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Abstract

We consider the fundamental problem of designing classical consensus-related distributed
abstractions for large-scale networks, where the number of parties can be huge. Specifically, we
consider tasks such as Byzantine Agreement, Broadcast, and Committee Election, and our goal
is to design scalable protocols in the sense that each honest party processes1 and sends a number
of bits which is sub-linear in n, the total number of parties.

In this work, we construct the first such scalable protocols for all of the above tasks. In our
protocols, each party processes and sends Õ(

√
n) bits throughout Õ(1) rounds of communication,

and correctness is guaranteed for at most 1/3 − ϵ fraction of static byzantine corruptions for
every constant ϵ > 0 (in the full information model). All previous protocols for the considered
agreement tasks were non-scalable, either because the communication complexity was linear or
because the computational complexity was super polynomial.

We complement our result with a matching lower bound showing that any Byzantine Agree-
ment protocol must have Ω(

√
n) complexity in our model. Previously, the state of the art was

the well-known Ω̃( 3
√
n) lower bound of Holtby, Kapron, and King (Distributed Computing, 2008).
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1 Introduction

We consider the basic problem of designing scalable protocols for classical agreement abstractions
such as Byzantine Agreement, Broadcast, and Committee or Leader Election [PSL80, LSP82]. These
abstractions are fundamental in many central distributed applications, including blockchain protocols
(e.g., Algorand [GHM+17, CM19]) and secure multiparty computation (MPC) protocols [GMW87,
BGW88, CCD87, RB89].

Understanding the complexity of the above abstractions is the subject of a rich line of research.
In this work, we are interested in building protocols for the above abstractions that fit large-scale
networks, where a very large number of participants needs to be supported. That is, we want
protocols that are scalable: the complexity of each party should scale sub-linearly with the number
of parties. Specifically, we want protocols with the following properties:

• Correctness (agreement): all (honest) parties terminate and agree on the output of the
protocol (except with negligible probability of error).

• Efficiency (scalability): the next-message function for each (honest) party is given by a
uniform sub-linear time procedure (in n, the number of parties). In particular, the space,
computational, and communication complexities of each party are sub-linear.

We follow the standard modeling of protocols with static message filtering, where every (honest)
party must decide on the set of parties it will listen to before the beginning of each round (as
a function of its internal view at the end of the previous round). Only messages from these
parties are fed into the next-message function.2

Agreement protocols should satisfy the above properties even in the presence of an attacker that
controls some of the parties and acts in their name. We consider a computationally unbounded
adversary that corrupts parties statically (after the protocol is specified but before the protocol
starts). Further, the adversary has full information (i.e., it sees all messages sent, even messages
sent between two honest parties), and the adversary is rushing (i.e., it gets to send its messages
after seeing the honest parties’ messages for that round). Communication happens via synchronous
rounds of communication and via point-to-point channels. The precise details of the model are given
in Section 3.

1.1 Our Main Results

We provide the first protocols for all of the above-mentioned agreement tasks satisfying the above
correctness and efficiency properties. Throughout this paper, we use the Õ(·), Ω̃(·) notation to
suppress multiplicative factors that depend poly-logarithmically on the number of parties, n.

Theorem 1 (Scalable distributed applications; Informal). There are protocols for byzantine agree-
ment, broadcast, and committee or leader election that reach agreement (correctness) with all but
negligible probability of error. Each of these protocols is secure against an adversary that statically
corrupts up to 1/3− ϵ fraction of parties for any constant ϵ > 0. Furthermore, each of these protocols
terminates within Õ(1) rounds, each party sends Õ(

√
n) bits overall, and the next-message procedure

can be described by a uniform Õ(
√
n)-size circuit.

2The idea is that in a large network every party is connected via a router that, based on hard-coded message
filtering rules, decides whether to forward the message to its corresponding party or not. Message filtering should
be done via a simple and “lightweight” test. Concretely, whether a message is forwarded or dropped should be a
deterministic function of the incoming message’s metadata, which includes the sender’s identity and the message’s size.
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We complement the above result with a tight lower bound showing that our result is essentially
optimal.

Theorem 2 (Lower bound; Informal). For any protocol that computes byzantine agreement with
probability at least 2/3 and is secure against adversaries that statically corrupt t parties, there must
be an honest party that sends or processes at least Ω(t/

√
n) messages.

1.2 Prior Work and Relevant Background

We provide more context and compare our results with known ones. For concreteness, we shall use
the byzantine agreement task (BA) as our running example, mostly because it is probably the most
classical abstraction. Still, the state of affairs applies to all the other distributed agreement tasks
that we consider like broadcast and committee or leader election.

Towards scalable agreement. For several decades since the seminal work of Lamport, Shostak,
and Pease [LSP82] that introduced the BA problem, all protocols required a quadratic number of
messages; essentially, every party had to communicate with every other party (e.g., [DS83, DLS88,
CL99]). The breakthrough result of King, Saia, Sanwalani, and Vee [KSSV06] was the first instance of
a scalable agreement protocol. Specifically, their protocol succeeds with all but negligible probability
of error and each party speaks to only Õ(1) other parties (within Õ(1) many rounds). It can tolerate
1/3−ϵ fraction of statically corrupted parties for every constant ϵ > 0.3 However, it fails to achieve
correctness. It only achieves so-called almost-everywhere agreement, where 1−O(log−1 n) fraction
of the parties reach agreement [DPPU88]. Extending almost-everywhere to full agreement (while
preserving the efficiency properties) has been a major challenge since then.

In the following years, several attempts at this challenge were made. King and Saia [KS09]
presented a protocol that satisfies correctness (i.e., full agreement), but it is not scalable since there
are (few) parties that communicate essentially with everyone. In other words, their communication
pattern is highly unbalanced. Several follow up works (e.g., [BGH13, ACD+19]) suffer from the
same issue.4

King, Lonargan, Saia, and Trehan [KLST11] solved the unbalanced issue of [KS09] at the cost of
space and computational inefficiency. Specifically, while in their protocol every party communicates
only Õ(

√
n) bits within Õ(1) rounds, their protocol’s next-message function requires space and

computational complexities that scale super-polynomially with n.5 Thus, their protocol is not
computationally efficient, let alone scalable. We mention that this protocol has another drawback:
to determine whether an incoming message needs to be processed, the needed storage scales (at least)
linearly with n; that is, it is not in the model of static filtering (same applies to [KS09]; see below).

Our Theorem 1 achieves correctness (i.e., full agreement) and scalability, and thereby strictly
improves upon the above works [KS09, KLST11]. All of the above is summarized in Table 1.

3The line of works on scalable agreement, including the current work, considers the near-optimal resilience range,
i.e., up to (1/3− ϵ) fraction of corruptions. It is impossible to tolerate n/3 corruptions [LSP82, FLM86, Bor96], even
ignoring efficiency considerations (unless further assumptions are made such as some form of trusted setup or various
limitations on the adversary).

4Intuitively, all of these protocols first elect a small “central committee” and use it to disperse information to all
other parties quickly—the committee members typically communicate with all other parties.

5In more detail, [KLST11]’s protocol relies on the existence of two mappings that are only proven to exist (using
the probabilistic method and counting arguments), and no succinct or efficient instantiations are known. At a high
level, both their mappings map from [nc] to [n]d, where d is roughly the same as c and the success probability of the
protocol is 1− n−c. Since they prove existence by counting, the naive explicit representation is of size roughly nc.
Thus, if we want negligible error, i.e., c ∈ ω(1), the representation size is super-polynomial in n.
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Full Static Balanced Rounds Average Complexity
Agreement Filtering Communication Computation

[KSSV06] no yes yes Õ(1) Õ(1) Õ(1)

[KSSV06] + [KS09] yes no no Õ(1) Õ(
√
n) Õ(

√
n)

[KSSV06] + [KLST11] yes no yes Õ(1) Õ(
√
n) nω(1)

Theorem 1 yes yes yes Õ(1) Õ(
√
n) Õ(

√
n)

Table 1: A comparison of known scalable agreement protocols.

Lower bounds. Holtby, Kapron, and King [HKK08] showed a lower bound for all BA protocols
with full agreement and (a strong form of) scalability. Roughly, they showed that in any correct
BA protocol where in each round every honest party is allowed to send and process Õ(1) bits, then
the protocol must take Ω̃(n1/3) rounds and there is at least one honest party that sends Ω̃(n1/3)
messages. Our Theorem 2 morally improves upon the above lower bound by showing that, no matter
the size of messages, at least one party must process Ω(

√
n) messages. Formally, the lower bounds

are incomparable: (1) we prove a stronger lower bound (Ω(n1/2) vs. Ω̃(n1/3)) and we do not restrict
the size of messages, but (2) their lower bound is on the outgoing communication while ours is on
the sum of computational work and outgoing communication.

Static vs. dynamic filtering. As mentioned, we target and achieve protocols with static filtering
rules, i.e., every party decides on the set of parties it will listen to before the beginning of each
round (as a function of its internal view at the end of the previous round). This modeling is very
well motivated given the way large communication networks are designed.

However, all existing scalable full agreement protocols, balanced or unbalanced, explicit or
non-explicit, fall outside of this model. Specifically, all protocols (including [KS09, KLST11] and
many more [KS11, BGH13, BGT13, BCG21, ACD+19, CKS20, BKLL20]) assume some form of
“dynamic” filtering, where the decision of which message is received can be based on the content of
received messages. For example, whether a message is received or not could depend on the number of
received messages with particular properties in the same round, or if the message contains particular
authentication (e.g., a digital signature). Dynamic filtering gives non-trivial power: not only do
existing lower bounds ([HKK08]’s and ours) not apply, but in fact it is possible to get full agreement
(against computationally bounded adversaries) with essentially optimal parameters, assuming various
cryptographic primitives and trusted setup assumptions [BCG21].

Lastly, we emphasize that before the current work it was completely unknown if it is possible to
obtain a correct and scalable agreement protocols against computationally unbounded attackers,
even with dynamic filtering.

1.3 Applications of Scalable Agreement

First, of course we do not want to settle on computationally inefficient protocols. Not only they
are less useful on their own, but they are also less applicable, even in theory. For instance, we will
not be able to use them as building blocks in bigger protocol whose security holds only if parties
are efficient (say, if the protocol relies on cryptographic assumptions). We mention the concrete
example of secure multi-party computation protocols, all of which essentially rely on the availability
of a broadcast channel. Below, we also discuss scalable secure multi-party computation protocols.
But, first, we argue that even scalability (i.e., being not only efficient but sub-linear) is sometimes
absolutely necessary.
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Agreement for massively parallel computation. Consider the so-called “Massively Parallel
Computation” model [KSV10], one of the most widely-accepted models for designing protocols for
large-scale datasets residing on a parallel computing cluster. In this model, a huge dataset is stored
on a collection of machines, each of which has bounded storage and cannot store the whole dataset.
The goal of the machines is to perform some joint computation on the entire dataset. Depending
on the exact parameters of the system, it is possible that every machine cannot even store a single
message from every other machine in a single round. Designing agreement protocols in this model is
a fundamental task, and (to the best of our knowledge) Theorem 1 is the first solution for this task.

In fact, this problem came up in a recent work of Chan, Chung, Lin, and Shi [CCLS20]. In
their work, they needed to have a quorum (i.e., a “good” committee per party). Using existing
solutions for scalable agreement (e.g., [KS09, KLST11], ignoring the computational inefficiency of
the latter) requires some party to either send too many messages, or store and process a message
from every other party in the system, both of which are impossible in the model of Massively
Parallel Computation. They bypassed this problem by introducing a strong trusted setup assumption
(a common random string chosen after the adversary corrupts parties) and combining it with
cryptographic assumptions.6 Naturally, we would like to avoid these. Our Theorem 1 can be used as
a drop-in replacement for the above method.

Secure multi-party computation. Multi-Party Computation (MPC) enables a set of mutually
distrusting parties to compute a function on their private inputs, while guaranteeing that the inputs
remain private and the only information that is leaked from the computation is the output of
the function. Feasibility results for MPC have been long known [GMW87, BGW88, CCD87]. For
example, the BGW [BGW88] protocol gives a method for computing an arbitrary function with
complexity that grows multiplicatively with the circuit size of the function and some polynomial in
the number of parties. That is, the complexity of each of the n parties is s · poly(n) when computing
a function represented as a circuit of size s. The round complexity is O(d), where d is the depth of
the circuit representation of the function.

