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Abstract—Aggregate data often appear in various fields such as socio-economics and public security. The aggregate data are
associated not with points but with supports (e.g., spatial regions in a city). Since the supports may have various granularities
depending on attributes (e.g., poverty rate and crime rate), modeling such data is not straightforward. This article offers a multi-output
Gaussian process (MoGP) model that infers functions for attributes using multiple aggregate datasets of respective granularities. In the
proposed model, the function for each attribute is assumed to be a dependent GP modeled as a linear mixing of independent latent
GPs. We design an observation model with an aggregation process for each attribute; the process is an integral of the GP over the
corresponding support. We also introduce a prior distribution of the mixing weights, which allows a knowledge transfer across domains
(e.g., cities) by sharing the prior. This is advantageous in such a situation where the spatially aggregated dataset in a city is too coarse
to interpolate; the proposed model can still make accurate predictions of attributes by utilizing aggregate datasets in other cities. The
inference of the proposed model is based on variational Bayes, which enables one to learn the model parameters using the aggregate
datasets from multiple domains. The experiments demonstrate that the proposed model outperforms in the task of refining
coarse-grained aggregate data on real-world datasets: Time series of air pollutants in Beijing and various kinds of spatial datasets from
New York City and Chicago.
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1 INTRODUCTION

AGGREGATE data often appear in various fields such
as socio-economics [1], [2], public security [3], [4],

ecology [5], agricultural economics [6], [7], epidemiol-
ogy [8], meteorology [9], [10], public health [11], urban
planning [12], and remote sensing [13]. The aggregate data
contain a pair of support and attribute. The support is a
predefined unit for aggregation, such as a time bin and a
spatial region. The attribute value is obtained by aggregat-
ing point-referenced data over the corresponding support
(see Figure 1). For example, time series of air pollutant
concentration gathered by low-cost sensors is associated
with coarse-grained time bins (e.g., six hours) because the
point-referenced data are averaged over the bin to alleviate
possible noise effects. Another example is the city’s poverty
rate collected via household surveys; the point-referenced
data are aggregated over spatial regions (e.g., districts) to
preserve privacy.

In this article, we suppose the situation where various
aggregate datasets in multiple domains are available and
consider the problem of inferring functions for respective
attributes. Here, the domain indicates an input space; for
example, the domain is one-dimensional when we are in-
terested in time series, and it is two-dimensional when we
consider spatial data obtained from a city. The problem set-
ting for two-dimensional domains is illustrated in Figure 1.
The estimated function can be used to make predictions
of attributes at any point, which is significant in various
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applications, such as improving city environments [2], [4].
For instance, analyzing the spatial distribution of poverty in
a city allows one to optimize the allocation of resources for
remedial action.

This problem is challenging because the aggregated at-
tributes are obtained at supports with various granularities,
namely different shapes and sizes (see Figure 1). Learning
is difficult, especially when the data are sparse, that is, they
are associated with coarse-grained supports. In that case,
one promising approach is joint modeling of all attributes;
however, it is still not obvious how to establish dependences
between aggregated attributes across multiple domains.

Gaussian processes (GPs) are nonparametric distribu-
tions over functions, which are widely used as priors to infer
unknown functions from data [14]. Multi-output Gaussian
processes (MoGPs) are promising to tackle the data spar-
sity issue, allowing one to learn functions by considering
dependences between attributes [15]. However, almost all
the GP-based models assume that the samples are obtained
at points; they are not straightforwardly applicable to ag-
gregate data observed at supports [16], [17], [18], [19], [20],
[21], [22], [23].

This article presents a probabilistic model, called Ag-
gregated Multi-output Gaussian Processes (A-MoGPs), to infer
functions for attributes using aggregate datasets in multi-
ple domains. In A-MoGP, the functions for attributes are
assumed to be a dependent GP modeled as a linear mixing
of independent latent GPs. The covariance functions of the
latent GPs are shared among attributes and domains. By in-
troducing a prior distribution of the mixing weights shared
among domains, one can obtain appropriate estimates of
the covariance functions and the weights via a knowledge
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Fig. 1. The problem setting when using aggregate datasets defined
on two-dimensional domains. Darker hues represent higher attribute
values. Assume that we obtain aggregate datasets in multiple domains,
where each attribute value is given by aggregating point-referenced
data over the corresponding support. Note that we do not use point-
referenced data in either training or test phases. The goal is to infer a
function for the attribute using aggregate datasets in multiple domains.

transfer mechanism, even if some aggregate datasets have
coarse granularities. The critical component of A-MoGP is
to have an observation model with aggregation processes, in
which attribute values are assumed to be calculated by inte-
grating the mixed GP over the corresponding support. The
covariances between supports are then given by the double
integral of the covariance function over the corresponding
pair of supports. This component is helpful because one
can accurately evaluate the covariance between supports
considering support shape and size.

