCommit to commit their shares of ⟨∆ · θi⟩ towards each other.
7. For all i ∈ {1, . . . , k}, all parties open the commitments of the shares of ⟨∆ · θi⟩ and check whether

it is an additive sharing of 0. If not, all parties abort.
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The security of the above verification follows from a similar idea in [RS22] which we will discuss
in the proof.

Communication complexity of πSacrifice. We first notice that the communication of πVerifyDeg and
πCheckZero are independent of the amount of multiplications, so we ignore their costs. Regarding
πSacrifice, the communication is discussed below. We ignore calls to FCoin.

– (Step 2) Parties run steps 1, 2 and 5 in πTriple. Among these, only the last step involves interaction
that amounts to k(n− 2) + n+ 1.

– (Step 4) 2(n− 1) shares sent by the parties to P1.
– (Step 6) 2(n− 1) shares sent by P1 to the parties.

The total is k(n− 2) + 5n− 3.

D.5 Full Description of the Circuit-Independent Preprocessing Protocol

We are ready to present the protocol ΠPrepIndMal that realizes FPrepIndMal below.

Protocol 3: ΠPrepIndMal

Initialization: For every ordered pair of parties (Pi, Pj), Pi sends a random PRG seed si,j to Pj .
Whenever Pi needs to sample a random value and sends it to Pj , Pi and Pj locally evaluate the PRG
with random seed si,j to obtain the common random value.

1. Settling Authentication Keys: All parties invoke Initialization in πTriple to prepare random
sharings {[∆|i]t}ki=1.

2. Preparing Random Packed Sharings: Let N1 be the number of input gates and multiplication
gates. All parties invoke πRandAuth to prepare N1 random sharings in the form of ([r ·1]n−k, ⟨∆ · r⟩).

3. Preparing Packed Beaver Triples with Authentications: Let N2 denote the number of groups of
multiplication/input/output gates. Repeat the following, until ≥ N2 triples are generated.
(a) All parties invoke Generation in πTriple to prepare m packed Beaver triples with authentications,

where m is the output length in πTriple.
(b) All parties invoke πSacrifice, πVerifyDeg, and πCheckZero to verify the correctness of the triples

prepared in the last step.
4. Preparing Random Masked Sharings for Multiplication Gates: Let N3 denote the number of

groups of multiplication gates. All parties invoke πRandSh to prepare 3N3 random sharings in the
form of [0]n−1.

5. Preparing Random Masked Sharings for Input and Output Gates: Let N4 be the number of
groups of input gates and output gates. Then we have N2 = N3 +N4. All parties invoke πRandSh to
prepare N4 random sharings in the form of [0]n−1.

Communication complexity of ΠPrepIndMal. The communication of ΠPrepIndMal per multiplication group
is divided in the following:

– (Step 2) One call to πRandAuth, which costs k(2n− 1) + n− 1

– (Step 3) One call to πTriple, which costs k · (3n− 8) + 10n+ 3, and one call to πSacrifice, which
costs k(n− 2) + 5n− 3.

– (Step 4) One call to πRandSh to generate 3 random sharings [0]n−1. This costs 3(n/2).

Summing up, we obtain k(6n−11)+17.5n−1, for every group of k multiplication gates. If we divide
by k, we obtain 6n− 11 + (17.5n− 1)/k per multiplication gate, and if we reall that k = (ϵ/2)n+ 1,
we obtain

6n− 11 +
17.5n− 1

ϵ
2n+ 1

.

We can upper bound this by 6n+ 35
ϵ .
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D.6 Proof of Lemma 2

Lemma 2. Protocol ΠPrepIndMal securely computes FPrepIndMal in the {Fprog
OLE,FnVOLE,FCommit,FCoin}-

hybrid model against a malicious adversary who controls t out of n parties.

Proof. We will construct a simulator S to simulate the behaviors of honest parties. Let Corr denote
the set of corrupted parties and H denote the set of honest parties. The simulator S works as
follows.

For every ordered pair (Pi, Pj) where Pi is honest and Pj is corrupted, S samples a random PRG
seed and sends it to Pj . For every ordered pair (Pi, Pj) where Pi is corrupted and Pi is honest, S
receives a PRG seed from Pi.

Simulating πRandSh. We first describe a general strategy of simulating πRandSh. In our construction,
we will only use πRandSh to generate random sharings which satisfy that the shares of corrupted
parties are independent of the secrets. Recall that we only focus on the case where t ≥ n/2. It means
that the number of honest parties is upper bounded by the number of corrupted parties.

At a high level, whenever an honest party Pi needs to generate and distribute a random
Σ-sharing, for every corrupted party Pj ,

– If the protocol requires Pi and Pj to obtain their share by evaluating the PRG with the common
seed, S honestly evaluates the PRG and obtains the share of Pj .

– Otherwise, S samples a random element as the share of Pj and sends it to Pj .

Whenever a corrupted party Pi distributes a random Σ-sharing, S receives the shares of honest
parties (by either evaluating the PRG with the common seeds or receiving from Pi). Then S samples
a random Σ-sharing based on the shares of honest parties and views it as the Σ-sharing distributed
by Pi. Note that, corrupted parties can locally change their shares to any arbitrary values. This way,
we have defined the correct shares that corrupted parties should hold.

In details,

1. In Step 1, S follows the protocol to agree on a Vandermonde matrix MT.
2. In Step 2, for each honest party Pi, S distributes the shares of S(i) to corrupted parties as

described above. For each corrupted party Pi, S receives the shares of S(i) of honest parties. S
randomly samples a Σ-sharing based on the shares of honest parties and view it as the sharing
generated by Pi.

3. In Step 3, S computes the shares of corrupted parties for each Σ-sharing R(i).

Simulating the Main Protocol. No we describe the simulation of ΠPrepIndMal.

1. In Step 1, S simulates Initialization in πTriple as follows:
(a) S emulates FnVOLE and receives ∆i for each corrupted party Pi.
(b) S simulates πRandSh when preparing {[r|i]t}ti=1 as described above and learns the shares of

corrupted parties. Then S simulates πMACKey as follows.
(c) S follows the protocol when transforming [r|1]t to ⟨r⟩ and computes the shares of corrupted

parties. When refreshing ⟨r⟩, recall that it is done by first invoking πRandSh to prepare a
random additive sharing ⟨0⟩ and then adding it with ⟨r⟩. S computes the corrupted parties’
shares of ⟨r⟩ after refreshing.

(d) S computes the shares of ⟨∆+ r⟩ of corrupted parties and samples random values as the
shares of honest parties. S reconstructs the secrets ∆+ r. Then S honestly sends the shares
of ⟨∆+ r⟩ of honest parties to P1.

(e) Depending on whether P1 is honest or not, there are two cases:
– If P1 is honest, S receives the shares of corrupted parties and reconstructs the secret

∆+ r (which can be different from ∆ + r since corrupted parties may send wrong
shares to P1). S honestly follows the protocol and distributes [(∆+ r) · 1]2k−2.
For all i ∈ {1, . . . , k}, S computes the shares of [(∆+ r) − r|i]t of corrupted parties.
Note that for a degree-t Shamir sharing, when t ≥ n/2, corrupted parties can locally
change their shares to change the secret from (∆+ r)− r to (∆+ r)− r = ∆. We may
equivalently think that the shares of corrupted parties are changed so that the secret is
∆ (and they can then change their shares to any arbitrary values). Thus, S adjust the
shares of corrupted parties as follows:
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S generates a degree-t Shamir sharing [∆+r− (∆+ r)|i]t such that the shares of honest
parties are 0s. Then S computes the shares of [∆|i]t = [∆+r−(∆+ r)|i]t+[(∆+ r)−r|i]t
of corrupted parties.

– If P1 is corrupted, S receives the shares of [(∆ + r) · 1]2k−2 of honest parties and
reconstructs the whole sharing and the secrets (∆+ r) · 1. Then S computes δ =
(∆+ r) · 1−∆ · 1.
For all i ∈ {1, . . . , k}, S computes the shares of [(∆ + r) · 1]2k−2 − [r|i]t of corrupted
parties. Note that the secret is equal to ∆+ δi. S adjust the shares of corrupted parties
as follows:
S generates a degree-t Shamir sharing [δi|i]t such that the shares of honest parties are
0s. Then S computes the shares of [∆|i]t = [(∆+ r) · 1]2k−2− [r|i]t− [δi|i]t of corrupted
parties.

2. In Step 2, S simulates πRandAuth as follows.
(a) S first emulates FnVOLE and receives the shares of corrupted parties. For any global key

query made by a corrupted party, S randomly samples ∆i for each honest party Pi, sends
back (abort, ∆), and aborts.

(b) S simulates πRandSh when preparing random sharings in the form of [ρ · 1]n−k as described
above and learns the shares of corrupted parties. For all ℓ ∈ {1, . . . ,m}, S computes the
shares of [rℓ + ρ]n−1 of corrupted parties. S samples random values as the shares of
[rℓ + ρ]n−1 of honest parties and reconstructs the secrets rℓ + ρ. Depending on whether P1

is honest, there are two cases.
– If P1 is honest, S receives the shares of [rℓ +ρ]n−1 of corrupted parties and reconstructs

the secrets rℓ + ρ. Then P1 honestly sends back rℓ + ρ to all parties.
– If P1 is corrupted, S sends the shares of [rℓ + ρ]n−1 of honest parties to P1 and receives

rℓ + ρ from P1.
If P1 sends different values to honest parties, S views the values sent to the first honest
party as the actual values distributed by P1. Later on, S will abort in this case.