There has been a rich line of work on scalable MPC protocols. The main goal is to design
protocols where the total communication complexity scales like Õ(s+poly(n)) for securely computing
a size s circuit by n parties (for example, [HM01, DI06, DN07, IPS09, DIK+08, BH08, DIK10,
GIP+14, IKP+16, CCXY18, CGH+18]. In all of these works, while the obtained protocols satisfy
strong security guarantees, a broadcast channel is assumed. But, often its usage is limited to a
number of times which is independent of the circuit size.

Dani et al. [DKMS12, DKM+17] were the first to given an MPC protocol in the peer-to-peer
model (no free broadcast at all), where communication scales with the circuit size plus a sub-linear
term in the number of n. In these works, they used the agreement protocol of [KLST11] to get
an Õ(d)-round MPC protocol with per-party communication complexity Õ(s/n+

√
n) to securely

compute a size s depth d circuit by n parties. The corruption model is (1/3− ϵ) fraction of static
corruptions for any constant ϵ > 0. Since they relied on [KLST11], they inherited its computational
inefficiency and so the space and computational resources required for their resulting MPC are
super-polynomial in n.

Using our Theorem 1 into the protocol framework of [DKM+17], we obtain the first truly scalable
MPC. Specifically, our n-party MPC requires each party to process, store, and communication
Õ(s+

√
n) bits throughout Õ(d) rounds to securely compute any function given by a size s depth d

circuit. Security holds assuming (1/3− ϵ) fraction of static corruptions for any constant ϵ > 0. See
6In short, they assume that a completely random string is known to all parties (but not the adversary!) and they

generate a quorum by expanding it via a pseudorandom function.
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Theorem 10 for a precise statement.

Scalable agreement with optimal optimistic complexity. Given the lack of progress in going
below O(

√
n) per-party complexity for distributed agreement (which is partially explained by our

lower bound from above), a recent work [GK23] suggested to go “beyond worst case”. Specifically,
they provide a protocol with the same complexity as the best-known scalable agreement protocol in
the worst case, but is much better in honest executions. Their Õ(1)-round agreement protocol is
guaranteed to terminate and reach agreement after sending (and processing) Õ(1) bits per party if all
parties behave honestly. If not, the guarantees of their protocol fall back to those of an off-the-shelf
protocol. By using our agreement protocol instead of [KLST11]’s as the off-the-shelf protocol with
the best worst-case guarantees, we get a truly scalable agreement protocol (both in communication
and in computation and space, as in Theorem 1) which also has essentially optimal optimistic
complexity.

2 Overview of Our Techniques

The starting point of our work is the almost-everywhere agreement protocol of King et al. [KSSV06].
Their protocol results with a “global string” seed of poly-logarithmic length and with poly-logarithmic
(min-)entropy.7 However, the string is only known to 1− o(1) fraction of the honest parties. I.e.,
each party i ∈ [n] holds seedi and only for 1− o(1) fraction of parties, seedi = seed. No party “knows”
if seedi

?
= seed. We call parties for which seedi = seed as knowledgeable. Our goal is to make all

honest parties agree on seed. Boosting almost-everywhere agreement to full agreement was also the
approach of all previous works in this line. We provide the first such scalable transformation, as
stated next.

Theorem 3 (Scalable almost-everywhere to everywhere; Informal). There is a protocol that translates
an almost-everywhere agreement into everywhere agreement. The protocol terminates within O(1)
rounds, and each party stores, processes, and sends Õ(

√
n) bits overall. The transformation is secure

against an adversary that statically corrupts up to 1/3− ϵ fraction of parties for any constant ϵ > 0.

This transformation, combined with the protocol of [KSSV06], immediately gives Theorem 1.
Thus, we focus on Theorem 3. To build intuition, it is worth considering the following two (flawed)
naive approaches for getting everywhere agreement from almost-everywhere agreement:

1. Each party chooses at random a small set of parties and polls them for their candidate string
seedi. Each party will output the string that is voted by the majority of incoming messages.

2. Each party chooses at random a small set of parties and tells them its string seedi. Each party
will output the string that is voted by the majority of incoming messages.

If we choose the sizes of the above sets to be poly-logarithmic in n, then since these sets are chosen
uniformly at random, with all but negligible probability of error, the resulting protocol will satisfy
efficiency. Also, by a simple concentration bound, in an honest execution full agreement is reached
with all but negligible probability of error. However, both ideas are completely broken in the presence
of an adversary.

7The protocol of [KSSV06] results with a “layered network” where internal nodes are small committees and the
leaves are the parties. This structure allows a central committee (the root of the network) to perform various
computation and disseminate information to all but o(1) of the leaves. For example, the central committee can choose
a sufficiently long string with sufficient min-entropy and distribute it.
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In the first approach, the adversary can flood the honest parties, namely, the adversary can send
a given honest party a query from each of the corrupted parties and thereby block it from answering
other honest parties’ queries. In the second approach, the adversary can force an honest party to
learn a wrong value by targeting it and sending it a wrong string from all corrupted parties. While
these solutions are not good enough, they do lead us to a viable approach: all we need is to make
sure that the adversary does not have too much freedom in choosing who they message; at the same
time, we need to allow sufficient freedom for honest parties as otherwise the adversary can corrupt a
specific subset of parties. The challenge is of course balancing between these two requirements.

2.1 Restricting Polled Lists

As mentioned, we want to restrict the way polled parties are chosen, but yet allow sufficient freedom
for the honest parties so they can learn the right value. Roughly, we want the following features:

Efficiency: sampling a poll list can be done fast, in sub-linear time. In particular, the size of
a poll list should be small-ish. Looking forward, a poll list in our construction will be of size
O(
√
n) and this is also the complexity required to sample one.

Correctness: ideally, the fraction of honest and knowledgeable parties in each such set is at
least 1/2. Looking forward, we will not be able to satisfy such a strong requirement and we
therefore settle for a more fine grained definition: we only want the fraction of “good” poll lists
to be slightly higher than the fraction of “bad” ones, where a poll list is good if the fraction of
honest and knowledgeable parties in it is more than 2/3, and it will be bad if the fraction of
honest and knowledgeable parties in it is less than 1/3 (note that a poll list might be neither
good nor bad).

Security: roughly, the number of times parties in an honestly generated poll list that can
be polled by maliciously generated poll lists is small. (Otherwise, many honest party can be
flooded and blocked from replying to honest parties’ poll requests.)

To achieve the above properties we utilize a finite affine plane. Each party is associated with a
point on the plane. Fix a field F = Fpk for a prime p and an integer k. Since each party is a point
in the plane, we map each number in {1, . . . , n} to F× F, so n = p2k.8 Note that, in the technical
section we explain how to handle all n’s, even ones that cannot be written as even powers of a prime,
by a certain padding argument; see Remark 2 for details. Roughly, poll lists are defined as the points
that reside on a line: Party i’s possible poll lists are defined as the possible sets of points that reside
on lines that pass through point i.

Let us explain how we use this structure to satisfy the needed properties. Let us start with
arguing efficiency. First, observe that by the way we set the parameters, every point has pk lines that
pass through it and so a possible poll list consists of at most pk =

√
n other parties. For efficiency of

computation, all one needs is a field and a canonical mapping of IDs to points on the plane. It is
easy to perform operations on this structure efficiently (in time Õ(

√
n)), like checking which points

reside on a given line or which lines pass through a given point.
We proceed by arguing correctness and security. Let us focus on a concrete honest party, say

(without loss of generality) the first one, P1, and see how to make sure it learns the correct value.
Party P1 picks a line that passes through its associated point uniformly at random and the points on
this line tell it which parties it will poll. A poll request is sent out to each of these parties. P1 gets

8We remark that our structure is somewhat reminiscent of projective planes, although it is slightly different and
simpler.
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back (up to)
√
n votes and a decision is registered if more than 2/3 of the votes are for the same

value; otherwise, all votes are discarded. Looking ahead, we actually repeat this process sufficiently
many times, and as we will argue below, this suffices to learn the correct value.

Consider a single execution of the above process. We first argue that an adversary has no point
in trying to flood parties in P1’s poll list.

Claim 1 (Security). Any adversary can flood (only) o(1) fraction of the parties in Pi’s poll list.

In other words, an adversary cannot affect the outcome of the result of the vote in any useful
manner by flooding (i.e., it can affect the count by only additive o(

√
n) which will not matter). To see

why the claim is true, observe that in our construction every two lines intersect only at one point (or
zero for parallel lines). Therefore, whatever line a malicious party chooses to poll, it will only cause
a poll request to a single party in P1’s poll list. So, roughly speaking, since every party can handle
ω(
√
n) ∩ Õ(

√
n) requests, in order to flood Θ(

√
n) parties from P1’s poll list, each of them needs to

get polled by at least ω(
√
n) malicious parties and so there must be at least Θ(

√
n) · ω(

√
n) ∈ ω(n)

malicious parties, which is a contradiction. Note that we ignored parties that were included in P1’s
poll list since there are at most O(

√
n) of them (so there is not enough of them to flood).

So, from now on, we assume that each polled party replies. (Again, in a real execution a given
polled party might not reply because it was flooded with malicious poll requests. But, as argued by
the claim above, only rather few of the parties can be flooded, and this will not affect the arguments
below.) The outcome of the poll of P1 can have one of three outcomes:

1. Event E1: More than 2/3 of the votes were consistent but for a wrong value.

2. Event E2: More than 2/3 of the votes were consistent and for the correct value.

3. Event E3: There is no value that was voted for more than 2/3 of the votes.

We show the following claim.

Claim 2 (Correctness). There are two positive constants α, β such that

Pr[E1 ∨ E2] ≥ α and Pr[E2 | E1 ∨ E2] ≥ 1/2 + β.

So, some value is learnt by P1 with constant probability; and this value is more likely (by a
constant factor β) to be the right value. Thus, by repeating the voting process polylog(n) times
independently (as we mentioned above), and choosing the vote that appears the majority of times,
we will indeed learn the right output except with negligible probability of error.

We now explain why the claim is true. First, recall that the adversary statically corrupts 1/3− ϵ
fraction of parties and moreover only o(1) fraction of parties are honest and not knowledgeable. For
simplicity, let us assume that the identity of the latter o(1) fraction as well as their behaviour are
completely controlled by the adversary. In other words, there are 1/3− ϵ+ o(1) < 1/3− ϵ′ fraction
of corrupted parties for some constant ϵ′ < ϵ. So, a given party is either malicious or honest and
knowledgeable.

Let us first argue that Pr[E1 ∨ E2] ≥ α for some positive constant α. Because E1, E2, and E3

are disjoint and they cover the entire space, it suffices to show that Pr[E3] ≤ 1− α. To cause E3,
the adversary needs to maximize the number of poll lists where it controls at least 1/3 fraction of
parties. We call such poll lists partially corrupted. How many of P1’s poll lists can the adversary
partially corrupt? There are (1/3− ϵ′) ·n corrupted parties and by our affine plane construction (i.e.,
the possible poll lists of each party are completely disjoint) it can then partially corrupt roughly
(1/3− ϵ′) · n/(1/3 ·

√
n) = (1− 3ϵ′) ·

√
n poll lists. This is only a constant (i.e., 1− 3ϵ′) fraction of
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P1’s poll lists. Now, since P1 chooses its poll list uniformly at random, it will evade these partially
corrupted poll lists with probability 1− α, where α = 3ϵ′.

