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We introduce a theoretical framework based on Fano’s theory of discrete-continuum interactions
to analyze the quantum dynamics of broadband parametric downconversion (PDC) in the few-pump-
photon regime of nonlinear quantum nanophotonics. Applying this unified analytic approach to 1D
χ(2)-nonlinear waveguides, we find a host of remarkable dynamical features due to the coupling of
a discrete pump state to the signal continuum, from unit-efficiency (i.e., complete) downconversion
when the coupling is dissipative, to Rabi-like oscillations with sub-exponential decay when it is
dispersive. The theory provides a straightforward way to analytically compute a full characteriza-
tion of the PDC dynamics, including the complete eigensystem of the continuum Hamiltonian and
expressions for the signal biphoton correlation function. We also apply the theory to study a pair of
linearly coupled χ(2) waveguides, where two discrete pump states simultaneously downconvert into a
common-mode signal continuum, resulting in Fano interference that critically affects the PDC rate.
Under appropriate conditions, the theory predicts characteristic Fano lineshapes and even complete
destructive interference resulting in the full suppression of PDC, due to the formation of a bound
pump state in the continuum. Generalizing further, we show that the framework can also be applied
to higher-order parametric processes such as parametric three-photon generation, and we also find
numerical signatures that Fano-type interactions occur even for multi-photon PDC under stronger
pumping. Our results establish broadband PDC as yet another physical system natively exhibiting
Fano-type interactions and advance a theoretical framework in which to understand the complicated
quantum dynamics of strongly nonlinear broadband quantum optics.

I. INTRODUCTION

Harnessing the quantum nature of light potentially
holds the key to overcoming classical limitations of con-
ventional photonics in applications ranging from funda-
mental science, where coherent light sources have long
been ubiquitous, to the more recent but rapidly de-
veloping field of quantum engineering and information
processing [1–4]. In this context, quantum photonics
stands out among other quantum-enhanced hardware
platforms in its potential for long-distance connectivity,
wide-bandwidth capacity, and room-temperature oper-
ability [5–8]. Many state-of-the-art proposals for pho-
tonic quantum information processing are particularly
reliant on the physical process of parametric downconver-
sion (PDC) [9–11], in which a medium with some optical
nonlinearity (e.g., χ(2)) facilitates the spontaneous gen-
eration of entangled photons. These entangled photons
act as a key resource for a variety of quantum operations,
and the non-classical correlations they carry are routinely
exploited in foundational quantum photonic technologies
like heralded single-photon generation [12–14], quantum
teleportation [15], quantum key distribution [16], and
precision measurement [17, 18].
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Nonlinear waveguides provide a convenient hardware
platform for realizing the optical processes needed for
PDC, as transverse spatial confinement allows better
control over geometric dispersion and longer interaction
lengths [19–21]. However, in contrast to traditional quan-
tum optics dealing with only a limited number of optical
modes, as in single-mode cavity electrodynamics [22, 23],
waveguides are natively broadband systems supporting a
large number of frequency modes, and a complete quan-
tum model for PDC—fully incorporating the multimode
and non-Gaussian aspects of its quantum dynamics—
is computationally intractable in general [24–26]. Most
established treatments of broadband PDC work in the
weak-interaction limit where the PDC process is pumped
by a strongly displaced coherent state, and crucially, re-
mains undepleted (i.e., a negligible fraction of the pump
energy is transferred in the process). This undepleted
pump approximation produces a linearized, tractable
quantum description of PDC appropriate for many exper-
imental setups where the nonlinear interaction strength
is small, and it has been useful for studying the effects
of pulsed interactions [27], spectral entanglement [28],
waveguide loss [29], and multi-photon emissions [30–32].

On the other hand, significant recent progress in
the fabrication of ultra-low-loss and highly nonlinear
nanophotonic waveguides with precise phase and disper-
sion engineering [33–38] has significantly bridged the gap
towards a “strong-coupling regime” for nonlinear photon-
ics, where considerable energy transfer can occur between
the pump and signal modes at the few-photon level, open-
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ing up the possibility for coherent generation of multi-
mode non-Gaussian states in an all-photonic platform.
Such a possibility underscores the importance of further-
ing our physical understanding, at both fundamental and
engineering levels, of broadband quantum dynamics in
this highly nonlinear regime, and of developing analyt-
ical and numerical paradigms for modeling potentially
novel phenomena in such systems [39–41].

In this research, starting from a full quantum model
of a 1D χ(2) waveguide, we show the emergence of ex-
otic broadband quantum dynamics in the highly non-
Gaussian regime beyond the undepleted pump approxi-
mation, such as perfect depletion of a weak pump field
(i.e., unit-efficiency PDC) and Rabi-like oscillations with
sub-exponential decay. We can uniformly analyze these
broadband phenomena using an unconventional theo-
retical framework for PDC: Fano’s theory for discrete-
continuum interactions [42], with which single-photon
PDC is seen as an interaction between a discrete pump
state and a continuum of signal states. In this pic-
ture, unit-efficiency PDC can be intuitively understood
as a “dissipation” of a pump photon to a continuum
composed of signal states via a process analogous to
atomic/molecular autoionization [43–45]; such phase de-
coherence within a closed system with many degrees of
freedom is also reminiscent of intramolecular vibrational
energy redistribution [46, 47]. The qualitative nature of
the Fano-type interaction for PDC can range from dissi-
pative to dispersive depending on the system parameters,
but by virtue of Fano’s theory, analytical expressions for
the system’s dynamical behavior, including the time evo-
lution of the pump photon population and biphoton sig-
nal correlation functions, can be derived for the entire
parameter space in a unified way.

To illustrate how this unconventional approach results
in both new intuition and powerful analytic tools for
understanding potentially complicated nonlinear optical
systems, we consider a simple example of PDC in two
linearly coupled χ(2) waveguides. By varying waveguide
parameters and the initial pump state prepared as a su-
perposition between the two waveguides, the discrete-
continuum interactions in this system can destructively
(constructively) interfere, causing a dramatic suppression
(enhancement) of the overall PDC rate. As a result, this
example already suffices to exhibit many of the rich phys-
ical phenomena that distinguishes Fano-type systems, in-
cluding asymmetric Fano lineshapes in the continuum ex-
citation spectrum and the formation of a bound state in
the continuum (BIC). Analogously to many other stud-
ies of BIC [48–54], this singular phenomenon can be seen
as the existence of a protected pump state experiencing
complete suppression of PDC due to destructive interfer-
ence in its coupling to the signal-mode continuum.

In fact, discrete-continuum interactions likely underpin
much of the physics of broadband parametric interactions
in the few-pump-photon regime. For example, an anal-
ysis of three-photon generation proceeds analogously to
the χ(2) case, and the resulting phenomenology is quali-

tatively similar by virtue of the common applicability of
Fano’s theory. In addition, numerical simulations of χ(2)

PDC beyond the weak-excitation regime, taking into ac-
count multi-photon interactions, also show signatures of
discrete-continuum interactions under appropriate con-
ditions. These results suggest that the powerful toolbox
of Fano’s theory [55–61] has much to offer for studying
nonlinear broadband quantum optics. Such perspectives
may provide useful intuition for qualitatively understand-
ing complicated quantum dynamics even when numerical
simulations are infeasible, in a spirit similar to the use
of thermodynamic theory for highly multimode nonlin-
ear optical systems [62]. Underscoring the importance
of such theoretical tools, realistic experimental values for
state-of-the-art nonlinear waveguide technology indicate
the field of photonics is progressing towards this largely
unexplored frontier.

II. QUANTUM MODEL OF A BROADBAND
χ(2) WAVEGUIDE

In this section, we construct a quantum model for a dis-
persive 1D χ(2) nonlinear waveguide based on the canon-
ical quantization procedure developed in Ref. [63, 64].
We consider a quantization window of length L to which
periodic boundary conditions are applied, as shown in
Fig. 1, and the length L should be chosen long enough
to avoid boundary effects on the dynamics. In PDC, for
instance, the spatial distribution and correlation func-
tion of the downconverted signal photon pairs have length
scales which undergo dispersion as a function of time. If
the maximum such length scale of interest is Lc, then
we must take L > Lc. We discuss Lc (in terms of the
biphoton correlation function, etc.) more quantitatively
in Sec. III D.

To treat PDC, we assume the field can be partitioned
into a signal (i.e., fundamental) band of frequencies cen-
tered around some wavevector ka0 and a pump (i.e.,
second-harmonic) band around kb0 = 2ka0. Under peri-
odic boundary conditions, the quantization window sup-
ports discrete wavevectors kam = ka0 + (2π/L)m and
kb` = kb0 + (2π/L)` (m, ` ∈ Z) for the signal and pump
bands, respectively. We also assume that broadband ex-
citations of the waveguide have bandwidths which are
primarily limited by second-order dispersion, so that
a monochromatic mode with wavevector k and energy
~ω(k) has a dispersion relation of the form ω(k) =
ω(k0)+ω′(k0)(k−k0)+ 1

2ω
′′(k0)(k−k0)2, with all higher-

order dispersion neglected.

To quantize the field, we introduce photon-polariton

field annhilation operators âm and b̂` for the signal and
pump fields [65, 66], respectively, which are defined in
rotating frames rotating at ω(ka0) + (kam − ka0)ω′(ka0)
and 2ω(ka0)+(kb`−2ka0)ω′(ka0), respectively. With this,
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the system is described by a rotating-frame Hamiltonian

Ĥ/~ =
η(2)Aeff

~

∫
L

dz
(
∂zΛ̂a

)2
∂zΛ̂b (1)

+

∞∑
m=−∞

dam
2â†mâm +

∞∑
`=−∞

(δ + µ`+ db`
2)b̂†` b̂`.

In the nonlinear part, η(2) = −χ(2)/ε20n
4
an

2
b where χ(2) is

the effective second-order permittivity [66], na and nb are
the indices of refraction for the signal and pump, and Aeff

is the effective interaction area of the modes [35]; all these
quantities are assumed to be frequency-independent. In
the dispersive part, δ is the relative detuning between
pump and signal carriers (i.e., the phase mismatch), µ is
the linear dispersion of the pump due to group velocity
mismatch (in the comoving frame of the signal carrier),
and da and db are the quadratic dispersions of the signal
and pump carriers due to group velocity dispersion; these
constants are given by

δ = ω(kb0)− 2ω(ka0) (2a)

µ =
2π

L

(
ω′(kb0)− ω′(ka0)

)
(2b)

da =

(
2π

L

)2
ω′′(ka0)

2
; db =

(
2π

L

)2
ω′′(kb0)

2
. (2c)

z

z

Correlation length Lc

Quantization window L

Pump photonSignal photon
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m

e
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FIG. 1: Schematic representation of the length scales involved
in our quantization procedure, for the case of parametric
downconversion of a monochromatic pump field. Pump pho-
tons (blue circles) downconvert via a χ(2) interaction, which
generates localized signal photon pairs (red circles) as shown
in the upper figure. Red dashed lines schematically indicate
the spatial extent of the signal biphoton correlation functions.
After some time (lower figure), the signal photons undergo
dispersion, resulting in some spatial correlation structure with
a length scale Lc. To quantize the system, we apply periodic
boundary conditions to a quantization window of length L,
chosen large enough to contain Lc.

The dual potentials Λ̂a and Λ̂b, which are related to the
displacement field operators via D̂ = ∇× Λ̂, constitute
the canonical coordinates of our quantization procedure
and are given in the rotating frame by

Λ̂a =

∞∑
m=−∞

√
~ε0naω′(kam)

2kamAaL
âme

ikamz (3a)

× exp
(
−i
[
ω(ka0) + (kam − ka0)ω′(ka0)

]
t
)

+ H.c.

Λ̂b = −i

∞∑
`=−∞

√
~ε0nbω′(kb`)

2kb`AbL
b̂`e

ikb`z (3b)

× exp
(
−i
[
2ω(ka0) + (kb` − 2ka0)ω′(ka0)

]
t
)

+ H.c.,

where Aa and Ab are the transverse cross-section areas
of the signal mode and the pump modes, respectively
(which are also assumed to be independent of frequency).