For all i ∈ {1, . . . , k}, S computes the shares of [(rℓ,i + ρi−ρi) ·1]n−k = rℓ,i + ρi− [ρi ·1]n−k

of corrupted parties. Note that for a degree-(n− k) packed Shamir sharing, when t ≥ n/2,
corrupted parties can locally change their shares to change the secrets from (rℓ,i + ρi−ρi) ·1
to rℓ,i · 1. We may equivalently think that the shares of corrupted parties are changed so
that the secret is rℓ,i · 1 (and they can then change their shares to any arbitrary values).
Thus, S adjust the shares of corrupted parties as follows:
S generates a degree-(n− k) packed Shamir sharing [rℓ,i + ρi− (rℓ,i + ρi)]n−k such that the
shares of honest parties are 0s. Then S computes the shares of [rℓ,i · 1]n−k = [(rℓ,i + ρi −
ρi) · 1]n−k + [rℓ,i + ρi − (rℓ,i + ρi)]n−k of corrupted parties.

(c) S honestly emulates FCoin and honestly follows the protocol to check whether P1 distributes
the same values to all parties. If P1 did not distributes the same values to all honest parties
but the check passes, S aborts.

3. In Step 3(a), S simulates πTriple as follows.
(a) S first emulates FnVOLE and receives the shares of corrupted parties. For any global key

query made by a corrupted party, S randomly samples ∆i for each honest party Pi, sends
back (abort, ∆), and aborts.
Let sia, s

i
b denote the seeds of corrupted parties, and let ai = Expand(sia), b

i = Expand(sib)
denote the shares of corrupted parties.

(b) For every ordered pair of parties (Pi, Pj), S emulates Fprog
OLE as follows: Initially, for all

i, j ∈ {1, . . . , n}, S sets δi,ja = δi,jb = 0.
– If Pi and Pj are both corrupted, S randomly samples ui,j and vj,i such that ui,j +vj,i =

Expand(sia) ∗ Expand(s
j
b).

– If Pi is corrupted and Pj is honest, S receives sia and ui,j . Then S sets δi,ja = Expand(sia)−
ai.

– If Pi is honest and Pj is corrupted, S receives sib and vj,i. Then S sets δi,jb = Expand(sjb)−
bj .

Then for all ℓ ∈ {1, . . . ,m}, (Pi, Pj) holds ui,j
ℓ , vi,jℓ such that ui,j

ℓ +vi,jℓ = (aiℓ+δi,ja,ℓ)·(b
j
ℓ+δi,jb,ℓ).

For all i ∈ {1, . . . , k}, when transforming to ⟨cℓ,i⟩, there exists ηja,ℓ,i, η
j
b,ℓ,i such that cℓ,i =

aℓ,i · bℓ,i +
∑n

j=1(η
j
a,ℓ,i · b

j
ℓ + ajℓ · η

j
b,ℓ,i).
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S computes {(ηja,ℓ,i, η
j
b,ℓ,i)}nj=1 for all ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k}. S also computes

the shares of {(⟨cℓ,1⟩, . . . , ⟨cℓ,k⟩)}mℓ=1 of corrupted parties.
(c) S simulates πRandSh when preparing random sharings in the form of ([r]n−k, [r]n−1) as

described above and learns the shares of corrupted parties. Then S simulates πDegReduce: S
computes the shares of [u+ r]n−1 of corrupted parties and samples random values as the
shares of [u+ r]n−1 of honest parties. Then S reconstructs the secrets u+ r. Depending on
whether P1 is honest, there are two cases.

– If P1 is honest, S receives the shares of [u+ r]n−1 of corrupted parties and reconstructs
the secrets u+ r. Then P1 honestly distributes [u+ r]2k−2 to all parties.

– If P1 is corrupted, S sends the shares of [u+ r]n−1 of honest parties to P1 and receives
the shares of [u+ r]2k−2 of honest parties from P1.
S reconstructs the whole sharing [u+ r]2k−2 and computes the secrets u+ r.

S computes the shares of [u+ r − r]n−k = [u+ r]2k−2 − [r]n−k of corrupted parties. Note
that for a degree-(n−k) packed Shamir sharing, when t ≥ n/2, corrupted parties can locally
change their shares to change the secrets from u+ r − r to u. We may equivalently think
that the shares of corrupted parties are changed so that the secret is u (and they can then
change their shares to any arbitrary values). Thus, S adjust the shares of corrupted parties
as follows:
S generates a degree-(n−k) packed Shamir sharing [u+r−u+ r]n−k such that the shares
of honest parties are 0s. Then S computes the shares of [u]n−k = [u+ r− r]n−k + [u+ r−
u+ r]n−k of corrupted parties.

(d) S simulates πRandSh when preparing random sharings in the form of [r]n−k as described
above and learns the shares of corrupted parties. Then S simulates πAddTran as follows: For
all ℓ ∈ {1, . . . , k}, S computes the corrupted parties’ shares of ⟨rℓ⟩ after refreshing. Then
S computes the shares of ⟨∆ · uℓ + rℓ⟩ of corrupted parties and samples random values
as the shares of ⟨∆ · uℓ + rℓ⟩ of honest parties. Next S reconstructs the secret ∆ · uℓ + rℓ.
Depending on whether P1 is honest, there are two cases.

– If P1 is honest, S receives the shares of ⟨∆ ·uℓ+rℓ⟩ of corrupted parties and reconstructs
the secret ∆ · uℓ + rℓ. Then P1 honestly distributes [∆ · u+ r]2k−2 to all parties.

– If P1 is corrupted, S sends the shares of ⟨∆ ·uℓ+ rℓ⟩ of honest parties to P1 and receives
the shares of [∆ · u+ r]2k−2 of honest parties from P1.
S reconstructs the whole sharing [∆ · u+ r]2k−2 and computes the secrets ∆ · u+ r.

S computes the shares of [∆ · u+ r− r]n−k = [∆ · u+ r]2k−2− [r]n−k of corrupted parties.
Note that for a degree-(n − k) packed Shamir sharing, when t ≥ n/2, corrupted parties
can locally change their shares to change the secrets from ∆ · u+ r − r to ∆ · u. We may
equivalently think that the shares of corrupted parties are changed so that the secret is ∆ ·u
(and they can then change their shares to any arbitrary values). Thus, S adjust the shares of
corrupted parties as follows:
S generates a degree-(n − k) packed Shamir sharing [∆ · u + r − ∆ · u+ r]n−k such
that the shares of honest parties are 0s. Then S computes the shares of [∆ · u]n−k =
[∆ · u+ r − r]n−k + [∆ · u+ r −∆ · u+ r]n−k of corrupted parties.

(e) S follows the simulation of Step 1 in πTriple described above when preparing random sharings
in the form of ([r]n−1, {⟨∆ · ri⟩}ki=1) and learns the shares of corrupted parties. Then S
simulates πAuth as follows: For all ℓ ∈ {1, k}, S computes the corrupted parties’ shares of ⟨rℓ⟩
after refreshing. Then S computes the shares of ⟨cℓ + rℓ⟩ of corrupted parties and samples
random values as the shares of ⟨cℓ + rℓ⟩ of honest parties. Next S reconstructs the secret
cℓ + rℓ. Depending on whether P1 is honest, there are two cases.

– If P1 is honest, S receives the shares of ⟨cℓ + rℓ⟩ of corrupted parties and reconstructs
the secret cℓ + rℓ. Then P1 honestly distributes [c+ r]2k−2 to all parties.

– If P1 is corrupted, S sends the shares of ⟨cℓ + rℓ⟩ of honest parties to P1 and receives
the shares of [c+ r]2k−2 of honest parties from P1.
S reconstructs the whole sharing [c+ r]2k−2 and computes the secrets c+ r.

S computes the additive errors ϵ = c+ r − (c + r). Then S computes the shares of
[c+ ϵ]n−1 = [c+ r]2k−2 − [r]n−1 of corrupted parties.
S also computes the shares of [∆ · (cℓ + rℓ)|ℓ]n−1 = [∆|ℓ]t · [c+ r]2k−2 of corrupted parties.
S follows the protocol and computes the shares of ⟨∆ ·(cℓ + rℓ)⟩ of corrupted parties. Finally,
S computes the shares of ⟨∆ · (cℓ + ϵℓ)⟩ = ⟨∆ · (cℓ + rℓ)⟩ − ⟨∆ · rℓ⟩ of corrupted parties.
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4. In Step 3(b), S simulates πSacrifice as follows.
(a) Recall that for every packed Beaver triple

([aℓ]n−k, [∆ · aℓ]n−k), ([bℓ]n−k, [∆ · bℓ]n−k), ([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1),

S learns the shares of corrupted parties. S also learns the errors {ηja,ℓ,i, η
j
b,ℓ,i}nj=1 and ϵℓ,i

for all ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k} which satisfy that

cℓ,i = aℓ,i · bℓ,i +
n∑

j=1

(ηja,ℓ,i · b
j
ℓ + ηjb,ℓ,i · a

j
ℓ) + ϵℓ,i.