Next, following similar logic, we argue that Pr[E2 | E1 ∨ E2] ≥ 1/2 + β for some constant β. To
cause E1, the adversary needs to maximize the number of poll lists where it controls at least 2/3
fraction of parties. We call such poll lists fully corrupted. How many of P1’s poll lists can the adversary
fully corrupt? Let γ ·

√
n be the number of partially corrupted poll lists. By a similar argument to the

above, an adversary can fully corrupt roughly (1/3−ϵ′−γ/3)·n/(2/3·
√
n) = (1/2−3ϵ′/2−γ/2)·

√
n poll

lists. Since P1’s poll list is chosen uniformly at random, Pr[E1 | E1∨E2] = (1/2−3ϵ′/2−γ/2)/(1−γ) ≤
1/2− 3ϵ′/2, which means that Pr[E2 | E1 ∨ E2] ≥ 1/2 + β for β = 3ϵ′/2, as needed.

2.2 Enforcing Poll Lists with the Prescribed Structure

There is one important detail that we have glanced over so far. While the affine plane structure
puts a significant constraint on the adversarial choices of polled parties, it is only useful if malicious
parties choose their polled parties via the above-given method. Up until now, we have not described
any mechanism that prevents the adversary from completely ignoring the prescribed structure of
poll lists. Note that we also have not yet used the fact that seed has entropy. We will use this fact
now to enfore “legal” poll list choices even for malicious parties.

We enforce choices of poll lists with the prescribed structure by associating a small designated
“committee” for each party. The committee will basically serve as a proxy for each party and will
perform all communication in the name of its associated party. We emphasize that we want a
different committee for each party and not one global committee, because the latter will result with
unbalanced protocols. Once we associate with each party a designated committee, we require each
party to “commit” on a poll list with a prescribed structure by sending it to the committee members
whose role is to verify that this is indeed a legally-structured poll list. All poll requests will then be
sent from “committees” and not from parties.

Let us first specify the properties of these n committees. We need n committees, each of which
is rather small—for us, we will have Õ(1) parties in a committee. Each committee will consist of at
least 1/2 fraction of honest parties, and we need the committees to be “balanced” in the sense that
every party will appear in roughly the same number of committees. The former is needed for the
committee to be considered “honest”, and the latter is necessary to obtain a balanced protocol. We
proceed to explain the construction.

Our starting point is the well-known connection between generating a single committee and a
pseudorandom object called an averaging sampler [BR94, Zuc97]. An averaging sampler is a mapping
that gets an input with high enough (min-)entropy and returns a poly-logarithmic size multiset such
that for every “statistics function” from the set space to [0, 1], the average of that function on the
elements in the multiset is “not too far” from the mean of the function (see Definition 3). Thinking of
the function that returns 1 if the party is honest and 0 if the party is corrupted, w.h.p the output of
the sampler is a set with a majority of honest parties. Thus, using seed as the input for the averaging
sample, we get a committee with a majority of honest parties (with high probability). There are
several known constructions of averaging sampler, e.g., [BR94, Zuc97, Gil98, GUV09] (thanks to
their equivalence to seeded extractors). For concreteness, we use the averaging sampler that follows
from the work of Guruswami, Umans, and Vadhan [GUV09]. But, we need n committees and not
just one; also, the committees should be “balanced”, as mentioned above.

It might be tempting to “open up” existing averaging sampler constructions and see if these
properties could be achieved by some adaptation. Somewhat surprisingly, we observe that a very
simple and generic approach works, assuming the averaging sampler is “good enough” to begin with.
Assume that the chosen committee (via the sampler, as above) consists of parties C = {p1, . . . , pℓ},
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where we imagine every pi as an integer between 1 and n (formally, a committee is a multi-set as
duplicates are allowed). We generate n committees C1, . . . , Cn as follows:

Ci = {p1 + i, p2 + i, . . . , pℓ + i} (mod n),

That is, the committees are all the cyclic permutations of the committee. Why are all the resulting
committees have a majority of honest parties? This is where we use the fact that the committee was
chosen by an averaging sampler! Specifically, it must be that the permutation on the output space
does not change the probability of having a “good” output. This is because the mean of the “fraction
of corrupt parties” function does not change even if we permute the names of parties. The formal
proof uses a union bound to argue that the sampler property is held for each of the n committees;
this is where we need to start off with a good enough sampler. Lastly, the fact that the resulting
committees are “balanced” is satisfied directly by construction: A party p will appear in the ith
committee only if p− i mod n appears in the original committee C. Since the size of a committee is
poly-logarithmic, we get that every party appears in at most poly-logarithmically many committees.

The above construction has another property crucial for the computational efficiency of our
protocol: it is not only easy to compute committee members of a given party, but it is also easy to
compute the set of committees of which a given party is a member.

2.3 Putting Things Together for Everywhere Agreements

Each party randomly chooses a description of a poll list and sends it to its corresponding committee
which is defined using the global string seed. The committee forwards the requests to each party in
the poll list and the parties that receive the poll request send a reply directly back to the party. Since
parties know each other’s committee, an honest party that is also knowledgeable will accept the
request. Also since w.h.p, there is a majority of honest and knowledgeable parties in each committee,
they will forward messages only to the correct poll list. Before we conclude the overview, we explain
two additional (simpler) remaining caveats.

Caveat 1: Some parties are not knowledgeable. Since some of the honest parties do not know
seed, they do not know the “right” set of committees used to enforce usage of valid poll lists. To
overcome this we use an idea of [KLST11]. Each party Pi randomly sends seedi to ≈

√
n parties, and

in turn each party chooses randomly ≈
√
n parties to accept messages from them. By the birthday

paradox, we know that each honest party will receive (and keep) seed at least once. This is true
even if all corrupted parties send wrong seeds to all the honest parties. This guarantees that each
party knows a small list (of size ≈

√
n) of seed candidates, one of which is the correct one. Thus,

the protocol is basically repeated for each candidate in the list. Therefore, with high probability
it will send it also to the committee that is generated from seed, and the protocol will proceed as
above. See Section 5 for details.

Caveat 2: How poll requests are distributed. Above, we said that a committee forwards the
poll requests of the associated party to each member in the poll list. But, an honest party, say P1,
might end up getting too many poll requests. This could happen either because all malicious parties
choose a poll list where P1 is a member, or because malicious parties, acting as committee members,
can distribute (bogus) poll requests.9 Thus, we restrict the way poll requests are distributed in
a related way to how they were generated. Specifically, committees distribute poll requests via a√
n ×
√
n communication grid, where each committee is associated with a (unique) point on the

9Recall that due to static filtering, polled parties cannot process so many incoming messages.
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grid. The grid is implemented via the same affine plane that we used to choose poll lists, restricted
to two gradients. This choice is important because we make sure that the poll list associated with a
given point in the grid contains exactly one point in every other column.

To see how distribution is done, we give an example. Assume that (x, y) wants to send a poll
request to (a, b). It uses the committee corresponding to point (x, b) as a proxy. Because only (fixed)√
n committees (i.e., all (x, ∗)) can send poll requests via (x, b), it can process all of them. Now,

before conveying all poll requests from (∗, b), i.e., the (fixed) proxy committees of committee (a, b),
we can directly check (say by summing up the total number at (a, b)) if there are too many poll
requests intended for (a, b) and in such a case discard all of them. From a geometrical perspective,
communication between committees is allowed to occur via vertical or horizontal lines only; see
Figure 1 for an example of an elaborate scenario.

Figure 1: An example of how poll requests are distributed. In this example, (3, 1) is in the poll list
of (2, 5), (2, 3), and (5, 4).

Finally, the way a single iteration of the main part of the protocol is depicted in Figure 2.

Remark 1 (Comparison with [KLST11]). King et al.’s [KLST11] protocol is most related to ours.
While most of the details of our protocol differ from King et al.’s, we mention the points of similarity.
At a very high level, their protocol follows a similar blueprint of restricting valid poll lists and using
committees to enforce “legal” choices. However, the implementations and all lower-level details are
entirely different. In particular, King et al.’s protocol relies on an existential way to restrict the
valid poll lists and committees, and they do not provide a concrete instantiation. Also, they require
very strong properties from their object and as such we do not know how to obtain a explicit version
of their protocol. Additionally, their protocol has an iterative (log n)-round process to geometrically
decrease the fraction of honest but unknowledgeable parties. We do not have such a process and
achieve full agreement in “one shot” using only constant (i.e., 7) rounds.

The fact that we were able to give explicit constructions comes from two novel new observations
that we make. First, since we are aiming for Õ(

√
n) communication, we can work with poll lists that

consist of
√
n parties. In comparison, King et al.’s [KLST11] transformation uses (the existence

of) poll lists of poly-logarithmic size. Second, we utilize the fact that the adversary controls only
1/3− ϵ fraction of parties. King et al.’s transformation works even if 1/2− ϵ fraction of parties are
corrupted. The technical details of our construction (including our usage of an affine plane and an
explicit averaging samplers) are completely new to this work.
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Figure 2: An example of the way poll requests are distributed. H is the function that maps a party
to its committee members. J is the function that maps a party and a direction to the set of polled
parties. In the above figure, we assume that ℓ is in the poll list of i in direction di.

2.4 From Agreement to Byzantine Agreement, Broadcast, and More

So far we showed how to reach consensus on a poly-logarithmic length string with poly-logarithmic
min-entropy. Next, we observe that this abstraction suffices for many classical distributed tasks,
including Byzantine Agreement, Broadcast, and Quorum/Committee/Leader Election. There are
several ways to obtain each of these applications given our protocol, but here we explain a generic
method.

Consider the problem of Byzantine Agreement. To achieve it, we first let the n parties run our
agreement protocol (as above). Using the resulting string seed, we use our method of generating
n “good” committees, a.k.a a quorum. We think of the committees as additional input-less and
randomness-less honest parties. We let each party send its input bit to its corresponding committee
and then the committees count which input bit was the most common one. This can be done in a
tree like fashion. This bit is then distributed to all the committees (again in a tree-like fashion), and
then the committees send the result to their associated parties.

Broadcast can be achieved in a similar way by only letting the broadcasting party send its input
to its associated committee which will then send it to all other committees (in a tree like manner).
Finally, committees will send the message to their associated parties. Obtaining a quorum is basically
what we achieved above. A (single) committee could be any particular committee in the quorum. A
leader can be obtained by running any non-scalable leader election protocol within a committee and
then broadcasting the result to everyone. Secure multi-party computation is obtained by plugging in
our quorum generation protocol into the protocol of Dani et al. [DKM+17]. Full details appear in
Section 6.

2.5 The Lower Bound

We identify a communication pattern that must exist in any protocol that satisfies the property
that each party sends and processes at most o(

√
n) messages. Given a protocol and the inputs of
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all the parties, the probability that party Pi ever sends a message to party Pj is a (deterministic)
function of n. Therefore, for each party Pi, we can split the other parties into two sets. The first set
consists of all the parties with whom Pi tries to communicate with high probability (Ω(1/

√
n), over

an honest execution). The second set is the complementary one: i.e., all parties with whom Pi tries
to communicate rarely (with small probably, o(1/

√
n)).10 Note that the definition is not symmetric:

Pj could want to communicate with Pi often, but Pi may not want to do so.
Given these sets, by counting the expected number of messages overall in the course of the

protocol, we proved the following:

1. For each party, the first set (the high probability set) is not too large (o(n)).

2. The number of parties that communicate through their second set (the low probability set) is
not too large (o(n)).

We now define the following adversary. Following the above statements, it finds a set S of parties
that with high probability communicate only within itself and with another small-ish set, denoted
T (we show how to obtain such an S and T ). The adversary might not find sets that fit to the
requirements if each party can sends or receives Ω(

√
n) bits. Then, the adversary can cause the

parties in S to believe that the input configuration was 0 to everyone, and to parties outside S to
believe that the input configuration was 1 to everyone. This readily implies a contradiction.

The above attack requires only static corruptions of any constant fraction of parties, does not
need the “full information model”, and the adversary is not even rushing. I.e., it works even in
the much weaker model of authenticated private channels. Lastly, we remark that our attack is
computationally inefficient (or non-uniform) because the adversary needs to know the probabilities
that certain events happen throughout an honest execution of the protocol. But using standard
techniques (repetition and tail bounds), it seems that the attack could be made efficient (we leave
formalizing this to future work). See Section 7 for details.

