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Abstract. We present a theoretical study of the optical response of a nonlinear

oscillator formed by coupling a metal nanoparticle local surface plasmon resonance to

excitonic degrees of freedom in a monolayer transition-metal dichalcogenide. We show

that the combined system should exhibit strong anharmonicity in its low-lying states,

predicting for example a seven order-of-magnitude increase in nonlinearity relative to

a silicon photonic crystal cavity. Then, we demonstrate that such system exhibits

strong quantum features such as antibunching and non-Gaussianity. Arrays of such

nanoscale nonlinear oscillators could be used to realize novel optical metamaterials;

alternatively, an individual nanoparticle-monolayer construct could be coupled to an

optical resonator to mediate efficient input-output coupling to propagating fields.
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1. Introduction

The quest for realizing a nanophotonic nonlinear oscillator has remained as a formidable

challenge up until now, despite that many discussions on how Kerr optical nonlinearity

can be used to realize such a nonlinear oscillator [1, 2]. The hardship is closely linked

to another equally difficult quest for nanophotonic single-photon optical nonlinearity.

The optical nonlinear oscillator, if realized, will be a game changer as it would operate

at GHz or even at THz in a scalable platform. It is notable that many materials with

a large Kerr coefficient have been reported so far, and yet, none of these succeeded to

realize such a nonlinear oscillator. As we will explain in this paper, merely having a

large Kerr nonlinearity is not sufficient since those materials with large Kerr nonlinearity

tend to have also strong two-photon absorption, which forestalls the nonlinear response.

Atomically thin 2D materials are known to possess enormous optical nonlinearities

within subatomic thickness [3–6]. However, such a small thickness of the 2D materials is

usually viewed as a drawback as their incorporation in conventional optical resonators

provides disappointing nonlinear-optical performance because of small filling fraction

in wavelength-scale volumes. For example, the excellent review papers by Sun et
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al. [3] and Autere et al. [4] illustrate the integrated optical modulation capability of

2D materials. However, the authors of these papers clearly pointed out that, to fully

harness the potential of the strong nonlinearity of 2D materials at the atomic scale, it

is necessary to circumvent the issues of inefficient light-matter interaction due to 2D

materials subnanometer thickness.

In order to accomplish a large optical nonlinearity in a small volume, various

approaches have been extensively studied to date. For example, Nielsen et al. studied

the plasmonic nanofocus driving strong four-wave mixing [7]. However, the authors

acknowledged that their accomplished optical nonlinearity is far below the required

level for quantum effects.

We propose a novel approach to harnessing the extreme field confinement of

localized surface plasmon resonances (LSPR) for nonlinear optics, using 2D monolayer

materials. This approach is a unique combination of the freedom to adjust the real

and the imaginary values of the third-order Kerr nonlinearity from the excitons of

2D materials and the field enhancement from plasmonic coupling. Our result clearly

demonstrates an evident quantum phenomenon the strong anti-bunching effect. Thus,

our result is a crucial step towards the long-standing quest for the strong quantum effect

of nano-structured materials.

A LSPR of a metal nanoparticle (MNP) may be modeled as a quantized harmonic

oscillator [8]. For a given resonance frequency, the energy states form a harmonic

ladder broadened by Ohmic loss of the metal [9]. The LSPR field is confined within

a volume slightly larger than the MNP, which is significantly smaller than the free-

space wavelength of light at the LSPR resonant frequency [10]. We analyze a scheme

for turning an LSPR into a quantum nonlinear resonator via near-field coupling to

an atomically thin 2D material, such as a transition metal dichalcogenide (TMD).

Two key considerations motivate this proposal: that monolayer TMDs can provide

strong Kerr nonlinearity with a favorable coherence-to-decoherence ratio [6], and that

monolayer TMDs are sufficiently thin to overlap substantially with the nanoscale LSPR

evanescent field. Then, we proceed to demonstrate the remarkable quantum features of

such systems, namely, photon antibunching and non-Gaussian state generation.

The structure of this article is as follows: section 2 builds up the concept of nonlinear

oscillators, section 3 describes the prescription for highly nonlinear oscillators, section

4 models the quantum dynamics of the nonlinear oscillator and presents the simulation

results, and finally, a conclusion and discussions follow.

2. Nonlinear oscillator

There are many complementary schemes for inducing nonlinearity in an optical

oscillator [1,2,11]. In the (arguably) most widely applicable approach, a Kerr-nonlinear

medium can be introduced into an otherwise passive optical cavity. If the ratio of

nonlinear Kerr effect to absorption loss is sufficiently large, such a system may be

useful for quantum optics and quantum information processing. Unfortunately, it is
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Figure 1: Left: schematic of a metal nanoparticle (MNP) and 2D material. Right:

energy levels of the coupled system.

difficult to find materials with a large nonlinearity-to-loss ratio, which are amenable to

incorporation within conventional or nanofabricated optical resonators. For example,

although some bulk materials such as silicon have a significant Kerr optical nonlinearity

at near-infrared optical frequencies, they also have a large imaginary nonlinear response

(two-photon absorption) that gives rise to comparably large losses [12]. Setting aside

the issue of losses, nanophotonic resonators incorporating conventional optical materials

such as silicon generally do not possess a sufficiently large Kerr nonlinearity at low

photon numbers for quantum information processing applications.

