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Abstract. A distributed oblivious RAM (DORAM) is a method for
accessing a secret-shared memory while hiding the accessed locations.
DORAMs are the key tool for secure multiparty computation (MPC) for
RAM programs that avoids expensive RAM-to-circuit transformations.

We present new and improved 3-party DORAM protocols. For a logical
memory of size N and for each logical operation, our DORAM requires
O(logN) local CPU computation steps. This is known to be asymptoti-
cally optimal. Our DORAM satisfies passive security in the honest ma-
jority setting. Our technique results with concretely-efficient protocols
and does not use expensive cryptography (such as re-randomizable or
homomorphic encryption). Specifically, our DORAM is 25X faster than
the known most efficient DORAM in the same setting.

Lastly, we extend our technique to handle malicious attackers at the
expense of using slightly larger blocks (i.e., ω(log2N) vs. Ω(logN)). To
the best of our knowledge, this is the first concretely-efficient maliciously
secure DORAM.

Technically, our construction relies on a novel concretely-efficient 3-party
oblivious permutation protocol. We combine it with efficient non-oblivious
hashing techniques (i.e., Cuckoo hashing) to get a distributed oblivi-
ous hash table. From this, we build a full-fledged DORAM using a dis-
tributed variant of the hierarchical approach of Goldreich and Ostrovsky
(J. ACM ’96). These ideas, and especially the permutation protocol, are
of independent interest.

1 Introduction

Secure multiparty computation (MPC) is a method that enables mutually dis-
trustful parties to jointly compute an arbitrary function over their private inputs.
Since breakthrough feasibility results in the 80s, the quest for practically efficient
MPC protocols is a central research area in cryptography. Efficiency is measures
in terms of local computation and/or communication, as a function of the size
of the representation of the function that needs to be computed.
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There are several common ways to represent computation, e.g., the circuit
model or Random Access Memory (RAM) model. Any function can be computed
in either of the models and a representation in one model can be translated to
the other. However, such translations have a cost: a RAM program of size N
can be turned into a circuit of size O(N3 logN) [52]. Therefore, due to efficiency
reasons, it would be highly desirable to be able to perform secure computation
for RAM programs, directly.

This is challenging because MPC protocols need to guarantee, in particular,
that the running time, memory accesses and communication patterns of the par-
ticipants, do not depend on their private inputs. The circuit model guarantees
these properties for free as circuits can be computed in a gate-by-gate fashion, in-
dependently of the inputs. In general, RAM programs do not have these features
and therefore some extra work is needed.

There is a generic way to turn any RAM program into another that computes
the same functionality but whose memory accesses do not reveal anything about
the program’s secret inputs. This is called an Oblivious RAM (ORAM), origi-
nally proposed by Goldreich and Ostrovsky [26, 48, 27]. The traditional setting
for ORAMs is the client-server one. That is, a large memory is stored on an un-
trusted server and a client can make accesses to it using a small trusted memory.
Ostrovsky and Shoup [49] observed that by simulating the client of an ORAM
using traditional circuit-based MPC protocol, one can generically get an MPC
for RAM programs. However, designing an efficient ORAM with a client that is
“compatible” with circuit-based MPC is not at all obvious and has been (so far)
sub-optimal in terms of the efficiency of the resulting protocol (see, e.g., [57]).

Due to the inherent inefficiency of circuit-based MPC for certain computa-
tions, there has been significant efforts in the last decade in building efficient
MPCs for RAM programs, for example [44, 21, 57, 57, 12, 8, 23]. By now, due to
its relation to oblivious simulation, the common terminology for this problem is
Distributed Oblivious RAM (DORAM)—informally, this is a protocol that
allows parties to collectively maintain and perform reads/writes on a memory
(a formal definition appears in Section 2.2).

The complexity measure of DORAMs of interest to us is their computational
overhead. That is, the maximal amount of CPU instructions3 performed by each
of the parties when serving a single logical request.4 Some prior works measure
bandwidth overhead which accounts only for the maximal amount of bits com-
municated between the parties. Computational overhead is harder to optimize
since an upper bound on the computational overhead implies an upper bound on
the communication overhead. The other direction is not necessarily true; indeed,
some prior works (e.g., [23]) optimize communication overhead at the expense of

3 We model parties as RAM machines that can perform word-level addition and stan-
dard Boolean operations at unit cost.

4 As commonly done in this line of works, we sometimes settle for overhead in an
amortized sense, that is, we measure the average overhead over a sequence of re-
quests. Often, such schemes can be made worst-case (“de-amortized”) using known
techniques [49, 5].
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increased computational overhead. Thus, we choose the more stringent measure.
This is particularly important if we aim for a concretely efficient and practically
useful DORAMs.

In this work, we focus on the honest majority setting and more specifically on
the 3-party setting where at most one server is corrupted. We note that there are
several schemes in the 2-party setting (e.g., [44, 57, 20]), but due to the nature
of the dishonest majority setting, existing techniques result with asymptotically
and concretely less efficient schemes than in the 3-party honest majority setting.

A variant of a scheme due to Lu and Ostrovsky [44], suggested by Faber
et al. [21],5 gives a (3-party) DORAM with O(logN) computational overhead
with block size Ω(logN). While the asymptotical overhead of this construction
is optimal, the concrete efficiency is quite poor. The reason is that their compiler
requires the parties to securely and jointly compute a linear number of encryp-
tions once in a while (which requires a circuit-based secure computation protocol
of AES computation).

Later works attempt to present concretely efficient DORAMs. Wang et al. [57]
and Faber et al. [21] proposed DORAMs with O(logN) computational over-
head, but their block size is Ω(log2N) which is less standard. Bunn et al. [8]
constructed a DORAM with small concrete constants but poor asymptotic over-
head (Ω(

√
N)). Most recently, Falk et al. [23] reduced the large constant factor

of [44, 21] and achieved a scheme with O(log2N) computational overhead (and
logarithmic communication overhead).

Moreover, all of the above scheme only guarantee security against a passive
attacker, i.e., any single server cannot learn any non-trivial information about
the others’ inputs, as long as it follows the prescribed protocol. There are generic
methods to boost security to the more standard setting of active security, where
security holds even if a rouge server arbitrarily deviates from the protocol. How-
ever, these techniques do not preserve efficiency.

The current state of the art for 3-party DORAMs is summarized in Table 1.
This brings us the the main problems that we consider in this work:

Is there a 3-party DORAM which is asymptotically optimal in terms of
computational overhead and concretely efficient? Additionally, is there an

efficient actively secure DORAM?

1.1 Our Contributions

An optimal 3-party DORAM. We present an asymptotically optimal and
concretely efficient 3-party DORAM in the honest majority setting. Specifi-
cally, our DORAM has computational overhead of O(logN) and the hidden
constant is rather small. The block size of our construction is Ω(logN). Our

5 The protocol of Lu and Ostrovsky [44] is in the multi-party setting where there
are two non-communicating servers and a single trusted lightweight client (see Sec-
tion 1.3). Faber et al. [21] observed that the client in [44]’s scheme can be efficiently
simulated by an MPC.
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Ref. Communication Computation Security Block size Hidden const.

[49] O(log3N) O(log3N) Passive Ω(logN) Large

[44, 21] O(logN) O(logN) Passive Ω(logN) Large

[57, 21] O(logN) O(logN) Passive Ω(log2N) Large

[8] O(
√
N) O(

√
N) Passive Ω(logN) Small

[23] O(logN) O(log2N) Passive Ω(logN) Small

Our O(logN) O(logN) Passive Ω(logN) Small

Our O(logN) O(logN) Active ω(log2N) Small

Table 1. Summary of known 3-party DORAMs in the honest majority setting together
with our own schemes. The first column points to the paper that obtained the DORAM.
The second column states the communication overhead of the proposed construction.
The third column states the computational overhead of the proposed construction. The
fourth column states whether the security guarantee is for passive or active attackers.
The fifth column mentions the block size used in the construction. Lastly, the sixth
column states whether the hidden constants are considered large or small.

DORAM requires (amortized) only 4 logN oblivious pseudorandom function
(OPRF) calls per access. This is about 2 times greater than that of the DO-
RAM of Falk et al. [23],6 but it is significantly more efficient than the known
optimal DORAM of Lu and Ostrovsky [44, 21] that requires at least 100 logN
calls per access (see Appendix A for more details). This protocol is secure against
passive (honest-but-curious) attackers.

A distributed oblivious permutation: Our main technical novelty is a
new (concretely efficient and asymptotically optimal) 3-party oblivious permu-
tation protocol. Our protocol can apply any permutation to the data with com-
munication of 4nb + 2ndlog ne bits and 12nb + 2ndlog ne local CPU computa-
tion steps where n is the number of data elements to be shuffled and b is the
bit-length of each data element. We also construct a procedure to invert that
permutation. This procedure requires 8nb+2ndlog ne bits of communication and
19nb+ 2ndlog ne steps of local computation.

A distributed oblivious hash table: Our DORAM construction is mod-
ular and, at a high level, is reminiscent of the hierarchical ORAM technique
of Goldreich and Ostrovsky [27]. Recall that [27]’s hierarchical method basically
reduces the problem of maintaining a memory to the problem of building a static
hash table (supporting only lookups after an initial build). To this end, we imple-
ment a concretely efficient distributed oblivious hashing scheme. This is the first
concretely efficient and asymptotically optimal distributed oblivious hash table
construction. To store n data blocks of size b bits into a distributed hash table,
each party needs to perform at most O(n · (b+ dlog ne)) local CPU computation
steps, and our lookup protocol requires O(b) +O(σ · b) local CPU computation

6 Here, we emphasize again that the DORAM of Falk et al. [23] requires Ω(log2N)
computational cost in addition to the communication cost. We only have O(logN)
computational cost.
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steps, where the first term for a lookup in a main table and the second for a lin-
ear scan of a σ-size stash. The storage size of the hash table is O(nb). We obtain
our distributed oblivious hash table by first randomly permuting the data to
be hashed (using the above-mentioned permutation protocol) and then simply
invoking an off-the-shelf (non-oblivious) distributed hashing technique.

Active security. We extend our passively secure schemes from above to be
actively secure, without hurting efficiency, except that we rely on somewhat
larger blocks. Specifically, we get a 3-party DORAM with O(logN) computa-
tional overhead and block size ω(log2N). As far as we know, this is the first
result achieving active security for DORAM with practical efficiency guaran-
tees. We do not know how to achieve similar concrete efficiency guarantees with
logarithmic size blocks and we leave it as an exciting open problem.

1.2 Technical Overview

Before showing the fundamental idea of our schemes, we first revisit the optimal
DORAM of Lu and Ostrivsky [44, 21]. Their DORAM consists of a hierarchy
of permuted arrays, i.e., oblivious hash tables, that are managed by multi-party
protocols while hiding access patterns. The fundamental idea of their oblivious
hashing (which comes from the 2-server setting [44]) is as follows. One of the
two servers is the permuter, and set other is the storage. The storage sends all
data that should be permuted to the permuter while rerandomizing, and the
permuter constructs a hash table consisting of the data. The permuter sends the
hash table to the storage while rerandomizing. Now, the storage can explore the
table with a (randomized) query.