We now insert (3a) and (3b) into (1) and perform the
integral over z. After also applying a rotating wave ap-
proximation to eliminate terms rotating at frequencies on
the order of ω(ka,0), we obtain

Ĥ/~ =
g

2

∑
m+n=`

(
â†mâ

†
nb̂` + âmânb̂

†
`

)
(4)

+

∞∑
m=−∞

dam
2â†mâm +

∞∑
`=−∞

(δ + µ`+ db`
2)b̂†` b̂`,

where the nonlinear coupling rate is

g = χ(2)

√
~ω′2(ka0)ω′(kb0)k3

a0A
2
eff

ε0n4
an

2
bA

2
aAbL

. (5)

Note that the Hamiltonian (4) commutes with both

the generalized number operator N̂ = 1
2N̂a + N̂b, where

N̂a =
∑∞
m=−∞ â†mâm and N̂b =

∑∞
`=−∞ b̂†` b̂`, as well as

the total momentum operator M̂ =
∑∞
m=−∞mâ†mâm +∑∞

`=−∞ `b̂†` b̂`; i.e., [Ĥ, N̂ ] = [Ĥ, M̂ ] = 0. Thus, N̂ and M̂
represent conserved quantities of the evolution under (4),
and we can decompose the entire system Hilbert space
into non-interacting eigenspaces of N̂ and M̂ .

III. PDC IN THE WEAK-EXCITATION
REGIME

Although the general quantum dynamics under the
Hamiltonian (4) are intractable due to the immense size
of the Hilbert space, the special case of single-photon
PDC offers a good deal of analytic and qualitative insight
into the behavior of the system. Notably, the results ob-
tained for single-photon PDC describe not only the case
of a single input pump photon but also the dynamics ex-
perienced by a weak coherent pump field. To see this,
consider a monochromatic coherent state with wavevec-
tor kb` and photon density ρ (related to the photon flux
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in a non-comoving frame). When ρ � 1/Lc, there is,
intuitively, fewer than one photon per correlation length.
We refer to this as the weak-excitation regime, since this
condition allows us to take the length L of the quanti-
zation window to satisfy ρL � 1 while still satisfying
Lc < L. In this case, the initial state of the system is

exp
[√
ρL(b̂†` − b̂`)

]
|0〉 ∝ |0〉+

√
ρL b̂†` |0〉+O(ρL), where

the contribution from the higher-order terms can be ne-
glected. Since the vacuum component evolves trivially,
the evolution of the single-photon component suffices to
fully capture the dynamics of the input coherent state.

The state b̂†` |0〉 represents the existence of a single
pump photon somewhere in the quantization length L.
Since such a situation cannot exhibit multi-photon inter-
actions in the pump, the dynamics of single-photon PDC
is expected to be independent of L (i.e., independent of
the pump photon “density”). (As discussed in Sec. V,
this is not the case for coherent-state inputs outside the
weak-excitation regime as we then have to consider states

such as b̂†2` |0〉, whose dynamics are dependent on L.)
As we will show, this invariance of single-photon PDC
to rescalings in L allows us to take a continuum limit
L → ∞, allowing us to approximate the energy spec-
trum as continuous and providing useful analytic results
to describe PDC in the weak-excitation regime.

In the continuum limit, the system Hamiltonian ex-
hibits Fano-type discrete-continuum interactions. Thus,
using Fano theory, we can obtain complete eigenspectra
along with the corresponding eigenstates, leading to an-
alytical expressions for the system dynamics, including
the time evolution of the pump photon population and
the spatial biphoton correlation function of the down-
converted signal photons. It is shown that the nature
of the discrete-continuum interaction can vary from dis-
sipative to dispersive, depending on the detuning of the
pump mode. In the dissipative regime, near-perfect PDC
is realized via an analogous process to atomic/molecular
autoionization. In the dispersive regime, the pump pho-
ton population exhibits Rabi-like oscillations with sub-
exponential decay. We compare these analytic results
derived with the continuum model (with L→∞) against
numerical results from the original discrete Hamiltonian
with finite L to validate the approach.

A. Single-photon PDC

Let us consider the initial state to be a single-photon
excitation of a monochromatic pump field with wavevec-
tor kb`,

|b`〉 = b̂†` |0〉 . (6)

Starting from this initial state, the evolution of the sys-
tem is in fact closed within a subspace spanned by |b`〉
and a band of signal states (consisting of downconverted

pairs) given by

|ap,`〉 =

{
1√
2
â†0

2 |0〉 p = ` = 0

â†d`/2e+pâ
†
b`/2c−p |0〉 otherwise

, (7)

where the index p ∈ {0, 1, . . .} corresponds to the “non-
degeneracy” of the downconverted signal state relative to
the input pump state. Within this subspace, the nonzero
matrix elements are

〈b`|Ĥ|b`〉 /~ = δ + µ`+ db`
2 (8a)

〈ap,`|Ĥ|ap,`〉 /~ = 2da

{(
`
2

)2
+ (p)

2
` ∈ even(

`
2

)2
+
(
p+ 1

2

)2
` ∈ odd

(8b)

〈ap,`|Ĥ|b`〉 /~ =

{
1√
2
g p = ` = 0

g otherwise
(8c)

Investigating these equations, we first see that when `
is odd, the only effect is a shift of p by 1/2. Therefore, we
may consider solutions for even ` and arbitrary p without
loss of generality. Second, for a given `, the net effect of
µ and db is to shift the detuning δ, and thus, we may
consider the case µ = db = 0 without loss of general-
ity. Furthermore, we also see that we can subtract off a
constant offset 2da(`/2)2 from the diagonal elements in
(8a) and (8b), upon which we find that the only depen-
dence on the index ` comes from (8a). Thus, the nonzero
momentum index ` in the initial pump state is, up to
a constant energy offset, again equivalent to a shift of
the detuning δ, and we can focus on the case of ` = 0
without loss of generality. Together this means the only
non-trivial dynamics of the system occurs for µ = db = 0
and arbitrary δ, da, and g, and we can restrict the Hilbert
space to the ` = 0 subspace with arbitrary p, reachable
from the “dc” (with respect to the pump carrier) initial
state |b0〉. Based on these results, propagation of a single-
photon pump pulse with general form

∑∞
`=−∞ f` |b`〉 can

be obtained by simply solving the PDC dynamics of each
monochromatic component |b`〉.

Because the choice of the quantization window length
L is arbitrary, we should be able to find a timescale for
these dynamics which is independent of L. Through di-
mensional analysis, it turns out that the rate

κ =

(
g4

2da

) 1
3

(9)

satisfies this property, and it effectively plays the role
of the effective nonlinear coupling rate in this dimen-
sionalization. We also define a dimensionless parameter
ξ = δ/κ, which corresponds to the effective (normalized)
detuning. Then together with the above simplifications,
the matrix elements of interest are

〈b0|Ĥ|b0〉 /~κ = ξ (10a)

〈ap,0|Ĥ|ap,0〉 /~κ = ε2p2 (10b)

〈ap,0|Ĥ|b0〉 /~κ = ε
1
2 , (10c)
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where the dimensionless parameter ε = (2da/g)
2
3 ∝ L−1;

nonzero ε is a consequence of choosing a finite window
length L, and in the continuum limit of L → ∞, ε → 0.
Note, however, this does not mean that the matrix ele-
ments in (10b) and (10c) become negligible in this limit,
since the number of such elements (i.e., the density of the
band of signal states) is also increasing with L. In fact,
as we show in the following, the dynamics under (10)
become independent of L yet remain non-trivial in the
limit ε → 0. In order to retain ε > 0, we also assume in
the following that da > 0 for simplicity; the dynamics for
da < 0 can be recovered by considering δ 7→ −δ, t 7→ −t
(due to κ 7→ −κ), and b̂0 7→ −b̂0 (and a similar procedure
can be generally done on the level of (4) including the
non-dc modes as well).

The Hamiltonian matrix elements (10) can be seen as
describing the hopping of a single excitation among the
set of signal states together with the single dc pump state.
As a result, we can summarize the dynamics by introduc-
ing two-level lowering operators

v̂ = |0〉 〈b0| , (11)

which annihilates the dc pump excitation, and

ûp = |0〉 〈ap,0| (12)

which annihilates a photon-pair excitation with non-
degeneracy p. Using these operators, we can define an
effective hopping Hamiltonian for this subspace, normal-
ized with respect to ~κ, as

Ĝ = ξv̂†v̂ +

∞∑
p=0

[
ε2p2û†pûp + ε

1
2

(
û†pv̂ + ûpv̂

†)] , (13)

which manifestly has the matrix elements in (10).

The form of the Hamiltonian (13) is well-suited for
numerical simulation of the dynamics of single-photon
PDC. By picking a finite L (large enough to eliminate
boundary effects) and an appropriate momentum cut-
off pmax (such that p < pmax), we arrive at an efficient
numerical approximation for the dynamics, with Hilbert
space dimension scaling as pmax. (The required pmax ∼ L
but also depends on ξ; we elaborate on the latter scal-
ing in the next subsection.) More specifically, Ĝ can be
approximated by a matrix

Ĝ ≈



ξ ε
1
2 ε

1
2 ε

1
2 . . . ε

1
2

ε
1
2 0 0 0 . . . 0

ε
1
2 0 ε2 0 . . . 0

ε
1
2 0 0 22ε2 . . . 0
...

...
...

...
. . .

...

ε
1
2 0 0 0 . . . p2

maxε
2


, (14)

where the first dimension corresponds to |b0〉, while (p+
2)th dimension corresponds to |ap,0〉.

B. Eigenstates in the continuum limit

In order to derive additional analytic insight into
single-photon PDC, we would like to make an analogy
to the physics of Fano-type discrete-continuum interac-
tions [42]. For this purpose, we first need to take the
continuum limit of L → ∞ and work with continuum
fields. Consider a rescaled momentum s = εp (essentially
a non-dimensionalized wavevector difference between the
two downconverted photons), together with the set of
field operators

φ̂s = ε−
1
2 ûp. (15)

In the limit of L→∞ (equivalently ε→ 0), s becomes a
continuous coordinate, while the commutation relation-

ships for φ̂s obeys [φ̂s, φ̂
†
s′ ] = δ(s− s′). Using these sub-

stitutions, we can derive that limL→∞ Ĝ = Ĝcont, where

Ĝcont = ξv̂†v̂ +

∫ ∞
0

ds
(
s2φ̂†sφ̂s + v̂φ̂†s + v̂†φ̂s

)
. (16)

As expected, Ĝcont only depends on ξ, which is indepen-
dent of L.

This Hamiltonian has a characteristic structure of
Fano-type interaction in which a discrete pump state

v̂† |0〉 is coupled to a continuum of signal states φ̂†s |0〉.
As shown in Fig. 2(A), when a monochromatic single-
photon pump state |k3〉b with wavevector k3 downcon-
verts to a pair of signal photons |k1, k2〉a, it can do
so with any continuous combination of wavevectors k1

and k2, so long as it satisfies momentum conservation
k1 + k2 = k3. Depending on the choice of the system de-
tuning and dispersion, the energy of |k3〉b can lie within
or outside of the continuous energy band of the states
|k1, k2〉a, leading to dissipative or dispersive coupling, re-
spectively. Energetically, this dissipative coupling to the
continuum is reminiscent of atomic systems with config-
uration interactions that exhibit autoionization [43–45]:
When the energy of a discrete excited state of an atom
(a molecule) lies within the continuous energy band of
the ionized states, as shown in Fig. 2(B), an atom (a
molecule) initially in the excited state ionizes unitarily
through a process known as autoionization. We show
that a direct mapping can be established between (16)
and atomic systems, and phenomena such as the “au-
toionization” of pump photons occur as a direct conse-
quence of this mapping. This autoionization of the pump
photons provides an efficient channel for downconversion
(i.e., with near-complete pump depletion).