Monolayer MoS2 has an order-of-magnitude larger real χ(3) than bulk silicon and

can have a significant real-to-imaginary ratio of χ(3) [6]. Its 2D structure furthermore

makes it a promising candidate to induce a large coherent nonlinearity through direct

coupling to the strongly confined field of an LSPR. Such an LSPR-TMD system could

be efficiently coupled to optical input-output modes by incorporation within an optical

cavity, in a manner analogous to the way that a Josephson-Junction nonlinear LC

oscillator can be coupled to propagating fields by a microwave resonator. With regard

to the potential scalability of such a device concept, we note that, while automated

assembly of the type of system we envision could be challenging to realize, the material

components we require may be producible in bulk by chemical MNP synthesis [13]

and chemical-vapor-deposition (CVD) growth of TMDs [14, 15]. One can alternatively

envision a large number of MNPs dispersed on a TMD membrane to form an array of

nonlinear oscillators with complex couplings in both real and frequency spaces; such an

optical metamaterial could provide rich nonlinear dynamics for reservoir computing-type

architectures [16].

Let us consider an MNP driven by a classical light source. A monolayer TMD is

positioned nearby the MNP so that the LSPR field has a considerably large overlap with

the monolayer TMD (see Fig. 1). To understand the system, we adopt the quantum
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master equation [17, 18], which is particularly suitable for optical frequencies. In this

framework, the unitary evolution of the system is modeled through a Hamiltonian

H = Ha +Hdrive where [2, 8, 11,19–22] (see Appendix A):

Ha = h̄ωaa
†a+

h̄χ

2
a†a†aa, (1)

Hdrive = −ih̄
√
κ(a†εe−iωt − aε∗eiωt), (2)

where ωa is the resonant frequency of the LSPR field, χ is the Kerr nonlinear coefficient,

and a, a† are the annihilation and the creation operators of the LSPR field. Here, κ

is the coupling coefficient, ε is the drive, and ω is the frequency of the drive field.

The nonunitary evolution of the system undergoes dissipation through the Lindblad

operators L1 =
√
γa with γ = γr + γo, which includes both the radiative (γr) and

nonradiative (γo) decays where the nonradiative Ohmic loss is dominant (γ ' γo � γr)

[9], and L2 =
√

(χ′/2)aa, which is the nonlinear loss (two-photon absorption) through

the coupling with the nonlinear 2D material. As a consequence, the effective energy

levels appear as in Fig. 1. Without nonlinear coupling to the 2D material, the energy

levels for a given frequency ωa are a linear harmonic ladder with an equal level spacing

of h̄ωa, with a level broadening h̄γ. The nonlinearity modifies the energy levels in two

ways: both the energy level shift and the level broadening vary with LSPR photon

number, resulting in an anharmonic energy ladder. Assuming a single-frequency optical

driving field, it is apparent that, in order not to excite an effectively linear (trivial)

response, the nonlinear energy shifts must be larger than the level broadenings.

The nonlinear energy shift and broadening depend on the coefficients χ and χ′ (both

real-valued), which are calculated using the results in [19, 21, 23, 24] (see the detailed

derivation in Appendix B):

χ+ iχ′ =
27ε0h̄ω

2
a

4

∫
d3r χ(3)(r)|f‖(r)|4, (3)

where ε0 is the vacuum permittivity and χ(3)(r) is the position (r) dependent third-

order nonlinear susceptibility. Since monolayer TMDs have a negligibly small optical

response to out-of-plane-polarized electric fields [25, 26], we count only the in-plane

LSPR field component (with respect to the monolayer 2D material): f‖(r) is the in-plane

component of the LSPR mode function f(r), normalized as
∫
d3r ε0εr(r)|f(r)|2 = 1 with

the position dependent relative permittivity εr(r), Evidently, the overlap between the

LSPR mode field and the 2D material volume must be large to increase χ. We note

that a large overlap also increases the nonlinear broadening of two-photon absorption.

Hence, the the ratio χ/χ′ must be large, which depends in general on the material and

the operating frequency.

To appreciate how difficult it is to make a practical nonlinear (anharmonic)

oscillator, let us consider an optical resonator filled with silicon. We make an example

of the state-of-the-art smallest photonic crystal cavity to increase the nonlinear energy

shift: a cavity of volume Vc = 0.02 µm3 having a cavity Q = 2 × 105 [27]. Then,

using Re[χ(3)] ∼ 4.8 × 10−20 m2/V2 of silicon at 1 eV photon frequency (energy) [12],
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Equation (3) leads to h̄χ ∼ 1 × 10−9 eV. However, the linear cavity-lifetime-induced

level broadening (ignoring the intrinsic linear loss of silicon) is h̄γ ∼ 5×10−6 eV. Hence,

the line broadening is dominant over the nonlinear energy level shift at low photon

number. Although quantum well materials such as GaAs/InGaAs have appreciable

Kerr nonlinearity (Re[χ(3)] = 1.3 × 10−19 m2/V2 at 1.3 µm wavelength [28]), the two-

photon absorption is large (Im[χ(3)] = 1.4×10−18 m2/V2 [28]) and the linear absorption

is excessively large (α > 10 cm−1) [29, 30] so that the nonlinearity-to-broadening ratio

is even less favourable than our silicon example. Chalcogenide glass materials are not

much better due to the same reason of large linear and two-photon absorption [31].

3. Localized surface plasmon coupled to 2D materials

We will show below that our proposed system could achieve few-photon nonlinear energy

shifts that dominate broadening, and thus realize a quantum nonlinear oscillator. We

first discuss several design aspects for the system. We utilize the large ratio of the real

and the imaginary values of χ(3) in a monolayer MoS2 by detuning slightly from the

two-photon resonant frequency 1.06 eV [6]. We must also design an MNP to support

an LSPR resonance near 1.06 eV with a sufficiently small h̄γ. The resonance frequency

ωa of the LSPR mode is well known to depend upon the geometry of the MNP [32–34],

with thin MNPs exhibiting lower resonance frequencies [35]. The reason is that the

portion of the LSPR field inside the metal reduces as the metal layer becomes thinner,

which tends to red-shift the resonance frequencies [34].