Though the storage can observe the access patterns on the table directly in
the above scheme, the access patterns achieve one-shot obliviousness against the
storage since it does not know the permutation for building the table. In other
words, the table seems to be shuffled from the storage’s point of view, and hence
the single-short exploration of elements is randomized. On the other hand, since
the permuter does not observe any access on the table, it never knows the access
patterns even if it knows how to construct the table.

Due to the ingenuity of the server role splitting, they achieved optimal DO-
RAM with optimal oblivious hashing. However, as Falk et al. [23] pointed out,
while this DORAM is asymptotically optimal it is not practically efficient because
of the large frequency of rerandomizations required. Their rerandomization can
be implemented by oblivious pseudorandom function (OPRF) in the context of
secure multiparty computation, but as mentioned in [23], the DORAM of Lu
and Ostrovsky requires at least 100 logN OPRFs per access. Falk et al. im-
proved this by a factor of 50, at the expense of increased local computation
overhead—O(log2N) local hash function evaluations per access.

An oblivious distributed permutation protocol. Our starting point is the
idea of role splitting, but with a novel modification that maintains optimality
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and greatly improves practical efficiency. Our fundamental idea is as follows. Set
the role of one of the three servers as the permuter; this server knows a permu-
tation for hashing. The other two servers will be the storage that holds data in
a secret-shared form. The servers obliviously compute hash values of all secret-
shared data (which can be implemented by ORPFs) and reveal them to the
permuter. The permuter calculates a permutation that sorts the data to make
a hash table. The servers run a role-asymmetric oblivious permutation to apply
the above permutation to the data obliviously. As the output of this protocol,
the two storages obtain a hash table in secret-shared form. Now, the storages
can explore the table with a secret-shared query.

By the description above, only one round of OPRF evaluations is required to
build a hash table. Our permutation protocol is for 3-party computation, and if
one party knows a permutation, it can apply the permutation to a secret-shared
array in linear time while keeping the permutation secret from the other two
parties (see Section 4.1 for more details).

From an oblivious distributed permutation to a DORAM. We obtain
a DORAM using only 4 logN OPRF evaluations and optimal computational
complexity per access. This is obtained via the following very useful observations:
(1) given an oblivious permutation protocol, there is an extremely efficient way
to get an oblivious distributed hash table, and (2) given the latter, we can
adapt the hierarchical ORAM framework (or its optimizations) to the distributed
setting. We elaborate on both bullets next. First, we observe that the shuffle-
sort paradigm can be applied to hashing: if data is randomly shuffled, we can
invoke an insecure oblivious hashing algorithm. This allows us to completely get
rid of complicated (distributed) oblivious hashing approaches by first shuffling
the input and then invoking a simple hashing procedure. Concretely, we use
(plain) cuckoo hashing with a stash [36] to achieve constant lookup time (ignoring
scanning a logarithmic-size stash, which we will do once per logical access).

Once we have obtained our distributed hash table, we plug it into the hi-
erarchical ORAM setting, while extending it to the distributed setting. I.e., we
implement every level in the hierarchy with an oblivious distributed hash table,
as above, and where each level can hold twice more elements than its previous
level. The stashes from all levels are merged into one common stash and scanning
it is done once per lookup.

Maliciously secure DORAM. In our permutation protocol roles of parties
are asymmetric, and in particular, the permuter has complete control over the
chosen permutation. Thus, it is non-trivial to extend our ideas to the malicious
setting.

To this end, we augment our permutation evaluation protocol to check that
all elements in a hash table are actually in their correct cell. The key insight
is that the correctness of a hash table can be evaluated by hash values of ele-
ments calculated by OPRF whose correctness (in turn) can be guaranteed using
a known actively secure MPC framework. That is, comparing the virtual address
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(obtained obliviously by OPRF) and the real address (known by all parties) of
each element in a hash table, the correctness of the table can be achieved regard-
less of whether the permuter is the adversary or not. We observe that any attack
of the permuter can be translated into some form of an additive attack [24, 25].
Thus, to achieve malicious security, we incorporate the permutation evaluation
into an efficient evaluation process of security-with-abort MPC (e.g., [13, 32, 35])
and only need to deal with “additive attacks”. This makes our hash table vali-
dation have almost no effect on overall efficiency.

Organization

We describe our passively secure oblivious permutation and oblivious hashing in
Section 4. We combine them to get our passively secure DORAM in Section 5.
The actively secure extension is described in Section 6.

1.3 Related Works

Standard ORAM. The first ORAM, i.e., in the client-server model, was in-
troduced by Goldreich and Ostrovsky [26, 48, 27]. Their best scheme had poly-
logarithmic overhead in the memory size. The also proved a lower bound for
a restricted class of schemes saying that logarithmic overhead is necessary [7].
Larsen and Nielsen [40] (see also [34, 37]) showed that logarithmic overhead is
inherent for all schemes as long as they support “online” accesses.

There have been significant efforts to improve the overhead of ORAMs, both
asymptotically and concretely [28, 55, 38, 56, 57, 11, 51, 3, 5]. A few years ago,
Asharov et al. [3] (building on Patel et al. [51]) got an asymptotically optimal
ORAM with logarithmic overhead. The constants underlying their scheme are
enormous (due to the use of certain expander graphs; see also [19]) which makes
it far from being practically useful. The best ORAM for practical purposes is
still based on Path ORAM [56], a technique that suffers from log2 overhead in
the memory size.

Multi-server ORAM. Another model that received significant attention is
the multi-server ORAM setting. Here, there are multiple servers and a client.
The client can communicate with each server but the servers cannot commu-
nicate amongst themselves. As in the client-server setting of ORAM, the client
has a small trusted memory. The adversarial model is that only some fraction
of the servers are corrupted, making it possible for more efficient solutions than
in the standard single-server ORAM setting. This model was first introduced
by Lu and Ostrovsky [44] who proposed a two-server ORAM with logarithmic
communication overhead. By now, we have schemes with the same asymptotic
overhead in the single-server setting [3]. Assuming larger block size, Kushilevitz
and Mour [39] achieved a multi-server ORAM with sub-logarithmic communica-
tion from the client but poly-logarithmic work by the servers. Hoang et al. [30]
proposed a multi-server ORAM with constant client-server communication over-
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head using secret sharing and MPC techniques. Lower bounds for this setting
were proven by Larsen et al. [41].

Actively secure ORAM. Since Ren et al. [53] introduced an actively secure
ORAM in the standard model, various actively secure ORAMs have been pro-
posed. Devadas et al. [18] proposed a generic construction of ORAMs that guar-
antees the correctness of metadata in the standard model. Also, Blass et al. [6]
and Maffei et al. [45] proposed standard ORAMs (with multiple clients) that
force the dishonest server or clients to behave correctly. Hoang et al. [29] con-
struct a maliciously secure multi-server ORAM that detects servers that deviate
from the protocol.

However, in the distributed model, no concrete construction for actively se-
cure DORAM has been proposed.

2 Preliminaries

For an integer n ∈ N, we denote by [n] the set {0, . . . , n − 1}. By ‖ we denote
the operation of string concatenation.

Throughout this work, the security parameter is denoted λ, and it is given
as input to algorithms in unary (i.e., as 1λ). A function negl : N → R+ is
negligible if for every constant c > 0 there exists an integer Nc such that
negl(λ) < λ−c for all λ > Nc. Two sequences of random variables X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable if for any probabilis-
tic polynomial-time algorithm A, there exists a negligible function negl(·) such
that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ negl(λ) for all λ ∈ N. We say

that X ≡ Y for such two sequences if they define identical random variables for
every λ ∈ N.

Definition 2.1 (Pseudorandom functions (PRFs)). Let F be an efficiently
computable function family indexed by keys sk ∈ {0, 1}λ, where each Fsk takes
as input a value x ∈ {0, 1}n(λ) and outputs a value y ∈ {0, 1}m(λ). A function
family F is a secure pseudorandom function (PRF) if for every (non-uniform)
probabilistic polynomial-time algorithm A, there is a negligible function negl(·)
such that∣∣∣∣ Pr

sk←$ {0,1}λ

[
AFsk(·)(1λ) = 1

]
− Pr
u←$Uλ

[
Au(·)(1λ) = 1

]∣∣∣∣ ≤ negl(λ) ,

for all λ ∈ N, where Uλ is the set of all functions mapping {0, 1}n(λ) to {0, 1}m(λ).

It is known that one-way functions are existentially equivalent to PRFs for
any polynomial n(·) and m(·) [31, 46]. Our construction will employ PRFs in
several places and we present each part modularly with its own PRF, but note
that the whole DORAM construction can be implemented with a single PRF
from which we can implicitly derive all other PRFs.
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2.1 Secret Sharing Schemes

A (threshold) secret sharing scheme (SSS) is a cryptographic primitive that
allows to “split” a secret between a collection of parties such that a set of parties
of some predefined cardinality can reconstruct the secret. A “piece” that is held
by a party is called a share. When a secret is split intom shares and reconstructed
with at least t+ 1 shares, we refer to such a scenario as (t,m)-SSS.

To share and reconstruct a secret, we introduce three functionalities as fol-
lows. We use the notations [[·]]i to represent the share of party i ∈ [m].

– FShare receives a secret s and distributes the shares among the parties; share
[[s]]i is sent to party i.

– FReveal receives shares [[s]]i from at least t+ 1 parties, recovers the secret s,
and sends it to all parties.

– FPReveal behaves the same as FReveal except that it sends the recovered secret
s only to parties ∈ P.

Also, we use the notations 〈·〉i∈{0,1} to represent the shares in a (1, 2)-
additive SSS, i.e., a = 〈a〉0 + 〈a〉1 for any secret a. Under Shamir’s SSS [54]
or the replicated SSS [33], any two parties Pi, Pi+1 mod 3 can convert their shares
[[s]]i, [[s]]i+1 mod 3 to 〈s〉0, 〈s〉1 by performing local computation.

We extend the notation to sharing arrays. For an array A of length X, we
denote its x-th element by A[x]. When secret sharing such an array, we denote
its sharing by [[A]] := ([[a0]], . . . , [[aX−1]]) and 〈A〉 = (〈a0〉, . . . , 〈aX−1〉), where
ax = A[x].

For concreteness and clarity of this work, we assume that all shares [[s]] are
of the (1, 3)-replicated SSS on the extension field Z2` as [2, 15], i.e., for any

s =
∑`−1
i=0 si2

i; si ∈ Z2, its share is of the form [[s]] =
∑`−1
i=0 [[si]]2

i. In this setup,
all shares have the following properties.