Following Ref. [42], we posit that the eigenstates of

Ĝcont with eigenvalue λ take the form

|ϕλ〉 =

(
cλv̂
† +

∫ ∞
0

dsfλ(s)φ̂†s

)
|0〉 . (17)

By virtue of Ĝcont |ϕλ〉 = λ |ϕλ〉, cλ and fλ have to satisfy
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|e

Continuum of ionized state|ϕ(E)

E

(A) (B)

k3
k2k1

k'1 k'2

k''1 k''2

|k3

Signal continuum |k1,k2

Atomic/molecular
 autoionization

Excited state 
|e    

Ionized state
|ϕ(E)

Single photon parametric 
downconversion

Pump mode 
|k3

Signal mode 
|k1,k2  

E

k3

momentum

FIG. 2: (A) Single-photon parametric downconversion hap-
pens so that the momentum is conserved. For each pump
mode with momentum k3, there exists a continuum of signal
modes to couple to. (B) Autoionization of an atom. When
the energy of the excited state |e〉 lies within the continuum
of ionized state |φ(E)〉, the atom ionizes unitarily.

ξcλ +

∫ ∞
0

dsfλ(s) = λcλ (18a)

cλ + s2fλ(s) = λfλ(s). (18b)

We first consider the case of λ < 0, with λ = −λM (the
reason for the M-subscript will become clear later). In
this case, the solution to (18b) takes the form

f−λM
(s) = − c−λM

λM + s2
, (19)

and substituting this expression into (18a) leads to the
condition

π

2
√
λM

− λM = ξ, (20)

which can be implicitly solved to determine λM as a func-
tion of ξ. Importantly, there exists only one solution
to (20) satisfying λM > 0, which means that this is a
unique, discrete state. Thus, we define fM(s) = f−λM

(s),
cM = c−λM

and |ϕM〉 = |ϕ−λM
〉. Finally, imposing the

normalization condition 〈ϕM|ϕM〉 = 1 to this discrete
state gives

c2M =

(
1 +

π

4λ
3/2
M

)−1

. (21)

Notably, this state turns out to be an “optical meson”
state (hence the M-subscript), which was originally dis-
covered in Ref. [67]. Such photon bound states have been
observed experimentally utilizing nonlinearities induced
by atomic vapor [68, 69]. Based on (20) and (21), we find
limξ→−∞ c2

M = 1 while limξ→∞ c2
M = 0. This means that

for large negative values of the detuning ξ, the optical

meson state is composed mostly of pump-photon excita-
tion, while for large positive values of the detuning, the
state is composed mostly of downconverted signal pairs.

Considering now the other case, when λ ≥ 0, (18b) has
a singularity at s2 = λ. To handle this case, we write the
solution to (18b) in the form

fλ(s) = cλ

(
1

λ− s2
+ w(λ)δ(λ− s2)

)
(22)

where w(λ) is to be determined in order to satisfy (18a).
By substituting (22) into (18a) and taking the Cauchy
principal value of the integral, we find

w(λ) = 2
√
λ(λ− ξ). (23)

Finally, since we now have a continuous set of solutions
λ, the normalization condition determining cλ is taken to
be 〈ϕλ|ϕλ′〉 = δ(λ− λ′), which results in

c2λ =
2
√
λ

w2(λ) + π2
. (24)

Notice that for large enough ξ > 0 (i.e. dissipative cou-
pling), (24) takes a Lorentzian lineshape centered around
λ = ξ, reflecting that discrete pump state whose unper-
turbed energy being ξ is strongly coupled to the contin-
uum with similar energy.

C. Dynamics of pump photon population

Having derived analytical expressions for all the eigen-
states of the system, we are ready to derive the dynamical
properties of PDC. For an initial state |b0〉 = v̂† |0〉, the
state after some normalized time τ = κt is

|Ψ(τ)〉 =eiλMτ cM |ϕM〉+

∫ ∞
0

dλ cλe
−iλτ |ϕλ〉 , (25)

so, up to an overall phase, the pump state amplitude is

C(τ) = c2M +

∫ ∞
0

dλ c2λe
−i(λ+λM)τ , (26)

and the population of the pump photon Nb(τ) = |C(τ)|2
can be written as

Nb(τ) =

∣∣∣∣∣
(

1 +
π

4λ
3/2
M

)−1

+

∫ ∞
0

dλ
2
√
λe−i(λ+λM)τ

4λ(λ− ξ)2 + π2

∣∣∣∣∣
2

. (27)

In Fig. 3, we show the time evolution of C(τ) and Nb(τ)
for various values of ξ, both according to these analytic
results as well as according to numerical simulation. We
see that (27) correctly predicts the dynamics under the
discrete Hamiltonian (13) for ε � 1. Interestingly, as
shown by the dashed gray curve in Fig. 3, there exists
a detuning ξ = ξf ≈ 1.90 which attains perfect pump
depletion at a finite time τ = τf ≈ 1.32.
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The analytic form of (27) provides interesting insight
into the dynamics of pump photon number. Since the
continuum contribution c2λ has finite support, its Fourier
transform in (27) should decay to zero as τ →∞, so the
pump photon population is eventually dominated by the
meson contribution, i.e. limτ→∞Nb(τ) = c2M. We can
now consider two limits for the detuning ξ.

First, for large positive ξ, the continuum contribu-
tion c2λ has a Lorentzian-like form with full-width-at-half-
maximum of π/

√
ξ near its peak λ ≈ ξ, and thus, the

continuum contribution decays to zero with character-
istic time scale τd =

√
ξ/π, as argued above. In addi-

tion, for ξ →∞, the residual meson contribution has an
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FIG. 3: (A) Pump photon population Nb(τ) as a function
of (normalized) propagation time τ for various (normalized)
detunings ξ (i.e., phase mismatch), ranging from dispersive
(ξ < 0) to dissipative (ξ > 0). Solid lines are based on
analytic evaluation of (27), while circles show numerical re-
sults based on simulating (13) with finite quantization win-
dow length (ε = 1/30). (B) Trajectories taken by the pump
amplitude C(τ) (|C|2 = Nb) in the complex plane for var-
ious ξ. Squares represent the point where C(τ) crosses the
real axis for the first time after τ = 0. As discussed in the
main text, finite-time pump depletion can also happen; here,
Nb = C = 0 for ξ = ξf ≈ 1.90 at τ = τf ≈ 1.32. Trajectories
corresponding to ξ = ξf are shown as black dashed lines in
both (A) and (B).

asymptotic scaling c2
M ∼ π2

2ξ3 , so by simply taking large

enough ξ the residual pump population can be made ar-
bitrarily small, at the cost of realizing this near-complete
pump depletion at time τd ∝

√
ξ.

As shown in Fig. 4(A), in the limit ξ → ∞, the en-
ergy of the pump state lies deep in the middle of the sig-
nal continuum. In this regime (as shown in Sec. III D),
the downconverted signal photons populate wavepackets
with large opposite group velocity, resulting in the sup-
pression of backconversion. In other words, excitations
that move from the pump state into the signal continuum
do not come back into the pump, and the pump photon
population exhibits an exponential decay

Nb(τ) ≈ e−τ/τd (ξ →∞). (28)

We refer to this regime as dissipative single-photon PDC
since the process results in the “dissipation” of a pump
photon into the signal continuum. Additional details,
analytics, and numerical results to support this interpre-
tation are presented in Appendix B.

On the other hand, in the other limit ξ → −∞, the en-
ergy of the pump state is far below the bottom of the sig-
nal continuum, so the pump state is dispersively coupled
to a narrow band of signal states at the bottom of the
signal continuum, as schematically shown in Fig. 4(B).
The first consequence of this dispersive coupling is that
downconverted signal photons tend to have small mo-
menta and hence have wavepackets that separate slowly
(as shown in Sec. III D), allowing for multiple periods of
Rabi-like oscillations in the pump photon number due
to backconversion. At the same time, in contrast to the
case of ξ →∞, the continuum contribution itself becomes
small in this limit, with the dynamics being dominated
by the static meson contribution c2M → 1 as ξ → −∞.
More precisely, as shown in Appendix B, the pump pop-
ulation as a function of time can be approximated as

Nb(τ) ≈

∣∣∣∣∣1− π

4(−ξ)3/2
+

√
πei(ξτ−

π
4 )

2ξ2
√
τ

∣∣∣∣∣
2

(ξ → −∞), (29)

which exhibits the aforementioned oscillations (third
term) on top of the static meson contribution (first two
terms). Notably, this expression indicates that the oscil-
lations follow a sub-exponential decay ∼ 1/

√
τ .

It is worth mentioning that, even in the dispersive limit
ξ → −∞, (29) exhibits qualitatively different dynamics
from conventional Rabi oscillations seen in single-mode
PDC with Hamiltonian [70, 71]

gs

2

(
â2

s b̂
†
s + â†2s b̂s

)
+ δsâ

†
s âs. (30)

For an initial single-photon pump state b̂†s |0〉, (30) ex-
hibits a sinusoidal oscillation with no decay: the pump
photon population exactly returns to unity after a pe-
riod of oscillation regardless of the detuning δs. On the
other hand, after one oscillation period, (29) attains a
diminished peak value of the pump population

Nb

(
τ = −7π

4ξ

)
≈ 1−

(
π

2
− 2√

7

)
(−ξ)−3/2, (31)
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FIG. 4: Illustration of single-photon PDC in (A) the dissi-
pative coupling regime where the normalized detuning (i.e.,
phase mismatch) ξ → ∞, and (B) the dispersive coupling
regime where ξ → −∞. In the dissipative coupling regime
(A), downconversion mostly populates signal states with en-
ergy close to that of the initial pump state, resulting in a
Lorentzian lineshape in the continuum excitation; in the spa-
tial domain, such an excitation corresponds to two wavepack-
ets with opposite group velocity moving away from each other.
In the dispersive coupling regime (B), the far-negatively-
detuned initial pump state excites signal states near the bot-
tom of the energy band upon downconversion, resulting in a
spatially localized structure composed mostly of the optical
meson solution.

which is smaller by ∼ (−ξ)−3/2. But because the am-
plitude of the oscillation is also ∼ (−ξ)−3/2, (29) cannot
recover the Rabi oscillations of (30) even in the limit
ξ → −∞. The fast initial decay induced by the char-
acteristic scaling ∼ 1/

√
τ indicates that the broadband

PDC is inherently multimode even in the dispersive limit
where the coupling of the pump to the signal continuum
might be thought of as being “narrowband”.

D. Signal biphoton correlation functions

Because there is only one pump state involved in the
single-photon PDC dynamics (i.e., the dc pump state),
Nb(τ) suffices to capture the information about the pump
population dynamics. On the other hand, the down-
converted signal pair can populate various momentum
modes, so a full characterization of the PDC process also
requires understanding the signal momentum distribu-
tion. In this section, we derive analytic expressions for
the signal biphoton correlation function in the continuum
approximation.

A general superposition state of a pump photon in a

discrete dc mode b̂ and two signal photons somewhere
within the quantization window can be parameterized as(

Cb̂†0 +
1√
L

∫∫ L/2

−L/2
dz dz′R(z, z′)ψ̂†zψ̂

†
z′

)
|0〉 , (32)

where |C|2 is the pump population and R(z, z′) is the

biphoton correlation function. Here, ψ̂z are local signal

field annihilation operators with commutation relation-

ships [ψ̂z, ψ̂
†
z′ ] = δ(z − z′), related to âm via

âm =
1√
L

∫ L/2

−L/2
dz e2πimz/Lψ̂z. (33)

Note that due to the commutation relationships for

ψ̂z arising from particle indistinguishability, the bipho-
ton correlation function is symmetric, i.e., R(z, z′) =
R(z′, z). In the following, we calculate R(z, z′) in the
continuum limit L → ∞ using the results obtained in
the previous section.