Here ajℓ , b
j
ℓ are Pj ’s shares of [aℓ]n−1, [bℓ]n−1 (i.e., Pj ’s shares before the sharing transfor-

mation, or equivalently, the ℓ-th outputs of Expand(sja) and Expand(sjb)).
(b) In Step 2, S follows the simulation strategy of πTriple. In particular, for every packed Beaver

triple

([ãℓ]n−1, {⟨∆ · ãℓ,i⟩}ki=1), ([b̃ℓ]n−1, {⟨∆ · b̃ℓ,i⟩}ki=1), ([c̃ℓ]n−1, {⟨∆ · c̃ℓ,i⟩}ki=1),

S learns the shares of corrupted parties. S also learns the errors {η̃ja,ℓ,i, η̃
j
b,ℓ,i}nj=1 and ϵ̃ℓ,i

for all ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k} which satisfy that

c̃ℓ,i = ãℓ,i · b̃ℓ,i +
n∑

j=1

(η̃ja,ℓ,i · b̃
j
ℓ + η̃jb,ℓ,i · ã

j
ℓ) + ϵ̃ℓ,i.

(c) In Step 3, S honestly emulates FCoin and samples ρ.
(d) In Step 4, S computes the shares of [ãℓ − ρ · aℓ]n−1 and [b̃ℓ − bℓ]n−1 of corrupted parties. S

samples random values as the shares of honest parties and reconstructs the secrets ãℓ−ρ ·aℓ

and b̃ℓ − bℓ. Depending on whether P1 is honest, there are two cases:
– If P1 is honest, S receives the shares of [ãℓ − ρ · aℓ]n−1 and [b̃ℓ − bℓ]n−1 of cor-

rupted parties. Then S reconstructs ãℓ − ρ · aℓ and b̃ℓ − bℓ. S honestly distributes
[ãℓ − ρ · aℓ]k−1, [b̃ℓ − bℓ]k−1 to all parties.

– If P1 is corrupted, S sends the shares of [ãℓ − ρ · aℓ]n−1 and [b̃ℓ − bℓ]n−1 of honest
parties to P1 and receives the shares of [ãℓ−ρ ·aℓ]k−1 and [b̃ℓ−bℓ]k−1 of honest parties.
S reconstructs the whole sharings and computes the secrets ãℓ − ρ · aℓ and b̃ℓ − bℓ by
using the shares of the first k honest parties.

(e) In Step 6, S follows the protocol and computes the shares of [θℓ]n−1 of corrupted parties.
(f) In Step 7, S follows the protocol and computes the shares of ⟨∆ · θℓ,i⟩ of corrupted parties

for all ℓ ∈ {1, . . . ,m} and i ∈ {1, . . . , k}.
Then S simulates πVerifyDeg as follows.
(a) In Step 1, S honestly emulates FCoin and samples random values χ1, . . . , χm.
(b) In Step 2, recall that S learns the shares of [xℓ]k−1 of honest parties when simulating

πSacrifice. S computes the shares of [x]k−1 of honest parties. S also computes the shares of
{⟨∆ · xi⟩}ki=1 of corrupted parties.

(c) In Step 3, S honestly exchange the shares of honest parties with corrupted parties. If the
shares of [x]k−1 does not form a valid degree-(k − 1) packed Shamir sharing, S aborts. If
there exists ℓ such that the shares of [xℓ]k−1 of honest parties do not lie on a degree-(k − 1)
polynomial but the check passes, S also aborts.
S reconstructs the secrets x, which is equal to

∑m
ℓ=1 χℓ ·xℓ. On the other hand, S also learns

xℓ when simulating πSacrifice. S computes x =
∑m

ℓ=1 χℓ · xℓ.
(d) In Step 4, for all i ∈ {1, . . . , k}, S computes the shares of ⟨δi⟩ of corrupted parties.
(e) In Step 5, S honestly emulates FCommit for corrupted parties.

If x ̸= x, S randomly samples ∆i for each honest party Pi and computes ∆ =
∑n

j=1 ∆
i. S

sets δi = ∆ · (xi − xi) and randomly samples the shares ⟨δi⟩ of honest parties based on the
shares of corrupted parties and the secret. Then S honestly emulates FCommit for honest
parties.

(f) S honestly follows Step 6. If x ̸= x but the check passes, S aborts.
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Next S simulates πCheckZero as follows.
(a) In Step 1, S honestly emulates FCoin and samples random values χ1, . . . , χm.
(b) In Step 2, S simulates πRandSh when preparing [0]n−1 as desribed above and learns the

shares of corrupted parties.
(c) In Step 3, S computes the shares of [θ]n−1 and {⟨∆ · θi⟩}ki=1 of corrupted parties.
(d) In Step 4, S honestly emulates FCommit for corrupted parties.

Recall that πCheckZero is invoked only when all parties accept the check in πVerifyDeg, which
guarantees that all degree-(k − 1) packed Shamir sharings distributed by P1 in πSacrifice are
correct. Then for all ℓ ∈ {1, . . . ,m} and for all i ∈ {1, . . . , k},

θℓ,i = ρ · (
n∑

j=1

(ηja,ℓ,i · b
j
ℓ + ηjb,ℓ,i · a

j
ℓ) + ϵℓ,i)

−
n∑

j=1

(η̃ja,ℓ,i · b̃
j
ℓ + η̃jb,ℓ,i · ã

j
ℓ)− ϵ̃ℓ,i.

If any of {ηja,ℓ,i, η
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {η̃ja,ℓ,i, η̃

j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0,

S randomly samples the shares of [aℓ]n−1, [bℓ]n−1, [ãℓ]n−1, [b̃ℓ]n−1 of honest parties. Then
S computes θℓ,i and θi accordingly. Next, S randomly samples the shares of [θ]n−1 of honest
parties based on the shares of corrupted parties and the secrets θ. S honestly emulates
FCommit for honest parties.

(e) In Step 5, S honestly follows the protocol. If any of {ηja,ℓ,i, η
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any

of {η̃ja,ℓ,i, η̃
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0 but the check passes, S aborts.

(f) In Step 6, S honestly emulates FCommit for corrupted parties.
If any of {ϵℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {ϵ̃ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0, S randomly
samples ∆i for each honest party Pi and computes ∆ =

∑n
j=1 ∆

i. S sets ∆ · θℓ,i = ∆ · (ρ ·
ϵℓ,i − ϵ̃ℓ,i) and computes ∆ · θi accordingly. Then S randomly samples the shares ⟨∆ · θi⟩
of honest parties based on the shares of corrupted parties and the secret. Then S honestly
emulates FCommit for honest parties.

(g) In Step 7, S honestly follows the protocol. If any of {ϵℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of
{ϵ̃ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0 but the check passes, S aborts.

5. In Step 4 and Step 5, S simulates πRandSh when preparing random sharings [0]n−1 as described
above and learns the shares of corrupted parties.

6. Finally, S provides the shares of corrupted parties to FPrepIndMal.

This completes the description of S.
Now we use hybrid arguments to prove the security of ΠPrepIndMal.
Hybrid0: In this hybrid, S honestly follows the protocol. This corresponds to the real world.
Hybrid1: In this hybrid, for every ordered pair of honest parties (Pi, Pj), when Pi needs to send

a random element to Pj , instead of evaluating the PRG on their common random seed, they use a
real random element. By the security of the PRG, the distribution of Hybrid1 and distribution of
Hybrid0 are computationally indistinguishable.

Hybrid2: In this hybrid, πRandSh is simulated by S using the general strategy described above.
Note that the simulation does not require S to sample the shares of honest parties. S pushes
the sampling of ∆i to whenever it is needed. When needed, S samples random Σ-sharings and
computes the shares of honest parties based on the shares of corrupted parties. Now we analyze the
distribution of Hybrid2 and the distribution of Hybrid1.

In Hybrid1, whenever an honest party Pi needs to distribute a random Σ-sharing, since t ≥ n/2
and the random Σ-sharing we need to prepare satisfies that the shares of corrupted parties are
independent of the secrets, therefore the shares of corrupted parties are uniformly random (which
are either computed by PRG on the common random seeds or received from Pi). Thus, the
distribution of the messages sent by Pi in Hybrid1 is identical to that in Hybrid2.

Now we show that the distribution of the shares of honest parties in Hybrid1 is identical to
that in Hybrid2. Let MCorr denote the submatrix of M that contains the columns corresponding to
corrupted parties’ indices. Similarly, let MH denote the submatrix of M that contains the columns
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corresponding to honest parties’ indices. Then we have

(R(1), . . . ,R(n−t))T = M(S(1), . . . ,S(n))T

= MCorr ·
(
(S(j))j∈Corr

)T
+MH ·

(
(S(j))j∈H

)T
.

Let (R(1)
Corr, . . . ,R

(n−t)
Corr )T = MCorr ·

(
(S(j))j∈Corr

)T
and (R

(1)
H , . . . ,R

(n−t)
H )T = MH ·

(
(S(j))j∈H

)T
.