The inference of A-MoGP is based on variational Bayes
(VB). The model parameters can be learned by maximizing
the evidence lower bound (ELBO), in which GPs are an-
alytically integrated out. We adopt the reparameterization
trick [24], which allows us to use gradient-based optimiza-
tion methods for learning the variational parameters. By
deriving the predictive distribution, we can obtain the func-
tions for respective attributes considering the covariance
of data points and the dependences between aggregated
attributes simultaneously.

The main contributions of this article are as follows 1:

• We propose A-MoGP, a novel multi-output GP model
that incorporates the aggregation process for each
attribute in multiple domains.

1. A preliminary version of this work appeared in the Proceedings
of NeurIPS’19 [25]. The main differences of this article from [25] are as
follows. We introduce the prior of the weight parameters and develop
the learning algorithm based on variational Bayes, allowing one to
utilize aggregate datasets gathered from multiple domains via the
knowledge transfer. We also conduct extensive experiments on real-
world aggregate datasets; we especially add the evaluations using
aggregated time series of pollutant concentrations.

• We develop a VB algorithm that can learn model
parameters by maximizing the ELBO, in which la-
tent GPs are analytically integrated out. This is the
first derivation of the predictive distribution given
aggregate datasets in multiple domains.

• The experiments on real-world datasets defined in
temporal or spatial domains demonstrate the effec-
tiveness of A-MoGP in the task of refining coarse-
grained aggregate data.

This article is organized as follows: In Section 2, we de-
scribe related works. Section 3 describes aggregate datasets
in multiple domains. In Section 4, we propose A-MoGP for
inferring functions from aggregate datasets in multiple do-
mains. In Section 5, we present the VB algorithm for learning
model parameters and derive the predictive distribution.
Section 6 demonstrates the effectiveness of A-MoGP using
multiple real-world aggregate datasets. Finally, we describe
concluding remarks and a discussion of future work in
Section 7.

2 RELATED WORK

The problem of refining spatially aggregated data has long
been addressed in the geostatistics community under the
name of statistical downscaling, spatial disaggregation, and areal
interpolation; the problem of predicting point-referenced
data from aggregate data is also called the change of support
problem [26]. One difficulty in these problems is that the
covariance of aggregate data is not equal to that of point-
referenced data, which is called the ecological fallacy [27],
[28] in the field of statistics. In order to estimate the covari-
ance from aggregate data precisely, it has been indicated
that data aggregation processes should be incorporated into
the models, as in prior works (e.g., [26], [29]) as well as in
our proposal. The following paragraphs describe existing
methods for addressing the problem we focus on, which
can be roughly categorized into two approaches: Regression
approach and multivariate approach.

A regression approach has been adopted frequently for
refining coarse-grained aggregate data. This approach dis-
tinguishes multiple datasets into one target dataset and
the others (auxiliary datasets) and then models the target
attribute as a linear or non-linear mapping of the auxiliary
attributes [5], [29], [30], [31], [32]. These models have the
aggregation process only for the target attribute, encourag-
ing consistency between the fine- and coarse-grained target
attribute. The aggregation process is incorporated via block
kriging [33] or transformations of Gaussian process (GP)
priors [34], [35]. In recent years, regression-based models for
aggregate settings have been studied in the field of machine
learning [36], [37], [38], [39]. It has been pointed out that
this task is a kind of multiple instance learning [36], [38].
The regression-based models assume that all the auxiliary
datasets have sufficiently fine granularities (e.g., 5 minutes
intervals in the timeline and 1 km × 1 km grid cells in
the geographical space); thus they do not consider aggre-
gation constraints for the auxiliary datasets. However, this
assumption is not always fulfilled; for example, spatially
aggregated datasets from cities are often associated with
various geographical partitions such as districts and police
precincts; hence, one might not be able to access fine-grained
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auxiliary datasets. In such cases, the regression-based ap-
proach cannot fully use all the aggregate datasets containing
the coarse-grained ones.