We first express the time evolution of the state |Ψ(τ)〉
in terms of the b̂0 and the continuum signal-pair momen-

tum operators φ̂s by substituting (17) into (25):

|Ψ(τ)〉 =

(
C(τ)eiλMτ b̂†0 +

∫ ∞
0

dsQ(τ, s)φ̂†s

)
|0〉 (34a)

where

Q(τ, s) =cMfM(s)eiλMτ +

∫ ∞
0

dλ cλfλ(s)e−iλτ (34b)

gives the amplitude for photon pairs with non-degeneracy
s (related to their wavevectors by k = ±2πs/εL). Here,
Q(τ, s) can be seen as a spectral biphoton correlation
function and, intuitively, is related to the spatial bipho-
ton correlation function R(z, z′) via a Fourier transfor-

mation as follows. First, to relate φ̂s to ψ̂z, we can, in the
continuum limit of large L, make the formal substitution

φ̂s 7→
1

ε
1
2L

∫∫ L/2

−L/2
dzdz′ exp

(
2πis(z − z′)/εL

)
ψ̂zψ̂z′

=
1√
ζL

∫∫ L/2

−L/2
dzdz′ cos

(
2πs(z − z′)/ζ

)
ψ̂zψ̂z′ , (35)

where ζ = εL is a characteristic correlation length of the
signal photons independent of L. Then, by comparing
terms in (32) to the signal component of (34a), we derive

R(z, z′) =
1√
ζ

∫ ∞
0

dsQ(τ, s) cos (2πs(z − z′)/ζ)

=− 1√
ζ

2πλM exp
(
−2π
√
λM|z − z′|/ζ

)
eiλMτ

π + 4λ
3/2
M

(36)

+
1√
ζ

∫ ∞
0

dλ
cos
(
2π
√
λ|z − z′|/ζ + ∆(λ)

)
e−iλτ√

w2(λ) + π2
,

where ∆(λ) = − arctan
(
π/w(λ)

)
is Fano’s phase param-

eter. Here, the first term of Eq. (36) corresponds to the
meson contribution, while the second term comes from
the continuum states. Due to the transitionally invariant
nature of the state |Ψ(τ)〉, we note that R(z, z′) is a func-
tion of only |z−z′|; thus, we denote R(z, z′) = R(|z−z′|)
in the following.

One way to intuitively understand the biphoton corre-
lation function R(|z−z′|) is to suppose one signal photon



9

2.5 0.0 2.5
Position |z z′|/

0

1

2

3

4

5
No

rm
al

ize
d 

tim
e 

= -1.0

2.5 0.0 2.5
Position |z z′|/

= 0.0

2.5 0.0 2.5
Position |z z′|/

= 1.0

2.5 0.0 2.5
Position |z z′|/

= f = 1.90

2.5 0.0 2.5
Position |z z′|/

= 4.0

0.0

0.5

1.0 |R( |z
z
′|) | 2

FIG. 5: Evolution of the amplitude of the spatial biphoton correlation function |R(|z − z′|)|2 for single-photon PDC under
various normalized detunings (i.e., phase mismatch) ξ, using the analytic continuum expression given by (36). For negative
ξ, the dynamics mostly excite the meson state, resulting in spatially localized signal photons throughout propagation. For
large positive ξ, the downconverted signal photons populate states with finite momentum, resulting in two counterpropagating
wavepackets with group velocity ±

√
ξζ/π (indicated by white dashed lines as a guide). For an intermediate ξ, signal photons

populate both the meson state and finite-momentum continuum states, resulting in triplet peaks. Here, ξf ≈ 1.90 refers to the
particular detuning for finite-time pump depletion discussed in Fig. 3.

has been found at position z′. This projects the joint

state |Ψ(τ)〉 onto
∫

dz R(|z− z′|)ψ̂z |0〉, up to normaliza-
tion. Thus, R(|z − z′|) corresponds to the spatial wave-
function of the second signal photon as a function of z,
after finding the first signal photon to be located at z′.

In Fig. 5, we show the amplitude of the biphoton corre-
lation function |R(|z−z′|)|2 calculated based on (36). As
discussed in the previous subsection and in Fig. 4, when
ξ is negative, most of the signal photons populate me-
son state, and they remain spatially localized over time.
On the other hand, for large positive ξ, signal photons
populate continuum modes around the energy λ ∼ ξ. As
a result, these signal photons with opposite momentum
move away from each other, and back conversion is sup-
pressed, which is exhibited in Fig. 5 as two wavepackets
moving apart. More precisely, since these signal photons
predominantly have energy λ ∼ ξ, their non-degeneracy
s ∼

√
λ, which means their physical wavevectors are

k = ±2πs/εL ∼ ±2π
√
λ/ζ. Thus, the group velocities of

these wavepackets are approximately

∂λ

∂k

∣∣∣∣
λ=ξ

=
∂λ

∂
(
±2π
√
λ/ζ

) ∣∣∣∣∣
λ=ξ

= ±
√
ξ

π
ζ. (37)

We see from Fig. 5 that this approximation predicts well
the observed spreading of the wavepackets.

This analysis of the biphoton correlation function has
important implications for the characteristic correlation
length Lc discussed in Sec. II. When choosing the quan-
tization window length L, we require L > Lc in order to
fully capture non-local correlations out to a length Lc.
We now see that this length is essentially set by the sup-
port of the biphoton correlation function R(|z − z′|). In
particular, the requirement is more stringent in the case
of ξ > 0, where spatial spreading of the signal correla-
tions are important; in this case, the above analysis shows
that Lc ∼ 2

π

√
ξζτ , with ζ being a characteristic scale for

the growth of the signal-photon correlation length.

IV. PDC IN COUPLED BROADBAND
NONLINEAR WAVEGUIDES

To demonstrate the utility of the formalism presented
in Sec. III, we use the same approach to study Fano-
type interactions in a model system composed of two
χ(2) waveguides with linear coupling between their con-
tinuum signal modes. In the weak-excitation limit, if
we consider as input a single photon instantiated in a
superposition state between the two waveguides, the si-
multaneous PDC of the discrete pump states of the two
waveguides into the signal continuum can give rise to
Fano interference in the quantum dynamics. This in-
terference generates characteristically asymmetric Fano
lineshapes in the continuum spectrum, and, under ap-
propriate conditions, a sharp resonance can form within
the spectrum that critically affects the PDC rate and also
heralds the existence of a bound state in the continuum
(BIC). This set of dramatic PDC dynamics, obtained by
simply varying the input state and the relative waveguide
detunings, are exactly analogous to the dynamics studied
in other engineered systems exhibiting Fano interference,
e.g., as demonstrated in Ref. [50].

As shown in Fig. 6(A), we consider two waveguides
1 and 2 with (photon-polariton) field annhilation opera-

tors âi,m for signal and b̂i,` for pump, where i ∈ {1, 2}
represents the index of the waveguides. We denote by
δi the respective detunings (i.e., phase mismatch), which
are not necessarily equal, although we assume for sim-
plicity that the nonlinearity g, linear energy dispersion
µ, and quadratic energy dispersions da, db are identical
between the two waveguides. Additionally, as in Sec. III,
we assume da > 0. The total Hamiltonian of the coupled
waveguide system is

Ĥ1 + Ĥ2 + V̂ , (38)

where Ĥi is obtained by respectively replacing âm, b̂`,

and δ with âi,m, b̂i,` and δi in (4). We assume the signal
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FIG. 6: (A) Illustration of a pair of linearly coupled nonlinear waveguides. Signal modes â1,m and â2,m of waveguides 1 and 2,

respectively, are linearly coupled with rate ra. Independently, these modes nonlinearly interact (e.g., via a χ(2) process) with

each waveguide’s respective pump modes b̂i,` at rate g. (All other waveguide dispersion parameters are assumed identical.)
(B) Illustration of the energy levels of the coupled-waveguide system in the continuum limit. Although the waveguides have
different normalized detunings ξ1 and ξ2 (i.e., phase mismatches) in general, single-photon pump states of the two waveguides

(denoted v̂†1 |0〉 and v̂†2 |0〉) can nevertheless downconvert into a common signal continuum φ̂†+,s |0〉 (where “+” indicates, e.g., the
symmetric spatial mode of the waveguides). The resulting signal excitation (dashed orange curve) consists of PDC from both
pump states and can therefore support Fano interference between the two processes. (C) Continuum (eigenstate) excitation
|Fλ|2 according to (60b) with various relative detunings ∆ξ = ξ2−ξ1, for an input state (43) with θ = 0 (i.e., single pump photon
input to waveguide 1). Vertical dashed lines indicate λ = λ∗ = 1

2
(ξ1 + ξ2), around which the spectra show characteristic Fano

lineshape asymmetries (e.g., peak to one side and zero to the other side). At ∆ξ = 0 (green curve), the continuum resonance
peak becomes infinitely sharp and the system supports a bound state in the continuum (BIC), which is not shown. (D) Plots
of |Fλ|2 for input states with θ = π/4 (i.e., single pump photon initialized in an equal superposition between waveguides 1 and
2) and relative phase φ, but with fixed relative detuning ∆ξ = −0.3. For φ = 0 (φ = π), the two PDC processes constructively
(destructively) interfere, resulting in faster (slower) downconversion accompanied by wider (narrower) continuum lineshapes.
(E) Evolution of the pump photon population N+(τ) for various ∆ξ and the same set of input states as in (D), showing the
expected variation in PDC rates. At ∆ξ = 0, the input state with φ = π directly excites the BIC and does not decay (i.e.,
downconvert). In all the above figures, we fix ξ2 = 2, with ξ1 set by ∆ξ accordingly.

modes of the two waveguides are linearly coupled to each
other (e.g., via evanescent fields), which we describe by
an interaction term

V̂ /~ = −ra

∞∑
m=−∞

(
â†1,mâ2,m + â1,mâ

†
2,m

)
, (39)

where ra > 0 is the strength of the coupling. Physically,
V̂ represents a linear coupling which is local in the spatial
domain. Using coupled mode theory [72], we can equiv-
alently describe the system using symmetric and anti-
symmetric transverse waveguide modes

â±,m =
â1,m ± â2,m√

2
, (40)

which allows us to write the interaction as

V̂ /~ = −ra

∞∑
m=−∞

(â†+,mâ+,m − â†−,mâ−,m); (41)

i.e., the symmetric (anti-symmetric) signal modes expe-
rience a negative (positive) energy shift by ra.

We now assume the waveguides are designed so that
the energy shift caused by the coupling (41) results in
the anti-symmetric signal modes being far-detuned rel-
ative to the energy scale of the other dynamics, i.e.,
|2ra − δi| � κ, where the characteristic nonlinear rate
κ is defined by (9) as usual. Under this assumption, the
anti-symmetric signal modes â−,m remain unpopulated
throughout the system evolution, and we therefore drop
terms involving these modes from the dynamics, leading
to a reduced Hamiltonian

Ĥ+/~ =
g

4

∑
m+n=`

(
â†+,mâ

†
+,n(b̂1,` + b̂2,`) + H.c.

)
+
∑
i=1,2

∞∑
`=−∞

(
δi + 2ra + µ`+ db`

2
)
b̂†i,mb̂i,m

+

∞∑
m=−∞

dam
2â†+,mâ+,m,

(42)

where we have moved into a new rotating frame via sub-

stitutions â+,m 7→ e−irat â+,m and b̂i,` 7→ e−2irat b̂i,`.
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For this system, we consider the PDC of an initial
monochromatic (` = 0) single-photon state instantiated
in the superposition

|Ψ+(τ = 0)〉 =
(

cos θ b̂†1,0 + eiφ sin θ b̂†2,0

)
|0〉 , (43)

for which the only states relevant to the dynamics are

|bi,0〉 = b̂†i,0 |0〉 (44a)

|a+,p〉 =

{
1√
2
â†2+,0 |0〉 p = 0

â†+,pâ
†
+,−p |0〉 otherwise

. (44b)

Introducing Ĝ+ = Ĥ+/~κ to be the normalized Hamil-
tonian as in Sec. III, its non-zero matrix elements among
these states are

〈bi,0|Ĝ+|bi,0〉 = ξi (45a)

〈a+,p|Ĝ+|a+,p〉 = ε2p2 (45b)

〈a+,p|Ĝ+|bi,0〉 =
1

2
ε1/2, (45c)

where ξi = (δi + 2ra)/κ are the normalized detunings.
Following the same procedure as in Sec. III, we obtain a
continuum Hamiltonian Ĝcont

+ = limL→∞ Ĝ+ as

Ĝcont
+ =

∑
i=1,2

[
ξiv̂
†
i v̂i +

1

2

∫ ∞
0

ds
(
v̂†i φ̂+,s + v̂iφ̂

†
+,s

)]
+

∫ ∞
0

ds s2φ̂†+,sφ̂+,s, (46a)

where

v̂i = |0〉 〈bi,0| , φ̂+,s = lim
L→∞

ε−
1
2 |0〉 〈a+,p| (46b)

with s = εp. The energy levels of the continuum Hamil-
tonian (46a) are schematically shown in Fig. 6(B).