Linear homomorphism. The replicated SSS [33], by definition, support share-
to-share addition by performing only local operations on each parties shares.
That is, for any a, b, c ∈ Z2` , without any interaction, the parties can compute

[[a]] + [[b]] = [[a+ b]] and c× [[a]] = [[ca]].

We extend the above notation and operations to arrays of secrets. For any
arrays [[A]] = ([[a0]], . . . , [[aX−1]]) and [[B]] = ([[b0]], . . . , [[bX−1]]) where ai, bi ∈ Z2` ,
we denote entry-wise addition as [[A]]+[[B]] := ([[a0]]+[[b0]], . . . , [[aX−1]]+[[bX−1]])
and entry-wise multiplication by a scalar as c× [[A]] := (c× [[a0]], . . . , c× [[aX−1]]).

Bit-decomposition. Since all shares are of the form [[s]] =
∑`−1
i=0 [[si]]2

i where
each [[si]] is a share of the replicated SSS on Z2, parties can perform the bit-
decomposition operation [[s]]→ ([[s`−1]], . . . , [[s0]]) by their local conversion.

2.2 Distributed Oblivious RAM

A RAM consists of a memory of N cells and each cell is of size w bits and it
allows for “clients” to perform read and write operations of the form (op, addr, d),
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where op ∈ {read,write}, addr ∈ [N ] and d ∈ {0, 1}w ∪ {⊥}. If op = read, then
d = ⊥ and the returned value is the content of the block located in logical address
addr in the memory. If op = write, then the memory data in logical address addr
is updated to d. We can think of this as an ideal (reactive) functionality FRAM

that supports the following operation:

FRAM :

– v ← Access(op, addr, d): The input is an operation op ∈ {read,write}, a key
addr ∈ [N ], and a value d ∈ {0, 1}w ∪ {⊥}. An internal size N array X,
initialized to all 0s, is maintained. The procedure does:

1. If op = read, then set d∗ = X[addr].

2. If op = write, then set X[addr] = d and d∗ = d.

3. Output d∗.

Distributed oblivious simulation. Our goal is to simulate a RAM correctly
while guaranteeing the standard security notion of secure multi-party computa-
tion. Towards this goal, we have m servers that can communicate between them-
selves over a fully connected network in synchronous rounds of communication.
Each server can further perform arbitrary local computation between rounds. We
model each server machine as a RAM. The view of each machine includes the
contents of its own memory and the contents of the incoming messages, where
the latter include addresses of memory cells to access. Such a secure system is
called Distributed Oblivious RAM (DORAM). The security guarantee stipulates
that the view of a colluding subset of dishonest servers cannot learn anything
about the computation being performed, except what is absolutely necessary
(e.g., the length of the computation). We shall consider a passive (semi-honest)
or active (malicious) adversary who controls up to t < m servers.

We shall define distributed oblivious simulation with respect to an arbitrary
(possibly reactive or stateful) functionality. The definition for the RAM function-
ality will be implied as a special case. For concreteness, it is convenient (though
not necessary) to imagine that the input and RAM state are secret-shared be-
tween the servers, that is, each party holds one out of m shares of the RAM, and
operations from a client are also written to each server in a secret shared fashion.
We follow the real-ideal paradigm by defining two “worlds” and requiring that
they are indistinguishable (following, e.g., Canetti [9]).

Definition 2.2 (View). The view of party i consists of its auxiliary input and
randomness followed by the honest input and all the messages sent and received
by the party during the computation. Since we model parties as RAMs, the in-
coming and outgoing messages contain physical memory locations.

In what follows, we suppress mentioning the auxiliary information to simplify
notation and presentation. All of the definitions and results readily extend to
the setting where auxiliary input is present.
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Non-reactive functionalities. Let F be a non-reactive functionality. Let Π
be a distributed protocol implementing F , C ⊆ [m] be the set of ≤ t corrupted
servers, and Sim be a PPT simulator. Denote C̄ = [m] \ C. We introduce the
following experiments to define active (malicious) security and remark the nec-
essary changes for passive (semi-honest) security.

– RealnrΠ,C,A(λ, {xi}i∈[m]) : Run the protocol with security parameter λ, where
honest parties (ones not in C) run the protocol Π honestly with their private
input x∗i = xi, whereas corrupt parties (ones in C) get the corresponding
xi’s but can deviate from the prescribed protocol arbitrarily, according to
A’s strategy. Let Vi be the view of server i ∈ C throughout the execution and
let yi be the output of some honest party i ∈ C̄. Output ({Vi}i∈C , {yi}i∈C̄).

In the passive (semi-honest) setting, the experiment is the same except that
corrupt parties use x∗i = xi and they follow the specification of the protocol
(i.e., A is passive).

– IdealnrF,Sim,C,A(λ, {xi}i∈[m]) : First, the adversary sees the inputs of corrupted
parties {xi}i∈C and outputs {x∗i }i∈C that may depend on them. Denote
x∗i = xi for each i ∈ C̄. Then, we invoke the functionality y1, . . . , ym ←
F(x∗1, . . . , x

∗
m). Finally, the simulator is executed and the following pair is

outputted (SimA(λ,C, {x∗i }i∈C), {yi}i∈C̄).

In the passive (semi-honest) setting, the experiment is the same except that
the adversary is passive and uses x∗i = xi.

A distributed protocol obliviously simulates a functionality F against active
(resp. passive) adversaries if the corrupted servers in the real world have views
that are indistinguishable from their views in the ideal world.

Definition 2.3 (Distributed oblivious simulation of non-reactive func-
tionalities). An m-server protocol Π (t,m)-obliviously simulates F if for any
attacker there exists a PPT simulator Sim such that, for every subset of t pas-
sive/active corrupt parties C, any non-uniform PPT adversary A, and all inputs
x0, . . . , xm−1, the distributions RealnrΠ,C,A(λ, {xi}i∈[m]) and IdealnrF,Sim,C,A(λ, {xi}i∈[m])
are computationally indistinguishable.

Reactive functionalities. A reactive functionality is one that can be repeat-
edly invoked and it may keep an internal secret state between invocations (a
RAM is, in particular, a reactive functionality). The adversary A chooses the
next operation (op, {xi}i∈[m]) adaptively in each stage. In the real execution, the
corrupt parties may deviate arbitrarily from the prescribed protocol and the goal
is to ensure that they do not learn anything beyond what is absolutely necessary.
That is, we execute the protocol in the presence of the malicious adversary. In
the ideal execution, the adversary obtains inputs {xi}i∈C and may choose new
inputs {x∗i }i∈C . The new inputs are fed (together with the inputs of the honest
parties) into the functionality F which outputs an output {yi}i∈C̄ . At this point,
using the output of malicious parties, a simulator must simulate the view of the
malicious parties, including their internal state and the obtained messages (and
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access pattern) from other servers. The adversary can then choose the next com-
mand, as well as the next input, in an adaptive manner, based on everything it
has seen so far.

Definition 2.4 (Distributed oblivious simulation of a reactive function-
ality). We say that a stateful protocol Π is a (t,m)-distributed oblivious imple-
mentation of the reactive functionality F if there exists a stateful PPT simula-
tor Sim, such that for any non-uniform PPT (stateful) adversary A, the view
of the adversary A in the following two experiments RealΠ,C,A(λ, {xi}i∈[m]) and
IdealF,Sim,C,A(λ, {xi}i∈[m]) is computationally indistinguishable:

RealΠ,C,A(λ, {xi}i∈[m]):

Let (op, {xi}i∈[m])← A
(
1λ
)
.

Loop while op 6= ⊥:
Let x′i = (op, xi) for each i ∈ [m].
{Vi}i∈C , {yi}i∈C̄

← RealnrΠ,C,A
(
λ, {x′i}i∈[m]

)
.

(op, {xi}i∈[m])
← A

(
1λ, {Vi}i∈C , {yi}i∈C̄

)
.

IdealF,Sim,C,A(λ, {xi}i∈[m]):

Let (op, {xi}i∈[m])← A
(
1λ
)
.

Loop while op 6= ⊥:
Let x′i = (op, xi) for each i ∈ [m].
{Vi}i∈C , {yi}i∈C̄
← IdealnrF,Sim,C,A(λ, {x′i}i∈[m]).

(op, {xi}i∈[m])
← A

(
1λ, {Vi}i∈C , {yi}i∈C̄

)
.

3 Secure Computation Building Blocks

Our schemes rely on various existing building blocks from the secure computa-
tion literature. To encapsulate these building blocks, we assume the existence of
an Arithmetic Black Box (ABB) functionality, FABB, which is a (reactive) multi-
party functionality. FABB should consist of functions Mult,Rnd,Reshare,
Eq, IfElse,Bitext,Trunc, and Prf, each listed below.

To simplify the notation, we denote “calling a function p of FABB” as “calling
Fp”, e.g., “parties call FMult” represents that the parties invoke FABB to call
its function Mult with their inputs.

Assuming that all secrets are in Z2` , all implementations we introduce below
consumes O(`)-bit communication and O(`) local CPU computation steps.

Multiplication. Let FMult be a secure multiplication functionality that re-
ceives [[a]] and [[b]] and returns [[ab]]. For the (1, 3)-replicated SSS on the extension
field Z2` , we can use the implementation of Araki et al. [2] or Chida et al. [15].

For ease of notation, we occasionally denote FMult as [[a]]× [[b]].

Generating random shares. Let FRnd be a functionality that requires no
inputs but returns a share [[r]] of a secret random value r. In the (1, 3)-replicated
SSS, since the form of shares is [[a]]i mod 3 = (ai, ai+1); a = a0 +a1 +a2, FRnd is
simply implemented in information-theoretical security as that: Each party Pi
locally generate a random ri, send it to Pi−1 and set [[r]]i as (ri, ri+1).

It is also known that, trading off the information-theoretical security, a
pseudorandom r can be shared without any communication excepting a pre-
computation. This is called Pseudorandom Secret Sharing (PRSS) [16].
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Resharing. Let FReshare be a functionality that receives 〈a〉0 and 〈a〉1, and
returns [[a]]. It can be simply implemented as that the parties Pi0 and Pi1 , who
have 〈a〉0 and 〈a〉1 respectively, secret-shares their shares as [[〈a〉i]] for all parties
and then they observe [[a]] = [[〈a〉0 + 〈a〉1]]. Under the use of PRSS, the slightly
efficient implementation is known [14].

Equality test. Let FEq be a functionality that receives [[a]] and [[b]] then re-
turn [[c]] where c ∈ {0, 1} is equal to (a =? b). Though there are numerous
implementations of these functionalities, for concreteness, we expect to use the
one of Catrina and de Hoogh [10].

Selection. Let FIfElse be a functionality that receives [[c]], [[t]] and [[f ]] such
that c ∈ {0, 1}, and returns [[t]] if c = 1, or [[f ]] otherwise. Observe that FIfElse

is equal to f + c(t− f).