Then each R
(i)
H is a random Σ-sharing given the shares of corrupted parties. As for R(i)

Corr, S receives
the shares of honest parties from corrupted parties. For any fixed R

(i)
Corr, R(i)

Corr +R
(i)
H is a random

Σ-sharing given the shares of corrupted parties. In Hybrid2, S generates the shares of R(i)
Corr of

corrupted parties by randomly sampling their shares of (S(j))j∈Corr based on the shares of honest
parties. Then the shares of R(i) = R

(i)
Corr +R

(i)
H of honest parties are randomly sampled based on

the shares of corrupted parties. Thus, the distribution of the shares of honest parties in Hybrid1 is
identical to that in Hybrid2

Therefore, the distribution of Hybrid2 is identical to that of Hybrid1.
Hybrid3: In this hybrid, S simulates Initialization in πTriple as described above. Note that the

simulation does not require S to sample ∆i for each honest party and the shares of honest parties. S
pushes the sampling of ∆i and the shares of honest parties to whenever it is needed. When needed,
S samples a random value as ∆i and randomly generates the shares of honest parties based on the
shares of corrupted parties (in the same way as FPrepIndMal). Now we analyze the distribution of
Hybrid3 and the distribution of Hybrid2.

Note that the only steps that require communication are Step 2 and Stpe 3 in πMACKey. In
Hybrid2, all parties compute additive sharings ⟨∆ + r⟩ = ⟨∆⟩ + ⟨r⟩ and send their shares to P1.
Since ⟨r⟩ is a random additive sharing, ⟨∆+ r⟩ is also a random additive sharing. In particular, each
share of ⟨∆+ r⟩ is uniformly distributed. In Hybrid3, S simply samples random values as the shares
of honest parties. Thus, the distribution of the messages sent to P1 is identical in both hybrids. Then
P1 reconstructs the secret ∆ + r and distributes [(∆ + r) · 1]2k−2 to all parties. We consider two
cases:

– If P1 is honest, then P1 honestly follow the protocol in both cases.
– If P1 is corrupted, since P1 receives values with the same distribution in both hybrids, it performs

identically in both hybrids when distributing [(∆+ r) · 1]2k−2.

Thus, the messages exchanged between honest parties and corrupted parties in both hybrids are
identically distributed.

Now we show that the distribution of the shares of honest parties in Hybrid3 is identical to that
in Hybrid2. Regarding ∆i of each honest party Pi, it is uniformly distributed in both Hybrid2 and
Hybrid3. Regarding the shares of {[∆|i]t}ki=1 of honest parties, observe that they are fully decided
by the shares of corrupted parties and the secret. In Hybrid2, due to the malicious behaviors of
corrupted parties, the secret of [∆|i]t may not be ∆. Instead, there may be an additive error δi. In
Hybrid3, S computes the additive error δi. Then the shares of honest parties is determined by the
shares of corrupted parties and ∆+ δi. Since t ≥ n/2, there is a degree-t Shamir sharing [δi|i]t such
that the shares of honest parties are all 0s. Therefore, we may adjust the shares of corrupted parties
such that the secret is ∆ without changing the shares of honest parties. This is exactly the process
done by S. Therefore, the shares of {[∆|i]t}ki=1 of honest parties are identically distributed in both
hybrids.

Therefore, the distribution of Hybrid3 is identical to that of Hybrid2.
Hybrid4: In this hybrid, for an honest party Pi, we replace the output of Expand(seedi) in

FnVOLE and Fprog
OLE by uniform values. By the security of the PRG, the distribution of Hybrid4 and

distribution of Hybrid3 are computationally indistinguishable.
Hybrid5: In this hybrid, S simulates πRandAuth as described above. Note that the simulation does

not require S to generate the shares of honest parties. S pushes the sampling of the shares of honest
parties to whenever it is needed. When needed, S randomly generates the shares of honest parties
based on the shares of corrupted parties (in the same way as FPrepIndMal). Now we analyze the
distribution of Hybrid5 and the distribution of Hybrid4.
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Compared with Hybrid4, S always abort when it receives a global key query. Observe that S
only generates {∆i}i∈H when corrupted parties make a global key query. The probability that the
query makes a successful guess is negligible due to the exponential size of F.

Then in Step 2(a) of πRandAuth, all parties compute [rℓ + ρ]n−1 = [rℓ]n−1 +
∑k

i=1 ei ∗ [ρi · 1]n−k

and send their shares to P1. Since [rℓ]n−1 is a random degree-(n − 1) packed Shamir sharing, it
satisfies that all shares are uniformly distributed. In Hybrid5, S simply samples random values as
the shares of honest parties. Therefore, the messages sent to P1 have the same distribution in both
hybrids. Next in Step 2(b) of πRandAuth, P1 reconstructs the secrets rℓ + ρ and sends rℓ + ρ to all
parties. We consider two cases:

– If P1 is honest, then P1 honestly follow the protocol in both cases.
– If P1 is corrupted, since P1 receives values with the same distribution in both hybrids, it performs

identically in both hybrids when sending rℓ + ρ.

Thus, the messages sent by P1 in both hybrids are identically distributed.
In Step 3 of πRandAuth, all parties check whether P1 sends the same values to all parties. S simply

follows the protocol. The only difference is that if P1 does not send the same values to all honest
parties but the check passes, S aborts. Observe that it happens only with negligible probability.

Now we show that the distribution of the shares of honest parties in Hybrid5 is identical to that
in Hybrid4. Regarding ⟨∆ · rℓ,i⟩, the shares of corrupted parties are generated by FnVOLE, which is
emulated by S in Hybrid5. Since rℓ,i is uniformly distributed in both hybrids and the distribution of
the shares of honest parties is determined by the shares of corrupted parties and the secret ∆ · rℓ,i,
the shares of ⟨∆ · rℓ,i⟩ of honest parties are identically distributed in both hybrids. Regarding the
shares of [rℓ,i · 1]n−k of honest parties, observe that their distribution is determined by the shares of
corrupted parties and the secret. In Hybrid4, due to the malicious behaviors of corrupted parties,
the secret of [rℓ,i · 1]n−k may not be rℓ,i · 1. Instead, there may be an additive error. Following
the same argument as that in Hybrid3, S can adjust the shares of corrupted parties such that the
secret is rℓ,i · 1 without changing the shares of honest parties. This is exactly the process done by S.
Therefore, the shares of [rℓ,i · 1]n−k of honest parties are identically distributed in both hybrids.

Therefore, the distribution of Hybrid5 is statistically close to that of Hybrid4.
Hybrid6: In this hybrid, S simulates πTriple as described above. Note that the simulation does not

require S to generate the shares of honest parties. S pushes the sampling of the shares of honest
parties to whenever it is needed. When needed, S generates the shares of honest parties as follows:

1. S randomly samples ∆i for each honest party Pi if it has not been generated.
2. S samples random values as the shares of [aℓ]n−1, [bℓ]n−1 of honest parties. Then S reconstructs

the secrets aℓ, bℓ.
3. For ([aℓ]n−k, [∆ ·aℓ]n−k), S computes ∆ ·aℓ. Then based on the shares of corrupted parties and

the secrets, S computes the shares of honest parties. S computes the shares of ([bℓ]n−k, [∆ ·
bℓ]n−k) of honest parties similarly.

4. For ([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1), S computes cℓ,i = aℓ,i · bℓ,i +
∑n

j=1(η
j
a,ℓ,i · b

j
ℓ + ajℓ · η

j
b,ℓ,i) + ϵℓ,i and

∆ · cℓ,i. Here ajℓ , b
j
ℓ are Pj ’s shares of [aℓ]n−1, [bℓ]n−1. Then based on the shares of corrupted

parties, S randomly samples the shares of honest parties.

Now we analyze the distribution of Hybrid6 and the distribution of Hybrid5.
The first two steps in πTriple requires no interactions between honest parties and corrupted

parties. From Step 3 to Step 5, S can simulate πDegReduce, πAddTran, and πAuth similarly to πMACKey

and πRandAuth: Whenever S needs to prepare the shares of honest parties and send them to P1, S
samples random values as their shares. In particular, S can adjust the shares of corrupted parties in
πDegReduce and πAddTran to cancel the additive errors introduced due to the malicious behaviors of
corrupted parties. In πAuth, S extracts the additive errors ϵℓ for all ℓ ∈ {1, . . . ,m}.

Now we show that the distribution of the shares of honest parties in Hybrid6 is identical
to that in Hybrid5. For [aℓ]n−1, [bℓ]n−1, the shares of honest parties are uniformly random in
Hybrid5. In Hybrid6, S just samples random values as the shares of honest parties. This also
implies that the secrets aℓ, bℓ are identically distributed in both hybrids. For ([aℓ]n−k, [∆ · aℓ]n−k)
and ([bℓ]n−k, [∆ · bℓ]n−k), the shares of honest parties are determined by the shares of corrupted
parties and the secrets. Since S perfectly simulates the behaviors of honest parties, the shares of
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corrupted parties are identically distributed in both hybrids. Together with the fact that aℓ, bℓ are
also identically distributed, we conclude that the shares of ([aℓ]n−k, [∆ · aℓ]n−k) of honest parties
are identically distributed. For ([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1), S computes the actual values cℓ and ∆ · cℓ
using the sharings [aℓ]n−1, [bℓ]n−1 and the errors introduced by corrupted parties’ behaviors. In
Hybrid5, ([cℓ]n−1, {⟨∆ · cℓ,i⟩}ki=1) are random sharings given the shares of corrupted parties and
the secrets. S generates the shares of honest parties in the same way. Therefore, the shares of
([aℓ]n−k, [∆ · aℓ]n−k) of honest parties are identically distributed.