3 The Model

Communication model. We consider n parties in a fully connected network (i.e., clique). Each
party has a unique ID and the IDs are common knowledge. We assume the IDs are 1, . . . , n. Parties
can perform arbitrary computation and they have a source of private randomness. Communication
is authenticated, that is, whenever a party sends a message directly to another, the identity of the
sender is known to the recipient. We assume synchronous communication. That is, communication
proceeds in rounds; messages are all sent out at the same time at the start of the round, and then
received at the same time at the end of the same round. All parties have synchronized clocks.

Definition 1 (Terminology). We use the following terms:

• The number of rounds of communication required for all parties to terminate is called the round
complexity of the protocol.

• A protocol is said to be balanced if all parties send the same amount of bits in every round of
communication.

• A protocol is said to have communication complexity cc if the total amount of bits transmitted
throughout an execution of the protocol (by all parties together) is at most cc.

10In the formal proof, we divide each set again to two sets: one for the parties that Pi listens to and the other for
the parties that Pi sends messages to. The static filtering model implies that these sets are well-defined given the
protocol’s description.
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All of the above are measured in a worst-case sense (over all possible randomness and inputs).

We also care about the computational and storage complexity of each party in the protocol. Note
that an adversary can always blow up the storage and computational complexity of a protocol by
flooding honest parties with many bogus messages. It is therefore standard to count only messages
that are actually processed by honest parties. We follow the modelling of Boyle et al. [BCDH18],
who formalized this intuition. Namely, message receival consists of two phases:

1. (static) filtering phase: incoming messages are inspected according to specific filtering rules
defined by the protocol specification, and some messages may be discarded.

We require the filtering phase to be completely static: at the beginning of a round the party
fixes the identities of a set of parties it is willing to receive messages from and also specifies a
bound on the maximal allowed incoming message length (per party). A message passes the
filtering phase only if both the sender of the message is in the set and the message is in the
right length; otherwise, it is discarded.

2. storage and processing phase: each party computes its next-message function based on
the remaining non-discarded messages.

The space and computational complexity of a party are determined by the complexities of the
next-messsage function, that is, they only depend on the messages that were not discarded during
the filtering phase.

We mention that some papers allow the filtering procedure to perform somewhat heavy operations
like keeping track of how many messages were sent by each party (e.g., [KLST11]) or even verifying
a digital signature for every incoming message (e.g., [BCG21]). This model was called dynamic
filtering by Boyle et al. [BCG21]. Clearly, it is less desirable to require expensive computational work
for every incoming message, and so ultimately protocols with static filtering rules are preferable.

Adversarial model (point-to-point full information). We assume that there is an adversary
that controls up to t parties and whose goal is to cause the protocol to fail in some way, depending
on the context. The adversary chooses which parties to control non-adaptively, i.e., it chooses the
set of corrupted parties at the start of the protocol. The adversary is malicious: corrupted parties
can engage in any kind of deviations from the protocol and send arbitrary messages in the name of
the corrupted parties. We emphasize that corrupted parties can send arbitrarily long messages to
arbitrary other parties. We assume that the adversary is rushing, that is, it can view all messages
sent by the honest parties in a round before the corrupted parties send their messages in the same
round. Moreover, the adversary sees all messages, even messages sent between two honest parties
(but honest parties only see messages that are sent directly to them). This model is known as the
point-to-point full information model [KSSV06].

Byzantine agreement. In this problem, there are n parties, P1, . . . , Pn. At most t of the parties
may be corrupted. Each party Pi begins with an input bit xi ∈ {0, 1} and outputs a bit yi. The goal
of the protocol is (with high probability) for all honest parties to terminate and, upon termination,
agree on a bit held by at least one honest party at the start. This should hold even when the t
corrupted parties collude and actively try to prevent it. More precisely, the Byzantine agreement
problem is defined as a protocol that satisfies with high probability the following agreement, validity,
and termination properties:

• Agreement: For every pair of honest parties Pi and Pj it holds that yi = yj .
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• Validity: If there exists a bit x such that for every honest party Pi it holds that xi = x, then
the common output is x.

• Termination: Every honest party eventually outputs a bit.

Other distributed tasks. There are few other intimately related basic distributed functionalities.
The first is committee election and the second is broadcast. In committee election, the goal is to
bring all honest parties to agree on a small subset of parties with a fraction of corrupted parties
close to the fraction for the whole set. In the extreme case, the committee is of size 1 in which
case a single leader is chosen (i.e., leader election) and the goal is to guarantee that the leader is
an honest party with constant probability. In broadcast, the goal is to allow an honest party to
communicate a message to all other parties so that the message that all other honest parties end up
knowing is the same as the one sent.

These tasks are very much related but they are not equivalent in our setting. Indeed, often a
“light-weight” committee election protocol is used as a proxy to get other primitives by first electing
a small committee and then running a “heavy-weight” protocol among the committee members for
task X, where X could be (for instance) leader election, BA, or broadcast. Indeed, if the committee
is small, then we can afford to execute somewhat inefficient protocols among the committee members.
While such a blueprint would result with (total) communication efficient protocols, they will be highly
unbalanced. Indeed, for the committee to broadcast the result to all other parties, the committee
members would need to communication with all other parties, causing the protocol to be highly
unbalanced.

Lastly, we mention that all of the above abstractions are special cases of a much more general
concept called secure multi-party computation, where an arbitrary computation is to be
performed and where additionally privacy of inputs is required.

4 Restricting Poll Lists and Enforcing Consistency

This section gives two explicit mappings that our protocols use. The first mapping, denoted H,
is used to create a quorum out of a single random-enough string. The quorum is used to enforce
consistency and well-formedness of (adversarially chosen) poll lists. The second mapping, denoted J ,
is used to sample private poll lists of a prescribed structure. We start by explaining the construction
of H since it is a bit easier and then explain the construction of J .

4.1 Generating a Quorum (the H Mapping)

This section shows a method for generating a good quorum given a good committee. The method is
completely non-interactive and requires every party to perform a certain (local) polynomial-time
computation in its input size.

We start with the definition of a good committee and a good quorum. Roughly, a good
committee is one that has a significant fraction of honest parties. A good quorum is a collection of
such committees, one for each party, which is also “balanced” in the sense that no party participates
in too many committees.

Definition 2 ((ϵ, d,B)-good quorum). A quorum is a collection of n committees C1, . . . , Cn ∈ [n]d

The quorum is (ϵ, d,B)-good for ϵ > 0, d = d(n), and B ⊆ [n], if

1. For every i ∈ [n], it holds that (1/d) ·
∑

z∈Ci
1z∈B < ϵ.
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2. For every j ∈ [n], party j appears in the collection O(d) times overall.
That is,

∑n
i=1

∑
z∈Ci

1z=j = O(d).

Our transformation is done via the following theorem which can be viewed as a pseudorandom
object that takes a sufficiently random short string, and outputs many random-enough committees.
Indeed, the proof of this theorem relies on the existence of a good enough randomness extractor,
viewed as a sampler.

Theorem 4. For every integer n ∈ N, c = c(n), there exist d = O(c · log n) and two mappings
H,H−1: [n]× [nc]→ [n]d such that

1. The functions H,H−1 are efficiently computable (i.e., can be evaluated in polynomial time in
their input size).

2. If j ∈ H(i, x), then i ∈ H−1(j, x).

3. Viewing each H(i, x) as outputting a multiset of [n] of size d, the following holds. For
every B ⊆ [n], for at least 1 − 1/nc−3 fraction of the x’s, the collection {H(i, x)}i∈[n] is a(
|B|
n + o(1), d, B

)
-good quorum.

As a direct corollary of the above theorem, we obtain that if x is chosen from a distribution with
sufficiently high min-entropy, then the resulting quorum is good. Below, a k-source is a distribution
D over a finite domain Ω such that for all ω ∈ Ω, D(ω) ≤ 2−k.

Corollary 1. Let n ∈ N, c = c(n), d = O(c · log n), and H,H−1: [n]× [nc]→ [n]d be as in Theorem 4.
Let B ⊆ [n] be arbitrary such that |B|< (1/3− ϵ) · n, where ϵ is arbitrary small positive constant.
Then, for any positive c′ = c′(n) and any constant ϵ′ < ϵ, if x is sampled from a (c′ · log n)-source over
[nc], then with probability at least 1− 1/nc′−4, the collection {H(i, x)}i∈[n] is a (1/3− ϵ′, d, B)-good
quorum.

Proof. Assume (for contradiction) that x is chosen according to (c′ · log n)-source over [nc], but
the probability that {H(i, x)}i∈[n] is a (1/3 − ϵ′, d, B)-good quorum is less than 1 − 1/nc′−4. By
Theorem 4 and since |B|< (1/3− ϵ) · n, there are at most n3 bad choices of x’s and at least one of
them should be chosen with probability at least n3/nc′−4 = 1/nc′−1. This is a contradiction to the
assumption that x is chosen from a (c′ · log n)-source.

The rest of this section is devoted to the proof of Theorem 4.

Proof of Theorem 4. As mentioned the proof of Theorem 4 relies on the existence of a sufficiently
good sampler. Therefore, we start with recalling what samplers are and how they can be instantiated.
We then use any sufficiently good sampler to prove our theorem.

Definition 3 (Averaging sampler). A function G: {0, 1}r → [n]d is a (δ, ϵ)-averaging sampler if
on input a uniformly random r-bit string, it outputs a sequence of d sample points x1, . . . , xd ∈ [n]

such that for any function f : [n]→ [0, 1], we have
∣∣∣1d ∑d

i=1 f(xi)− E[f ]
∣∣∣ ≤ ϵ with probability ≥ 1− δ.

Here, E[f ] = 1
n ·

∑
x∈[n] f(x).

Using a result of Guruswami, Umans, and Vadhan [GUV09], there exists an explicit (i.e., efficiently
computable) sampler with the following parameters.

Theorem 5 (Follows from [Zuc97, GUV09]). For all constant α ∈ (0, 1), for all positive integers
r, n and for all ϵ = ϵ(n) > 0, there is an explicit (2k−r+1, ϵ)-averaging sampler G: {0, 1}r → [n]d with
d = O(r + log(ϵ−1)) and k = log(n)/(1− α).
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Proof. The statement in [GUV09] is given in the language of extractors, but the latter are closely
related to samplers. Let us recall what seeded extractors are and their relation to samplers. A
function E: {0, 1}r ×{0, 1}t → {0, 1}n is a (k, ϵ)-extractor if for any k-source D over {0, 1}r, it holds
that the total variation distance11 between E(D,Ut) and Un is at most ϵ, where Uℓ is the uniform
distribution over ℓ bits. Zuckerman [Zuc97] showed that any such (k, ϵ)-extractor can be turned into
a (2k−r+1, ϵ)-averaging sampler G: {0, 1}r → [n]2

t . If the extractor is efficiently computable, namely,
on every x ∈ {0, 1}r and s ∈ {0, 1}t, E(x, s) can be computed in poly(r, t) time, then the sampler,
on every x ∈ {0, 1}r, can be computed in poly(r, 2t) time.

Now, we plug in the extractor of [GUV09]. They show that for all ϵ > 0, α ∈ (0, 1) and for all
positive integers r, k, there is an explicit construction of an (k, ϵ)-extractor with t = O(log r) and
n ≥ (1 − α)k. Thus, for every ϵ > 0, α ∈ (0, 1) and positive integers r, n, there is a (2k−r+1, ϵ)-
averaging sampler G: {0, 1}r → [n]d for d = O(r + log(ϵ−1)) and k = n/(1− α), as required. Since
the extractor is efficiently computable and since t = O(log r), the sampler G can be computed in
time poly(r).

To complete the proof we show that there exists a choice of the sampler parameters for which
we can instantiate a function H as required in the statement. We use the averaging sampler
from Theorem 5 with α = 1/10 and ϵ = log−1 n. We get a function G: [nc] → [n]d which is a
(2k−c·logn+1, log−1 n)-averaging sampler, where d = O(c · log n) and k = (10/9) · log n. Thus, G is a
(n1.5−c, log−1 n)-averaging sampler.

We define H,H−1: [n]× [nc]→ [n]d as follows:

H(i, x) = {z + i mod n | z ∈ G(x)}
H−1(j, x) = {j − z mod n | z ∈ G(x)} .