We need to maximize the in-plane component of the LSPR field that overlaps the

monolayer MoS2. A natural choice of geometry is a disk shape MNP with a large ratio

of diameter to thickness. A large diameter improves the in-plane LSPR field component

while a thinner disk shape pulls ωa down from the nominally visible plasmonic resonances

of silver. Using finite-element-method (FEM) software (COMSOL), we found that a

diameter-to-thickness ratio of 22 for a silver disk should provide an LSPR resonance

frequency near the target. On the other hand, the value of γ of an LSPR is known to be

independent of shape and size, since it is completely determined by the complex dielectric

function of the material; once the material and operating frequency are determined,

there is not much one can do to adjust γ [34]. For this theoretical study, we take from

the work of Wang and Shen a Q-factor Q = ωa/γ = 50 [34]. In reality, the surface

imperfections may reduce the Q-factor.

We also need to consider potential impacts on the intrinsic optical properties of

a TMD monolayer when an MNP is placed nearby—an excessively small gap between

the two may alter the band structure of the 2D material and impact the nonlinearity

adversely. To address this problem, we consider a tight binding band Hamiltonian

Hband =
∑

<i,j> Jijc
†
icj +

∑
i Lic

†
ici +

∑
iMi(c

†
id + cid

†) where c†i , d
† are the second-

quantized fermionic creation operators for the electrons in the 2D material lattice and the

impurity nearby, respectively [36]. The first term is the nearest-neighbor (nn) hopping

energy, the second is the on-site energy, and the third is the interaction energy between
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the 2D material and the impurity sites. We note that Jij and Mi originate from the

Coulomb potential. It is customary to ignore the next-nearest neighborhood (nnn)

hopping since the matrix element for this remote potential is negligibly small compared

to the nearest-neighbor hopping. Hence, to preserve the band structure intact, we

require the condition |Mi| � |Jij|, which can be fulfilled if the distance between the

2D lattice sites and the impurity sites becomes larger than the next-nearest neighbor

(nnn) distance of the 2D lattice. When the hexagonal atomic arrangement of monolayer

TMDs is considered, the nnn distance is 0.32 nm (MoS2), approximately 1.7 times longer

than nn. Indeed, Liu et al. recently discussed the encapsulation of monolayer TMDs

and found that using a few-layer hexagonal boron-nitride (hBN) buffer preserved the

properties of monolayers successfully [37]. Man et al. discussed the successful protection

of monolayer properties using even a single layer hBN buffer [38]. Hence, in this

theoretical paper, we set the minimum distance between the monolayer TMD and the

MNP as 0.3 nm, corresponding to the thickness of a single layer hBN [39]. Additionally,

since the operating frequency is detuned from both the one- and two-photon excitonic

resonance of the monolayer TMD, exciton generation will be minimal and we neglect

metal-dielectric effects such as mirror charges.

4. Dynamical model and simulation results

To understand the dynamics of the system, we consider the adjoint master equation for

a Heisenberg picture operator Q as [17]:

Q̇ = − i
h̄

[Q,H] +
∑
j

(
L†jQLj −

1

2
L†jLjQ−

1

2
QL†jLj

)
. (4)

Then, we easily obtain the dynamical equation for the LSPR field using the Hamiltonian

in Equation (1) and (2) and the Lindblad operators:

ȧ = −i∆aa− iχ(a†a)a− γ

2
a− χ′

2
(a†a)a−

√
κε, (5)

where ∆a = ωa − ω. In the limit of considering only the lowest three energy levels with

a moderate drive power, the steady-state population in the second excited level can be

expressed using the population in the first level as (Appendix C):

ρ22,ss =
4κε2/(γ + χ′)2

1 + (4χ2 + 4κε2)/(γ + χ′)2
ρ11,ss. (6)

Note that for a linear system (χ = χ′ = 0), the population is ρ22,ss = ρ11,ss(4κε
2/γ2)/(1+

4κε2/γ2), which exhibits the conventional saturation feature with respect to the drive

power. The nonlinearity (anharmonicity) kicks in if the quantity 4χ2/(γ + χ′)2

is sufficiently large to suppress ρ22,ss. Hence, we should adjust the system design

parameters to maximize the nonlinear figure of merit (FOM) 4χ2/(γ + χ′)2.

The FOM depends mainly on two design parameters: the MNP size and the drive

frequency detuning. The MNP size determines the overlap between the monolayer

TMD and the LSPR field, scaling χ and χ′ in the same fashion. A large MNP has
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Figure 2: Nonlinear FOM dependence on the diameter of a silver disk MNP and the

drive frequency detuning. Solid red lines represent the points with unity FOM (onset

of nonlinearity). Inset: geometry of MNP-TMD nonlinear system (not in scale, only

the lower layer of monolayer MoS2 is shown for clarity).

a more delocalized field outside the MNP and, thus, the relative portion overlapping

the thin nonlinear 2D material is small. On the other hand, detuning of the drive

frequency adjusts the ratio between χ and χ′. The values Im[χ(3)] of a monolayer MoS2

roughly follows a typical Lorentzian lineshape while Re[χ(3)] is the frequency-derivative

of Im[χ(3)] [6]. Hence, FOM is expected to be nearly zero at the two-photon resonance

of the monolayer TMD exciton while the maximum occurs an appropriately detuned

frequency. Appendix D presents the detailed design considerations.

To maximize the overlap, we place two monolayer MoS2 planes sandwiching the

disk-shaped MNP, with hBN buffers separating the MNP from each of the monolayers.

Using an FEM software package (COMSOL), we calculate the detailed field distribution

of a given MNP design and subsequently determine χ, χ′ according to Equation (3).