Thus, the distribution of Hybrid6 is identical to that of Hybrid5.
Hybrid7: In this hybrid, S simulates πSacrifice, πVerifyDeg, and πCheckZero as described above. Note

that any values generated in these three protocols are not needed in the further steps. It is sufficient
to only show that the messages sent to corrupted parties have the same distributions in both hybrids.

In πSacrifice, S simulates Step 2 in the same way as that in πTriple. As we argued above, the messages
sent to corrupted parties have the same distributions in both hybrids. In Step 4, since [ãℓ]n−1, [b̃ℓ]n−1

are random degree-(n− 1) packed Shamir sharings, the shares of [ãℓ − ρ · aℓ]n−1, [b̃ℓ − bℓ]n−1 of
honest parties are uniform in Hybrid6. In Hybrid7, S samples random values as shares of honest
parties. Therefore, the shares of [ãℓ − ρ · aℓ]n−1, [b̃ℓ − bℓ]n−1 of honest parties are identically
distributed in both hybrids. Depending on whether P1 is honest, there are two cases:

– If P1 is honest, then P1 honestly follow the protocol in both cases.
– If P1 is corrupted, since P1 receives values with the same distribution in both hybrids, it performs

identically in both hybrids when distributing [ãℓ − ρ · aℓ]k−1, [b̃ℓ − bℓ]k−1.

In πVerifyDeg, S honestly follows the protocol in the first 3 steps. The only difference is that if there
exists ℓ such that the shares of [xℓ]k−1 of honest parties do not lie on a degree-(k − 1) polynomial
but the check passes, S also aborts. Note that it only happens with negligible probability. In Step 5, if
x ̸= x, S samples ∆i for each honest party and then follows the protocol. Note that the distribution
of ∆i is identical in both hybrids. In Step 6, S follows the protocol. The only difference is that S will
abort if x ̸= x but the check passes. It only happens if the secret of ⟨δi⟩ is 0 for all i ∈ {1, . . . , k}.
However, the secret δi = ∆ · (xi − xi), and what corrupted parties can do is to add additive error on
δi. Since ∆ is not known to corrupted parties, this happens with negligible probability.

In πCheckZero, S honestly follows the protocol in the first 3 steps.

– In Step 4, if any of {ηja,ℓ,i, η
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {η̃ja,ℓ,i, η̃

j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is

not 0, S randomly samples the shares of [aℓ]n−1, [bℓ]n−1, [ãℓ]n−1, [b̃ℓ]n−1 of honest parties. Then
S computes θℓ,i and θi accordingly. Next, S randomly samples the shares of [θ]n−1 of honest
parties based on the shares of corrupted parties and the secrets θ. Observe that the shares of
honest parties generated by S have the same distribution as that in Hybrid6.

– In Step 5, S follows the protocol. The only difference is that if any of {ηja,ℓ,i, η
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k}

or any of {η̃ja,ℓ,i, η̃
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0 but the check passes, S aborts. Recall that

θℓ,i = ρ · (
n∑

j=1

(ηja,ℓ,i · b
j
ℓ + ηjb,ℓ,i · a

j
ℓ) + ϵℓ,i)

−
n∑

j=1

(η̃ja,ℓ,i · b̃
j
ℓ + η̃jb,ℓ,i · ã

j
ℓ)− ϵ̃ℓ,i.

If any of {ηja,ℓ,i, η
j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {η̃ja,ℓ,i, η̃

j
b,ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0, with

overwhelming probability, there exists ℓ and i such that θℓ,i is not 0. Also recall that only when
Pj is an honest party, can the values ηja,ℓ,i, η

j
b,ℓ,i, η̃

j
a,ℓ,i, η̃

j
b,ℓ,i be non-zero. Since ajℓ , b

j
ℓ , ã

j
ℓ , b̃

j
ℓ are

random values and unknown to corrupted parties, θℓ,i is statistically close to a uniform value
and unknown to corrupted parties. Therefore, with overwhelming probability, θi is statistically
close to a uniform value and unknown to corrupted parties. Thus, the probability that the secret
of [θ]n−1 is an all-0 vector is negligible. Therefore, the probability that S aborts in Step 5 in
Hybrid7 but not in the same step in Hybrid6 is negligible.

– In Step 6, if any of {ϵℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {ϵ̃ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0, S samples
∆i for each honest party and then follows the protocol. Note that the distribution of ∆i is

52



identical in both hybrids. In Step 7, S follows the protocol. The only difference is that S
will abort if any of {ϵℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {ϵ̃ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0 but the
check passes. It only happens if the secret of ⟨∆ · θi⟩ is 0 for all i ∈ {1, . . . , k}. However, if
any of {ϵℓ,i}ℓ∈{1,...,m},i∈{1,...,k} or any of {ϵ̃ℓ,i}ℓ∈{1,...,m},i∈{1,...,k} is not 0, with overwhelming
probability, there exists i such that θi ̸= 0. Then the secret ∆ · θi is statistically close to a
uniform value and unknown to corrupted parties. Since what corrupted parties can do is to add
additive error on ∆ · θi, the probability that the secret of ⟨∆ · θi⟩ is 0 is negligible. Therefore, the
probability that S aborts in Step 7 in Hybrid7 but not in the same step in Hybrid6 is negligible.

In summary, the distribution of Hybrid7 is statistically close to Hybrid6.
Hybrid8: Note that in Hybrid7, S has already simulated all the messages sent from honest

parties to corrupted parties and computed the shares of corrupted parties. In Hybrid8, instead of
generating the shares of honest parties by S, S provides the shares of corrupted parties to FPrepIndMal.
The distribution of Hybrid8 is identical to that of Hybrid7.

Observe that Hybrid8 is the execution in the ideal world. Therefore, ΠPrepIndMal securely com-
putes FPrepIndMal in the {Fprog

OLE ,FnVOLE, FCommit,FCoin}-hybrid model against a malicious adversary
who controls t out of n parties. ⊓⊔

E Best Existing Dishonest Majority Protocol

In this section we present what, to the best of our knowledge, would constitute the protocol with the
smallest online communication in the setting t = n(1− ϵ)− 1, for 0 ≤ ϵ < 1/2. Most existing works
in the dishonest majority setting are not able to exploit a gap larger than 1 between the corruption
threshold t and the number of parties n. The only exception is [GPS22], which is unfortunately
not concretely efficient as we discussed in Section 1. From the above, our starting point is to use a
maximal-adversary dishonest majority protocol, but using a reduced set of n′ = t + 1 = n(1 − ϵ)
parties instead of the full set of n parties.

Regarding the most online-efficient dishonest majority protocol to date, to the best of our
knowledge this would be the Turbospeedz protocol [BNO19], which modifies the online phase of
the SPDZ [DKL+13] family of protocols so that their online communication is reduced by a factor
of 2×, assuming circuit-dependent preprocessing, as we do in our work. This circuit-dependent
preprocessing consists to one multiplication triple per multiplication gate in the circuit whose factors
are uniformly random, but tied to the topology of the circuit. This preprocessing material can be
easily generated in a standard way assuming traditional circuit-independent multiplication triples,
as proposed in [BNO19].

The instantiation of the circuit-independent offline phase, which consists of generating multi-
plication triples, can be done in a variety of ways. In our setting, we compare against OLE-based
protocols since our protocol SUPERPACK already uses these tools, which allows for a more fair
comparison. In this context, the most efficient protocol to the best of our knowledge is that of Le
Mans [RS22], which enables the use of pseudo-random correlator generators (PCGs) to save in
communication. Furthermore, we already use ideas from this protocol in SUPERPACK to instantiate
our circuit-independent preprocessing.

As a remark, we notice that the preprocessing in Le Mans produces triples where the two factors
are authenticated, but the product itself is not, which means the triple itself could be faulty. This
is dealt with in the online phase by making use of the techniques from [CGH+18], which verifies
the correctness of the multiplications by executing in parallel a randomized version of the circuit.
Since this resutls in a communication increase in the online phase, which we aim at minimizing,
we consider instead a variant where the online phase is the one from Turbospeedz [BNO19] with
no changes, and the triples are fully authenticated and verified using sacrificing techniques in the
circuit-independent offline phase.