Bit operations. Let FBitext,FTrunc, and FR Shift each be a functionality that
receives shares [[a]], whose bit-representation is a = a` . . . a1, and an integer
i; 1 ≤ i ≤ `, then returns the following output:

– FBitext([[a]], i)→ [[ai]] s.t. ai(∈ {0, 1}) is the i-th least significant bit of a.
– FTrunc([[a]], i)→ [[a′]] s.t. a′ = a` . . . ai+1 ‖ 0i.
– FR Shift([[a]], i)→ [[a′]] s.t. a′ = 0i ‖ a` . . . ai+1.

Based on the local bit-decomposition described in Section 2.1, FBitext can
be implemented straightforwardly as that: For [[a]] =

∑`−1
i=0 [[ai]]2

i, parties extract

the target bit [[ai]], generate [[~0]] =
∑`−1
i=0 [[0]]2i, and compute [[~0]]+([[ai]]2

0). FTrunc

and FR Shift can be realized in the similar way.

Oblivious PRF (OPRF). Let FPrf be a functionality that receives shares
[[sk]] and [[x]] from all parties and sends them [[y]] where y is given by a PRF Fsk(x).
A combination of known oblivious block ciphers [1, 15, 17, 42] and FR Shift

implements FPrf.

4 Efficient Passively Secure Distributed Oblivi-
ous Hashing

A (static) hash table is a data structure supporting three operations Build,
Lookup, and Extract, that realizes the following reactive functionality. The
Build procedure creates an in-memory data structure from an input array I
containing real and dummy elements where each element is a (key, value) pair.
Dummy elements have their key be ⊥. It is assumed that all real elements in
I have distinct keys. The Lookup procedure allows a requestor to look up the
value of a key. A ⊥ symbol is returned if the key is not found or if ⊥ is the
requested key. We say a (key, value) pair is visited if the key was searched
for and found before. Finally, Extract is the destructor and it returns a list
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containing unvisited elements padded with dummies to the same length as the
input array I.

The description of this functionality, denoted FHT, is described next:

FHT :

– Build(I): The input is an array I = (a1, . . . , an) containing n elements,
where each ai is either dummy or a (key, value) pair denoted ai = (ki, vi).
It is assumed that keys and values fit into O(1) memory words and that all
real keys are distinct. The procedure does:
1. Initialize the state H = (I,P) where P = ∅.

– Lookup(k): The input is a key k (that might be ⊥, i.e., dummy). The
procedure does:
1. If k ∈ P (i.e., k is a recurring lookup), then halt and return ⊥.
2. If k = ⊥ or k /∈ I, set v∗ = ⊥.
3. Otherwise, set v∗ = v, where v is the value corresponding to k(∈ I).
4. Update P = P ∪ {k}.
5. Output v∗.

– Extract(): The procedure does:
1. Define I′ = {a′1, . . . , a′n} such that: For i ∈ [n], set a′i = ai if ai = (k, v)

and k /∈ P. Otherwise, set a′i = ⊥.
2. Output I′.

In this section, we propose a simple (1, 3)-distributed oblivious implemen-
tation of FHT that is inspired by Lu et al. [44]. Since Lu’s DORAM requires
too many (at least 100 logN) OPRF calls for distributed blocks, the practical
computation cost becomes expensive even if the asymptotic overhead is down
to O(logN). To reduce the practical computation complexity without increasing
the asymptotic overhead, we construct a concretely efficient distributed oblivious
hashing from a simple new permutation protocol for 3-party computation.

In a very high level, our distributed oblivious hashing scheme works as follows
(assuming a permutation protocol):

1. Starting with (1, 3)-shares of input blocks, the parties securely compute
(pseudorandom) addresses for the blocks to be placed.

2. The parties divide their roles into one permuter and two storages, and then
only the permuter reveals the addresses of the blocks.

3. The permuter computes a permutation for the blocks, which is a sorting
permutation depending on the addresses.

4. The parties obliviously apply the permutation (that is secret for the storages)
and the storages receive the (1, 2)-shares of the permuted blocks.

5. Now, the permuted blocks can take the form of some hash table (if the
permutation is valid), and only the storages can access the table.

4.1 Distributed Oblivious Permutation

As a building block for our distributed oblivious hash table, we first construct an
efficient 3-party secure permutation protocol. The precise functionality that we
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implement is described below. This section is devoted to the implementation of
these functionalities via a 3-party protocol where at most one may be corrupted.

FPerm :

1. Receive a permutation π from the permuter P , and receive (1, 3)-shares of
an array [[I]] from all parties.

2. Obtain I, compute π · I, and choose a random string R of the same size as I.

3. Send 〈I′〉0 = R to the first storage S0 and 〈I′〉1 = π · I−R to the second S1.

FUnperm :

1. Receive a permutation π from the permuter P and 2-out-of-2 shares of an
array 〈I〉0, 〈I〉1 from the storages S0, S1.

2. Reconstruct I and compute π−1 · I.

3. Return [[I′]]← FShare(π−1 · I) for all parties.

Lemma 4.1 (Realization of FPerm). There is a (1,3)-distributed oblivious
implementation, described as Algorithm 1, of FPerm in the presence of a passive
adversary that controls one party. The protocol consumes 4nb+ 2ndlog ne bits of
communication and 12nb + 2ndlog ne local CPU computation steps where n is
the number of blocks in the input array and b is the bit-length of each block. It
also consumes 2 communication rounds.

Lemma 4.2 (Realization of FUnperm). There is a distributed 3-party proto-
col, described as Algorithm 2, that securely realizes FUnperm in the presence of
a passive adversary that controls one party and in the FReshare-hybrid model.
By composition and using the implementation of FReshare described in Sec-
tion 3, the protocol consumes 8nb + 2ndlog ne bits of communication cost and
19nb + 2ndlog ne local CPU computation steps where n is the number of blocks
in the input array and b is the bit-length of each block. It also consumes 3 com-
munication rounds.

Algorithm 1 (·, 〈I′〉0, 〈I′〉1)← ΠPerm((π, [[I]]0), [[I]]1, [[I]]2)

Notation: P is the “permuter” and S0, S1 are two “storages.”
Require: P has a permutation π and each party has shares of an array [[I]].
Ensure: I′ = π · I.
1: P and S0 convert their (1, 3)-shares [[I]]0, [[I]]1 to (1, 2)-shares 〈I〉0, 〈I〉1, respectively.
2: P chooses random strings U,V of the same size as 〈I〉0, and random permutations
π0, π1 s.t. π1 ◦ π0 = π.

3: P sends U,V, π0 to S0 and Ĩ0 := π · 〈I〉0 − π1 ·U−V to S1.

4: S0 sends Ĩ1 := π0 · 〈I〉1 + U to S1.

5: S0 outputs 〈I′〉0 := V, and S1 outputs 〈I′〉1 := Ĩ0 + π1 · Ĩ1.



16 A. Ichikawa et al.

Algorithm 2 [[I′]]0, [[I
′]]1, [[I

′]]2 ← ΠUnperm(π, 〈I〉0, 〈I〉1)

Notation: P is the “permuter” and S0, S1 are two “storages.”
Require: P has a permutation π and S0, S1 have a shares 〈I〉0, 〈I〉1, respectively.
Ensure: I′ = π−1 · I.
1: S1 chooses a random strings U,V of the same size as 〈I〉0.
2: P chooses random permutations π0, π1 s.t. π1 ◦ π0 = π.
3: S1 sends U to P and V to S0. P sends π0 to S0 and π1 to S1.
4: S0 sends Ĩ0 := 〈I〉0 + V to P . S1 sends Ĩ1 := π−1

1 · (〈I〉1 −V)−U to S0.

5: P computes 〈I′〉0 := π−1 · Ĩ0 + π−1
0 ·U, and S0 computes 〈I′〉1 := π−1

0 · Ĩ1.
6: Parties call FReshare to convert 〈I′〉0, 〈I′〉1 to [[I′]]0, [[I

′]]1, [[I
′]]2.

Proof of Lemma 4.1. The output of S0 is V and the output of S1 is

Ĩ0 + π1 · Ĩ1 = π · 〈I〉0 − π1 ·U−V + π1 ◦ π0 · 〈I〉1 + π1 ·U
= π · I−V.

Together, they form a (1, 2)-share of π ·I, as needed for correctness. The claimed
efficiency follows by direct inspection. The strings U and V are each nb bits
long, similarly to Ĩ0 and Ĩ0. The bit-length of π0 and π1 is ndlog ne, each.

For security, observe that the permuter P never receives any message and
does not have any output, and therefore it is trivial to simulate its view. Similarly,
the first storage server S0 only gets one message U,V, π0 (from P ), all of which
are uniformly random and independent of the inputs of all parties. The output of
S0 contains V and so overall it is immediate to simulate its view. The only case
remaining is when S1 is corrupted. Its view in the protocol consists of π1, Ĩ0, Ĩ1

which can be simulated by 3 uniformly random strings of appropriate length.
Indeed, Ĩ0 is masked by V and then Ĩ1 is masked by U, all of which are not
known to S1.

Proof of Lemma 4.2. Since we are in the FReshare-hybrid model, for correctness
we need to show that 〈I′〉0 + 〈I′〉1 = π−1 · I. Indeed,

〈I′〉0 + 〈I′〉1 = π−1 · (〈I〉0 + V) + π−1
0 ·U + π−1

0 · (π−1
1 · (〈I〉1 −V)−U)

= π−1 · I.
The claimed efficiency follows by direct inspection. The strings U and V are

each nb bits long, similarly to Ĩ0 and Ĩ0. The bit-length of π0 and π1 is ndlog ne,
each.

For security, if S1 is corrupted, we can easily simulate its view as it does
not receive any message except π1 which is uniformly random and independent
of the other inputs. If P is corrupted, then its again immediate to simulate its
view since it only receives U and Ĩ0 := 〈I〉0 + V throughout the execution,
both of which are uniformly distributed (in P ’s view). Lastly, assume that S0 is

corrupted. Its view consists of V, π0 and Ĩ1 := π−1
1 · (〈I〉1−V)−U. Since it does

not know U, the term Ĩ1 looks completely uniform and therefore the whole view
can be simulated by 3 uniformly random strings of the appropriate length.
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4.2 Distributed Oblivious Hashing

Equipped with the above permutation protocols, we proceed with our distributed
oblivious hashing scheme. The idea is simple to describe at a high level: given a
set of elements we first obliviously permute them and then we index the permuted
set using a non-oblivious efficient hashing scheme. For the latter, we use Cuckoo
hashing [50], a hashing paradigm that resolves collisions in a table by using two
hash functions and two tables, cleverly assigning each element to one of the
two tables, and enabling lookup using only two queries. The standard version
of Cuckoo hashing suffers from inverse polynomial probability of build failure
which does not suffice for our application (since we aim for negligible error). To
this end, we use a variant of Cuckoo hashing where items that cannot be stored
in one of the two tables are stored in a (typically small) “stash”. According to
Noble [47], for any number of elements n = ω(log λ), there exists Cuckoo hashing
that has the table of size τ = (1 + ε)n and the stash of size σ = Θ(log λ) with
negligible failure probability. Henceforth, we specify τ = 2n and σ = dlog λe for
concrete efficiency analysis.