Fig. 2 shows the calculated FOM as a function of the silver disk MNP’s diameter

(while fixing the diameter-to-thickness ratio at 22) and the drive frequency detuning

from the monolayer MoS2’s two-photon resonance at 1.06 eV. We note that with the

fixed diameter-to-thickness ratio of 22, the MNP diameter must be larger than 4 nm so

that the MNP disk thickness is larger than the atomic size of silver. Remarkably the

nonlinear FOM is larger than unity over a wide range of parameters; the unity FOM

value is the on-set for a system to be nonlinear. The maximum FOM of 10.7 occurs at

a detuning of −11 meV with the smallest MNP diameter of 4 nm. The real and the

imaginary values of χ(3) of the monolayer MoS2 at this detuning are 4.0× 10−19 m2/V2

and 1.0×10−19 m2/V2, respectively [6]. The subsequent h̄χ and h̄χ′ values are obtained

as 53 meV and 13 meV, respectively. It is noteworthy that the improvement of FOM

by placing additional stacks of monolayer MoS2 with gap-buffers is negligible due to the
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(a) Linear system (b) Nonlinear system (4 nm) (c) Nonlinear system (10

nm)

Figure 3: Comparison of the steady-state excited level populations when driven by an

external field at resonance between a linear and a nonlinear system. The middle

nonlinear system is from a 4 nm diameter nanodisk (h̄χ = 53 meV, h̄χ′ = 13 meV)

while the right is from a 10 nm diameter nanodisk (h̄χ = 28 meV, h̄χ′ = 16 meV).

fast decaying LSPR mode field.

We should mention that a nanodisk with 4 nm diameter with an aspect ratio of 22

approaches the material limit of a single atom layer silver disk. In this limit, one might

suspect the validity of the classical approach (COMSOL) as well as manufacturability

of such thin nanoparticles. However, several experimental results on 2D single-layer

silver and gold nanoparticles for bio-imaging applications were reported [40–42]. The

2D silver and gold sheets were fabricated using a self-assembly technique on a water-air

interface. Such top-down fabrication approach may place the nanoparticle precisely in

the desired location, but the distance among nanoparticles is challenging to be smaller

than 100 nm, while other bottom-up (growth) fabrication technique may randomly place

the sheet nanoparticles, but with much higher nanoparticle density [40]. Moreover, a

good agreement between experimental results and theoretical analysis based on classical

Maxwell equations was reported [40,41]. This implies that the theoretical extrapolation

towards such thin nanoparticle geometry based on the classical approach may still be

acceptable. Moreover, the FOM has a long tail for larger diameter nanodisks. For

example, a nanodisk with 10 nm diameter that has ∼ 0.5 nm thickness still has FOM

of 2.3. We note that even larger (thicker) nanodisks still maintain FOM values larger

than unity.

Nonlinear behavior of the system can be clearly seen through the population

distribution among energy eigenstates when driven by an external field. For this,

we solved the dynamic Equation (5) by setting
√
κε = 10 meV driving on resonance

(ω = ωa). The steady-state population distributions are shown in Fig. 3. The linear

system (h̄χ = h̄χ′ = 0 meV) shows a typical coherent state population distribution,

while the optimal nonlinear system (4 nm diameter, h̄χ, h̄χ′, h̄γ = 53, 13, 21 meV) has

suppressed population in the upper levels. Even the simulation with a larger nanodisk
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(a) 4 nm nanodisk (b) 10 nm nanodisk

Figure 4: Two-photon correlation g(2)(τ) of linear (L) and nonlinear systems (NL)

with various drive powers. Left: a 4 nm nanodisk (h̄χ = 53 meV, h̄χ′ = 13 meV).

Right: a 10 nm nanodisk (h̄χ = 28 meV, h̄χ′ = 16 meV).

(10 nm diameter, h̄χ, h̄χ′, h̄γ = 28, 16, 21 meV) shows an excellent suppression of the

higher energy level populations, although, for this case, ρ33 is nonzero. The population

suppression agrees with the above analysis (Equation (6)). We adjusted the drive power

slightly to normalize ρ11 since the same drive power will lead to slightly different ρ11
populations among the three systems. The residual population ρ22 in the nonlinear

systems is caused by the saturation of ρ11, which could be effectively further reduced

using a smaller drive power.

The quantum behavior of the nonlinear system can be clearly seen through the

two-photon correlation g(2)(τ) = limt→∞〈a†(t)a†(t + τ)a(t + τ)a(t)〉/(〈a†(t)a(t)〉〈a†(t +

τ)a(t+τ)〉) [43]. A linear system such as an empty optical cavity will produce g(2)(τ) = 1

for all τ when driven by a classical source, which corresponds to a coherent state.

However, a strongly coupled atom–cavity system exhibits photon blockade and, thus,

g(2)(0) close to zero [43, 44]. We obtained the two-photon correlation g(2)(τ) as shown

in Fig. 4 by solving the dynamic equation (Equation (5)). As expected, a linear system

(χ = χ′ = 0) shows a flat g(2)(τ) = 1 for all τ , regardless of the drive power. In contrast,

the nonlinear system (4 nm nanodisk) shows a strong nonlinearity having g(2)(0) < 1.