From now ownwards in this section we consider the set of parties to be P ′ = {P1, . . . , Pn′},
with n′ = t+ 1 ≈ n(1− ϵ). We use [x] to denote additive secret-sharing of x among these parties,
and we use JxK to denote SPDZ-like authenticated shares, meaning JxK = ([x], [∆ · x], [∆]), where
∆ ∈R F is a global uniformly random key. Below we describe the online, circuit-dependent and
circuit-independent offline phases of the baseline protocol sketched above. We refer the resulting
protocol as Turbospeedz, recalling that its offline phase is implemented using ideas from [RS22].
For the protocol, we assume the existence of a broadcast channel.
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E.1 Online Phase

The online phase ΠTSPDZ−Online is presented as Protocol 4 is taken from [BNO19], with several
modifications. The invariant is simple. Each wire α which is the output of a multiplication or input
gate has associated to it a random mask λα ∈R F, and for each wire γ with is the result of adding
wires α and β the value λγ is defined recursively as λγ = λα + λβ . For each wire α, the parties in P ′

are assumed to have authenticated shares JλαK, and the invariant in the online phase will be that
the parties also know in the clear the value µα = vα − λα, where vα is the actual value stored in
wire α for a given choice of input values. This invariant is maintained non-interactively for addition
gates, and for multiplication gates the parties can make use of certain preprocessing together with
interaction involving the reconstruction of some value.

Once the invariant has been carried down to each output wire α, the parties can reconstruct the
associated mask JλαK to the corresponding client owning the given output gate, and at least one of
the party also sends the cleartext value µα. In order to verify the correctness of the computation, the
parties also carry over MACs of certain messages sent during the computation, which are verified at
the end of the protocol execution, before reconstructing the outputs.

Circuit-dependent preprocessing functionality. In order to maintain the invariant sketched
above, the parties will need to make use of certain preprocessing functionality that distributes
circuit-dependent triples. This is described as Functionality FTSPDZ−PrepMal below.

Functionality 6: FTSPDZ−PrepMal

1. Settling Authentication Keys: FTSPDZ−PrepMal samples a random value ∆. Then FTSPDZ−PrepMal

samples additive sharings [∆] and distributes the shares to all parties.
2. Assign Random Values to Wires in C: FTSPDZ−PrepMal receives the circuit C from all parties. Then
FTSPDZ−PrepMal assigns random values to wires in C as follows.
(a) For each output wire α of an input gate or a multiplication gate, FTSPDZ−PrepMal samples a

uniform value λα and associates it with the wire α. FTSPDZ−PrepMal distributes authenticated
sharings JλαK = ([λα], [∆ · λα]).

(b) Starting from the first layer of C to the last layer, for each addition gate with input wires
α, β and output wire γ, FTSPDZ−PrepMal sets λγ = λα + λβ . The parties can locally compute
sharings JλγK. In particular, they obtain sharings JλαK for every wire α.

3. Preparing Products with Authentications: For a multiplication gate with input wires α, β,
functionality FTSPDZ−PrepMal distributes sharings Jλα · λβK = ([λα · λβ ], [∆ · λα · λβ ]).

4. Preparing Random Sharings for Input and Output Gates: For each input or output gate,
FTSPDZ−PrepMal prepares the following random sharings.
(a) Let α be the output wire of the input gate, or the input wire of the output gate. FTSPDZ−PrepMal

samples a uniformly random ∆α, and distributes sharings ([∆α], [∆α · λα]). This allows the
input/output holder to verify the correctness of λα.

Corrupted Parties: When FTSPDZ−PrepMal prepares random sharings, corrupted parties can choose their
shares. FTSPDZ−PrepMal then samples the random sharings based on the secret it generated and the
shares chosen by the corrupted parties.

Online protocol. Protocol ΠTSPDZ−Online below described the online phase of the best prior dishon-
est majority protocol.

Protocol 4: ΠTSPDZ−Online

The parties compute the circuit in a layer-by-layer manner. The parties call FTSPDZ−PrepMal to obtain
the following:

– Sharings JλαK = ([λα], [∆ · λα]) for every wire α of the circuit;
– For a multiplication gate with input wires α and β, sharings Jλα · λβK = ([λα · λβ ], [∆ · λα · λβ ]).
– For every wire α that is an input wire of an output gate, or output wire of an input gate, sharings
([∆α], [∆α · λα]).

Committing Authentication Shares for Output Gates
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1. For every wire α that is an input wire of an output gate, all parties use FCommit to commit their
shares of ([∆α], [∆α · λα]) towards the Client who owns the gate.

The parties aim at preserving the invariant that, for every wire α in the circuit, the parties know
µα := vα − λα. This is achieved as follows:

Computation of Input Gates

2. Let α be an output wire of an input gate associated to a Client. The parties send ([λα], [∆α], [∆α ·
λα]) to Client.

3. Client reconstructs λα, ∆α and ∆α · λα, and checks that the product of the first two equals the
third.

4. If the previous check passes, Client computes µα = vα − λα and broadcasts µα to the parties.

Computation of Addition Gates

5. For an addition gate with input wires α and β, and output wire γ, the parties compute locally
µγ = µα + µβ .

Computation of Multiplication Gates

6. For a multiplication gate with input wires α and β, and output wire γ, the parties compute locally

JµγK = µβ · JλαK + µα · JλβK + µα · µβ + Jλα · λβK− JλγK.

Notice that JµγK = ([µγ ], [∆ · µγ ]).
7. The parties reconstruct µγ from [µγ ]. They do this by reconstructing this to P1, who broadcasts

the result back to the parties.

Verification of Multiplication Gates

8. Let {(αi, βi, γi)}mi=1 be the inputs and output wires of the m multiplication gates of the circuit.
For each i ∈ {1, . . . ,m}, the parties computed JµγiK = ([µγi ], [∆ · µγi ]), and reconstructed µ′

γi
.

The parties call FCoin for each such i to obtain χi ∈ F.
9. The parties compute locally [σ] =

∑m
i=1 χi · (µ′

γi
· [∆]− [∆ · µγi ])

10. The parties call FCommit to commit their shares of [σ].
11. All parties open the commitments of the shares of [σ] and check whether it is an additive sharing

of 0. If not, all parties abort.

Computation of Output Gates
For an output gate with input wire α and owner Client:

12. All the parties send µα to Client. Then all parties open their commitments of shares ⟨∆α⟩, ⟨∆α·λα⟩
to Client.

13. Client reconstructs λα, ∆α and ∆α · λα, and checks that the product of the first two equals the
third.

14. Client checks that the received µα is the same across all parties.
15. If the previous checks pass, Client computes vα = µα + λα and outputs this value.

In Step 1 of ΠTSPDZ−Online, we require all parties to commit their shares associated with the
output gates due to a subtle security issue in the output phase. If without this step, consider
an adversary who knows the inputs of all clients (this is possible as an adversary may have any
pre-knowledge about the computation). Then during the output phase, an adversary may learn µα

(which is not kept secret) and compute λα. This allows corrupted parties to locally change their
shares of ([∆α], [∆α ·λα]) before revealing to Client in a way such that the modified secrets ∆α+η1
and ∆α · λα + η2 can still pass the verification. Note that this does no harm in the real world.

However, in the ideal world when Client is honest, the ideal adversary only knows that the
real adversary launched additive attacks on ([∆α], [∆α · λα]) but cannot check whether they can
still pass the verification in the real world since such a check requires the knowledge of Client’s
output. Here we address this issue by requiring corrupted parties to commit their shares before the
computation starts so that the adversary cannot learn µα, and thus cannot compute λα.
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Communication complexity of ΠTSPDZ−Online. Per multiplication gate, the parties send n′ − 1 shares
to P1, who sends back n′ − 1 values. The total is 2(n′ − 1) ≤ 2n(1− ϵ).

E.2 Circuit-Dependent Preprocessing Phase

Now we show how to instantiate the circuit-dependent preprocessing functionality FTSPDZ−PrepMal,
making use of a circuit-independent preprocessing functionality that samples multiplication triples.

Circuit-independent preprocessing functionality. The functionality for circuit-independent pre-
processing is described below as Functionality FTSPDZ−PrepIndMal.

Functionality 7: FTSPDZ−PrepIndMal

1. Setting Authentication Keys: FTSPDZ−PrepIndMal samples a random value ∆. Then FTSPDZ−PrepIndMal

samples additive sharings [∆] and distributes the shares to all parties.
2. Preparing Random Sharings: For each output wire α of an input gate or a multiplication

gate in the circuit C, FTSPDZ−PrepIndMal samples a random value as λα, FTSPDZ−PrepIndMal samples
authenticated shares JλαK = ([λα], [∆ · λα]), and distributes the shares to all parties.

3. Preparing Beaver Triples with Authentications: For each multiplication gate, FTSPDZ−PrepIndMal

samples a random triple with authentications as follows:
(a) FTSPDZ−PrepIndMal samples two random values a, b ∈ F and computes ∆ · a,∆ · b. Then
FTSPDZ−PrepIndMal samples two pairs of additive sharings JaK = ([a], [∆ · a]), JbK = ([b], [∆ · b]).

(b) FTSPDZ−PrepIndMal computes c = a ·b and ∆ ·c. Then FTSPDZ−PrepIndMal samples an authenticated
sharing JcK = ([c], [∆ · c]).

FTSPDZ−PrepIndMal distributes the shares of (JaK, JbK, JcK) to all parties.
4. Preparing Random Sharings for Input and Output Gates: For each input or output gate with

output/input wire α, FTSPDZ−PrepIndMal prepares the following random sharings.
(a) FTSPDZ−PrepIndMal samples a and ∆α uniformly at random.
(b) FTSPDZ−PrepIndMal distributes shares (JaK, [∆α], [a ·∆α]).