To ease presentation of our implementations, we use the following notations
to represent shares of real/dummy blocks.

– Let [[d]] = ([[k]], [[v]]) be a share of a data block that contains shares of a key k
and value v.

– Let [[ddummy]] = ([[⊥]], [[⊥]]) be a share of a dummy block. We assume that ⊥
is a number greater than any real k.

– Let [[D]] = ([[d0]], . . . , [[dn−1]]) be a share of a dataset of size n.

Algorithm 3 constructs 2-out-of-2 shares of a Cuckoo hash table, (〈T〉, 〈S〉),
from 2-out-of-3 shares of a dataset [[D]]. In this protocol, the party assigned
the role of permuter obtains all addresses the data should be placed and then
computes a permutation π that moves the data to (one of) the corresponding
addresses. Now, parties can efficiently convert D into the table (T,S) via FPerm.

Algorithm 4 fetches a queried item from the Cuckoo hash table. The main
part of this protocol is that the parties assigned the role of storage obtain two
addresses of the queried item, access T of the location indicated by them, and
select the one out of the two items of T. When the parties receive a dummy
query, random locations of T are fetched.

Algorithm 5 is a deconstruction procedure that applies the inverted permu-
tation π−1 to the hash table. This π−1 sorts all real blocks in the hash table into
the order in which they were input to ΠBuild.

Lemma 4.3. Assume that the input array consists of n = ω(log λ) blocks and
each block is b bits. There exists a distributed 3-party protocol, described as Algo-
rithms 3, 4 and 5, that securely realizes FHT in the (FShare,FPReveal,FABB,FPerm,
FUnperm)-hybrid model and in the presence of a passive adversary that controls
one party.

– The Build procedure consumes O(n(b′ + dlog ne)) local computation steps.
– The Lookup procedure consumes O(b′ + b′ log λ) local computation steps.
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Algorithm 3 π, (〈T〉i, 〈S〉i)(i∈{0,1}), [[s0]], [[s1]], ctr,P← ΠBuild([[D]]0, [[D]]1, [[D]]2)

Notation: Let P be the permuter and S0, S1 be the storages. Let τ := |T| and σ := |S|
be the size of expected hash table (T,S) storing n items, and let n′ = τ + σ.

Require: Parties have (1, 3)-shares of a dataset [[D]]i∈{0,1,2} = ([[d0]]i, . . . , [[dn−1]]i).
Ensure: S0 and S1 obtain (1, 2)-shares of Cuckoo hash table, (〈T〉0, 〈S〉0) and

(〈T〉1, 〈S〉1), respectively. P obtains a permutation π, and all parties hold (1, 3)-
shares of PRF keys, [[s0]] and [[s1]]. Parties also hold a query counter ctr, and S0, S1

hold a set P, as their states.
(Computing pseudorandom addresses for the input data.)
1: Parties call FRnd to generate random PRF keys [[s0]] and [[s1]].
2: for all i ∈ [n] do
3: Parties call FEq to obtain [[isDummyi]] := [[ki =? ⊥]].
4: Parties call FIfElse to simulate:

If isDummyi = 1, then [[k̃i]] := [[⊥+ i]]; otherwise [[k̃i]] := [[ki]].
5: Parties call FPrf to obtain pseudorandom addresses [[addri,0]] and [[addri,1]] from

([[s0]], [[k̃i]]) and ([[s1]], [[k̃i]]), respectively.

(Building a Cuckoo hash table via permutation.)
6: Parties call FShare to generate an array [[E]] consisting of n′ − n dummy blocks.

7: Let [[D̃]] := [[D]] ‖ [[E]] be a concatenated dataset.

8: Parties call F{P}Reveal to reveal to P all addri,0, addri,1 for i ∈ [n].
9: P computes a permutation π : [n′] → [n′] that indicates the bin-placements of

Cuckoo hashing. That is, π says where to place [[D̃]]’s first n elements (i.e., the
elements of [[D]]), as indicated by either addri,0 or addri,1.

10: Parties call FPerm with π and [[D̃]] to make S0 and S1 obtain 〈D̃′〉0 and 〈D̃′〉1
respectively, where D̃′ = π · D̃.

11: Each Si for i ∈ {0, 1} organizes the array 〈D̃′〉i into a hash table 〈T〉i and stash

〈S〉i, by separating 〈D̃′〉i into the first τ and the last σ elements.
12: Parties set their state ctr = 0, and S0, S1 allocate an empty set P = ∅.
13: Return π, (〈T〉0, 〈S〉0), (〈T〉1, 〈S〉1), [[s0]], [[s1]], ctr,P

– The Extract procedure consumes O(nb′) local computation steps.

Furthermore, all those procedures consumes O(1) communication rounds.

Proof. The proof of security and correctness is given in Appendix B.1. We focus
on the efficiency analysis below.

Algorithm 3 consists of O(n) calls of FEq,FIfElse,FPrf,FShare, and FReveal,
and an invocation of FPerm. In Algorithm 4, the parties need to call FMult,FReshare,
FEq,FIfElse,FReveal, and FPrf O(1) times for the table lookup, and also call
FMult,FReshare,FEq, and FIfElse O(σ) times for exploring the stash. Lastly,
Algorithm 5 requires FUnperm at once. In addition, all iterative operations in
Algorithm 3, 4, and 5 can be performed in parallel.
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Algorithm 4 [[d]], [[found]]← ΠLookup([[k]], (〈T〉i, 〈S〉i)(i∈{0,1}), [[s0]], [[s1]], ctr,P)

Notation: Let P be the permuter and let S0, S1 be the storages. Let σ = |S|.
Require: [[k]] is a (1, 3)-share of an input key to be searched for. S0, S1 have the

distributed hash table (〈T〉i, 〈S〉i) and a set P. Parties have (1, 3)-shares of PRF
keys [[s0]], [[s1]] and a query counter ctr.

Ensure: d = (k, v), found = 1 if (T, S) contains (k, v). Otherwise, d = (0, 0), found = 0.
(Computing pseudorandom addresses to be fetched.)
1: Parties call FEq to obtain [[isDummy]] := [[k =? ⊥]].
2: Parties call FIfElse to simulate:

If isDummy = 1, then set [[k̃]] := [[⊥+ ctr]]; otherwise [[k̃]] := [[k]].

3: Parties call FPrf to obtain [[addr0]], [[addr1]] from ([[s0]], [[k̃]]), ([[s1]], [[k̃]]), respectively.

4: Parties call F{S0,S1}
Reveal to recover addr0, addr1 to both S0 and S1. If (addr0, addr1) ∈ P,

S0 and S1 halt. Otherwise, they update P← P ∪ {(addr0, addr1)}.
(Searching for the table T.)
5: for all i = 0, 1 do
6: Parties call FReshare to convert 〈T[addri]〉 = (〈ki〉, 〈vi〉) to ([[ki]], [[vi]]).
7: Parties call FEq to obtain [[isQueriedi]] = [[ki =? k]].
8: Parties call FIfElse and FMult to simulate:

If isDummy = 0 and isQueriedi = 1,
then found = 1, [[d]] = ([[ki]], [[vi]]), and 〈T[addri]〉 = 〈ddummy〉.

(Searching for the stash S.)
9: for all u ∈ [σ] do

10: Parties call FReshare to convert 〈S[u]〉 = (〈ku〉, 〈vu〉) to ([[ku]], [[vu]]).
11: Parties call FEq to obtain [[isQueriedu]] = [[ku =? k]].
12: Parties call FIfElse and FMult to simulate:

If isDummy = 0 and isQueriedu = 1,
then found = 1, [[d]] = ([[ku]], [[vu]]), and 〈S[u]〉 = 〈ddummy〉.

13: Parties increment ctr.
14: Return [[d]], [[found]]

5 Optimal DORAM Against Passive Adversary

In this section, we give our optimal 3-party DORAM that is secure against a
passive adversary who colludes with one of the three servers.

Let N ∈ poly(λ) be the memory size. Our DORAM is on the known hi-
erarchical paradigm, i.e. the data structure is built via a hierarchy of L :=
dlogN − log logNe distributed hash tables and one top-level array. All levels
i = 1, . . . , L in the hierarchy are implemented using our distributed oblivious
hash table FHT from Section 4.2. The size of the stash in our distributed oblivi-
ous hash table is set to σ = dlogNe. The top-level array can store up to c = 2σ
data blocks. The capacity of level i ∈ [L] is c2i−1. Each data block may be as-
sociated with metadata that is used to keep track of the location of an element.
Specifically, an “augmented data block” [[d̃i]] := ([[di]], [[lvi]]) consists of the main
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Algorithm 5 [[D]]0, [[D]]1, [[D]]2 ← ΠExtract(π, (〈T〉i, 〈S〉i)(i∈{0,1}))

Notation: Let P be the permuter and let S0, S1 be the storages.
Require: S0 and S1 have the distributed hash table (〈T〉0, 〈S〉0) and (〈T〉1, 〈S〉1),

respectively. P have the permutation π.
Ensure: A dataset D contains all real elements in T and S.
1: Each Si for i ∈ {0, 1} reorganizes 〈T〉i and 〈S〉i into an array 〈D̃〉i as D̃ = T‖S.

2: Parties call FUnperm with (π, 〈D̃〉0, 〈D̃〉1) to obtain [[D̃′]]j∈{0,1,2} where D̃′ = π−1 · D̃.

3: Let [[D]]j be the first n elements of [[D̃′]]i.
4: Return [[D]]0, [[D]]1, [[D]]2

data block [[di]] = ([[ki]], [[vi]]) and additional information [[lvi]]; lvi ∈ {0, 1}L−1

that indicates the levels to which [[d̃i]] is associated.7

Recall that each instance of HTi consists of two parts: the main table and
a stash. Looking forward, the stashes from all levels are combined to the top-
level array, as commonly done (e.g., in [44]). Thus, when we perform Lookup or
Extract to some HTi, we ignore stash-related operations (which will be done
in a centralized fashion at the beginning of the operation).

Theorem 5.1. There is a 3-party protocol, described as Algorithm 6 and 7, that
securely realizes FRAM in the (FABB,FHT)-hybrid model and in the presence of
a passive adversary that controls one party. The construction costs O(logN)
amortized computational overhead and O(logN) communication rounds with
Ω(logN) block size.

Proof. The proof of security is given in Appendix B.2. In addition, correctness
is clear from the algorithms since we are in the FHT-hybrid model,. Indeed, a
lookup is performed through the whole hierarchy and when an element is found,
it is re-inserted into the hierarchy. Hence, we focus on efficiency analysis next.