Since G is efficiently computable, so are H and H−1. The second property in the statement follows
directly from the construction. We proceed with the proof that the collection H(1, x), . . . ,H(n, x) is
a good quorum with high probability over the choice of x.

First, we show that for every B ⊆ [n], with high probability over the choice of x, for every i ∈ [n],
it holds that (1/d) ·

∑
z∈H(i,x)

1z∈B ≤ |B|/n+ log−1 n. Fix i ∈ [n]. Define fi: [n]→ {0, 1} as

fi(j) =

{
1 j + i mod n ∈ B;

0 otherwise.

Since G is an averaging sampler, we have that

Pr
x←[nc]

∣∣∣∣∣∣1d
∑

j∈G(x)

fi(j)−
|B|
n

∣∣∣∣∣∣ ≤ log−1 n

 ≥ 1− 1

nc−1.5 .

On the other hand, by definition of fi and H,

Pr
x←[nc]

∣∣∣∣∣∣1d
∑

j∈G(x)

fi(j)−
|B|
n

∣∣∣∣∣∣ ≤ log−1 n

 ≤ Pr
x←[nc]

1

d
·

∑
z∈H(i,x)

1z∈B ≤
|B|
n

+ log−1 n

 .

11The total variation distance (a.k.a statistical distance) between two distributions D1 and D2 over the same finite
space Ω is 1

2

∑
ω∈Ω |D1(ω)−D2(ω)|.
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Therefore, for every i ∈ [n],

Pr
x←[nc]

1

d
·

∑
z∈H(i,x)

1z∈B ≤
|B|
n

+ log−1 n

 ≥ 1− 1

nc−1.5 .

By a union bound over all i’s, we get that the above holds for every i ∈ [n] simultaneously with
probability at least 1− 1/nc−2.5, as needed.

Next, we show that for every j ∈ [n], party j participates in at most d committees. Indeed, since
we defined our quorum using shifts, we have that

n∑
i=1

∑
y∈H(i,x)

1j=y =

n∑
i=1

∑
z∈G(x)

1j=z+i mod n

=
∑

z∈G(x)

n∑
i=1

1j=z+i mod n

=
∑

z∈G(x)

1 = |G(x)|= d.

4.2 Choosing Poll Lists (the J Mapping)

The parties in our protocol reach consensus on the global seed by polling from a randomly chosen
set of other parties for their vote. Intuitively, since most parties agree on the global seed to begin
with, a majority of parties will reply with the correct seed, thereby reaching consensus. However,
implementing this naively fails since bad parties can flood all parties with requests, preventing them
from replying to honest parties’ polls. Thus, we need to somehow limit the set of “legal” polls. To
this end, we make use of an object that, on the one hand, provides sufficient entropy in the choice
of poll lists for honest parties, and on the other hand, adversarially-chosen possibilities should be
limited.

Our object is formalized as a function J : [n]× [
√
n]→

( [n]√
n

)
. We think of the first input as an

index of a party and the second input as its randomness space. The output of J(i, d), for i ∈ [n] and
d ∈ [

√
n], is a subset of [n] indicating a set of parties to poll from. The properties of J are listed in

the following lemma.

Lemma 1 (Poll list). For every n ∈ N even power of a prime12 (i.e., n = p2k for a prime p and an
integer k), there exists an efficiently computable mapping J : [n]× [

√
n]→

( [n]√
n

)
such that:

1. For every i ∈ [n] and d ∈ [
√
n], |J(i, d)|=

√
n and i ∈ J(i, d). (That is, every party is in its

own poll list and the size of a poll list is
√
n).

2. For every i, j ∈ [n] and every d ∈ [
√
n], if j ∈ J(i, d) then i ∈ J(j, d). (For the same

randomness d, party i is in the poll list of j if party j is in the poll list of i).

3. For every i, j ∈ [n] and all d1 ̸= d2 ∈ [
√
n], |J(i, d1) ∩ J(j, d2)|= 1. (For every two parties, as

long as they use different randomness, there is a single party that participates in both poll lists).
12By padding we can handle all n’s. See Remark 2.
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Proof. Let F = GF(
√
n = qk) (Galois field of order qk). We assume that there is an efficiently

computable one-to-one efficient mapping g: [
√
n]→ F (for instance, by computing all the elements

in F and storing them in an array—this requires Õ(
√
n) space and time). Let f : [n]→ F2 be any

one-to-one mapping (say, we can use f(i) = (g (⌈i/
√
n ⌉) , g(i mod

√
n)). We define J̃ :F2 × F→ 2F

2

such that:

J̃((x, y),m) =
{
(x′, y′)

∣∣ y′ = m · (x′ − x) + y
}
.

Finally, define:

J(i, d) =
{
f−1(x, y)

∣∣∣ (x, y) ∈ J̃(f(i), g(d))
}
.

Note that from a geometric view, every f(i) is a point in F2 and J̃(f(i), g(d)) are all the points
on the line with gradient m that pass through f(i). Therefore, Bullet 1 means that each point
belongs to the lines that passes through it and all the lines contains |F| points, Bullet 2 means that
if line passes through a point, then it belongs to this line and Bullet 3 means that each two lines
with different gradients meet at exactly one point. In what follows, we prove that this construction
satisfies the three properties from the statement.

Bullet 1: Fix i ∈ [n] and d ∈ [D], and let (xi, yi) = f(i). Since J(i, d) consists of solutions of a
linear equation over F, then for every w ∈ F, there exists a z ∈ F such that w = g(d) · (z − xi) + yi.
Also, since the equation is linear, the solutions must be distinct. Therefore, |J(i, d)|= |F|=

√
n. For

the second part, observe that yi = g(d) · (xi − xi) + yi, and so i ∈ J(i, d).
Bullet 2: For every i, j ∈ [n] and d ∈ [

√
n], if j ∈ J(i, d), then

yj = g(d) · (xj − xi) + yi.

By rearranging, we get that

yj + g(d) · (xi − xj) = yi

which means that i ∈ J(j, d), as needed.
Bullet 3: For every i, j ∈ [n], and all d1 ̸= d2 ∈ [

√
n], k ∈ J(i, d1) ∩ J(j, d2) for k ∈ [n] only if

(xk, yk) = f(k) and the following two equations hold:

yk = g(d1) · (xk − xi) + yi

and

yk = g(d2) · (xk − xj) + yj .

Since g(d1) ̸= g(d2), there is only one solution to this pair of equations.

Remark 2. In the above construction, we assumed that n is an even power of a prime. We observe
that a padding argument can be used to cover all n’s. Specifically, it is known that for sufficiently
large k, the gap between every two consecutive primes is pk+1 − pk < p0.6k (see, e.g., [BHP01] for a
better bound and history of the problem). Since p2k+1 − p2k = (pk+1 + pk)(pk+1 − pk) < 3(p2k)

0.8, for
sufficiently large integer n, there is a prime p such that p2 > n and p2 − n < 3n0.8. So, if we use
F = GF(p), then we can choose arbitrarily p2 − n unused points from ⌈p − n/p⌉ ∈ o(p) lines with
the same gradient. We do not allow this gradient to be used for sampling poll lists. We next argue
that the sample size of each party remains large enough. Since each line with a different gradient
intersects each of the chosen lines in one point, then the sample size of each party (i.e., number of
valid points on each line) remains p− o(p) ≥ (1− o(1))

√
n which is enough for the proof to work.
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5 The Scalable Agreement Protocol

In this section we build a protocol that transform an almost-everywhere agreement into full agreement.
The theorem is stated next.

Theorem 6 (From almost-everywhere to everywhere). There is a protocol that translates an almost
everywhere into everywhere agreement. The protocol requires O(1) rounds, and each party stores,
processes, and sends Õ(

√
n) bits overall. The transformation is secure against an adversary that

statically corrupts up to 1/3− ϵ fraction of parties for any constant ϵ > 0.

For simplification, we assume that n = p2k, where p is a prime and k is a positive integer, and
refer to Remark 2 on how to extend it for all n’s. The starting point of our protocol is the output of
the almost everywhere agreement protocol of King et al. [KSSV06]. The output of their protocol is a
bit string seed with the following properties (see Footnote 7):

• Length: |seed|= Θ(log3 n).

• Entropy: seed is sampled from a
(
|seed|·

(
2
3 + ϵ

))
-source channel.

• Agreement: Each honest party Pi has a seed candidate seedi, and for (1− o(1)) fraction of
the honest parties, seedi = seed.

In other words, the almost-everywhere agreement protocol results with a string of Θ(log3 n) bits
with min-entropy Ω(log2 n) that is known to (1− o(1)) fraction of parties. The agreement protocol
that we achieve in Theorem 6 has exactly the same parameters except that all parties agree on the
same string (of length Θ(log3 n) bits and with min-entropy Ω(log2 n)).

To achieve our transformation, we use the J : [n]× [
√
n]→

( [n]√
n

)
and H,H−1: [n]× [nc]→ [n]d

functions from Lemma 1 and Corollary 1, respectively, where we use c = c(n) = log4 n and
d = O(log5 n). We refer to Section 2 for an overview of the protocol.

The protocol proceeds in two phases. In the first phase, each party disseminates its belief of
seed to a randomly chosen subset of ≈

√
n parties. Each party, upon every incoming message,

independently decides whether to keep the message with some probability and discard it otherwise.
At the end of this phase, choosing the parameters correctly, with very high probability, every party
ends up with a candidate list Candidates with the guarantee that at least one of the candidates is
exactly seed.

In the second phase, there are six rounds of communication. First, each party chooses random
poll lists by sampling di,j ← [

√
n− 2] for j ∈ [log2 n], and distributes its choices to its committee

H(i, seed). Then, we execute a 3-rounds sub-protocol to distribute the poll requests to the committees
of the poll list members (see Section 5.3), who in turn, forward them to the associated poll list
member. A party Pℓ in the jth poll list of Pi counts how many times it received the same poll
request from its committee, and if sufficiently many were received, then it sends its candidate string
seedℓ to Pi directly. Then, for each j ∈ [log2 n], Pi increases the counter of seed candidate if it
received it from 2/3 fraction of the jth poll list members. A seed candidate that was received by Pi

and has the highest counter is then elected as the right string.
The protocol’s full description is given next.
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From Almost-Everywhere to Everywhere Protocol

A. Phase 1:

1. Round 1:

Description: Create a set of candidates for seed. One of them will be the right one.
Filtering rule: Pi chooses log n ·

√
n parties uniformly at random to accepts messages

from them.

For each party Pi:
i. Pi initialize Candidates← ∅.
ii. Pi chooses

√
n · log n parties uniformly at random and sends them seedi.

B. End of Phase 1: For each incoming message from Pj , Pi adds seedj to Candidates.

C. Phase 2, repeat log2 n times, in parallel:

1. Round 1:

Description: Choose a poll list and share the choice with all committee candidates.
Filtering rule: Pj accepts a message from Pi only if i ∈ H−1(j, seedj), and if the
message size is at most log n bits.

For each party Pi:
i. Pi chooses di ← [

√
n− 2] uniformly at random.

ii. For each party Pj ∈
⋃

seed′∈CandidatesH(i, seed′), Pi sends di to Pj .

2. Rounds 2-4:

All the committees runs the DistributePollRequests sub-protocol (Section 5.3).

3. Round 5:

Description: Committees forward requests to poll lists.
Filtering rule: Pℓ accepts a message from Pu if u ∈ H (ℓ, seedℓ) and if the message size
is less than

√
n · log2 n bits.

For each party Pu:
i. For each message of type “Pi → Pℓ”, Pu forwards the message to Pℓ.

4. Round 6:

Description: Poll list members respond to requests with their seed candidate.
Filtering rule: Pi accepts a message from Pℓ only if ℓ ∈ J(i, di) and if the message size
is less than log4 n bits.

For each party Pℓ, up to
√
n · log n times:

i. For each incoming message “Pi → Pℓ” that was received more than |H (ℓ, seedℓ)|/2
times, Pℓ sends seedℓ to Pi.

5. End of Phase 2: For each Pi: if seed∗ was received more than (2/3) · |J(i, di)| times,
then Pi adds plus 1 to seed∗ counter.