Obviously g(2)(0) depends on the population in the upper excited levels and, hence,

it depends on the drive power. When weakly driven, the g(2)(0) value reaches as low

as 0.15, predicting strong antibunching in optical fields escaping from the LSPR. As

the drive power increases, the upper level starts being populated, degrading g(2)(0) as

shown. We note that even the larger 10 nm nanodisk with less FOM also shows a strong

antibunching behavior because of the FOM value above unity.
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Finally, we investigate the non-Gaussianity of the states. The non-Gaussianity (nG)

is crucial for a number of continuous-variable (CV) quantum information theory [45],

such as the continuous-variable (CV) entanglement distillation protocol, CV quantum

error correction, and cluster-state quantum computation. One of the measures for the

non-Gaussianity of a state is the relative entropy measure [45,46]

δ[ρ] = S(τ)− S(ρ) = H(
√

detσ)− S(ρ), (7)

where H(x) = (x+ 1/2) ln(x+ 1/2)− (x− 1/2) ln(x− 1/2), σ is the covariance matrix

of the state ρ using the quadrature operators q = (1/
√

2)(a + a†), p = (1/i
√

2)(a− a†)
with the boson annihilation operator a, and S(ρ) = −Tr[ρ ln ρ] is the von Neumann

entropy. Here, τ is a Gaussian state having the same 〈p〉, 〈q〉 and the same σ as the

state ρ. While this nG measure does not immediately reveal the usefulness of the state,

(which indeed requires a careful consideration of the particular CV protocol of interest,)

this nG measure clearly shows how far the state is from a Gaussian state, and hence,

the state with a larger nG measure δ[ρ] has a potential to be useful.

It is known that the nG measure δ[ρ] = 0 for any general Gaussian state

ρ = D(α)S(ζ)ν(n)S†(ζ)D†(α) with arbitrary displacement operator D(α) and squeezing

operator S(ζ) on the thermal state ν(n) with the average photon number n [46]. It is

also known that δ[ρ] is non-negative, and zero only for a Gaussian state ρ including

ρ = |0〉〈0| (vacuum) [46]. As a reference, we note that δ[ρ] = 1.39 for ρ = |1〉〈1| (single

photon Fock state).

Figure 5 shows the simulated results of nG measure for the 4 nm nanodisk and

10 nm nanodisk cases, respectively, as a function of time. The initial state is vacuum

and the pumping starts at time t = 0 with the pump power of
√
κε = 27 meV. Both 4

nm and 10 nm nanodisks show substantial nG. Particularly, the nG peaks in the first

Rabi oscillation cycle, reaching 0.42 (0.24) at time t = 1.3/γ(t = 1.6/γ) for 4 nm (10

nm) nanodisk case, respectively. The transient state with the peak nG shows a strong

quantum feature of negative Wigner function values, although the purity of the state

degraded. The purity at the peak nG is 0.79 (0.82) for 4 nm (10 nm) nanodisks. Such

purity degradation of the state is expected in such a dissipative system. Then, one

can control the pump to last only up to the point of the nG peak, which will prepare

the state having strong quantum signatures. Such state with negative Wigner function

values and meaningful nG values may become quite useful for CV quantum information

applications.

5. Conclusion and discussions

We have demonstrated a nonlinear oscillator composed of an LSPR with added Kerr

nonlinearity via coupling to monolayer MoS2. To qualify as a quantum nonlinear

oscillator, the nonlinear FOM 4χ2/(γ+χ′)2 must be larger than unity. The nonlinearity

of a state-of-the-art smallest photonic-crystal point defect cavity filled with silicon is

inadequate (FOM ∼ 10−6), whereas our proposed system has predicted FOM ∼ 10,
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(a) 4 nm nanodisk (b) 10 nm nanodisk

(c) 4 nm nanodisk (d) 10 nm nanodisk

Figure 5: Upper: transient evolution of the nG measure δ[ρ(t)] and the purity Tr[ρ(t)],

lower: Wigner function of the transient states with the peak nG values, for a 4 nm

nanodisk (h̄χ = 53 meV, h̄χ′ = 13 meV) and a 10 nm nanodisk (h̄χ = 28 meV,

h̄χ′ = 16 meV).

which is a seven order-of-magnitude improvement. The improvement stems from the

strong field enhancement provided by a metal nanoparticle LSPR and direct coupling to

a highly nonlinear monolayer TMD material, which is thin enough to overlap well with

the tightly confined LSPR evanescent field. (Although graphene possesses an order-of-

magnitude larger real χ(3) at the same optical frequency than monolayer TMDs, the

unfavorable real-to-imaginary χ(3) ratio of graphene spoils the potential advantage [5],

making graphene a less desirable material than the monolayer TMDs.) Moreover, by

appropriately detuning the drive frequency, one can maximize the nonlinear FOM thanks

to the discrete nonlinear susceptibility spectrum of the monolayer TMDs. It is possible

that the practically achievable LSPR loss rate γ could be larger than the theoretical value

of 21 meV that we used in our calculation, for example, due to surface impurities, and
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in this case, the FOM would degrade accordingly. Even in the weakly nonlinear regime,

however, pulse sequences analogous to those designed for suppression of population

outside the qubit subspace in microwave anharmonic oscillators [47] could be used to

enable manipulation of the LSPR state in an effectively nonlinear fashion.

Our proposed MNP-TMD quantum nonlinear oscillator could be further coupled to

an optical cavity, facilitating its use to construct nonlinear quantum photonic devices.