Corrupted Parties: When FTSPDZ−PrepIndMal prepares random sharings, corrupted parties can choose
their shares. FTSPDZ−PrepIndMal then samples the random sharings based on the secret it generated and
the shares chosen by the corrupted parties.

Instantiation of the circuit-dependent preprocessing. Using the Functionality FTSPDZ−PrepIndMal,
it is possible to instantiate Functionality FTSPDZ−PrepMal using Protocol ΠTSPDZ−PrepMal below.

Protocol 5: ΠTSPDZ−PrepMal

1. Setting Authentication Keys: Parties call FTSPDZ−PrepIndMal to get additive sharings [∆].
2. Assign Random Values to Wires in C: Parties call FTSPDZ−PrepIndMal to get JλαK = ([λα], [∆ · λα])

for every wire α that is the output of either an input gate or a multiplication gate.
3. Preparing Products with Authentications: For a multiplication gate with input wires α, β, the

parties proceed as follows.
(a) Parties call FTSPDZ−PrepIndMal to obtain a triple (JaK, JbK, JcK), where c = a · b.
(b) Parties compute locally JταK = JλαK− JaK and JτβK = JλβK− JbK,
(c) Parties open τα and τβ by sending the shares of [τα] and [τβ ] to P1, who reconstructs and

broadcasts the results back.
(d) Parties compute locally

Jλα · λβK = τβ · JaK + τα · JbK + JcK + τα · τβ .

4. Preparing Random Sharings for Input and Output Gates: For each input or output gate, parties
call FTSPDZ−PrepIndMal to obtain, for each input or output gate with output/input wire α, sharings
(JaK, [∆α], [a ·∆α]). Then:
(a) Parties compute locally JωαK = JλαK− JaK and open this value
(b) Parties compute locally [∆α · λα] = ωα · [∆α] + [a ·∆α].

5. Verification of Openings: Let Jξ1K, . . . , JξmK be the sharings opened in the previouss to phases,
and assume they were opened to ξ′1, . . . , ξ

′
m. These correspond to the τα and τβ values for

multiplication gates, and ωα for input and output gates.
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(a) The parties call FCoin to obtain χ1, . . . , χm ∈ F.
(b) The parties compute locally

[σ] =

m∑
i=1

χi · (ξ′i · [∆]− [∆ · ξi]).

(c) The parties call FCommit to commit their shares of [σ].
(d) All parties open the commitments of the shares of [σ] and check whether it is an additive

sharing of 0. If not, all parties abort.

Communication complexity of ΠTSPDZ−PrepMal. Per multiplication gate, the parties need to send
2(n′ − 1) shares to P1, who sends back 2(n′ − 1) elements. This results in 4(n′ − 1) ≤ 4(1− ϵ)n.

E.3 Circuit-Independent Preprocessing Phase

Finally, we show how the functionality FTSPDZ−PrepIndMal is instantiated. This is essentially a modified
version of Le Mans [RS22], where the resulting multiplication triples are fully authenticated, instead
of the product being left unauthenticated as in Le Mans. We make use of the functionalities Fprog

OLE

and FnVOLE, which appear as Functionalities 4 and 5.

Protocol 6: ΠTSPDZ−PrepIndMal

Setting Authentication Keys

1. Each party Pi inputs Init to FnVOLE to obtain ∆i.

Partially Authenticated Triples

2. Each Pi calls FnVOLE twice, with input Extend and receives the seeds sia, sib. Use the outputs to
define vectors of shares (JaℓK)ℓ, (JbℓK)ℓ such that ai = Expand(sia) and bi = Expand(sib).

3. Every ordered pair (Pi, Pj) calls Fprog
OLE with Pi sending sia and Pj sending sjb. Fprog

OLE sends back ui,j

to Pi and vj,i to Pj such that ui,j + vj,i = Expand(sia) ∗ Expand(sjb) = ai ∗ bj . All parties locally
compute [cℓ] where cℓ = aℓ · bℓ.

Authenticated Random Values

4. Each Pi calls FnVOLE with input Extend and receives the seed sir. Use the outputs to define a vector
of shares (JrℓK)ℓ such that ri = Expand(sir).

Authenticating the Products

5. For every ℓ, the parties compute locally [cℓ]− [rℓ], and the parties open (cℓ − rℓ) by sending their
shares to P1 and this party broadcasting back the reconstruction.

6. The parties compute locally (cℓ−rℓ)·[∆]+[∆·rℓ]. Notice the parties now have JcℓK = ([cℓ], [∆·cℓ]).

Verification of the Products (Sacrificing)

7. Parties repeat the previous steps to produce authenticated triples (JãℓK, Jb̃ℓK, Jc̃ℓK)ℓ.
8. The parties invoke FCoin to sample ρ ∈ F.
9. For every ℓ, the parties compute locally [ãℓ]−ρ · [aℓ] and [b̃ℓ]− [bℓ], and the parties open (ãℓ−ρ ·aℓ)

and (b̃ℓ − bℓ) by sending their shares to P1 and this party broadcasting back the reconstructions.
10. The parties compute locally for every ℓ:

JθℓK = (ãℓ − ρ · aℓ) · (b̃ℓ − bℓ) + (ãℓ − ρ · aℓ) · JbℓK
+ ρ · (b̃ℓ − bℓ) · JaℓK + ρ · JcℓK− Jc̃ℓK.

11. The parties call FCoin to get χ1, . . . , χm ∈ F.
12. The parties compute locally JσK =

∑m
ℓ=1 χℓ · JθℓK.

13. The parties call FCommit to commit their shares of [σ].
14. All parties open the commitments of the shares of [σ] and check whether it is an additive sharing

of 0. If not, all parties abort.
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15. The parties call FCommit to commit their shares of [∆ · σ].
16. All parties open the commitments of the shares of [∆ · σ] and check whether it is an additive

sharing of 0. If not, all parties abort.

Random Sharings for Input and Output Gates

17. Let α be the list of wires that are output of an input gate, or output of an input gate. The parties
sample JaK for a random a ∈ F as in step 4 above, that is, each Pi calls FnVOLE with input Extend
and receives the seed sia.

18. Each party Pi samples locally a seed si∆α
.

19. Every ordered pair (Pi, Pj) calls Fprog
OLE with Pi sending sia and Pj sending sj∆α

. Fprog
OLE sends back

ui,j to Pi and vj,i to Pj such that ui,j + vj,i = Expand(sia) ∗ Expand(sj∆α
) = ai ∗∆j

α. All parties
locally compute [aℓ ·∆αℓ ] for each ℓ.

Communication complexity of ΠTSPDZ−PrepIndMal. Ignoring the calls to Fprog
OLE and FnVOLE, the amount

of communication per multiplication gate involves the parties sending n′ − 1 shares to P1 who
sends n′ − 1 values back, when authenticating the products. This amounts to 2(n′ − 1) ≤ 2(1− ϵ)n
elements. In the sacrifice stpe, the parties must open two shared values, which increases this
quantity to 6(1− ϵ)n. We ignore the rest of the the cost of the sacrifice step since its communication
is independent of the amount of multiplications.

Number of calls to Fprog
OLE and FnVOLE. Protocol ΠTSPDZ−PrepIndMal requires the Expand function in the

definition of Functionality FnVOLE (and Fprog
OLE ) to produce |C| correlations, where |C| is the number

of multiplication gates of the circuit C. Each of these correlations is used to process a different
multiplication gate. In our protocol SUPERPACK, we only require |C|/k total correlations.

F Additional Discussion on the Communication Complexity

Let n be the number of parties Let 0 < ϵ < 1/2, and t be the amount of corrupt parties. Assume
that t+ 1 = n(1− ϵ), that is, the percentage of corrupt parties is roughly (1− ϵ)× 100%, and the
percentage of honest parties is roughly ϵ× 100%.

Recall that both our protocol and the best prior work (see Section E) are split into three phases:

1. (Section 4) An online phase that is dependent on the client’s inputs and the circuit topology;
2. (Section 5) A circuit-dependent offline phase that is independent of the client’s inputs, but

dependent on the topology of the circuit;
3. (Section 6) A circuit-independent offline phase that is independent of both the client’s inputs

and the topology of the circuit, and only depends on (an upper bound on) the amount of gates
of each type.