D. End of all log2 n times of Phase 2: Each Pi sets seedi to be the seed∗ with the highest
counter.
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Agreement. We proceed with the correctness and security of the protocol. We prove that at the
end of the protocol, with very high probability, every party holds the right string seed. The fact that
the protocol terminates within O(1) rounds is immediate from the description. The proof appears in
Section 5.2.

5.1 Efficiency

The protocol consists of exactly seven rounds of communication. The computational complexity of
each party depends on two main tasks. The first one is the work needed to compute the H,H−1 and
J functions. By Theorem 4 and Lemma 1, these functions are efficiently computable.13 The second
one is the work needed to send and process messages, which is what we discuss in the rest of the
section.

During Phase 1, each party Pi sends
√
n · log n messages each of size Θ(log3 n) bits. Furthermore,

since each party processes each incoming message with probability log n/
√
n, with all but negligible

probability, for each Pi it holds that |Candidates|∈ O(
√
n · log3 n) and this is also a bound on the

number of messages it receives during Phase 1. We now analyze a single iteration of Phase 2:

• Round 1:

– Incoming:|H−1(j, seedj)|· log n = O(log6 n) bits.

– Outgoing: Each party Pi sends messages of size O(log n) to at most |Candidates|·|H(i, ∗)|
parties. Since |Candidates|∈ O(

√
n · log3 n), the communication is O(

√
n · log9 n) bits.

• Rounds 2-4: (see Section 5.3.2)

– Incoming: O(log12 n ·
√
n) bits.

– Outgoing: O(log11 n ·
√
n) bits.

• Round 5:

– Incoming:|H(ℓ, seedℓ)|· log2 n ·
√
n = O(log7 n ·

√
n) bits.

– Outgoing: Each party Pu sends messages of size O(log2 n ·
√
n) to |H−1(u, seedu)| parties.

Thus, the communication is O(
√
n · log7 n) bits.

• Round 6:

– Incoming:|J(i, di)|· log4 n = O(
√
n · log4 n) bits.

– Outgoing: Each party Pℓ sends messages of size O(log4 n) to at most log n ·
√
n parties.

So, the communication is O(
√
n · log5 n) bits.

Since Phase 2 consists of log2 n parallel repetitions of the above, the total communication complexity
(incoming + outgoing) of each party is O(

√
n · log14 n) bits.

13A function f is “efficiently computable” if there is a polynomial p(·) such that for every x, the work that needed
to compute f(x) is |f(x)|·p(|x|).
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5.2 Correctness

We say that an event happens with high probability (w.h.p) if it happens with probability at least
1− n−c, for every constant c > 0 (i.e., with all but negligible probability).

Claim 3. During Phase 2 (Round 1), w.h.p each honest party Pi sends di to H (i, seed).

Proof. By description, an honest Pi sends di to H (i, seed) if seed was received during Phase 1. Let
Xi be a random variable that counts the number of times that seed was received by Pi. Recall
that each honest party sends its candidate to a uniformly random subset of

√
n · log n parties. In

turn, each honest party accepts messages from a subset of
√
n · log n parties sampled uniformly at

random. Therefore, for each honest party Pi, the random variable Xi is distributed like a binomial
with parameters

((
2
3 + ϵ− o(1)

)
· n, log

2 n
n

)
. Therefore, the probability that party Pi never added

seed to its candidate list is

Pr[Xi = 0] =

(
1− log2 n

n

)( 2
3
+ϵ−o(1))·n

= e−(
2
3
+ϵ−o(1))·log2 n ≤ n−ω(1).

By the union bound and since the above bound holds for every i ∈ [n], we get that

Pr[∃i : Xi = 0] ≤ n · Pr[Xi = 0] ≤ n−ω(1).

Claim 4. During Phase 2 (Round 5), if Pℓ appears in less than log n ·
√
n poll lists, then w.h.p more

than |H (ℓ, seed)|/2 of the members in H (ℓ, seed) forward all poll requests to Pℓ.

Proof. Recall that seed is sampled from a
(
|seed|·

(
2
3 + ϵ

))
-source channel. Further, |seed|·

(
2
3 + ϵ

)
≥

log2 n. Thus, there are less than n/3 parties that are either corrupted or honest but without
knowledge. Therefore, by Corollary 1, with probability at least 1 − 1/nlog(n)−4 for each i ∈ [n],
the ith committee H (i, seed) contains a majority of honest parties with knowledge, and from
the correctness of DistributePollRequests sub-protocol (Section 5.3) they will hold Pℓ poll
requests.

Claim 5. Fix di ∈ [
√
n− 2] and 0 < η ≤ 1/3. For each honest party Pi, if at most 1

3 − η fraction of
the parties in J(i, di) are either corrupted or honest without knowledge, then at every iteration of
Phase 2, w.h.p Pi increases the counter of some candidate.

Proof. An honest party Pℓ ∈ J(i, di) does not respond to Pi in one of two cases: First, if Pℓ did not
receive Pi’s request. Second, if Pℓ received

√
n · log(n) requests. By Claim 4, except with negligible

probability, the first case will not happen. From properties 2 and 3 of Lemma 1, for all corrupted
parties P̃j /∈ J(i, di) and for all d ∈ [

√
n − 2], it holds that |J(i, di) ∩ J(j, d)|≤ 1. Therefore, each

corrupted party P̃j /∈ J(i, di) can send requests only to at most 1 member of J(i, di). So, the number
of members in J(i, di) that the adversary can send at least

√
n · log(n) requests are at most:((

1
3 − ϵ

)
· n−

(
1
3 − η

)
·
√
n
)

√
n · log(n)−

(
1
3 − η

)
·
√
n
≤ n(

log(n)− 1
3 + η

)
·
√
n
≤

√
n(

log(n)− 1
3

) ≤ 3

2
·
√
n · log−1 n ∈ o(

√
n).
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So, at least (
1− 1

3
+ η − o(1)

)
·
√
n >

(
1− 1

3

)
·
√
n

parties will send the same candidate. Thus, some counter will be increased.

Lemma 2. At every iteration of Phase 2, each honest party increases the counter of some candidate
with probability at least ϵ.

Proof. Assume, by contradiction that the claim is false. Without loss of generality, assume that
P1 is the honest party with the lowest probability to increase the counter of some candidate. Let
ϵ′ < ϵ be the smallest probability that at every iteration of Phase 2, P1 increases the counter of
some candidate. Since d1 is chosen independently in every iteration of Phase 2, and by Claim 5, the
number of parties that do not respond with the right seed is at least

(1− ϵ′) · (
√
n− 2) · |J(1, d1)|·

(
1

3
− o(1)

)
,

where the first and second terms represent the number of “bad” choices of d1, the third term is the
number of parties in each poll list, and the fourth term is the fraction of corrupted or honest without
knowledge parties in the poll list. Simplifying this expression, we get

(1− ϵ′) · (
√
n− 2) · |J(1, d1)|·

(
1

3
− o(1)

)
=

(
1

3
− ϵ′

3
− o(1)

)
· n

>

(
1

3
− 2ϵ

3

)
· n.

Since there are at most o(n) honest parties that do not respond with the right seed, it means that
there are at least

(
1
3 −

2ϵ
3 − o(1)

)
· n corrupted parties. This is a contradiction to the fact that the

adversary can corrupt at most
(
1
3 − ϵ

)
· n parties.

Lemma 3. At every iteration of Phase 2, if honest party increases the counter of candidate seed∗,
then the probability that seed∗ = seed is at least 1

2 + ϵ.

Proof. Assume, by contradiction that the claim is false. Without loss of generality, assume that
P1 is the honest party with the lowest probability that seed∗ = seed, and let ϵ′ < 1

2 + ϵ be that
probability. Let α ∈ [0, 1) be the fraction of d1 choices such that P1 does not increase the counter of
any candidate. Since d1 is chosen independently in every run of Phase 2, from Claim 5, and Step
C.5 of the protocol, it follows that there are at least

α · (
√
n− 2) · |J(1, d1)|·

(
1

3
− o(1)

)
+ (1− α) · (1− ϵ′) · (

√
n− 2) · |J(1, d1)|·

(
2

3
+ o(1)

)
parties that do not respond with the right seed. Denoting this expression (∗) and expanding it, we
get

(∗) =
(
α

3
+

(
2− 2α

3

)
· (1− ϵ′)± o(1)

)
· n >

(
α

3
+

(
2− 2α

3

)
·
(
1

2
− ϵ

)
± o(1)

)
· n

=

(
1

3
− 2ϵ

3
+

2ϵα

3
± o(1)

)
· n ≥

(
1

3
− 2ϵ

3
± o(1)

)
· n >

(
1

3
− 5ϵ

6

)
· n.

Since there are at most o(n) honest parties that do not respond with the right seed, there are at
least

(
1
3 −

5ϵ
6 − o(1)

)
· n corrupted parties. This is a contradiction to the fact that the adversary can

corrupt at most
(
1
3 − ϵ

)
· n parties.
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Theorem 7. At the end of the protocol w.h.p each honest party outputs seed.

Proof. Let Xi,r, for r ∈ [log2 n] and i ∈ [n], be a random variable such that:

Xi,r =


1 Pi learned the wrong value at the rth parallel execution of Phase 2;
0 Pi learned nothing at the rth parallel execution of Phase 2;
−1 Pi learned the right value at the rth parallel execution of Phase 2.

Let Zi =
∑log2 n

r=1 Xi,r. By definition, if Zi ≥ 0 then Pi may output seed∗ ̸= seed. By Lemma 2 and
Lemma 3, for each honest party Pi, it holds that

Pr[Xi,r = x] =


ϵ ·

(
1
2 − ϵ

)
x = 1;

1− ϵ x = 0;

ϵ ·
(
1
2 + ϵ

)
x = −1.

Since each time we perform Phase 2, every honest party Pi chooses di independently, then the Xi,r’s
are all independent from each other. Thus,

E[Zi] = log2 n · E[X1,r] = − log2 n · 2ϵ2.

By a union bound and a Hoeffding’s inequality, we get that

Pr[∃i : Zi ≥ 0] ≤ n · Pr[Z1 ≥ 0] = n · Pr[Z1 − E[Z1] ≥ −E[Z1]]

≤ n · e
−2·(log2 n·2ϵ2)2

4·log2 n ∈ n−ω(1).

5.3 Distribute Poll Requests Sub-Protocol

At the beginning of this (sub)protocol each committee holds the poll list of the corresponding party,
and its goal is to convey the poll request to the committees associated to each party in the poll list.
There are two challenges: The high level idea of our protocol is to imagine the parties as residing
on an

√
n×
√
n grid, where the rows are defined by J(∗,

√
n− 1) and the columns by J(∗,

√
n). At

every round of communication, communication is allowed only over rows or over columns. So, each
committee can communicate only with

√
n other committees in every round.

Our protocol consists of three rounds, where each committee forwards each request through
the committee that corresponds to the intersection between the corresponding row and column.
This limits the set of committees from which we can accept messages. Before we send the poll
requests from the intersection committee to their destination, each such intersection committee tells
its destination how many requests it is planning to forward. Only if the total number is smaller than
≈
√
n, they will be allowed to forward the poll requests. This extra counting phase is used to prevent

targeting of specific parties by the attacker (by choosing a poll list that contains the targeted party).

Notations: Let Q be a quorum of n committees, the committee that corresponding to party Pi

dented by Qi. When we say that “Qi send message to Qj” we mean that every party in Qi sends
the message to every party in Qj , and each party in Qj drop every message that received less than
|Qi|/2 times.
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DistributePollRequests Sub-Protocol

Input: Each committee Qi holds di.

Output: Each committee Qℓ holds Sℓ = {Pi | i ∈ [n], ℓ ∈ J(i, di)} if |Sℓ|≤ log n ·
√
n.

1. Round 1:
Filtering rule: Qt accepts messages from Qi only if i ∈ J(t,

√
n− 1), and if message size is

less than 3 log n bits.
For each committee Qi:

i. For each ℓ in J(i, di), Qi sends “Pi → Pℓ” to Qt, where t = J(i,
√
n− 1) ∩ J(ℓ,

√
n).