Recent studies demonstrated a decoherence-free operation of a system combining an

LSPR mode and an emitter [19,48]. For example, one can couple our quantum nonlinear

oscillator with a cavity. In this case, one can consider the following Hamiltonian

H = Hb +Hc +HI +Hdrive,

Hb = h̄ωbb
†b+ h̄(χb/2)(b†)2b2,

Hc = h̄ωcc
†c,

HI = −g(b†c+ bc†),

Hdrive = −ih̄
√
κ(b†εe−iωt − bε∗eiωt), (8)

where b, c are the annihilation operators for the nonlinear oscillator mode and the cavity

mode, respectively, and g is the coupling coefficient between the cavity and the nonlinear

oscillator. The nature of the coupling is through the electron multipole interaction

between the cavity and the nonlinear oscillator. The Lindblad operators are L1 =
√
γbb,

the (Ohmic) dissipation of the LSPR, L2 =
√
χ′/2b2, the two-photon absorption from

the monolayer MoS2, and L3 =
√
γcc, the cavity dissipation. Although the detailed

description of this advanced system is beyond the scope of the current manuscript, one

can use the adjoint master equation [17] to obtain the following Heisenberg dynamical

equation for the operators:

ḃ = −i∆bb− iχb(b
†b)b+ igc− γb

2
b− χ′b

2
(b†b)b+

√
κε,

ċ = −i∆cc+ igb− γc
2
c. (9)

It is noteworthy that, in our preliminary study of such systems, the dissipated cavity

mode
√
γcc inherited the non-Gaussianity and the antibunching properties of the LSPR

field substantially when γc is comparably large as γb. Then, one can extract the nonlinear

quantum behavior of the LSPR efficiently into a traveling wave, which is essential for a

potential large-scale quantum information processing network.
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Appendix A. Field quantization in a dielectric cavity weakly coupled with a

2D nonlinear material

We follow the treatment in Drummond and Hillery [21]. We will use the displacement

field D instead of the electric field E and make the quantization consistent with the

Maxwell equation. The Maxwell equation for a nonmagnetic material is given as

∇ ·D = 0, ∇ ·B = 0, (A.1)

∇×E = −∂B
∂t

, ∇×H =
∂D

∂t
, (A.2)

whereD = ε0E+P is the displacement field, E is the electric field, P is the polarization,

B = µH is the magnetic field. Here, ε0 is the vacuum permittivity and µ is the magnetic

permeability. The linear polarization is given by the following relation:

Pj = ε0
3∑

k=1

χ
(1)
jk Ek, (A.3)

where j, k = x, y, z and χ
(1)
jk is the linear susceptibility tensor element of the medium.

The nonlinear polarization is typically defined by

P = ε0
∑
n>0

χ(n) : E⊗n, (A.4)

where [χ(n)]jklm··· = χ
(n)
jklm···. Hence, we have

Pj = ε0

∑
k

χ
(1)
jk Ek +

∑
k,l

χ
(2)
jklEkEl +

∑
k,l,m

χ
(3)
jklmEkElEm + · · ·

 . (A.5)

One can express the displacement field as

D =
∑
n>0

ε(n) : E⊗n, (A.6)

where ε is the material’s electric permittivity tensor.

We next introduce equivalent formalism based on the expansion of the electric field

with respect to the polynomials of the displacement field:

E =
∑
n>0

η(n) : D⊗n, (A.7)

where η(n) is the inverse permittivity tensor. The relation between ε and η is found by

equating

E =
∑
n>0

η(n) :

[∑
m>0

ε(m) : E⊗m
]⊗n

. (A.8)

In the case of the 2D TMD material, when we use the polarization basis such that

ε̂+, ε̂−, ε̂z where the first two are the clockwise and the counter-clockwise circular

polarization in the x-y plane, the dielectric tensor is indeed diagonal [6]. Then, the

displacement field is given by

D+ = ε0
(
(1 + χ(1))E+ + 3χ(3)E3

+

)
,

D− = ε0
(
(1 + χ(1))E− + 3χ(3)E3

−

)
, (A.9)
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where χ(1) = χ
(1)
+ = χ

(1)
− and χ(3) = χ

(3)
++++ = χ

(3)
−−−−. Here, the factor 3 is the

degeneracy such that χ(3) = χ(3)(ω;ω, ω,−ω) = χ(3)(ω;ω,−ω, ω) = χ(3)(ω;−ω, ω, ω).

From this, we have

ε
(1)
++ = ε

(1)
−− = ε0(1 + χ(1)), ε(1)z = ε0, ε

(3)
++++ = ε

(3)
−−−− = 3ε0χ

(3), (A.10)

while all the other elements up to the third order tensors are zero.

The Hamiltonian is given as [21]

H =
∫
d3r

 1

2µ
|B|2 +

∑
n≥1

1

n+ 1
D · (η(n) : D⊗n)


=
∫
d3r

 1

2µ
|B|2 +

∑
n≥1

n

n+ 1
E · (ε(n) : E⊗n)

 . (A.11)

For a a linear medium, the quantized displacement field is obtained as [21]:

D = iε(r)

√
h̄ω

2
(af(r)− a†f ∗(r)), (A.12)

where the mode function f(r) is normalized such that∫
d3r ε(r)f ∗(r) · f(r) = 1. (A.13)

For example, the electric field in a 1D Fabry-Perot linear isotropic dielectric cavity is

quantized through

E =
1

ε(r)
D = i

√
h̄ω

2ε(r)V
(aeik·z − a†e−ik·z), (A.14)

where V is the cavity volume.

Next, we consider a case where a small piece of nonlinear material is coupled to the

cavity field. When the nonlinear material is substantially occupying the cavity volume,

one must follow the procedure in Drummond and Hillery [21] where a dual potential Λ

such that D = ∇×Λ is introduced and the quantized field is not directly D, but this

dual potential such that

Λ =

√
h̄

2µω
(au(r)− a†u∗(r)), (A.15)

where u(r) is the mode function of the dual potential and a, a† are the annihilation

and the creation operators of the quantized field. Then, D is obtained by taking the

curl of this dual potential. However, when the overlap between the cavity field and the

nonlinear material is sufficiently small, one can avoid such cumbersome treatment by

taking the leading order perturbing term of the Hamiltonian such that

H = H0 +Hnl, (A.16)

where

H0 =
∫
d3r

[
1

2µ
|B|2 +

1

2
D · (η(1) : D)

]
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=
∫
d3r

[
1

2µ
|B|2 +

1

2
E · (ε(1) : E)

]
,

Hnl =
∫
d3r

m

m+ 1
E · (ε(m) : E⊗m), (A.17)

where m is the leading order of the perturbation. Then, the first term is converted to

H0 = h̄ωa†a using the quantized field D in Equation (A.12) and the field annihilation

and creation operators.