Algorthm 6 requires O(c) calls of FEq,FIfElse, and FMult, O(L) calls of
H.Lookup (without stash), and an invocation of ΠReshuffle, for c = L =
O(logN). For any block size b = Ω(logN) bits, this procedure requiresO(b logN)+
C computational steps where C is the amortized cost of ΠReshuffle. Algorithm 7
costs Hi.Extract for all i = 1, . . . , p, and Hp.Build at once, per c2p−1 access.

Hence, its amortized cost can be estimated as CReshuffle =
∑L
p=1

O(c2pb)
c2p−1 .

Concrete Efficiency. As we mentioned in Section 1.1, the overhead claimed
above depends on a small hidden constant. Specifically, our ΠAccess consists of
only 4 logN (amortized) calls of FPrf per access, that is 25 times smaller than
the known optimal DORAM [44]. For more detailed analysis, see Appendix A.

7 The metadata associated with each data blocks is used to avoid the stash-resampling
attack of [22], same as was done in [3, 4, 22].
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Algorithm 6 [[d]]← ΠAccess([[op]], [[k]], [[v′]])

Require: The input contains shares of an operation [[op]]; op ∈ {read,write}, key [[k]],
and value [[v′]].

Ensure: d = (k, v) if the ORAM holds (k, v), or d = (k, v′) if op = write. Otherwise,
d = (⊥,⊥).

(Searching for the top-level array.)

1: Allocate an empty data block [[d̃]] = ([[d]], [[lv]]) and initialize [[found]] = [[0]].
2: for all u ∈ [c] do

3: Parties retrieve [[d̃u]] = (([[ku]], [[vu]]), [[lvu]]) from the top-level array.
4: Parties call FEq to obtain [[foundu]] = [[ku =? k]].
5: Parties call FIfElse and FMult to simulate:

If found = 0 and foundu = 1, then found = 1 and [[d̃]] = [[d̃u]].

(Searching for the cuckoo hash table in the hierarchy.)
6: for i = 1 to L do
7: Parties call FBitext to obtain [[lvi]] where lvi is the i-th least significant bit of lv.
8: Parties call FIfElse and FMult to simulate:

If found = 1 and lvi = 0 then [[k̃]] := [[⊥]], otherwise [[k̃]] := [[k]].

9: Parties call HTi.Lookup([[k̃]]) with its state (〈Ti〉0, 〈Ti〉1, [[si,0]], [[si,1]], ctr,P)

to obtain [[d̃i]], [[foundi]].

10: Set [[d̃]] = [[d̃]] + [[d̃i]] and [[found]] = [[found]] + [[foundi]].

(Rewriting (if needed) and re-storing the retrieved data.)
11: Parties call FIfElse to simulate: If found = 0 then set [[d]] = [[ddummy]].
12: Parties also call FIfElse to simulate: If op = write then set [[d]] = ([[k]], [[v′]]).

13: Parties set [[d̃]] = ([[d]], [[0]]) and concatenate it into the end of the top-level array.
14: If the size of the top-level array is c, parties run ΠReshuffle() to refresh the hierarchy.
15: Return [[d]]

6 Actively Secure Extension

We extend our oblivious hashing and DORAM to be secure against an adversary
that can deviate from the prescribed protocols. Though it is almost feasible by
a generic framework of actively secure MPC, we require a new permutation
(Section 6.1) and verifying permutations protocol (Section 6.2) in addition.

By known frameworks of actively secure MPC with abort [13, 32, 35], we
assume that our protocols are in the flow of the following three phases:

– Randomization phase. For any share [[a]], parties compute [[ra]] with ran-
dom secret r and store ([[a]], [[ra]]) as the share of a with a MAC.

– Computation phase. Parties compute a target function F on input ([[a]], [[ra]])
while recording checksums. For example, let F = f0◦f1 and assume Πf0 , Πf1

that are protocols used to compute ([[f{0,1}(a)]], [[rf{0,1}(a)]]) from ([[a]], [[ra]])
and are futher secure up to additive attacks [25, 24]. Now, the parties allocate
a set of checksums S = ∅ and perform Πf2 and Πf1 in sequence to obtain
[[F (a)]] while storing all inputs and outputs of the protocols, i.e., ([[a]], [[ra]]),
([[f2(a)]], [[rf2(a)]]) and ([[F (a)]], [[rF (a)]]), into S.
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Algorithm 7 ΠReshuffle()

Require: p is the level s.t. all HTi<p in the hierarchy is filled and HTp is not.
Ensure: All HTi<p in the hierarchy become empty, and HTp is filled.
(Extracting all the data that needs to be reshuffled.)
1: Parties retrieve all c blocks from the top-level array and let them be an array [[A]].
2: For all i = 1, . . . , p−1, parties call HTi.Extract() with its state (πi, 〈Ti〉0, 〈Ti〉1) to

extract all real elements as [[Di]] and concatenate them to [[A]] as [[A]] = [[A]] ‖ [[Di]].

3: For all elements [[d̃j ]] = ([[dj ]], [[lvj ]]) of [[A]], parties call FTrunc to set the p-least
significant bits of lvj to 0.

(Building a new cuckoo hash table.)
4: Parties call HTp.Build([[A]]) to construct a distributed hash table(

πp, (〈Tp〉i, 〈Sp〉i)(i∈{0,1}), [[sp,0]], [[sp,1]], ctr,P
)
.

5: Parties call FReshare to convert 〈Sp〉i to [[Sp]] and store it to the top-level array.

6: For all[[d̃u]] = ([[du]], [[lvu]]) in the top-level array, call FEq and FIfElse to simulate:
If ki 6=⊥, set [[lvu]] = [[lvu]] + [[1]]2p−1 .

– Proof phase. To detect cheating, parties evaluate the shares and their
MACs recorded as checksums. Following the above example, the parties gen-
erate new random shares [[ρ0]], [[ρ1]] and [[ρ2]], and compute inner products

[[γ]] = ([[ρ0]]× [[a]] + [[ρ1]]× [[f2(a)]] + [[ρ2]]× [[F (a)]]) and

[[rγ]] = ([[ρ0]]× [[ra]] + [[ρ1]]× [[rf2(a)]] + [[ρ2]]× [[rF (a)]]).

The parties recover [[η]] = [[r]]× [[γ]]− [[rγ]], and if η 6= 0 then they abort.

For our DORAM, we should be more concerned about the form of shares than
in the passive security model. Since part of building blocks in Section 3, e.g.,
FPrf, requires bit-wise operations, we should assign MACs to bits a`−1, . . . , a0 ∈
Z2, instead of the whole a ∈ Z2` . According to Kikuchi et al. [35], we can provide
a MAC for a bit u ∈ {0, 1} as [[ru]] := ([[rκ−1u]], . . . , [[r0u]]) where each rj is in
Z2. To detect cheating with overwhelming probability 1−λω(1), this κ should be
ω(log λ). Hence, by encoding ([[a]], [[ra]]) as

(
([[a`−1]], . . . , [[a0]]), ([[ra`−1]], . . . , [[ra`−1]])

)
,

the FABB functionality described in Section 3 is also available in active security
model. Note that the communication and computation cost of each function in-
creases to O(`′) where `′ = ω(` log λ) is the bit-length of a share with MAC, and
the cost of the Proof phase is at most twice that of an original function [13].

To simplify the notation, we denote ([[a]], [[ra]]) as [[a]]m in the following.

6.1 Secure Oblivious Permutation Up To Additive Attacks

We start at constructing a secure permutation protocol up to additive attacks.
In contrast to Section 4.1, we assume that a permutation π provided by one
party has been already separated into π0 and π1 s.t. π = π1 ◦ π0 and shared
between parties. We discuss verification for the permutation π in Section 6.2,
and here we focus on cheating on an array that should be permuted.

Our permutation protocol described in Algorithm 1 relies on (semi-)honest
parties and is difficult to be converted to be secure up to additive attacks. In-
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stead, we construct a permutation protocol using a reshare-based shuffling as
in Ikarashi et al. [32]. Let FShuffle be a functionality for secure shuffling up to
an additive attack s.t. it receives shares of an array [[I]] and a permutation π
from honest parties and an array ∆ of the same size as I from an adversary,
then it returns [[π · I + ∆]]. Now, the following protocol, originally proposed by
Laur et al. [43], is the implementation of FShuffle that costs n calls of FReshare.

[[I′]]0, [[I
′]]1, [[I

′]]2 ← ΠShuffle((π, [[I]]0), (π, [[I]]1), [[I]]2) :

1. P0 and P1 convert their [[I]]i∈{0,1} to 〈I〉i and compute 〈I′〉i = π · 〈I〉i each.

2. Parties call FReshare to obtain [[I′]]{0,1,2} from 〈I′〉{0,1}.
3. Output [[I′]]{0,1,2}.

Algorithm 8 [[I′]]m0 , [[I
′]]m1 , [[I

′]]m2 ← Πactive
Perm ((π0, π1), [[I]]m0 , [[I]]m1 , [[I]]m2 )

Notation: Let P be the permuter and let S0, S1 be the storages. Let S be a set of
checksums.

Require: P has both π0, π1 and [[I]]m0 . Each Si=0,1 has πi and [[I]]mi+1.
Ensure: I′ = π · I and rI′ = π · (rI) where π = π1 ◦ π0.
1: Parties record their input shares into S as S = S ∪ {[[I]]m}, and let [[I′0]]m = [[I]]m.
2: for i = 0, 1 do
3: Parties call FShuffle with inputs πi and [[I′i]]

m to receive [[I′i+1]]m = [[πi · I′i]]m.
4: Parties record their shares into S as S ← S ∪ {[[I′i+1]]m}.
5: Parties store [[I′2]]m0 , [[I

′
2]]m1 , [[I

′
2]]m2 as [[I′]]m0 , [[I

′]]m1 , [[I
′]]m2 , respectively.

6: Return [[I′]]m{0,1,2}

Now, we achieve an actively secure permutation protocol for our distributed
oblivious hashing in the FShuffle-hybrid model. The detailed protocol is de-
scribed in Algorithm 8. We can also obtain an actively secure unpermutation
protocol, Πactive

Unperm, as an inverse of Algorithm 8.

6.2 Actively Secure Distributed Hashing

Even though an actively secure oblivious hashing can be obtained almost com-
pletely straightforwardly by replacing all functionalities in Algorithm 3, 4, and 5
by actively secure ones, it is still not secure against a corrupted permuter that
can input an invalid permutation. We thus focus on solving this problem. The
permutation π is valid if all keys are always found in their place, whatever π
actually is. This means that the pseudorandom addresses can work as witnesses
for the correctness of the hash table, i.e., we can verify π by checking whether

(one of two pseudorandom addresses computed from a non-dummy key)

− (the actual address where the element resides)

is equal to 0 for all real keys. This verification can be done in the Build proce-
dure as follows: For all real blocks [[di]] located in T[addrri] and assigned to the
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pseudorandom addresses ([[addrpi,0]], [[addrpi,1]]), parties check the following equa-
tion with uniformly random ρi.