2. Round 2:
Filtering rule: Qℓ accepts messages from Qt only if t ∈ J(ℓ,

√
n), and if message size is less

than log n bits.
For each committee Qt:

For each ℓ ∈ J(t,
√
n):

i. Qt prepare the set St,ℓ = {Pi | for all message of type “Pi → Pℓ”}.
ii. Qt sends |St,ℓ| to Qℓ.

3. Round 3:
Filtering rule: Qℓ accepts messages from Qt only if

∑
t∈J(ℓ,

√
n)|St,ℓ| is less than log n ·

√
n,

and if message size is at most log n · |St,ℓ| bits.
For each committee Qt:

i. For each ℓ ∈ J(t,
√
n), Qt sends St,ℓ to Qℓ.

5.3.1 Correctness

At first we mention that quorum is assumed, therefore the proof holds only if every committee has
majority of “honest with knowledge” parties.

Claim 6. During round 1 each committee Qi sends exactly 1 poll request to each committee associated
with a party in J(i,

√
n− 1).

Proof. By property 3 of Lemma 1, during round 1 for each Qi, t always exists and it is unique (i.e.,
|J(i,

√
n− 1) ∩ J(ℓ,

√
n)|= 1). Combined with property 2, for every ℓ1 ̸= ℓ2 ∈ J(i, di), it holds that

t1 ̸= t2.

By property 2 of Lemma 1 and the above claim, each committee Qt will accept all poll requests.
Since Qt holds

√
n poll request, then for each ℓ ∈ J(t,

√
n), it holds that log(|St,ℓ|) < log n. Combining

this with property 2, at the end of round 2, each committee Qℓ will know
∑

t∈J(ℓ,
√
n)|St,ℓ|. If the latter

sum is less than log n ·
√
n, after round 3, it will know

⋃
t∈J(ℓ,

√
n) St,ℓ = {Pi | i ∈ [n], ℓ ∈ J(i, di)}, as

needed.
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5.3.2 Efficiency

For each committee we analyze both incoming and outgoing communication.

• Round 1:

– Incoming: |J(t,
√
n− 1)|·3 log n = O(log n ·

√
n) bits.

– Outgoing: Each committee sends messages of size |“Pi → Pℓ”| to |J(i, di)| committees, so
the communication is O(log n ·

√
n) bits.

• Round 2:

– Incoming: |J(ℓ,
√
n)|· log n = O(log n ·

√
n) bits.

– Outgoing: Each committee sends messages of size at most maxℓ∈J(t,
√
n)|St,ℓ| to |J(t,

√
n)|

committees, so the communication is O(log n ·
√
n) bits.

• Round 3:

– Incoming: log2 n ·
√
n = O(log2 n ·

√
n) bits.

– Outgoing: Each committee forwards at most |J(t,
√
n−1)| poll requests of size |“Pi → Pℓ”|

to committees, so the communication is O(log n ·
√
n) bits.

Since each party is a member of O(log5 n) committees, and each committee contains O(log5 n)
members, the total communication (outgoing + incoming) is O(log12 n ·

√
n) bits. The bound on the

computational complexity follows similarly.

6 Multi-Party Computation, Byzantine Agreement, Broadcast, and
More

In Section 5 we showed a transformation from almost-everywhere agreement to everywhere agreement.
More specifically, the method shows how to guarantee agreement by all parties on a string that
has some non-trivial (min-)entropy. Here, we explain how to use our protocol to get classical
abstractions such as Byzantine agreement, broadcast, and leader or committee election, while
preserving scalability.

To this end, it is convenient to define an intermediate abstraction. On the one hand, this
intermediate model would relatively straightforwardly imply all of the above mentioned (and possibly
more) applications. On the other hand, it is not hard to show how to realize this abstraction with
our agreement protocol from Section 5. We proceed with the description of the model. Then, we
explain how to realize it (Section 6.1) and finally we explain how it implies all of the above mentioned
applications (Section 6.2). Throughout this section we assume that n, the number of participants in
the protocol, is of the form n = p2k, where p is a prime and k is an integer (see in Remark 2 how to
generalize to all n’s).

The quorum model. The model is an extension of the full-information model that we described
in Section 3. In addition to the regular n parties, there are n additional special parties called together
“quorum”, where single party called “committee”. Each committee has a unique ID and the IDs are
common knowledge. Assume that the committee IDs are 1, . . . , n.

In terms of functionality, committee are just like parties: any party (either committee or regular)
can send a message to any other party (either committee or regular). That is, the communication
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network consists of 2n nodes and it is fully connected (i.e., clique configuration). However, unlike
parties, committees do not have a private source of randomness and therefore can perform only
arbitrary deterministic computation. Furthermore, during each round, the committees’ message size
is hardcoded in the protocol description (of course, committees may send shorter messages and pad
appropriately).

The corruption model is the same as in the standard full information model, restricting corruptions
to regular parties. That is, an adversary can corrupt and control only regular parties and not
committee parties. Still, the adversary can see all of the communication including all messages sent
to or from a committee party. For concreteness, we assume that the adversary can corrupt 1/3− ϵ
fraction of the regular parties.

6.1 Realizing the Quorum Model

In the following theorem we explain how to realize the quorum model given our agreement protocol.
Specifically, we show how to reduce a protocol in the quorum model to the standard model with
only “small” overhead (in storage, computation, and communication).

Theorem 8. Every protocol in the quorum model can be translated to a protocol in the standard
full information model with all but negligible probability of failure. Furthermore, if each party in the
protocol in the quorum model stores, processes and sends C bits within r rounds, then the protocol in
the standard full information model stores, processes and sends Õ(C) + Õ(

√
n) bits within r + Õ(1)

rounds.

Proof. By Theorem 6, there is a protocol so that at the end of it, all parties agree on a string
seed sampled from a (log2 n)-source channel and of length |seed|= Θ(log3 n). Using seed, we invoke
the function H from Corollary 1, where we use B as the set of corrupted parties, x = seed and
c = log4 n. The result of this is a collection of n multisets with the guarantee that with all but
negligible probability of error all of them contain a majority of honest parties.

Therefore, we define each of these n multisets as a quorum, where a message from a committee
is valid only if it is received from the majority of the multiset. Now, we get the properties of the
quorum model, and we can invoke the given protocol in the quorum model.

Overall, the cost of the translation depends on the cost of the full agreement protocol times the
cost of communicating to committee parties. The first is Õ(1) rounds and Õ(

√
n) storage, processing,

and communication per party. The latter depends on the committee size which is O(log5 n) which
gets hidden in the Õ notation.

6.2 Applications in the Quorum Model

We give examples of how to realize several applications of interest within the quorum model.

Byzantine agreement (BA). In this problem, every regular party has an input bit and the
committee parties do not have any input. The goal is for the regular parties to reach an agreement
on an input which is held by one of the honest parties. In the quorum model this can be achieved as
follows.

Byzantine Agreement:

1. For each i ∈ [n], a regular party i sends its input bit to committee party i.

2. The quorums count and distributes among themselves, in a tree-like fashion, the bit that is
held by most parties.
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3. Committee party i sends this bit to regular party i.

Denote γ the arity of the tree in the above communication. The round complexity is 2 · logγ n+2.
Furthermore, each party stores, sends and processes γ · log n bits. If γ is constant, the protocol
requires O(log n) rounds and each party stores, sends and processes O(log n) bits. If γ = nϵ, for a
constant ϵ > 0, the protocol requires constant rounds and each party stores, sends and processes
O(nϵ · log n) bits.

Broadcast. In broadcast, one of the regular parties has an input and its goal is to distribute it to
all other regular parties. In the quorum model this can be achieved as follows, assuming that party i
wants to broadcast message m.

Broadcast:

1. Regular party i sends its message m to committee party i.

2. Committee party i sends the message upstream in tree-like communication pattern and the
root distributes it downstream over the same tree.

3. Committee party j sends its message to regular party j for every j ∈ [n].

The complexity of the protocol is just like the BA complexity from above.

Quorum/committee/leader election. Like in Section 6.1, it is immediate to create quorum by
combining Theorem 6 and Corollary 1. For committee election, we just need to fix the first index of
the H function. To obtain a leader we first elect a poly-logarithmic size committee and then run a
standard leader election protocol that could have polynomially many rounds and is not necessarily
scalable. For instance, one can use the Heavyweight-Leader-Election protocol from [KSSV06],
which is an adaptation of Feige’s protocol [Fei99] to the point-to-point full information model.

To summarize, plugging these protocols into Theorem 8 along with the almost everywhere agree-
ment protocol of [KSSV06], we get the following (full) BA, broadcast, quorum/committee/leader
election protocols in the standard full information model. (In the above protocols where communica-
tion is done over a tree, i.e., BA and broadcast, we use constant γ.)

Theorem 9. There are BA, broadcast, quorum/committee/leader election protocols in the full
information model with the following properties. They have negligible probability (in n) of failure,
they require Õ(1) rounds and in each of them, every party communicates Õ(

√
n) bits throughout.

Multi-party computation. The above agreement tasks can be thought of as special cases of
secure multi-party computation (MPC) [GMW87, BGW88, CCD87]. MPC protocols enable a set
of mutually distrusting parties to compute a function on their private inputs, while guaranteeing
various properties such as correctness, privacy, independence of inputs, and more. We consider
the problem of scalable MPC in the peer-to-peer synchronous communication model with private
channels (i.e. the adversary can’t see the content of messages between honest parties).

Feasibility results for (non-scalable) MPC have been long known, e.g., the BGW [BGW88]
protocol gives a method for computing an arbitrary function with communication cost that grows
multiplicatively with the circuit size of the function and some polynomial in the number of parties.
That is, the communication and work of each of the n parties is s ·poly(n) when computing a function
represented as a circuit of size s. The question of scalable MPC, i.e., protocols where the dominant
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term in the complexity is just the circuit size, is still an active topic and modern results achieve
MPC protocols with strong security guarantees and communication complexity Õ(s+ poly(n)).

Plugging in our Theorem 1 into the protocol framework of [DKM+17], we get the following result.

Theorem 10 (Scalable MPC). For any circuit with size s and depth d, there is a statistically
maliciously secure MPC protocol tolerating 1/3− ϵ fraction of static corruptions for any ϵ > 0 that
requires Õ(d) rounds, and each party need to send store and process Õ(s/n+

√
n) bits.

At a high level, the above MPC is obtained by using our agreement protocol to generate a
quorum: assign to each party its own representative (small and balanced) committee where there is
a strong majority of honest parties. Then, we distribute the gates of the circuit to these committees.
Each gate is evaluated by its assigned committees using some standard MPC (e.g., BGW).

7 An Ω(
√
n) Lower Bound for Byzantine Agreement

In this section we prove a lower bound on the number of messages that an honest party need to send
or process in every scalable Byzantine agreement protocol with static filtering. In fact, for our lower
bound to apply it suffices to consider a weaker adversarial model than the model where our upper
bound applies: we only need the peer-to-peer authenticated channels model. Namely, our adversary
does not need to see messages sent between honest parties.

Theorem 11. Let Π be any protocol that computes byzantine agreement with probability p > 2/3
and secure against adversaries that statically corrupt at most t parties. Then, there is an honest
party that sends or processes at least Ω(t/

√
n) messages.

The main idea for the proof of Theorem 11 is to show that if the conclusion of the theorem is
false, then there must be a “communication bottleneck”. Specifically, there is a special set of parties
that w.h.p communicate only within themselves and with another set of parties that is somewhat
small. The latter will be smaller than the corruption budget of the adversary. Looking ahead, once
we prove this, we can design an attack that controls this small set and thereby “isolate” the spacial
set. The statement about the existence of the above sets is given next. Its proof is given below in
Section 7.1.

Lemma 4 (Bottleneck lemma). Given a protocol Π in the static filtering model such that each honest
party is allowed to send and process at most o(t/

√
n) messages during the protocol, where t is the

number of corrupted parties, then for any input configuration B (the protocol specification denoted by
ΠB), there exist sets S, T ⊂ [n], such that:

1. |T |≤ t.

2. |S|∈ ω(1).