We note that the same approach was adopted in many earlier papers regarding the

Kerr-nonlinear optical cavity [2,11,20,22]. In this approximate approach, H0 represents

the unperturbed Hamiltonian and Hnl is the perturbing Hamiltonian. This approach

is valid when Enl � E0 where Ei = 〈Hi〉 with i = 0, nl. This condition is usually

met when the nonlinear 2D material’s overlap with the cavity field is sufficiently small.

The advantage of this approach is that the unperturbed Hamiltonian is easily quantized

while the perturbing nonlinear term can be expanded using the quantized field D from

the unperturbed Hamiltonian, which is given by Equation (A.12).

Appendix B. Nonlinear coefficient χ, χ′ and unperturbed Hamiltonian

The nonlinear coefficient χb appearing in the Hamiltonian depends on the details such as

the shape, the size, and the material properties of the MNP and the nonlinear material.

Once they are known, the value of χb for a particular LSPR mode can be accurately

calculated. We solve χb for an arbitrary quantized field of an MNP.

The second-quantized displacement field of the LSPR mode in an arbitrary MNP

is [8, 19]:

D(r, t) = iε(r)

√
h̄ωa

2
f(r)(a(t)− a†(t)), (B.1)

where ωa is the resonance frequency of the LSPR, a and a† are the annihilation and the

creation operators of the LSPR with the usual bosonic commutator [a, a†] = 1, and the

mode function f(r) is normalized according to Equation (A.13). This form is consistent

with the quantized D field appearing in Equation (A.12).

The nonlinear optical material, namely MoS2 in our case, is embedded into a

background material such as the hexagonal boron nitride that fills the space. The

refractive index of MoS2 at 1.06 eV is calculated through DFT method [23] to be 2.2. The

refractive index of the hexagonal boron nitride is also found to be 2.2 [24]. Therefore, for

simplicity, we assume that the linear dielectric function of the external space of the MNP

is a constant with respect to the position r. We adopt the approximate perturbative

approach in the previous section to consider an LSPR mode with a weakly coupled

nonlinear monolayer TMD material. The perturbation is expected to be small due to

the small spatial overlap of the LSPR field with the atomically thin monolayer.

Let us now consider the nonlinear perturbation Hnl in Equation (A.17). The leading

order is the third-order nonlinearity [6] and, therefore, we obtain

Hnl =
∫
d3r

9

4
ε0Re[χ(3)(r)]|E‖|4, (B.2)
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where E‖ is the electric field component parallel to the 2D surface. We also explicitly

noted that χ(3) is a function of space so that only the in-plane electric field component

in the nonlinear 2D material contributes to the third-order optical nonlinearity. The

quantized in-plane component of the electric field of the unperturbed Hamiltonian is

given from the quantized unperturbed displacement field D as

E‖(r) = i

√
h̄ωa

2
f‖(r)(a− a†), (B.3)

where f‖(r) is the in-plane component of f(r) in the 2D material. Applying the rotating

wave approximation, we calculate

(a− a†)4 = 6(a†)2a2 + 12a†a+ 3. (B.4)

We then obtain the nonlinear part

Hmnp,Kerr =
27ε0h̄

2ω2
a

16
(2(a†)2a2 + 4a†a+ 1)

∫
d3rRe[χ(3)(r)]|f‖(r)|4

= E0 + h̄∆′ka
†a+ h̄

χ

2
a†a†aa, (B.5)

where the first term is an uninsteresting constant and the second term is the Lamb

shift from the Kerr process. Here, f‖(r) is the in-plane component of the LSPR mode

function. Therefore, we obtain

χ =
27ε0h̄ω

2
a

4

∫
d3rRe[χ(3)(r)]|f‖(r)|4. (B.6)

Since χ and χ′ are related through the Kramers-Kronig relation, the above leads to the

result in the main text (Eq. (3)). This is indeed a general result regardless of the details

of the LSPR field distribution f(r). It also applies to any optical cavity.

It is straightforward to derive the equation (1) of the main text as follows. The

quantized electric field in a 1D Fabry-Perot cavity is given from Equation (A.12) as

E(z, t) = i

√
h̄ωc

2εVc
sin(n(ωc/c0)z)x̂

(
ce−iωct − c†eiωct

)
, (B.7)

where ωc is the cavity’s mode’s frequency and c is the cavity’s annihilation operator.

Hence, we obtain

f(r) =
1√
εVc

sin(n(ωc/c0)z)x̂. (B.8)

Hence, one can calculate χ using this through the Equation (B.6).

Finally, we discuss the unperturbed Hamiltonian of the combined system. The

nonlinear term is an addition to the linear harmonic oscillator Hamiltonian h̄a†a with

the annihilation operator a of the quantized LSPR field [8], so that the unperturbed

Hamiltonian is

Ha = h̄ωaa
†a+

h̄χ

2
a†a†aa, (B.9)

which coincides with Eq. (1) in the main text.