Again using Fano’s theory for discrete-continuum in-
teraction in Ref. [42], we assume the eigenstates of Ĝcont

+

with eigenvalue λ take the form

|ϕ+,λ〉 =

( ∑
i=1,2

ci,λv̂
†
i +

∫ ∞
0

ds f+,λ(s)φ̂†+,s

)
|0〉 , (47)

which leads to a set of equations

ξici,λ +
1

2

∫ ∞
0

ds f+,λ(s) = λci,λ (i = 1, 2) (48a)

s2f+,λ(s) +
1

2

∑
i=1,2

ci,λ = λf+,λ(s). (48b)

As before, we first consider solutions with negative en-
ergy λ = −λB < 0, where the subscript “B” stands for
bound states. We denote ci,B = ci,−λB , f+,B = f+,−λB ,
and |ϕ+,B〉 = |ϕ+,−λB〉. For the signal part, the solution
to (48b) is

f+,B(s) = − c1,B + c2,B
2(λB + s2)

, (49)

and substituting this result into (48a) yields(
ξ1 + λB − π

8
√
λB

− π
8
√
λB

− π
8
√
λB

ξ2 + λB − π
8
√
λB

)(
c1,B
c2,B

)
= 0. (50)

Nontrivial solutions to (50) exist when the bound state
energies λB solve the secular equation

π

8
√
λB

(ξ1 + ξ2) +
π
√
λB

4
− (λB + ξ1)(λB + ξ2) = 0, (51)

which has two positive solutions for ξ1 + ξ2 < 0 and a
single solution for ξ1 + ξ2 ≥ 0. In the former case (ξ1 +
ξ2 < 0), we have two bound states outside of the signal
energy band, which are analogous to the optical meson
states we obtained in Sec. III. On the other hand, for the
latter case (ξ1 + ξ2 ≥ 0), there exists only one optical
meson-like bound state below the signal continuum.

Normalization of these bound states requires

c21,B + c22,B +
π

16λ
3/2
B

(c1,B + c2,B)2 = 1. (52)

From (50), we have c1,B(λB+ξ1) = c2,B(λB+ξ2), meaning
we can write

c1,B = S
− 1

2

B (λB + ξ2), c2,B = S
− 1

2

B (λB + ξ1), (53)

where using (52),

SB = (λB + ξ1)2 + (λB + ξ2)2 +
π

16λ
3/2
B

(2λB + ξ1 + ξ2)2.

These equations provide complete analytic expressions
for the bound state solutions with energy λ = −λB < 0.

Next, we consider solutions with non-negative energies
λ ≥ 0. As in Sec. III, we write such solutions to (48b) in
the form

f+,λ =
c1,λ + c2,λ

2

(
1

λ− s2
+ w+(λ)δ(λ− s2)

)
, (54)

where w+(λ) is to be determined by the other conditions.
More specifically, a substitution of (54) into (48a) yields(

ξ1 − λ+ w+(λ)

8
√
λ

w+(λ)

8
√
λ

w+(λ)

8
√
λ

ξ2 − λ+ w+(λ)

8
√
λ

)(
c1,λ
c2,λ

)
= 0. (55)

Nontrivial solutions to (55) exist for λ which solve the
secular equation(

2λ− (ξ1 + ξ2)
)
w+(λ)− 8

√
λ(λ− ξ1)(λ− ξ2) = 0, (56)

which, for λ 6= 1
2 (ξ1 + ξ2), has a solution

w+(λ) =
8
√
λ(λ− ξ1)(λ− ξ2)

2λ− (ξ1 + ξ2)
. (57)

Normalization of these continuum states requires

(c1,λ + c2,λ)
2

=
8
√
λ

π2 + w2
+(λ)

. (58)
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From (55) we have c1,λ(λ − ξ1) = c2,λ(λ − ξ2), meaning
we can write

c1,λ = S
− 1

2

λ (λ− ξ2), c2,λ = S
− 1

2

λ (λ− ξ1), (59)

where using (58),

Sλ =
π2 + w2

+(λ)

8
√
λ

(
2λ− (ξ1 + ξ2)

)2

.

It is notable that the continuum has a “hole” at the
energy λ∗ = 1

2 (ξ1 + ξ2), and generally, there is no con-
tinuum solution at this point. However, by examining
the expression for (59), we see that ci,λ is sharply peaked
in the vicinity of λ∗, indicating the presence of a reso-
nance in the continuum; as we later show numerically,
this resonance becomes sharper as the relative detuning
∆ξ = ξ2−ξ1 approaches zero. Analytically, there appears
a special bound state at ∆ξ = 0, where (54) and (55) sup-
port a nontrivial solution c1 = −c2 = 1√

2
and f+,λ∗ = 0,

i.e., consisting only of pump photons. Because the energy
λ∗ ≥ 0 of this bound state lies in the continuum, it can
be seen as a bound state in the continuum (BIC) [48].
Such appearance of a BIC at a high-symmetry point has
been shown in Ref. [50], for instance. In the following,
we focus on the case ξ1 + ξ2 ≥ 0 to further investigate
the exotic dynamics of discrete-continuum interferences
especially in the vicinity of BIC.

Having derived the complete eigenspectrum of the sys-
tem given by (46a), we now consider its dynamical prop-
erties. For the initial state |Ψ+(τ = 0)〉 given by (43), its
time evolution after a time τ is

|Ψ+(τ)〉 =(cos θc1,B + eiφ sin θc2,B)eiλBτ |ϕ+,B〉

+

∫ ∞
0

dλFλ(θ, φ)e−iλτ |ϕ+,λ〉 ,
(60a)

where

Fλ(θ, φ) = cos θc1,λ + eiφ sin θc2,λ (60b)

represents the excitation amplitude spectrum of the ini-
tial state. In Fig. 6(C), we show |Fλ|2 for θ = 0 (i.e.,
single-photon input to waveguide 1) at different relative
detunings ∆ξ = ξ2− ξ1. We observe characteristic asym-
metric Fano resonance lineshapes, critically dependent on
∆ξ. As a function of λ, the spectrum shows a resonance
peak around λ∗, and the resonance becomes sharper as
∆ξ → 0. At ∆ξ = 0, the peak becomes infinitely narrow
to form a BIC at energy λ = λ∗. (However, as the BIC
solution is not included in the expression of Fλ, we see
no peak in the figure at ∆ξ = 0.)

We can also study the effects of interference due to
non-local correlations in the initial pump state between
the two waveguides. More specifically, we set θ = π

4 and

vary φ, i.e., |Ψ+(0)〉 = 1√
2

(
v̂†1 + eiφv̂†2

)
|0〉. As shown by

plots for |Fλ|2 in Fig. 6(D), the width of the resonance
peaks change dramatically as a function of φ. For φ =
0, the couplings between the two pump states and the

signal continuum constructively interfere, leading to a
faster decay (i.e., PDC rate), accompanied by a broader
resonance peak. On the other hand, for φ = π, these
two paths destructively interfere and suppress the rate of
PDC, exhibiting a sharp resonance which increases the
lifetime of the pump photons.

We can equivalently see this modulation of the PDC
rate by computing the dynamics of the pump photon
population as in Sec. III. An analytic expression for the
pump photon population N+(τ) follows from (60a) as

N+(τ) = |C1(τ)|2 + |C2(τ)|2 (61a)

where

Ci(τ) = ci,B
(
cos θc1,B + eiφ sin θc2,B

)
eiλBτ (61b)

+

∫ ∞
0

dλ ci,λ
(
cos θc1,λ + eiφ sin θc2,λ

)
e−iλτ .

We show the evolution of N+(τ) for various ∆ξ and φ
with θ = π

4 using (61a) in Fig. 6(E). As expected from
the arguments above, the conversion rate is enhanced for
φ = 0, while the lifetime of the pump photon is signif-
icantly longer for φ = π. In particular, at ∆ξ = 0, an
input state with φ = π directly populates only the BIC,
and as a result, no PDC occurs at all (i.e., N+(τ) = 1)
despite the presence of χ(2) nonlinear interactions. For
an intermediate φ = π

2 , the BIC is partially populated,
and rest of the pump excitations eventually decay into
the signal continuum, following the arguments made in
Sec. III.

V. PDC BEYOND THE WEAK-EXCITATION
REGIME

When the excitation of the input pump mode is not
small enough to assume the regime of weak excitation,
we need to take into account interactions between mul-
tiple pump photons and the multiple downconverted sig-
nal pairs. In this section, we consider the dynamics
induced by such multi-photon interactions. Extending
the discussion from the beginning of Sec. III, an input
monochromatic coherent state with photon flux density
ρ (taken to be dc or ` = 0 for simplicity) takes the

form exp
(√
ρL(b̂†0 − b̂0)

)
∝
∑
N

√
(ρL)N/N ! |N〉, where

|N〉 = 1√
N !
b̂†N0 |0〉 is an N -photon (dc) pump state. (As

usual, L is the length of the quantization window, cho-
sen to fully contain spatial features with characteristic
length scale Lc.) When ρLc 6� 1, ρL is not necessarily
small (because of L > Lc), so contributions from multi-
photon states |N ≥ 2〉 become non-negligible. In this
beyond-weak-excitation regime, multi-photon processes
can generally populate pump states with a finite spread
in momentum despite the initial state being monochro-
matic, and we can no longer assume the pump mode is
well-described by considering only a single discrete state.
Nevertheless, as we show in this section, viewing these
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FIG. 7: (A) Numerically simulated evolution of the pump photon population Nb(τ) for an input two-photon dc pump state

|N = 2〉 = 1√
2
b̂†20 |0〉 undergoing PDC at different normalized detuning (i.e., phase mismatch) ξ and relative second-order

dispersion (i.e., group velocity dispersion) β = db/da. In both the left (β = 1) and the middle (β = 1000) figures, the
normalized first-order dispersion (i.e., group velocity mismatch) γ = 0; in the right figure, the simulation is restricted to the
dc pump subspace Hdc

N=2,M=0 (see (64)), corresponding to the case of β → ∞ or γ → ∞. (B) Population of pump states

b̂†` b̂−` |0〉 at normalized time τ = 10 for various β and ξ = γ = 0, showing that non-dc pump excitations (` > 0) decrease as
the dispersion β increases, indicating confinement of dynamics to ` = 0. For all simulations, ε = 1/30 is used, corresponding to
quantization window length L = 30ζ.

multi-photon effects as Fano-type discrete-continuum in-
teractions still provides useful intuition for understanding
the PDC dynamics under certain conditions.