An alternative for modeling multiple datasets is a mul-
tivariate approach. Unlike the regression approach, this
approach does not distinguish multiple datasets; it aims to
design a joint distribution of all attributes. Generally, the
multivariate approach is expected to alleviate data sparsity
issues. Multi-output Gaussian processes (MoGPs) [15] and
co-kriging [40] are typical choices for modeling multivariate
data that can consider covariances of data points and de-
pendences between attributes simultaneously. Along the re-
search line of MoGPs, there have been several sophisticated
methods, including process convolution [18], [22] and latent
factor modeling [16], [17], [19], [20], [21], [23], for establish-
ing dependences between attributes. The linear model of
coregionalization (LMC) is the general and most widely-
used framework for constructing a multivariate function,
in which outputs (i.e., attributes) are represented as a lin-
ear combination of independent latent functions [41], [42].
The MoGP models based on latent factor modeling are
instances of LMC, where the latent functions are defined by
GPs. Unfortunately, all the existing MoGP models cannot
straightforwardly apply to the aggregate data this study
focuses on because they assume point-referenced data. In
other words, they do not have an important mechanism,
that is, the aggregation constraints, for handling attributes
aggregated over supports.

The proposed model is an extension of LMC. To handle
the aggregate data, we introduce an observation model
with the aggregation process for all attributes; this is repre-
sented by the integral of the MoGP over each corresponding
support, as in [35]. We also present the variational Bayes
algorithm for learning model parameters and derive the
predictive distribution, given aggregate datasets in multi-
ple domains. MoGP models for aggregate data have been
independently proposed at the same time [13], [25], [43].
The main differences of ours from [13], [43] are as follows:
(a) derivation of the predictive distribution given aggregate
datasets from multiple domains; (b) knowledge transfer
across domains by incorporating the prior distribution of
mixing weights; (c) extensive experiments on real-world ag-
gregate datasets gathered from temporal or spatial domains.

3 AGGREGATE DATA

In this section, we introduce mathematical notations of
aggregate datasets in multiple domains. Let V be a set of
domain indices. Let Xv ⊂ RD(v ∈ V) be a domain of
dimension D. In the case of D = 1, a typical example
of the domain is an observation time period; a domain
example in the case of D = 2 is a total region of a city.
When we consider multiple domains, i.e., |V| ≥ 2, where
| • | is the cardinality of the set, we regard that different
domains do not intersect. Let x ∈ Xv(v ∈ V) denote an
input variable. Let Sv(v ∈ V) be a set of attribute indices
for each domain. A partition Pvs(v ∈ V, s ∈ Sv) of Xv

is a collection of disjoint subsets, called supports, of Xv .
Let Rvsn ∈ Pvs be an n-th support in Pvs. The support
corresponds to the time bin (D = 1), the spatial region
(D = 2), and so on. A data sample is specified by a

TABLE 1
Notation of aggregate datasets.

Symbol Description

V set of domain indices
v domain index, v ∈ V
D dimension of domain, D ∈ N
Xv v-th domain, Xv ⊂ RD

Sv set of attribute indices for v-th domain
s attribute index, s ∈ Sv
Pvs partition of Xv for s-th attribute
n support index, n ∈ {1, . . . , |Pvs|}
Rvsn support, Rvsn ∈ Pvs

yvsn attribute value associated with the support Rvsn

pair (Rvsn, yvsn), where yvsn ∈ R is an attribute value
that is observed by aggregating the point-referenced data
over the corresponding support Rvsn (see Figure 1). Here,
we assume that the aggregation process (e.g., averaging)
for each attribute is known. Suppose that we have the
collection of aggregate datasets D = {Dv | v ∈ V}, where
Dv = {(Rvsn, yvsn) | s ∈ Sv;n = 1, . . . , |Pvs|}. The
notations used in this article are listed in Table 1.

4 MODEL

We propose A-MoGP (Aggregated Multi-output Gaussian
Process), a probabilistic model for inferring functions from
aggregate datasets with various granularities in multiple
domains. The proposed model when we have two spatial
domains is illustrated schematically in Figure 2. For sim-
plicity, we assume that the types of attributes are the same
for different domains; namely, we let S = Sv denote the
set of attribute indices for all domains. Notice that one can
straightforwardly apply the proposed model to the case
where the types of attributes are partially different across
domains. In the following, we first construct a multi-output
Gaussian process (MoGP) prior by linearly mixing indepen-
dent latent GPs to establish dependences between attributes
(see (a) Linear mixing in Figure 2). We then introduce a prior
distribution of the mixing weights to transfer knowledge
across domains (see (b) Prior dist. in Figure 2). Lastly, we
present an observation model with aggregation processes
for respective attributes (see (c) Agg. process in Figure 2),
allowing a model learning from aggregate datasets.