We present for reference, in Table 4, a more expanded version of Table 1.
The online communication of our protocol is 6/ϵ, while the communication complexity of the

online phase in Turbospeedz is 2(1− ϵ)n, which depends linearly on n. Therefore, our online phase
improves on that of Turbospeedz asymptotically, as n increases. Let us denote by ℓ the improvement
factor of our protocol with respect to Turbospeedz, that is, 1/ℓ = 3/(nϵ(1− ϵ)), which means that
the online communication of our protocol is ℓ× better than that of Turbospeedz. Not surprisingly,
this factor improves as n or ϵ increase, which is consistent with the fact that either increasing the
ratio of honest parties among a fixed set of parties, or increasing the total amount of parties for a
fixed honest ratio, benefits our protocol. Regarding the complete offline phase (ignoring calls to
Fprog

OLE and FnVOLE), our complexity is 6n+39/ϵ− 11, while in Turbospeedz it is 10(1− ϵ). Hence, the
ratio is 10(1− ϵ)n/(6n+ 39/ϵ). This approaches 10(1− ϵ)/6 as n→∞, which is a limit that ranges
between 10/6 ≈ 1.6 for ϵ = 0, to 5/6 ≈ 0.83 for ϵ = 1/2. As a result, in the limit as the number of
parties grows, our offline phase is only 1/0.83 = 1.2× less efficient than that of Turbospeedz if ϵ is
too small, and it can even be 1.6× better than that of Turbospeedz if ϵ is close to 1/2. Some concrete
improvement factors for both the online and offline phases are computed in Table 5, for different
values of ϵ and n.
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Online CD Offline CI Offline

Three phases
SuperPack 6/ϵ 4/ϵ 6n + 35/ϵ

Turbospeedz 2(1 − ϵ)n 4(1 − ϵ)n 6(1 − ϵ)n

Two phases
SuperPack 6/ϵ 6n+ 39/ϵ

Turbospeedz 2(1 − ϵ)n 10(1− ϵ)n

End-to-end
SuperPack 6n+ 45/ϵ

Turbospeedz 12(1− ϵ)n

Table 4. Communication complexity in terms of field elements per multiplication gate of SUPERPACK, and
comparison to the previous work with the best online phase, which is Turbospeedz [BNO19] (with its offline
phase instantiated by Le Mans [RS22]). For reference we also add up the two offline phases and report one
single offline phase, and add the three phases and report end-to-end complexity. The cost of the calls to Fprog

OLE

and FnVOLE in the circuit-dependent offline phase is ignored.

# Parties
Percentage of corrupt parties

90% 80% 70% 60%

25 0.75 / 0.42 1.33 / 0.58 1.75 / 0.62 2.0 / 0.61
50 1.5 / 0.65 2.67 / 0.81 3.5 / 0.81 4.0 / 0.75
75 2.25 / 0.8 4.0 / 0.93 5.25 / 0.91 6.0 / 0.82
100 3.0 / 0.91 5.33 / 1.01 7.0 / 0.96 8.0 / 0.86

Table 5. Improvement factor that represents how many times more (or less) efficient our protocol is with
respect to Turbospeedz. This is presented as ℓOnl / ℓOff , where ℓOnl = (nϵ(1− ϵ))/3 is the factor in the online
phase, and ℓOff = (10(1− ϵ)n)/(6n+ 39/ϵ) is the factor in the offline phase.

Finally, we consider the question of, given a desired improvement factor ℓ, how many honest
parties are needed in order for our protocol to achieve the desired relative efficiency? This is
addressed in the following proposition, which shows that, if there are at least 4ℓ honest parties,
our protocol outperforms Turbospeedz by a factor of ℓ for any total number of parties n, as long
as n ≥ 16ℓ. This is important as it shows that the condition on whether our protocol is better than
Turbospeedz and by how much depends essentially on the concrete amount of honest parties only,
independently on the total amount of parties.

Proposition 1. Given ℓ ∈ N, the online phase of our protocol is at least ℓ× better than that of
Turbospeedz as long as there are at least 6ℓ honest parties and a total amount of parties n ≥ 12ℓ, or at
least 4ℓ honest parties and a total amount of parties n ≥ 16ℓ.

Proof. Assuming 12ℓ ≤ n, simple algebra shows that our improvement factor is at least ℓ if

ϵ ≥ 1

2
·

(
1−

√
1− 12ℓ

n

)
.

In terms of the amount of honest parties, we see that

h = ϵ · n ≥ ℓ ·

 6

1 +
√
1− 12ℓ

n


honest parties are required for our online phase to be ℓ× that of Turbospeedz. Since 6/(1 +√
1− 12ℓ

n ) ≤ 6, we have that h = 6 · ℓ honest parties suffice for our online protocol to be ℓ×
better than that of Turbospeedz, for any number of parties n ≥ 12ℓ. Furthermore, if n ≥ 16ℓ, then

12ℓ/n ≥ 3/4, and in this case we can check that 6/(1 +
√

1− 12ℓ
n ) ≤ 4, so h = 4ℓ parties suffice. ⊓⊔
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F.1 Supplementary Data for Table 3

Table 3 shows the improvement factor of our online protocol with respect to the online phase in
Turbospeedz, for a varying number of parties, ϵ and network bandwidth. In Table 6, we provide the
running time of our online protocol (in seconds) with the same parameter settings.

Bandwidth # Parties
Percentage of corrupt parties

90% 80% 70% 60%

500 mbps

16 1.22 1.18 1.12 0.74
32 1.88 1.35 1.08 1.03
48 2.60 1.62 1.16 0.96
64 2.74 1.87 1.21 1.16
80 2.63 1.71 1.14 1.15

100 mbps

16 2.17 1.67 1.71 1.20
32 3.00 2.38 1.81 1.57
48 4.51 2.48 1.89 1.40
64 4.60 2.80 2.03 1.70
80 4.74 2.73 2.00 1.64

50 mbps

16 3.84 2.70 2.65 1.98
32 5.41 4.00 2.75 2.48
48 8.28 4.18 3.05 2.28
64 8.56 4.80 3.17 2.77
80 8.60 4.65 3.50 2.82

10 mbps

16 18.91 12.57 12.57 9.34
32 27.00 19.70 13.12 11.19
48 39.87 20.00 14.94 10.82
64 41.43 23.83 15.27 11.54
80 41.76 23.22 16.28 12.59

Table 6. Running time (in seconds) of our online protocol for a varying number of parties, ϵ and network
bandwidth. The network delay is 1ms for the simulation of LAN network. The circuits have depth 10 and width
10k.

G Comparison with Our Semi-honest Variant

In this section, we compare the cost of our protocol with the semi-honest variant of our protocol.

Communication Complexity of the Semi-honest Variant of Our Protocol. When focusing on semi-honest
security, we do not need to authenticate the packed Shamir secret sharings by using MACs in our
construction. For simplicity, we focus on the communication complexity per multiplication gate:

– In ΠOnline, the communication complexity of πMult remains to be 6
ϵ elements per multiplication

gate (Step 2 and Step 6 in πMult).
– In ΠPrepMal, the communication complexity per multiplication gate remains to be 4

ϵ elements
(Step 4.(a) in ΠPrepMal).

– In ΠPrepIndMal, we may save the communication complexity from the following aspects.
• In Step 2, we may use πRandSh rather than πRandAuth to prepare random sharings in the form

of [r · 1]n−k.
• In Step 3(a), we may omit Step 4 in πTriple.
• We may omit Step 3(b) entirely.

As a result, the communication cost is reduced to 2n+ 17/ϵ elements per multiplication gate.

As we can see, the communication complexity of our protocol is the same as that of our
semi-honest variant in the online phase and circuit-dependent preprocessing phase. Concretely,
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– For the online phase, both protocols require 6
ϵ elements per multiplication gate.

– For the circuit-dependent preprocessing phase, both protocols require 4
ϵ elements per multipli-

cation gate.

For the circuit-independent preprocessing phase, our malicious protocol requires 6n+ 35
ϵ elements

per multiplication gate. And our semi-honest variant requires 2n+ 17
ϵ elements per multiplication

gate. Thus, we conclude that, the additive cost to upgrade from semi-honest security to malicious
security is 4n+ 18

ϵ elements per multiplication gate, in the circuit-independent preprocessing phase.

Protocols, Procedures and Functionalities

Figure 1 lists our procedures (blue boxes), protocols (grey boxes) and functionalities (yellow boxes),
together with their dependencies and positions in the text. A procedure is like a protocol, except
that it does not implement a functionality but rather is used as a building block inside another
protocol.

FMPC

(Func. 3,
p. 27)

ΠOnline

(Prot. 2,
p. 29)

FPrepMal

(Func. 1,
p. 13)

ΠPrepMal

(Prot. 1,
p. 18)

FPrepIndMal

(Func. 2,
p. 17)

ΠPrepIndMal

(Prot. 3,
p. 44)

πTriple

(Proc. 3,
p. 20)

πRandSh

(Proc. 5,
p. 36)

πRandAuth

(Proc. 10,
p. 41)

πCheckZero

(Proc. 13,
p. 43)

πVerifyDeg

(Proc. 12,
p. 43)

πSacrifice

(Proc. 11,
p. 42)

πAuth

(Proc. 9,
p. 41)

πAddTran

(Proc. 7,
p. 40)

πDegReduce

(Proc. 6,
p. 39)

πMACKey

(Proc. 8,
p. 40)

Fprog
OLE

(Func. 4,
p. 38)

FnVOLE

(Func. 5,
p. 38)

πInput

(Proc. 1,
p. 14)

πOutput

(Proc. 4,
p. 27)

πMult

(Proc. 2,
p. 15)

FCommit

(p. 12)
FCoin

(p. 12)

Fig. 1. Dependency graph of our procedures, protocols and functionalities. An arrow from A to B means that A
is used to implement B. Dashed lines correspond to constructions using the Fprog

OLE and FnVOLE functionalities,
which we do not instantiate in our work, and dotted lines correspond to constructions using FCommit and FCoin,
whose instantiation is simple and is discussed in Section 3.
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