Nonlinear quantum response of a local surface plasmon coupled to a 2D material 17

Appendix C. Population of the LSPR levels

To study the population of the anharmonic ladder of the LSPR, we consider the

anharmonic energy eigenstates of the LSPR mode: particularly three lowest levels

|0〉b , |1〉b , |2〉b whose energy eigenvalues are 0, h̄ωb, h̄(2ωb + χb). An external field drives

the transition among the levels. We are particularly interested in the ratio of the

population at the second level to that at the first level. The dynamics of this anharmonic

system can be modeled using a Hamiltonian H ′ = H ′a +H ′drive with

H ′a = h̄ωa |1〉〈1|+ h̄(2ωa + χ) |2〉〈2| ,
H ′drive = −ih̄

√
κ
[
(|1〉〈0|+ |2〉〈1|)εe−iωt − (|0〉〈1|+ |1〉〈2|)ε∗eiωt

]
, (C.1)

and the Lindblad dissipation operators:

L1 =
√
γ |0〉〈1| , L2 =

√
γ |1〉〈2| , L3 =

√
χ′|0〉〈2|. (C.2)

The master equations for the density matrix elements are obtained by [17]:

ρ̇ =
i

h̄
[ρ,H] +

∑
j

(
LjρL

†
j −

1

2
L†jLjρ−

1

2
ρL†jLj

)
. (C.3)

For simplicity, we consider the case where ω = ωa (resonant drive) and ε∗ = ε. When

we separately treat the dynamics only between |1〉 and |2〉 levels and transform onto a

rotating frame, the equations of motion are

ρ̇22 = −
√
κε(ρ21 + ρ12)− (γ + χ′)ρ22,

ρ̇21 = −iχρ21 +
√
κε(ρ22 − ρ11)−

γ + χ′

2
ρ21,

ρ̇12 = +iχρ12 +
√
κε(ρ22 − ρ11)−

γ + χ′

2
ρ12, (C.4)

where we used the fact ρ20 = 0. Here, we denoted ρij = 〈i| ρ |j〉. One can solve the

above equation using the Fourier transformation technique:

−iω′ρ̃22(ω′) = −
√
κε(ρ̃21(ω

′) + ρ̃12(ω
′))− (γ + χ′)ρ̃22,

−iω′ρ̃21(ω′) = −iχρ̃21(ω′) +
√
κε(ρ̃22(ω

′)− ρ̃11(ω′))−
γ + χ′

2
ρ̃21,

−iω′ρ̃12(ω′) = +iχρ̃12(ω
′) +
√
κε(ρ̃22(ω

′)− ρ̃11(ω′))−
γ + χ′

2
ρ̃12, (C.5)

From the second and the third equations, we obtain

ρ̃21(ω
′) =

√
κε(ρ̃22(ω

′)− ρ̃11(ω′))
i(χ− ω′) + (γ + χ′)/2

,

ρ̃12(ω
′) =

√
κε(ρ̃22(ω

′)− ρ̃11(ω′))
−i(χ+ ω′) + (γ + χ′)/2

. (C.6)

From this, we obtain the steady-state solution by setting ω′ → 0:

ρ̃22(ω
′ → 0) =

4κε2

(γ + χ′)2 + 4χ2 + 4κε2
ρ̃11. (C.7)
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Figure D1: In-plane component of the LSPR field in a spherical MNP. Also shown are

the two monolayer MoS2 planes in the left and the right. (Solved in COMSOL FEM

software package)

When κε2 is large, the population in |2〉 becomes saturated. For a sufficiently small

drive ε such that 4κε2 � γ2, we obtain the steady-state population

ρ22,ss '
4κε2

(γ + χ′)2(1 + 4χ2/(γ + χ′)2)
ρ11,ss. (C.8)

Appendix D. An example design of a metal nanoparticle

In this section, we illustrate one possible design of the metal nanoparticle and

the associated LSPR mode that provides a sufficiently large Kerr coefficient in the

Hamiltonian at our desired driving optical frequency. We consider a configuration in

the figure 1 of the main text where an LSPR field is coupled to the two 2D material

planes in the left and the right. One drives the LSPR resonance using a classical light

source (lasers) as shown.

The mode field function and the resonance frequency for the spherical MNPs

are well known (for example, see [9]). Unfortunately, however, the spherical MNP

does not provide a large overlap between the in-plane LSPR field component and the

sandwiching 2D material planes: To excite the in-plane field component, the electrical

field component of the driving field must be parallel to the 2D planes. Then, most of the

in-plane field component of spherical LSPR is concentrated in the middle of the sphere [8]

(also see the FEM solution in the figure D1). Therefore, we must find another geometry

of the MNP that provides a large overlap. It is also well known that the detailed LSPR

field function (distribution) and the resonance depend largely on the shape and size of

the MNP [32, 33]. A reasonable path forward is to utilize the finite element method to

solve the Maxwell equations in details. Hence, we adopt the commercial FEM software

package (COMSOL) to design a suitable MNP that provides the resonance peak at the

desired optical frequency at 1.06 eV and maximizes the nonlinear overlap.
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(a) Side (b) Front

(c) E-field vectors

Figure D2: E-field distribution of a silver disk MNP driven by an external field.

Solution obtained using a finite-element-method software package (COMSOL).

A natural selection of the MNP geometry that may improve the in-plane component

overlapping the nonlinear 2D material is a disk shape; the large bottom and top surfaces

induce large in-plane fields, while the thin layer of the disk may help make the resonant

frequency lower. For example, we solved the field distribution of an LSPR mode from

a silver disk MNP with diameter 6 nm and thickness 0.27 nm at 1140 nm wavelength,

which is the resonant frequency of this MNP design. For this, we applied a z-polarized

external field, traveling in y− direction with 1 V/m amplitude to the system and

obtained the induced electric field (subtracting the background). Figure D2 shows

the result. The two monolayers of MoS2 overlap well with the in-plane component of

the LSPR induced field. The E-field vectors in the monolayer planes are significant,

compared to the case of the spherical MNP.
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