0 =?

∑
i

[[ρi]]× ([[addrpi,0]]− addrri)× ([[addrpi,1]]− addrri). (6.1)

In addition, for efficiency, we combine the above verification with the MAC
verification. Remember that, in the Proof phase for MACs, fresh random shares
[[ρi]] are given for each checksum ([[a]], [[ra]]). Noticing the similarity in the use of
the random ρi, for any r, we can transform Equation (6.1) as below:

[[r]]×
∑
i

[[ρi]]× ([[addrpi,0]]× [[addrpi,1]] + (addrri)
2) =?∑

i

[[ρi]]× ([[r × addrpi,0]] + [[r × addrpi,1]])× addrri. (6.2)

Now, to make parties evaluate the above equation in the Proof phase, we
propose the following new protocol that checks the consistency between the
virtual address and the actual address of each non-dummy block.

ΠVerPerm([[addrpi,0]]m, [[addrpi,1]]m, addrri) :

1. At first, parties call the actively secure FMult to obtain

[[addr′i]]
m = ([[addr′i]], [[r × addr′i]]) = [[addrpi,0]]m × [[addrpi,1]]m.

[[addrpi,0]]m, [[addrpi,1]]m and [[addr′i]]
m are recorded in S as checksums.

2. Parties locally compute below and record [[ver
(1)
i ]]m and [[ver

(2)
i ]]m to S.

[[ver
(1)
i ]]m := ([[addr′i]] + (addrri)

2, ([[r × addrpi,0]] + [[r × addrpi,1]])× addrri), and

[[ver
(2)
i ]]m := (([[addrpi,0]] + [[addrpi,1]])× addrri, [[r × addr′i]] + [[r]]× (addrri)

2).

Since whether the permuter has provided a valid permutation is equivalent to

whether addr
(1)
i = addr

(2)
i , the verification for checksums [[ver

(1)
i ]]m and [[ver

(2)
i ]]m

includes Equation (6.2) and its transformation. Furthermore, since the input and
output of FMult, [[addrpi,0]]m, [[addrpi,1]]m and [[addr′i]]

m, are recorded as checksums,
we can attribute the attack providing an invalid permutation to an additive
attack that modifies addrri to addrri + δ for some δ.

Now, we describe the detailed algorithms of our actively secure hashing
scheme in Algorithm 9, 10, and 11. To simplify notation, for each block [[d]] =
([[k]], [[v]]), let [[d]]m =

(
([[k]], [[rk]]), ([[v]], [[rv]])

)
. This is necessary and sufficient

form of MACs for our protocols including functions applied only to k. For the
original block size b, the block size of [[d]]m becomes b′ = ω(b log λ) because of
MACs (see the beginning of Section 6). The parameters for the Cuckoo hash
table, τ, σ, and n′, are the same as those in passive security.

Lemma 6.1. There exists a 3-party distributed hash table, described as Algo-
rithms 9, 10 and 11, that securely realizes FHT in the (FShare,FPReveal,FABB)-
hybrid model in the presence of an active adversary that controls one party.

Assume that the input array consists of n blocks and each block is b′ bits.

– The Build procedure consumes O(n(b′ + dlog ne)) local computation steps.
– The Lookup procedure consumes O(b′ + b′ log λ) local computation steps.
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Algorithm 9
π0, π1, (〈T〉mi , 〈S〉mi )(i∈{0,1}), [[s0]]m, [[s1]]m, ctr,P← Πactive

Build ([[D]]m1 , [[D]]m2 , [[D]]m3 )

Require: Parties have shares of a dataset [[D]]mi∈{0,1,2} = ([[d0]]mi , . . . , [[dn−1]]mi ).
Ensure: Each Si obtains a permuation πi and a (1, 2)-share of cuckoo hash table,

(〈T〉i, 〈S〉i). P obtains permutations π0, π1, and all parties hold (1, 3)-shares of
PRF keys, [[s0]] and [[s1]]. Parties also hold a query counter ctr, and S0, S1 hold a
set P, as their states.

(Computing pseudorandom addresses and constructing a table.)
1: Parties do the same as Line 1 to 7 of Algorithm 3 with actively secure FABB.

Let [[D̃]]m = [[D ‖ E]]m be the result of the Line 7 and [[Ã]]m = [[A ‖ E]]m be the array of
addresses where [[A]]m =

(
([[addr0,0]]m, [[addr0,1]]m), . . . , ([[addrn−1,0]]m, [[addrn−1,1]]m)

)
is non-dummy addresses corresponding to the input [[D]]m.

2: Before revealing A for P , parties perform the Proof phase to verify the checksums.
Then, P receives all non-dummy addresses to compute a permutation π.

3: P computes π0 and π1 s.t. π1 ◦ π0 = π, and sends them to S0 and S1 respectively.
If πi∈{0,1} is not a permutation, Si aborts.

4: Parties run Πactive
Perm twice to obtain both [[D̃′]]m = [[π · D̃]]m and [[Ã′]]m = [[π̃ · A]]m.

(Verifying π.)
5: for all i ∈ [τ ] do

6: Let [[d̃′i]]
m = ([[k̃′i]]

m, [[ṽ′i]]
m) be the i-th element of [[D̃′]]m.

7: Let ([[ãddr
′
i,0]]m, [[ãddr

′
i,1]]m) be the i-th element of [[Ã′]]m and let addrri := i.

8: Parties call FEq and FIfElse to simulate:
If k̃′i =⊥ then set ([[addrpi,0]]m, [[addrpi,1]]m) = ([[addrri]]

m, [[addrri]]
m),

otherwise set ([[addrpi,0]]m, [[addrpi,1]]m) = ([[ãddr
′
i,0]]m, [[ãddr

′
i,1]]m).

9: Parties perform ΠVerPerm([[addrpi,0]]m, [[addrpi,1]]m, addrri).

10: Parties perform the Proof phase to verify the checksums.
(Organizing a cuckoo hash table and stash.)

11: Each Si∈{0,1} converts [[D̃′]]m to 〈D̃′〉mi and organize it into a hash table 〈T〉mi and

stash 〈S〉mi , by separating 〈D̃′〉mi into the first τ and the last σ elements.
12: Parties set their state ctr = 0, and S0, S1 allocate an empty set P = ∅.
13: Return (π0, π1), (〈T〉mi , 〈S〉mi )(i∈{0,1}), [[s0]]m, [[s1]]m, ctr,P

– The Extract procedure consumes O(nb′) local computation steps.

Furthermore, all those procedures consumes O(1) communication rounds.

Proof. The proof of security is given in Appendix B.3. To proceed with the
efficiency analysis, we start at the following claim.

Claim. Πactive
Perm consumes O(nb′) local computation steps and O(1) communica-

tion rounds. In addition, ΠVerPerm consumes O(b′) local computation steps and
O(1) communication rounds.

Each claim is clear from the algorithms of Πactive
Perm and ΠVerPerm.

The difference between the passively and actively secure Build procedure
(Algorithm 3 and 9) is that the latter uses Πactive

Perm instead of FPerm and addi-
tionally runs FEq,FIfElse, ΠVerPerm (each) τ times and the Proof phases twice.
Since τ and n′ are each O(n), this difference increases the computation cost at
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Algorithm 10
[[d]]m, [[found]]m ← Πactive

Lookup([[k]]m, (〈T〉m0 , 〈S〉m0 ), (〈T〉m1 , 〈S〉m1 ), [[s0]]m, [[s1]]m)

Require: 2-out-of-3 shares of a queried key [[k]]m, 2-out-of-2 shares of the hash table
〈T〉mi and its stash 〈S〉mi , and 2-out-of-3 shares of PRF keys [[s0]]m, [[s1]]m.

Ensure: d = (k, v) and found = 1 if the table T contains an item (k, v), otherwise
d = (0, 0) and found = 0.

(Computing pseudorandom addresses to be fetched.)
1: To obtain pseudorandom addresses [[addr0]]m and [[addr1]]m, parties do the same as

Line 1 to 3 of Algorithm 4 with actively secure FABB.
(Searching for the cuckoo hash table and stash.)
2: Before revealing addr0 and addr1 to the storages, parties perform the Proof phase

to verify the checksums.
3: To obtain a queried data [[d]]m and flag [[found]]m, parties do the same as Line 5 to 13

of Algorithm 4 with actively secure FABB.
4: Return [[d]]m, [[found]]m

Algorithm 11 [[D]]m0 , [[D]]m1 , [[D]]m2 ← Πactive
Extract((π0, π1), (〈T〉m0 , 〈S〉m0 ), (〈T〉m1 , 〈S〉m1 ))

Require: 2-out-of-2 shares of a hash table T and stash S, and their constructing
permutation (π0, π1).

Ensure: A dataset D contains all real elements in T and S.
1: Each Si∈{0,1} reorganizes 〈T〉mi and 〈S〉mi into an array 〈D̃〉mi as D̃ = T ‖ S.

2: Parties call actively secure FReshare to convert 〈D̃〉m0 , 〈D̃〉m1 to [[D̃]]m0 , [[D̃]]m1 , [[D̃]]m2 .

3: Parties perform Πactive
Unperm with (π−1

0 , π−1
1 , [[D̃]]m0 ) of P , (π−1

0 , [[D̃]]m1 ) of S0 and

(π−1
1 , [[D̃]]m2 ) of S1, to obtain [[π−1 · D̃]]i∈{0,1,2}.

4: Let [[D]]i be the first n elements of [[D̃′]]i.
5: Return [[D]]0, [[D]]1, [[D]]2

most O(nb′) from Algorithm 3. On the other hand, since Algorithm 11 requires
performing Πactive

Perm at once, it costs O(nb′) steps. Moreover, since the differ-
ence between the passively and actively secure Lookup procedure (Algorithm 4
and 10) is only that the latter additionally requires to verify [[addr{0,1}]]

m, the
computational cost increases by at most O(b′) steps from Algorithm 4.

6.3 Actively Secure Distributed ORAM

Given our actively secure distributed oblivious hashing, we achieve an actively
secure DORAM.

Theorem 6.2. There exists a 3-party protocol that securely realizes FRAM in the
presence of an active adversary that controls one party. In addition, assuming
N = poly(λ), this implementation consumes O(logN) amortized overhead and
O(logN) communication rounds with ω(log2N) block size.

Proof. By straightforward composition, we can replace all functionalities related
to FABB and FHT in Algorithms 6 and 7 with their concrete implementations
and thereby get a concrete actively secure DORAM. We can also achieve the
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security proof by considering the same simulator as of Appendix B.2 except that
it uses an actively secure distributed oblivious hashing simulator. Moreover, since
the efficiency of each FABB and FHT is asymptotically the same as in passive
security except for the increased block size, the actively secure DORAM achieves
O(logN) overhead using a slightly larger block size b′ = ω(log2N).