For multi-photon dynamics, the dimension of the
Hilbert space we need to consider grows exponentially
with N . For an initial N -photon pump state, the rele-
vant states reached by its evolution are those of the form

|M2N−2J ,LJ〉 ∝ â†m1
. . . â†m2N−2J

b̂†`1 . . . b̂
†
`J
|0〉 , (62)

where the pump population J ∈ {0, 1, . . . , N}, and
M2N−2J = {m1,m2, . . . ,m2N−2J} (mα ∈ Z) and LJ =
{`1, `2, . . . , `J} (`α ∈ Z) are multiset labels. Such states

comprise all the eigenstates of N̂ with eigenvalue N , and
we denote the subspace of the Hilbert space spanned by
these states as HN , whose dimension scales as ∼ m2N

max

where mmax is a chosen cutoff for the momentum in-
dex. Because the total momentum M̂ is another con-
served quantity, we can independently consider the dy-
namics within each subspace HN,M of HN spanned by

eigenstates of M̂ with eigenvalues M . More specifically,
HN,M is spanned by all the states of the form (62) that

fulfill the condition
∑2N−2J
i=1 mi +

∑J
j=1 `j = M , and the

dimension of HN,M therefore scales as ∼ m2N−1
max .

To obtain numerical models for the dynamics, we com-
pute the matrix elements of the Hamiltonian (4) on states
in the subspace HN,M . The diagonal elements are

〈M2N−2ν ,Lν | Ĥ |M2N−2ν ,Lν〉 /κ~

=

2N−2ν∑
i=1

ε2

2
m2
i +

J∑
j=1

(
ξ + γε`j +

βε2

2
`2j

)
(63a)

where γ = µ/(2dag
2)

1
3 and β = db/da are both indepen-

dent of L. The nonzero off-diagonal elements are

〈M′2N−2J′ ,L′J′ | Ĥ |M2N−2J ,LJ〉 /κ~ ∝ ε
1
2 , (63b)

which exist only when J = J ′ + 1 or J ′ = J + 1 and
M2N−2J ⊂ M′2N−2J′ or M′2N−2J′ ⊂ M2N−2J , respec-
tively. Here, the proportional symbol takes into account
the multiplicity of the interaction; we provide explicit
expressions for this factor in Appendix C.

In Fig. 7(A), we show the result of numerical sim-
ulations of the evolution of an initial two-photon dc

pump state |N = 2〉 = 1√
2
b̂†20 |0〉 within the subspace

HN=2,M=0. In contrast to the single-photon (i.e., weak-
excitation) case, the terminal pump photon population
limτ→∞Nb(τ) does not decrease monotonically with the
detuning ξ, suggesting that multi-photon interactions
can suppress the full pump depletion expected for the
single-photon case in the dissipative regime ξ → ∞.
It is worth mentioning that, beyond the weak excita-
tion regime, pump excitations are not necessarily con-
fined to the initial dc mode as in the single-photon
case. For instance, a sequence of allowed transitions

b̂†20 |0〉 → â†m1
â†−m1

b̂†0 |0〉 → â†m1
â†−m1

â†m2
â†−m2

|0〉 →
â†m1

â†m2
b̂†−m1−m2

|0〉 → b̂†m1+m2
b̂†−m1−m2

|0〉 lead to a
spreading in the momentum of excited pump modes. As
a result, the pump degree of freedom can no longer be
seen as discrete, and thus, the intuitive picture of the
PDC process as a purely Fano-type discrete-continuum
interaction no longer applies.

It is worth noting, however, that such momentum
spreading during backconversion can be suppressed in
the limit of large pump dispersion, i.e., γ → ∞ or
β →∞. For example, for the initial two-photon dc pump
state |N = 2〉, non-dc pump states (i.e., with ` 6= 0) re-
main unpopulated throughout the evolution since they
are energetically prohibited (i.e., they have large phase-
mismatch). This can be seen in Fig. 7(B) showing the

population of pump photons b̂†` b̂
†
−` |0〉 for various β, in

which we observe the population of the non-dc pump
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FIG. 8: Numerically simulated pump population dynamics for
multi-photon input dc pump states |N〉 ∝ b̂†N0 |0〉, assuming
confinement of the dynamics to the dc subspace Hdc

N,M=0 (see
(64), valid in the limit of large pump dispersion). For these
simulations, we use ε = 1/20 and normalized detuning ξ = 4.

modes (` ≥ 1) are suppressed when β becomes large.
Formally we expect dynamics in this limit are contained
within a “dc pump subspace” Hdc

N,M=0 spanned by

|M̃N−J〉 ∝

(
N−J∏
j=1

â†mj â
†
−mj

)
b̂†J0 |0〉 (64)

where M̃N−J = {m1, . . . ,mN−J} is a multiset label con-
taining only the momentum indices of signal photons.
(Note that we label this subspace as dc since our initial
state occupies ` = 0, but in principle the same construc-
tion can be made for an initial state with arbitrary ` in
the limit of high pump dispersion.)

In Fig. 7(A), we show the time evolution of the pump
photon population Nb(τ) for the initial state |N = 2〉 for
various values of β, with numerical simulation done in
both the full subspace HN=2,M=0 as well as using only
the dc subspaceHdc

N=2,M=0. Notably, the pump depletion
rate is much higher and decreases monotonically with
the detuning ξ when the pump excitations are confined
to the dc mode, as expected from the arguments made
in Sec. III for dissipative dynamics based on Fano-type
discrete-continuum interactions. The numerical results
also show that, as argued above, the dynamics simulated
within the dc subspace become closer to that simulated
in the full subspace as β increases.

An interesting consequence is that the complexity of
the numerical simulation reduces considerably in the
limit of large pump dispersion, because the dimension of
Hdc
N,M=0 only scales as ∼ mN

max as opposed to ∼ m2N−1
max

for the full subspace HN,M=0. Thus, the reduced model
using the dc subspace allows us to perform numerical
simulations for this particular limit with a larger photon
number N . In Fig. 8, we show the time evolution of the
pump photon population for |N〉 up to N = 5, where we
observe that the pump is asymptotically depleted to less
than 1 %, again in accordance with our intuition from
Sec. III for dissipative PDC based on Fano’s theory.

VI. EXTENSIONS TO HIGHER-ORDER
PARAMETRIC INTERACTIONS

While we have largely focused on PDC in 1D χ(2)

waveguides in this work, this framework for analyzing
photon downconversion using Fano’s theory of discrete-
continuum interactions can be extended to more general
scenarios, including higher-order spatial dimensions and
higher-order nonlinear interactions. In this section, as a
natural extension of our theoretical framework, we study
a quantum model for single-photon pumped three-photon
generation (TPG), where a third-harmonic pump pho-
ton downconverts to a triplet of fundamental-harmonic
signal photons in the weak excitation regime. Using
Fano’s theory, we again obtain a complete solution for the
TPG Hamiltonian eigenproblem including both bound
and continuum eigenstates. We show that, as for the case
of χ(2) PDC, the dynamics of the pump photon popula-
tion for TPG exhibit characteristic dissipative/dispersive
dynamics depending on the nature of the coupling.

Here, as a model for broadband parametric three-
photon generation, we consider a (rotating frame; see
Sec. II) Hamiltonian of the form

ĤNL

~
+

∞∑
m=−∞

dam
2â†mâm +

∞∑
`=−∞

(δ + µ`+ dc`
2)ĉ†` ĉ`, (65a)

with nonlinear part

ĤNL/~ =
χ

3

∑
m1+m2+m3=`

(
â†m1

â†m2
â†m3

ĉ` + H.c.
)
, (65b)

where âm and ĉ` are the annihilation operators for the
signal and pump modes with momentum indices m and
`, respectively; δ is the phase-mismatch; µ ∝ L−1 rep-
resents the group velocity mismatch; and da, dc ∝ L−2

represent the group velocity dispersion of the signal and
pump respectively. The scaling of the dispersion and
nonlinear coupling rates with the quantization window
length L are derived as in Sec. II for PDC (e.g., (2) for the
dispersion); here the nonlinear coupling rate χ ∝ L−1.

Note that the model (65) does not in-
clude the self-phase modulation terms ∝∑
m1+m2=m3+m4

â†m1
â†m2

âm3
âm4

, which generally

coexist with ĤNL when TPG is supported by a native
material χ(3). While we only focus on the parametric
part of the interaction here, an accurate model for a
realistic system with native χ(3) may require a more
rigorous treatment of the self-phase modulation, which
is beyond the scope of this work. The idealized model
(65) can be appropriate, for instance, in the case where
self-phase modulation is compensated with cascaded
χ(2) nonlinear processes [73–75].

As another subtlety in the model (65), special care
should also be taken due to the presence of a singularity
in which the dynamics can feature infinitely broadband
signal eigenstates, resulting in point-like spatial wave-
functions in the dynamics. This singularity is the result
of ignoring higher-order dispersion, and it also arises in
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χ(2) models with more than one spatial dimension and
no higher-order dispersion [76–78]. In Ref. [76–78], it
has been shown that one way to approach this issue is
to formally impose a finite momentum cutoff, which pro-
duces an effective model that eliminates the singularity
in a manner similar to that of higher-order dispersion. In
this work, we employ the same treatment, where we only
keep terms with K = 2π

L

√
m2

1 +m2
2 +m2

3 ≤ Kmax in the
nonlinear term (65b).

Following the same procedure as in Sec. III, we suppose

the initial state is a single-photon pump state |c0〉 = ĉ†0 |0〉
(in the dc mode ` = 0 without loss of generality). To
obtain the dynamics, we focus on the matrix elements
of (65) within the subspace spanned by states accessi-
ble from |c0〉 via TPG and then take a continuum limit
to obtain analytic expressions for the eigenenergies and
eigenstates of the system. As the derivation of the con-
tinuum Hamiltonian is rather involved, we present the
full details in Appendix D. The result of that calculation
is that the continuum-limit single-photon-TPG Hamil-
tonian can be written in the form ~κĜcont, where the
effective nonlinear coupling rate (cf. (9) for PDC) is

κ =
2χ2

da
, (66)

and the normalized Hamiltonian takes the form

Ĝcont = ξŵ†ŵ (67)

+
2√
3

∫ rmax

0

dr

[
r2φ̂†rφ̂r +

√
πr

3

(
φ̂rŵ

† + φ̂†rŵ
)]
.

Here ŵ = |0〉 〈c0| annihilates a dc pump photon with

normalized detuning ξ = δ/κ, while φ̂r (see (D12) in

Appendix D), with commutation relation [φ̂r, φ̂
†
r′ ] =

δ(r − r′), annihilates an excitation composed of a uni-
form superposition of photon-triplet states with normal-
ized momentum r = Kζ/2

√
2π, where ζ = daL/χ is

the characteristic correlation length (independent of L).
As discussed above, a momentum cutoff is imposed via
rmax = Kmaxζ/2

√
2π.

Again following Ref. [42], we posit that the eigenstates

of Ĝcont with eigenvalue λ take the form

|ϕλ〉 =

(
cλŵ

† +

∫ rmax

0

drfλ(r)φ̂†r

)
|0〉 , (68)

which leads to

ξcλ +

∫ rmax

0

dr
2
√
πr

3
fλ(r) = λcλ (69a)

2√
3
r2fλ(r) +

2
√
πr

3
cλ = λfλ(r). (69b)

For negative eigenvalues λ = −λT < 0, where the sub-
script “T” denotes “three-photon bound state”, we ob-
tain a single (i.e., bound) solution to (69b)

fT(r) = − 2
√
πrcT

2
√

3r2 + 3λT

, (70)

where cT = c−λT
and fT = f−λT

. Substitution of (70)
into (69a) yields an equation that determines the energy
of the three-photon bound state:

π

3
√

3
log

[
1 +

2r2
max√
3λT

]
− λT = ξ. (71)

Finally, normalization of the bound state gives

c2T =

(
1 +

2πr2
max

3λT

(
2
√

3r2
max + 3λT

))−1

, (72)

which completes the bound state solution.
For positive energies λ > 0, we have from (69b)

fλ(r) =
2
√
πrcλ
3

[
1

λ− 2r2√
3

+ w(λ)δ

(
λ− 2r2√

3

)]
, (73)

where w(λ) is to be determined so that (69a) is fulfilled,
which yields

w(λ) =
3
√

3

π
(λ− ξ) + log

[
2r2

max√
3λ
− 1

]
. (74)

Enforcing the normalization 〈ϕλ|ϕλ′〉 = δ(λ− λ′) gives

c2λ =
3
√

3

π

1

π2 + w2(λ)
, (75)

which completes the continuum solution.
Combining these results (cf. (27) for PDC), the pump

population as a function of normalized time τ = κt is

Nc(τ) =

∣∣∣∣∣c2T +

∫ r2max

0

3
√

3e−i(λ+λT)τ

π (π2 + w2(λ))
dλ

∣∣∣∣∣
2

. (76)

In Fig. 9, we show Nc(τ), both according to the analytic
result (76) corresponding to L → ∞ as well as accord-
ing to numerical simulation of the discrete Hamiltonian
(65) with finite L, obtaining good agreement for ε � 1.
As was the case for PDC, the qualitative nature of the
TPG interaction changes from dispersive to dissipative
as the detuning ξ varies from negative to positive, result-
ing in damped-Rabi-like energy exchange for the former
case and monotonic decay of the third-harmonic pump
population for the latter.