3. S ∩ T = ∅.

4. With probability at least 1− o(1) over the randomness of the protocol, during an execution of
the protocol, every party in S communicates (sends and receives messages) only with parties
from S ∪ T .

We apply this lemma in the context of Byzantine Agreement. Let Π be an any Byzantine
Agreement protocol, and let Π′ = ΠB0 ||ΠB1 (i.e., an execution of the first protocol followed by an
execution of the second one), where Bb is the input configuration such that all parties’ initial bit is
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b. Applying Lemma 4 on Π′ gives the two sets S and T . An adversary can choose the initial bit
of all parties in S to be 0, and 1 for the rest, and corrupt the set T . Thus, w.h.p it can force the
parties in S to believe that all parties start with 0. At the same time, it can force the rest of the
parties to believe that all parties start with 1. This is a contradiction to the correctness property.
We formalize this next.

Definition 4. Let viewi be a random variable that contains all the data (statements, messages,
initial bit, and randomness) of party Pi. For a configuration W (e.g., fixed inputs), we explicitly
write viewW

i for the view of party i given configuration W . We say that a party cannot distinguish
between two configurations, W1 and W2, if the statistical distance between viewW1

i and viewW2
i is 0

(i.e., the random variables are identically distributed).

Proof of Theorem 11 using Lemma 4. Assume for contradiction that the statement is false. Then,
for every bit assignment B, each party sends and processes at most o(t/

√
n) messages during the

execution of ΠB . Let Π′ = ΠB0 ||ΠB1 . Let S, T ⊂ [n] be the sets from Lemma 4 on Π′, and let B′ be

the assignment such that B′(i) =

{
0 i ∈ S

1 otherwise.
We define the following worlds:

• Zero world: An honest execution of ΠB0 .

• One world: An honest execution of ΠB1 .

• Hybrid World: An execution of ΠB′ in the presence of the following attack. An adversary
corrupts the set of parties in T (from Lemma 4) and simulates an execution of ΠB0 and ΠB1 ,
where each corrupted party sends messages as follows: Communication with parties in S are
simulated using the transcript of ΠB0 while the rest of the communication is simulated using
the transcript of ΠB1 .

With probability at least 1− o(1), for each party i ∈ S, viewHybrid
i = viewZero

i , and for each party
i ∈ [n] \ (S ∪ T ), viewHybrid

i = viewOne
i . Therefore, with probability at least (1− o(1)) · p each party

in S outputs 0 (the output of Zero World), and each party in [n] \ (S ∪ T ) outputs 1 (the output of
One World). Since parties in S never communicate with parties in [n] \ (S ∪ T ), with probability at
least ((1− o(1)) · p)2 = (1− o(1)) · p2 > 1/3, there exist parties that end up with different outputs.
Therefore, on the initial assignment ΠB′ , Byzantine Agreement is computed correctly only with
probability p < 2/3 which is a contradiction.

Remark 3 (Efficiency of attack). We present the attack without caring about computational efficiency.
In particular, our attack would need to know the probabilities in which certain events occur within a
typical execution of the protocol. These probabilities could be approximated within sufficient accuracy
using standard techniques (repetition and tail bounds), so we believe that the attack could be made
efficient, but leave this for future work.

7.1 Proof of the Bottleneck Lemma (Lemma 4)

Recall that we consider static filtering rules, namely, who communicates with whom is predetermined
in the protocol specification. In particular, it means that the probability that some party talks to
some other party is well defined from the description of the protocol. More precisely, for every two
parties Pi and Pj , there are two associated indicator random variable Xi→j and Xi←j defined as:
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• Xi→j = 1 if and only if throughout the execution of the protocol party i sends a message to
party j.

• Xi←j = 1 if and only if throughout the execution of the protocol party j expects to process a
message from party i.

• Xi↔j = 1 if and only if throughout the execution of the protocol party j process a message
from party i. We note that Xi↔j ̸≡ Xi←j ·Xi→j , Since party i may send a message to party j,
and party j may expect to process a message from party i, but this can occur in different
rounds. Nevertheless, it holds that Xi↔j ≤ Xi←j ·Xi→j .

We define

pi→j = Pr[Xi→j = 1] and pi←j = Pr[Xi←j = 1] and pi↔j = Pr[Xi↔j = 1],

where these probabilities are over the randomness of the protocol. Since Xi↔j ≤ Xi←j ·Xi→j , it
follow that

pi↔j ≤ pi→j · pi←j .

Given any protocol Π, for any party i, we can define the set of parties with whom it communicates
often and those with whom it does not. Specifically, for each party i, we consider four sets Hout(i),
Lin(i), Hin(i), and Lin(i), defined as follows:

• Hout(i) = {j | pi→j ∈ Ω( 1√
n
)}.

This is the set of parties to whom i sends messages rather often.

• Hin(i) = {j | pj←i ∈ Ω( 1√
n
)}.

This is the set of parties that expect to process messages from i rather often.

• Lout(i) = [n] \Hout(i) and Lin(i) = [n] \Hin(i)

With this notation, we can define the sets Lout and Lin as the set of parties that communicate rather

• Lout ≡ {i |
∑

j∈Lout(i)

pi↔j ∈ Ω(1)}.

• Lin ≡ {i |
∑

j∈Lin(i)

pj↔i ∈ Ω(1)]}.

Claim 7. Assume that a protocol Π is in the static filtering model, and each honest party is allowed
to send and process at most o(t/

√
n) messages during the protocol, where t is the number of corrupted

parties. Then,

1. For every i ∈ [n], |Hout(i)|∈ o(t).

2. For every i ∈ [n], |Hin(i)|∈ o(t).

3. |Lout|∈ o(n).

4. |Lin|∈ o(n).
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Proof. For the first bullet, assume towards contradiction that |Hout(i)|∈ Ω(t). Further, Let X =∑
j∈[n]Xi→j . By linearity of expectation, we have that

E[X] =
∑
j∈[n]

pi→j ≥
∑

j∈Hout(i)

pi→j ≥ |Hout(i)|· min
j∈Hout(i)

pi→j .

Since |Hout(i)|∈ Ω(t) and min
j∈Hout(i)

pi→j ∈ Ω(1/
√
n) it follow that E[X] ∈ Ω(t/

√
n). This is a

contradiction since each party sends o(t/
√
n) messages throughout the protocol.

For the second bullet, assume towards contradiction that |Hin(i)|∈ Ω(t). Let X =
∑

j∈[n]Xj↔i.
Consider an adversary that corrupts t parties from Hin(i) (or all parties in Hin(i) if |Hin(i)|≤ t).
Denote the set of corrupted parties by C ⊆ Hin(i). Then, by linearity of expectation,

E[X] =
∑
j∈[n]

pj↔i ≥
∑
j∈C

pj↔i.

Thus, if an adversary corrupts all parties in C and floods i, then∑
j∈C

pj↔i =
∑
j∈C

pj←i ≥ |C|·min
j∈C

pj←i.

Since |C|∈ Ω(t) and min
j∈C

pj←i ∈ Ω(1/
√
n) it follow that E[X] ∈ Ω(t/

√
n). Overall, we obtained a

contradiction since each party processes o(t/
√
n) messages throughout the protocol.

For the third bullet, assume for contradiction that |Lout|∈ Ω(n). For i ∈ Lout,∑
j∈Lout(i)

pi↔j ≤
∑

j∈Lout(i)

pi←j · pi→j ≤ max
j∈Lout(i)

pi→j ·
∑

j∈Lout(i)

pi←j

Since
∑

j∈Lout(i)
pi↔j ∈ Ω(1) and max

j∈Lout(i)
pi→j ∈ o(1/

√
n), it must hold that

∑
j∈Lout(i)

pi←j ∈

ω(
√
n). Now, since |Lout|∈ Ω(n) it follow that∑

i∈[n]

∑
j∈[n]

pi←j ≥
∑

i∈Lout

∑
j∈Lout(i)

pi←j ∈ ω(n ·
√
n).

Thus, by averaging, there is a j ∈ [n] such that∑
i∈[n]

pi←j ∈ ω(
√
n)

Also, by averaging, there is a set S ⊆ [n] of size t such that:∑
i∈S

pi←j ≥
t

n
·
∑
i∈[n]

pi←j ∈ ω(
t√
n
).

Thus, if an adversary corrupts all parties in S and floods j, then:∑
i∈S

pi↔j =
∑
i∈S

pi←j ∈ ω(
t√
n
).

This is a contradiction since each party processes at most o(t/
√
n) messages throughout the protocol.
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For the last (fourth) bullet, assume for contradiction that |Lin|∈ Ω(n). For i ∈ Lin,∑
j∈Lin(i)

pj↔i ≤
∑

j∈Lin(i)

pj←i · pj→i ≤ max
j∈Lin(i)

pj←i ·
∑

j∈Lin(i)

pj→i.

Since
∑

j∈Lin(i)
pj↔i ∈ Ω(1) and max

j∈Lin(i)
pj←i ∈ o(1/

√
n), the above means that

∑
j∈Lin(i)

pj→i ∈

ω(
√
n). In turn, since |Lin|∈ Ω(n) it follows that

∑
i∈[n]

∑
j∈[n] pj→i ≥

∑
i∈Lin

∑
j∈Lin(i)

pj→i ∈
ω(n ·

√
n). This is a contradiction since t ≤ n and each party sends at most o(t/

√
n) messages during

the protocol.

Observation 1. For each party i /∈ Lout (resp. Lin), the probability that there exists a party
j ∈ Lout(i) (resp. Lin(i)) such that party j (resp. i) ever processed a message from party i (resp. j)
is o(1).

Proof. The proof follows from a Markov inequality. We only give the proof for the first case and note
that the second case (which is in parentheses) is proven analogously. Let X =

∑
j∈Lout(i)

Xi↔j . So,

Pr[∃j ∈ Lout(i) : Xi↔j = 1] = Pr[X ≥ 1].

From Markov’s inequality,

Pr[X ≥ 1] ≤ E[X] =
∑

j∈Lout(i)

pi↔j ∈ o(1).

We can finally conclude the proof of Lemma 4. Let:

• k = k(n) = maxi∈[n](|Hin(i)|+|Hout(i)|).

• ℓ = ℓ(n) = maxi∈[n]\(Lin∪Lout)(Pr[∃j ∈ Lout(i) : Xi↔j = 1] + Pr[∃j ∈ Lin(i) : Xj↔i = 1]).

• m = m(n) = min(t/k,1/ℓ,n)
log log(min(t/k,1/ℓ,n)) . (Assume t/0 = 1/0 =∞.)

By Observation 1, we get that ℓ ∈ o(1), and by Item 1 in Claim 7 and Item 2 in Claim 7 it follow
that k ∈ o(t). So, m ∈ ω(1) ∩ o(n). Let S ⊂ [n] \ (Lin ∪ Lout) be an arbitrary subset of size m, and
let T =

(⋃
i∈S Hout(i) ∪Hin(i)

)
\ S.

1. |T |≤ |S|·k ≤ t
k·log log(t/k) · k = t

log log(t/k) ∈ o(t), as needed.

2. Since m ∈ ω(1)∩o(n), it suffices to show that |[n]\ (Lin∪Lout)|≥ m. By Item 3 in Claim 7 and
Item 4 in Claim 7, it follows that |Lin∪Lout|∈ o(n). This means that |[n]\ (Lin∪Lout)|∈ Ω(n),
as needed.

3. Follows directly from the construction of T .

4. For every i ∈ S, it holds that⋃
i∈S

Hout(i) ∪Hin(i) ⊆ S ∪
⋃
i∈S

Hout(i) ∪Hin(i) = S ∪ T.

This means that if party i ∈ S communicates with party j ∈ [n] \ (S ∪ T ), then j must be
either in Lin(i) or in Lout(i). By a union bound, the probability that there exists a party in S
that communicates with party not in S ∪ T is at most

Pr[∃i ∈ S, j ∈ Lout(i):Xi↔j = 1] + Pr[∃i ∈ S, j ∈ Lin(i):Xj↔i = 1] ≤ |S|·ℓ

≤ 1

ℓ · log log(1/ℓ)
· ℓ ∈ o(1).
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