7 Conclusion

We proposed an optimal DORAM of O(logN) overhead with small hidden con-
stant, that relies on only 4 logN OPRF calls. The key building block is a novel
3-party permutation protocol, in which parties split their roles into one permuter
that knows the whole permutation and two storages that hold a permuted table.
Since these roles do not overlap, the permuter never observes access patterns to
the permuted table even though it knows the structure of the table.

In addition, we extended the above (passively secure) DORAM to an actively
secure one. Since our passively secure construction depends on the permutation
protocol in which one party has full control of a permutation, we additionally
construct a novel protocol to verify the permutation provided by the (possibly
dishonest) party. Then, we achieved an actively secure DORAM of O(logN)
overhead with slightly larger ω(log2N)-bit block size.
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A Concrete Efficiency of Our Passively Secure
DORAM and Comparison with [44] and [23]

Functionality FShare FReveal FMult FRnd FReshare FEq FIfElse FBitext FTrunc FPrf

# of calls 3L+ 1 4L 3L+ c 2 2L+ 1 4L+ c+ 1 5L+ c+ 3 L L 4L

Functionality FPerm FUnperm

# of calls
p− 1,

with input of size c2i + c
2

for each i = 1, . . . , p− 1 per c2p−1 accesses.

1,
with input of size c2p + c

2

per c2p−1 accesses.

Table 2. The amortized number of calls of each functionality in Algorithm 6, where
L = dlogN − log logNe and c = 2dlogNe.

We evaluate the concrete computational complexity of our passively secure
DORAM. We treat each functionality as a black box here and consider the
(amortized) number of calls per access, for ease of estimation8. Table 2 describes
the concrete number of calls of the building blocks required in Algorithm 6. Each
entry of the table can be straightforwardly calculated using the facts below:

– In the main part of Algorithm 6, parties call FMult,FEq, and FIfElse c times
(line 1 to 5), call FMult,FIfElse, and FBitext L times (line 6 to 8), call FIfElse

2 times (line 11 to 12), and perform Hi.Lookup for each i = 1, . . . , L.
• Regardless of i, Hi.Lookup described in Algorithm 4 requires 2 calls

of FReveal,FMult,FReshare, and FPrf, and 3 calls of FEq and FIfElse

(line 1 to 8)9.
– In the subroutine ΠReshuffle described in Algorithm 7, for each c2p−1 ac-

cesses, parties perform Hi.Extract for all i = 1, . . . , p − 1 and Hp.Build,
call FTrunc c2

p−1 times, and call FReshare,FEq, and FIfElse
c
2 times.

• Hi.Extract described in Algorithm 5, where the capacity of Hi is c2i−1,
requires FUnperm at once with input size |T ‖ S| = c2i + c

2 .
• Hp.Build described in Algorithm 3, where the capacity of Hp is c2p−1,

requires 2 calls of FRnd, c2p−1 calls of FEq and FIfElse, c2p calls of
FReveal and FPrf, c2

p−1 + c
2 calls of FShare, and a call of FPerm with

input size c2p + c
2 .

Comparing practical efficiency with [44] and [23]. Following a similar set-
ting as Falk et al. [23], we can estimate the efficiency of our DORAM more con-
cretely. From our Table 2 and Lemmas 4.1, 4.2, and Table 2 of [23], we conclude

8 See Table 2 in [23], for example, for more specific costs of each functionality.
9 Note that we can omit the stash-related operations (line 9 to 12) of Hi.Lookup in

Algorithm 6.
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that Algorithm 6 requires (164L + 9c + 40)B bits of communication for block
size B = Ω(logN) bits. Considering L ∼ logN and c ∼ 2 logN , the cost of our
DORAM becomes (182 logN + 40)B bits per access.

According to [23], the DORAM of Lu and Ostrovsky [44] requires at least
100 logN OPRF calls and hence costs at least 2100 logN ·B bits of communica-
tion per access10 — this is significantly higher than ours. On the other hand, the
DORAM of Falk et al. [23] requires (153.5 logN + 6)B bits per access. I.e., even
though the number of our calls to the most expensive building block is double,
it does not affect the practical bandwidth much. Moreover, considering that the
DORAM of Falk et al. requires additional computational cost for log2N non-
oblivious hash functions per access, our optimal DORAM appears to be faster
in the practical size of N .

B Security Proofs

B.1 Proof of Security and Correctness of Our Passively
Secure Distributed Oblivious Hashing (Lemma 4.3)

For correctness of our scheme, by [47], we observe that the permuter P achieves
a permutation π for hashing with overwhelming probability. Since we are in the
FPerm-hybrid model, all input blocks are correctly placed in their location as
π ·D = T‖S in Algorithm 3. Similarly, since we are in the FUnperm-hybrid model,
the blocks are correctly retrieved as D = π−1 · (T‖S) in Algorithm 5. Moreover,
when the above permutation π exists, in Algorithm 4, the storages always fetch
T[addr0],T[addr1], and S, one block of which is the queried data.

For obliviousness, consider a simulator Sim that simulates the view of a pas-
sive adversary that corrupts one of three party in ΠBuild, ΠLookup and ΠExtract.

– Simulating ΠBuild. Receiving an instruction to simulate ΠBuild with the
size of input n and a collusion target C ∈ {P, S0, S1}, Sim runs the real
protocol ΠBuild on input n dummy blocks. If C = P then Sim outputs π
and all addri,j provided from FPrp([[sj ]], [[⊥ +i]]) as access patterns. Oth-
erwise, Sim outputs nothing. Sim holds the result of ΠBuild simulation,
(π, (〈T〉{0,1}, 〈S〉{0,1}), [[s{0,1}]], ctr,P), as its state.

– Simulating ΠLookup. When the adversary requests to run ΠLookup with a
key k, Sim simulates the real protocol ΠLookup with a key ⊥ and its state
(π, (〈T〉{0,1}, 〈S〉{0,1}), [[s{0,1}]], ctr,P). If C is either S0 or S1, Sim outputs
addr{0,1} provided from FPrp([[s{0,1}]], [[⊥ +ctr]]) as access patterns. Other-
wise, Sim outputs nothing.

– Simulating ΠExtract. When the adversary requests to run ΠExtract, Sim
halts and outputs π as an access pattern if C = P , otherwise it outputs
nothing.

10 In practice, the cost of other functionalities, besides OPRF, is added to this.
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Since we are in FABB-hybrid model and Algorithm 3, 4 and 5 are all determin-
istic except for the addresses recovered to a party, we should consider only the
addresses as the access patterns. Now, consider the following hybrid argument.

Hyb0 : The real execution ofΠBuild, ΠLookup andΠExtract in the (FShare,FPReveal,
FABB,FPerm,FUnperm)-hybrid model.

Hyb1 : The same as Hyb0 except that, in the execution of ΠBuild (Algorithm 3),

the FIfElse functionality of line 4 always set k̃i to ⊥ +i.

Hyb2 : The same as Hyb1, but parties always search for a dummy in ΠLookup,

i.e., the FIfElse functionality of Algorithm 4, line 2, always set k̃ to ⊥ +ctr.

Hyb3 : The ideal simulation of Sim.
Let ViewC(Hybu) be the view of the adversary that colludes with C ∈

{P, S0, S1} in Hybu. By the security of the PRF, ViewP (Hyb0) and ViewP (Hyb1)
are computationally indistinguishable as long as n < poly(λ). ViewSi(Hyb0) and
ViewSi(Hyb1) are obviously identical for any i ∈ {0, 1}.

It is also obvious that ViewP (Hyb1) ≡ ViewP (Hyb2). In addition, ViewSi(Hyb1)
and ViewSi(Hyb2) are computationally indistinguishable for any i ∈ {0, 1} by se-
curity of the PRF. Furthermore, ViewC(Hyb3) is the same as ViewC(Hyb2) for
any C ∈ {P, S0, S1}, directly.

B.2 Proof of Security of Our Passively Secure DORAM
(Theorem 5.1)

Consider the following simulator Sim that simulates the view of a passive adver-
sary that corrupts one of three party in ΠAccess.

– Let SimHT(n) be a simulator that simulates the view of a passive adversary
in distributed oblivious hashing with input length n. As setup, Sim initializes
SimHT(c), . . . ,SimHT(c2L−1) where c = 2dlogNe and L = dlogN−log logNe.
In addition, Sim allocates an empty array of size c and initialize a query
counter ctr = 0

– Receiving a request to simulate ΠAccess, Sim simulates the ctr-th execution of
ΠAccess with dummy inputs and an dummy data structure. All invocations
of HTi.Lookup is replaced with the lookup simulation of SimHT(c2i−1), and
also all HTi.Extract and HTi.Build in the subroutine ΠReshuffle are re-
placed with the extract and build simulation of that, respectively. Sim finally
increments ctr and returns all outputs of SimHT.

Now, consider the following hybrid argument.

Hyb0 : The real execution of ΠAccess.

Hyb1 : The same as Hyb0 except performing ΠAccess([[read]], [[⊥]], [[⊥]]) for any
input.

Hyb2 : The ideal simulation of Sim.

Since we are in the (FABB,FHT)-hybrid model and the parties do not reveal
any secret in the algorithm ΠAccess and its subroutine ΠReshuffle, the adversary’s
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view of Hyb1 is identical to that of Hyb0 with overwhelming probability. Further-
more, in the (FABB,FHT)-hybrid model, Hyb1 and Hyb2 are identical. The view
of the adversary in the real ΠAccess and Sim are therefore indistinguishable.

B.3 Proof of Security of Our actively Secure Distributed
Oblivious Hashing (Lemma 6.1)

Security and correctness without tampering follow the proof of Lemma 4.3. Thus,
it suffices here to show that an active adversary succeed in tampering with shares
with negligible probability.

In the execution of Πactive
Build , since there are O(n′) checksums in S including 2n

addresses [[addri,j ]]
m, 2(n′−n) dummies [[⊥]]m, and O(n) others generated during

the computation of [[addri,j ]]
m, in the first Proof phase (Algorithm 9, Line 3),

the adversary’s success probability in the first Proof phase is proportional to
n′bλ−ω(1) where b is the original size of a block. In addition, in the second Proof
phase (Line 14), there are O(τ) checksums in S since there are τ calls of FEq

and FIfElse, and τ executions of ΠVerPerm. Hence, assuming n′, b < poly(λ), the
adversary’s success probability is negl(λ).

In each execution ofΠactive
Lookup, since there areO(1) checksums in S, adversary’s

tampering is detected with overwhelming probability 1− λω(1).
Though parties do not verify the checksums in Πactive

Extract, all blocks in [[D̃]]m

is stored to S during the unpermutation protocol. Hence, when the extracted
data is used to build a new hash table, or parties terminate the protocol (that
involves the final Proof phase), all data accessed in Πactive

Extract is verified not to
be tampered. Since the number of the checksums recorded in Πactive

Extract is O(n′),
the adversary’s success probability is also negligible.
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