VII. PROSPECTS FOR EXPERIMENTS

In this section, we relate the parameters of our quan-
tum model to experimentally relevant parameters to bet-
ter understand the physical regimes in which such Fano-
type quantum dynamics can occur. We focus on 1D χ(2)

waveguides and relate the nonlinear rate g to the second-
harmonic generation (SHG) slope conversion efficiency η
widely used as a classical figure of merit for such devices,
resulting in a quantum figure of merit which can be eval-
uated in emerging platforms for quantum nanophotonics.
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FIG. 9: Third-harmonic pump photon population Nc(τ) as a
function of (normalized) propagation time τ for various (nor-
malized) detunings ξ (i.e., phase mismatch), ranging from dis-
persive (ξ < 0) to dissipative (ξ > 0). Solid lines are based
on analytic evaluation of (76), while circles show numerical
results based on simulating (65) with finite quantization win-
dow length (ε = 1/100). As discussed in the main text, a
momentum cutoff rmax = 5 is imposed in this system.

We consider a 1D χ(2) nonlinear waveguide in which
the phase and group velocity matching conditions are
met, i.e., δ = µ = 0 (see (2) for dispersion parameters).
Here, the mean field equations of motion induced by the
Hamiltonian (4) with a quantization window length L are

dαm
dt

= −ig
∑

`=n+m

α∗nβ` − idam
2αm (77a)

dβ`
dt

= − ig

2

∑
`=n+m

αmαn − idb`
2β`, (77b)

where we have formally made the usual mean-field-limit

c-number substitutions âm 7→ αm and b̂` 7→ β`. We inter-
pret these c-numbers as indicating that the optical power
in each wavevector bin centered on ka0 + 2πm/L and
kb0 +2π`/L (with wavevector bandwidths 2π/L) is given
by Pam = ~ω(kam)|αm|2v/L and Pb` = ~ω(kb`)|β`|2v/L
for the signal and pump, respectively. Here, v = ω′(ka0)
denotes the group velocity at the signal carrier, and we
recall kb0 = 2ka0 as defined in Sec. II.

We consider an initial classical state αm = α0(0)δm,0
and β` = 0 for all `, which results in SHG dynamics start-
ing from a monochromatic coherent state at the carrier
(i.e., dc mode) of the fundamental-harmonic band. As
can be seen from (77), only α0 and β0 undergo nontrivial
time evolution. Thus, the resulting dynamics are cap-
tured by the “cw” classical SHG equations of motion

dα0

dt
= −igα∗0β0,

dβ0

dt
= − ig

2
α2

0, (78)

whose solutions [79] are

α0(t) = α0(0) sech

(
α0(0)gt√

2

)
(79a)

β0(t) = − iα0(0)√
2

tanh

(
α0(0)gt√

2

)
. (79b)

The SHG slope conversion efficiency can be defined as

η =
1

2v2

d2

dt2
Pb0(t)

P 2
a0(0)

∣∣∣∣
t=0

=
g2L

2~ω(ka0)v3
, (80)

which establishes the relationship between g and η for
a given L. To interpret this result independently of L,
we recall the characteristic nonlinear rate κ from (9) in
order to define a characteristic propagation length

LPDC =
v

κ
=

(
λ2|k′′a |

4~2c2η2

) 1
3

, (81)

where λ = 2πc/ωa0 is the wavelength of the signal carrier.
Here, da occurring in the definition of κ has been related
to the group velocity dispersion k′′a = k′′a0

(
ω(ka0)

)
of the

signal carrier using da = −2π2v3k′′a/L
2. We take the ab-

solute value of k′′a as the quantum dynamics of (4) are
insensitive to the sign of da, after appropriate remapping
of parameters (see Sec. III). Note that for a given ma-
terial system, scaling the waveguide dimensions with the
wavelength results in Aeff ∼ λ−2 [35] and thus η ∼ λ−4,
from which it follows that LPDC ∼ λ10/3; this strong
scaling with wavelength underscores the importance of
pushing dispersion engineering into the regime of shorter
wavelengths. It is also worth mentioning that (81) as-
sumes the system bandwidth is limited by signal group
velocity dispersion k′′a as our model only includes disper-
sion up to second order (see Sec. II); similar expressions
for LPDC (possibly with different scaling) can be obtained
using quantum models incorporating higher-order disper-
sion. Advancements in dispersion engineering to flatten
energy dispersion over an extended bandwidth may allow
for improvements in LPDC beyond (81).

The length LPDC is related (via v) to the character-
istic time of propagation 1/κ required for single-photon
PDC to exhibit the dynamics analyzed in Sec. III (and
later). Thus, as an experimental figure of merit, LPDC

indicates the length-scale requirements for physical 1D
χ(2) nonlinear waveguides to exhibit such dynamics.
For state-of-the-art nanophotonic waveguides in thin-
film periodically-poled LiNbO3 (PPLN) [33, 35, 80, 81]
operating at a fundamental wavelength λ = 1.5 µm,
Ref. [33] has demonstrated a slope conversion efficiency of
η = 2600 % W−1 cm−2, while on GaAs platforms [36, 82],
Ref. [36] has demonstrated η = 47 000 % W−1 cm−2 at
λ = 2.0 µm for GaAs-on-insulator. Assuming realistic
engineered group velocity dispersions k′′a ∼ −5 fs2 mm−1,
we obtain respective characteristic lengths of LPDC ∼
3.5 m and LPDC ∼ 60 cm.

While these length scales may still be geometrically
unrealistic for current-generation nanophotonic devices
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with straight waveguides on mm-scale chips, it is worth
noting that, from a decoherence perspective, current fig-
ures of merit are now approaching a critical breakeven
point where LPDC and the characteristic decoherence
length are commensurate, at least for the thin-film PPLN
platform where a 3-dB attenuation length as long as
1 m [34] (i.e., 3 dB m−1 power attenuation) has already
been demonstrated (vs. LPDC ∼ 3.5 m). The remain-
ing challenge thus seems to lie either in the development
of more sophisticated fabrication techniques to overcome
geometric constraints for current chip architectures—
such as being able to etch low-loss curved nonlinear
waveguides of adequate geometrical uniformity [83] or
introduce resonant structures [34] to recycle the physical
interaction length—or in advanced dispersion engineer-
ing to shorten the operating wavelength (potentially to
just below the material bandgap) and enhance the non-
linearity accessible. In this context, the potential to see
unique broadband dynamics emerge in physics as concep-
tually foundational as parametric downconversion may
serve as a convenient target to guide photonic engineer-
ing, fabrication, and modeling efforts as they finally begin
to tackle head-on the experimental challenge of accessing
the quantum regime of broadband nonlinear nanopho-
tonics.

VIII. CONCLUSIONS

We have shown that Fano’s theory for discrete-
continuum interactions can provide a unified theoreti-
cal framework for analyzing broadband PDC of a weak
pump field in the highly nonlinear regime of a 1D χ(2)

waveguide. Within this theoretical framework, we have
derived analytic results characterizing, both qualitatively
and quantitatively, the quantum dynamics of few-photon
broadband PDC while providing physical analogies to
other multimode systems known to exhibit Fano-type
physics, such as atomic/molecular autoionization. An
extended analysis of two coupled nonlinear waveguides
has revealed even richer physics arising from Fano-type
interactions, including the suppression/enhancement of
PDC due to destructive/constructive interference be-
tween multiple discrete-continuum couplings and the
emergence of a BIC under appropriate conditions. Be-
yond χ(2)-based single-photon PDC, three-photon gen-
eration can also be treated by our theory, and we have
seen numerical evidence of Fano-like dissipative dynam-
ics even after including multi-photon interactions under
stronger pumping. While our results have immediate im-
plications for guiding experimental research in the de-
velopment of next-generation nanophotonic devices, the
broader perspectives offered by Fano’s theory may also
help address the inherent challenges associated with the
theoretical and model intractability of strongly nonlinear
broadband quantum optical systems, opening a pathway
towards exploiting such systems as a platform for quan-
tum engineering.
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APPENDIX A: ESSENTIAL PHYSICS OF
DISCRETE-CONTINUUM INTERACTIONS

In this section, we provide some general remarks that
summarize, on a conceptual/schematic level, the ap-
proach we take in analyzing single-photon PDC as a
discrete-continuum interaction, essentially by recasting
the physics into the form first considered by Ugo Fano in
studying atomic autoionization [42].

Generically, a system featuring discrete-continuum in-
teractions can be characterized by a (normalized) Hamil-

tonian Ĝ which couples together a set of “bare” discrete
states |φi〉, where i is a discrete label, with a set of bare
continuum states |φx〉, where x is a continuous label.
Fano’s theory can then be applied to solve for the system
eigenstates |ϕλ〉 with eigenenergy λ, which generically
take a “dressed” or “hybridized” form

|ϕλ〉 =
∑
i

ci,λ |φi〉+

∫
dx fλ(x) |φx〉 . (A1)

Typically, one finds after this analysis a set of discrete
eigenstates |ϕλk〉 together with a set of continuum eigen-
states |ϕλ〉. For example, there may be a critical λc so
that for eigeneneriges less than λc, there exist only dis-
crete eigenstates, while for eigenenergies greater than λc,
there is a “band” of continuum eigenstates.

When the system parameters are tuned such that, for
example, the gap between the highest-energy discrete
eigenstate and the lowest-energy continuum eigenstate
is large, the dressed states tend to feature less hybridiza-
tion among the bare states of the system, and an initial
excitation along one of the bare discrete states, say |φ0〉
may only have significant overlap with one of the discrete
eigenstates, say |ϕλ0〉, in which case the continuum eigen-
states play a negligible role in the evolution, and the ex-
citation remains bound. In analogy with the dispersive-
coupling limit of cavity quantum electrodynamics where
the dressed states feature weak hybridization of the bare
states, we call this the “dispersive” limit.

On the other hand, in autoionization, dissipative
single-photon PDC, or indeed many other Fano-type pro-
cesses, a system initialized in one of its discrete bare
states, say |φ0〉, may have significant overlap with the
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continuum eigenspace span{|ϕλ〉 : λ > λc}. This overlap
can be characterized by introducing a quantity

|Fλ|2 = |〈ϕλ|φ0〉|2 = |c0,λ|2, (A2)

which represents the spectrum of eigenenergies excited by
the initial state. A peak in the excitation spectrum thus
indicates that the initial state more densely excites the
continuum eigenstates around that energy (in the sense
of a resonance). To obtain a dynamical interpretation
of Fλ, the amplitude of the initial component |φ0〉 as a
function of time is given by

〈φ0|e−iĜτ |φ0〉

=
∑
k

e−iλkτ |c0,λk |2 +

∫
dλ e−iλτ |Fλ|2,

(A3)

whose second term can be seen as a Fourier transform of
the excitation spectrum (which also gives it a transfer-
function interpretation). In many cases, when a sin-
gle discrete state couples to a continuum, |Fλ|2 takes a
Lorenzian-like form, which then implies that the second
term in (A3) represents an exponential “decay” out of
the initial state (and into the continuum). Taking cues
from the physics of intramolecular vibrational energy re-
distribution, we view this as a “dissipative” effect.

When multiple discrete states are coupled to the
continuum, Fano interferences can produce asymmetric
peaks in |Fλ|2, i.e., Fano resonances [56, 60], which can
have remarkably narrow lineshapes. Under certain con-
ditions, the Fano resonance can become infinitely nar-
row, indicating that the initial state is exciting an eigen-
state with some discrete eigenenergy λ∗, i.e., a bound
state. If λ∗ lies within the band of continuum eigenstates
(λ∗ > λc), then that state is an example of a bound state
in the continuum (BIC). BICs have have drawn much
attention both from scientific and engineering points of
view [48] due to their potential for realizing decay-free
evolution even in the presence of strong coupling between
the initial discrete state to a continuum “environment”
which would otherwise lead to dissipation.

APPENDIX B: DISSIPATIVE AND DISPERSIVE
LIMITS FOR PUMP POPULATION DYNAMICS

In this section, we analyze the time evolution of the
pump photon population (27) in the limits of dissipa-
tive coupling ξ → ∞ and dispersive coupling ξ = −∞.
We show that, in the dissipative limit, the pump pop-
ulation follows an exponential decay, while for the dis-
persive limit, Rabi-like oscillations with sub-exponential
decay occur.

First, we consider the dissipative limit ξ →∞. In this
limit, the optical meson state is mostly composed of sig-
nal excitations (see (21)), so the pump photon population
Nb(τ) can be obtained by only considering the contribu-
tions from the continuum states. As a result, Nb(τ) can

be approximated using (26) with cM � 1, which gives

Nb(τ) ≈
∣∣∣∣∫ ∞

0

dλ c2λe
−iλτ

∣∣∣∣2 . (B1)

When ξ � 1 holds true, c2λ can be approximated as a
Lorentzian function with full width at half maximum
π/
√
ξ centered around λ ≈ ξ � 1 (see (24)). In this

case, (B1) can be seen as a Fourier transform, resulting
in a characteristic exponential decay

Nb(τ) ≈ exp(−τ/τd), (B2)

where τd =
√
ξ/π is the characteristic time scale for the

exponential decay of the pump population. As we show
in Fig. 10, (B2) agrees well with the exact result (27)
when ξ is a large positive value.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized time 

1.00

0.99

0.98

0.97

N
b(

)

(A)

(B)

= 20
= 40
= 60

0 2 4 6 8 10
Normalized time 

10 2

10 1

100

N
b(

)

= 20
= 40
= 60

FIG. 10: Time evolution of the pump photon number Nb(τ)
based on the exact numerical expression (27) (solid lines) com-
pared to approximate formulas (circles) valid in the limit of
(A) dissipative coupling ξ →∞ (B2), and (B) dispersive cou-
pling ξ → −∞ (B7).

Next, we consider the dispersive limit ξ → −∞. Based
on (20), the energy of the optical meson can be approxi-
mately given as λM ≈ −ξ, which means the contribution
to the pump population from the optical meson state is
c2M ≈ 1 − π

4 (−ξ)− 3
2 using (21) and (26). As a result, we
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can approximate (27) as

Nb(τ) ≈
∣∣∣∣1− π

4(−ξ) 3
2

+

∫ ∞
0

dλ c2λe
−iλτeiξτ

∣∣∣∣2 . (B3)

In order to capture the qualitative behavior of c2λ, we use

c2λ =
2
√
λ

4(λ− ξ)2λ+ π2
≈ h(λ) =

2
√
λ

4ξ2λ+ π2
, (B4)

where h(λ) approximates c2λ well for λ � |ξ|, which is
the region where c2λ has a peak. Using h(λ), we can
analytically perform the integral, which yields

∫ ∞
0

dλh(λ)e−iλτ =

√
2π(1− i)

4ξ2
√
τ

+
π2 exp

(
iπ2τ
4ξ2

)
4ξ3

×
[
−1 + (1 + i)C

(√
πτ

2ξ2

)
+ (1− i)S

(√
πτ

2ξ2

)]
≈
√

2π(1− i)

4ξ2
√
τ

, (B5)

where we have ignored terms on the order of O(ξ−3) in
the last line. Here, C(x) are S(x) are Fresnel integrals

S(x) =

∫ x

0

dt sin(t2), C(x) =

∫ x

0

dt cos(t2). (B6)

Note that c2λ and h(λ) have different asymptotic scalings
at λ → ∞, which affects the convergence of the integral
involving h(λ) at τ → 0. For finite τ , however, contribu-
tion from these tails of c2λ and h(λ) at large λ are washed
out by the phase rotations eiλτ in the integral, so they
contribute negligibly to Nb(τ) at finite τ .

Thus, by approximating c2λ with h(λ) in the integral of
(B3), the pump population for ξ → −∞ can be approxi-
mated as

Nb(τ) ≈
∣∣∣∣1− π

4(−ξ) 3
2

+

√
π

2ξ2
√
τ
ei(ξτ−π4 )

∣∣∣∣2 , (B7)

which exhibits sinusoidal oscillations with frequency ξ
with sub-exponential decay. As shown in Fig. 10, (B7)
reproduces the period and the characteristic decay of the
oscillations of the exact result (27) when ξ takes a large
negative value.

APPENDIX C: OFF-DIAGONAL HAMILTONIAN
TERMS FOR MULTI-PHOTON PDC

In this section, we derive an explicit expression for the
proportionality factors arising in (63b) for the matrix el-
ements of the discrete Hamiltonian in the multi-photon
case. The off-diagonal elements between |M2N−2J ,LJ〉
and |M′2N−2J′ ,L′J′〉 (see Sec. V for notation) are due

solely to the nonlinear part of the Hamiltonian Ĥ/~κ

(see (4))

ε
1
2

2

∑
m+n=`

(
â†mâ

†
nb̂` + âmânb̂

†
`

)
, (C1)

which is only nonzero when |J ′ − J | = 1. As a result,
we can focus on the case J ′ + 1 = J ≥ 1 without loss of
generality, corresponding to the action of the first term
of (C1). The action of (C1) in this case is to annihilate

a photon from one of the labels of LJ , say ˜̀, and create
a pair of photons in two of the labels of M2N−2J , say

m̃ and ñ, such that m̃ + ñ = ˜̀. When this procedure
produces a resulting set of labels that match those of
|M′2N−2J′ ,L′J′〉, we have a nonzero matrix element; in
multi-set notation, this condition can be written as

LJ = L′J′ ] {˜̀},
M′2N−2J′ =M2N−2J ] {m̃, ñ},

(C2)

where ] is the multiset sum. For such a term, the action
of the annihilation and creation operators result in an
overall factor of{

1
2

√
m˜̀(mm̃ + 1)(mm̃ + 2) m̃ = ñ√

m˜̀(mm̃ + 1)(mñ + 1) otherwise
, (C3)

where m˜̀ is the multiplicity of ˜̀ in LJ , and mm̃ and mñ
are the multiplicities of m̃ and ñ in M2N−2J , respec-
tively. This factor is precisely the proportionality factor
in (63b).

APPENDIX D: CONTINUUM HAMILTONIAN
FOR THREE-PHOTON GENERATION

In this section, we derive a continuum-limit Hamilto-
nian (valid for quantization window length L → ∞) for
the three-photon generation (TPG) process. With the
exception of some mathematical technicalities due to the
higher-dimensional continuum, the procedure proceeds
in the same as for the PDC case (see Secs. III A and
III B). We restrict our attention to the subspace spanned
by states dynamically accessible from an initial single-

photon dc state |c0〉 = ĉ†0 |0〉. Starting with the complete
Hamiltonian (65), the relevant signal states for TPG from
|c0〉 are

|ap1,p2〉 ∝ â†p1 â
†
p2 â
†
p3 |0〉 (D1)

where p3 = −p1 − p2 and p3 ≤ p2 ≤ p1. The momen-
tum cutoff Kmax introduced in the main text leads to a
momentum cutoff P =

√
p2

1 + p2
2 + p2

3 ≤ Pmax = KmaxL
2π

applied to these states. The nonzero matrix elements of
the Hamiltonian are

〈c0|Ĥ|c0〉 /~κ = ξ (D2a)

〈ap1,p2 |Ĥ|ap1,p2〉 /~κ ∝ ε2(p2
1 + p2

2 + p1p2) (D2b)

〈ap1,p2 |Ĥ|c0〉 /~κ = ε (D2c)
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where κ = 2χ2d−1
a is the effective nonlinear coupling rate

(independent of L), ε = da/χ ∝ L−1 is a dimensionless
parameter characterizing the quantization length, and
ξ = δ/κ is the normalized detuning arising from phase
mismatch. The proportionality factor in (D2b) is

1 for p3 < p2 < p1√
6 for p3 = p2 = p1√
2 otherwise

. (D3)

We introduce two-level lowering operators

ŵ = |0〉 〈c0| and ûp1,p2 = |0〉 〈ap1,p2 | , (D4)

for annihilating the pump and signal-triplet excitations.
Using these operators, we can define an effective hopping
Hamiltonian for this subspace, normalized by ~κ, as

Ĝ = ξŵ†ŵ +
∑

−p1−p2≤p2≤p1
P≤Pmax

ε2(p2
1 + p2

2 + p1p2)û†p1,p2 ûp1,p2

+ ε(ŵû†p1,p2 + ŵ†ûp1,p2). (D5)

To take a continuum limit, we define si = εpi (i = 1, 2),
upon which the operators

φ̂s1,s2 = ε−1ûp1,p2 (D6)

have a commutation relationship which limit to[
φ̂s1,s2 , φ̂

†
s′1,s

′
2

]
= δ(s1−s′1)δ(s2−s′2) for L→∞. Rewrit-

ing (D5) in this limit gives

Ĝcont = ξŵ†ŵ +

∫ ∞
0

ds1

∫ s1

−s1/2
ds2 Θ(rmax − r)

×
(
r2φ̂†s1,s2 φ̂s1,s2 + ŵφ̂†s1,s2 + ŵ†φ̂s1,s2

)
, (D7)

where r2 = s2
1 + s2

2 + s1s2, and Θ(x) = (x+ |x|)/2x is the
Heaviside step function. The momentum cutoff in this
parametrization takes the form rmax = Kmaxζ/2

√
2π,

where ζ = εL (independent of L) is the characteristic
correlation length.

To take into account the momentum cutoff naturally,
we introduce polar coordinates

r cos θ =

√
3

2
s1, r sin θ = s2 +

s1

2
, (D8)

where 0 ≤ r ≤ rmax and 0 ≤ θ ≤ π
3 . We can also

reparametrize the field annhilation operators as

φ̂r,θ =
√
rφ̂s1,s2 (D9)

which obey
[
φ̂r,θ, φ̂

†
r′,θ′

]
= δ(r− r′)δ(θ− θ′). Using these

operators, (D7) can be rewritten as

Ĝcont = ξŵ†ŵ +
2√
3

∫ rmax

0

dr

∫ π/3

0

dθ

×
{
r2φ̂†r,θφ̂r,θ +

√
r
(
φ̂r,θŵ

† + φ̂†r,θŵ
)}

. (D10)

The Hamiltonian (D10) has is symmetric in θ, and this
symmetry is preserved by any dynamics starting from
the initial state |c0〉 = ŵ† |0〉. By discarding the inter-

actions in Ĝcont that do not preserve this symmetry, we
can further simplify the continuum Hamiltonian to

Ĝcont = ξŵ†ŵ (D11)

+
2√
3

∫ rmax

0

dr

[
r2φ̂†rφ̂r +

√
πr

3

(
φ̂rŵ

† + φ̂†rŵ
)]
,

where we have defined the (θ-symmetric) signal contin-
uum photon-triplet annhilation operators

φ̂r =

√
3

π

∫ π/3

0

dθ φ̂r,θ (D12)

which obey
[
φ̂r, φ̂

†
r′

]
= δ(r − r′).
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