MoGP prior. In the proposed model, the functions for
attributes on the continuous space are assumed to be an
MoGP. We construct the MoGP by linearly mixing some in-
dependent latent GPs, which is one of the most widely used
approaches for establishing dependences between outputs
(i.e., attributes) [15], [17]. Let L be an index set of latent
GPs. Consider |V||L| independent zero-mean GPs,

gvl(x) ∼ GP (0, γl(x,x
′)) , v ∈ V; l ∈ L, (1)

where γl(x,x′) : RD × RD → R is a covariance function
for the l-th latent GP, which is assumed integrable. It should
be noted that the covariance functions {γl(x,x′) | l ∈ L}
are shared among all attributes and all domains, which
enables us to effectively learn covariances of data points
by utilizing dependences between attributes in multiple
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Fig. 2. Schematic diagram of A-MoGP: Generative process of multiple
aggregated attributes in two spatial domains. Covariance functions and
prior distributions of weight parameters are shared among domains.

domains. Defining fvs(x) as the GP for the s-th attribute
in the v-th domain, the |S|-dimensional dependent GP
fv(x) = (fv1(x), . . . , fv|S|(x))> in the v-th domain is
assumed to be modeled as a linear combination of the |L|
independent latent GPs. The MoGP for the v-th domain is
then given by

fv(x) = Wvgv(x), (2)

where gv(x) = (gv1(x), . . . , gv|L|(x))>, and where Wv is
an |S| × |L| weight matrix whose (s, l)-entry wvsl ∈ R is
the weight of the l-th latent GP in the s-th attribute. Since
a linear combination of GPs is again a GP, fv(x) can be
written by

fv(x) |Wv ∼ GP (0,Kv(x,x′)) , (3)

where 0 is a column vector of 0’s, and where Kv(x,x′) :
Xv×Xv → R|S|×|S| is the matrix-valued covariance function
represented by

Kv(x,x′) = WvΓ(x,x′)W>
v . (4)

Here, Γ(x,x′) = diag
(
γ1(x,x′), . . . , γ|L|(x,x

′)
)
. The

(s, s′)-entry of Kv(x,x′) is given by

kvss′(x,x
′) =

L∑
l=1

wvslwvs′lγl(x,x
′). (5)

From (5), one can see that the covariance functions Γ(x,x′)
for latent GPs are shared by all attributes and all domains.
In this article, we focus on the case |L| ≤ |V||S|, with the

aim of reducing the model complexity as this is helpful in
alleviating over-fitting, as in [17].

Prior of the weights. Each weight wvsl is assumed to be
generated from a Gaussian prior distribution,

wvsl ∼ N
(
wvsl | w̄sl, η

2
sl

)
, (6)

where w̄sl and η2sl are a mean and a variance, respectively.
η2sl controls the degrees of knowledge transfer across do-
mains. When η2sl is close to zero, the weights {wvsl}v∈V for
all domains are likely to take the same value. This allows the
model to learn parameters from the full use of all datasets
by appropriately transferring knowledge between domains.
This modeling is especially beneficial when some datasets in
a domain are too coarse to learn the dependences between
attributes.

Observation model for aggregate data. To handle aggre-
gate data, we design an observation model with aggregation
processes that are integrals of GPs over corresponding sup-
ports. Let yvs = (yvs1, . . . , yvs|Pvs|) be a |Pvs|-dimensional
vector consisting of the values for the s-th attribute in the
v-th domain. Let yv = (yv1, . . . ,yv|S|)

> denote an Nv-
dimensional vector consisting of the values for all attributes
in the v-th domain, where Nv =

∑
s∈S |Pvs| is the total

number of samples in the v-th domain. Each attribute value
is assumed to be obtained by integrating the GP fv(x) over
the corresponding support; yv is then generated from a
Gaussian distribution2,

yv | fv(x),Wv ∼ N
(
yv

∣∣∣ ∫
Xv

Av(x)fv(x) dx,Σv

)
, (7)

where Av(x) : Xv → RNv×|S| is represented by

Av(x) = diag
(
av1(x), . . . ,av|S|(x)

)
, (8)

in which avs(x) = (avs1(x), . . . , avs|Pvs|(x))>, whose entry
avsn(x) is a weight function for aggregation over support
Rvsn. This modeling does not depend on the particular
choice of {avsn(x)} as long as they are integrable. If one
takes, for support Rvsn,

avsn(x) =
1(x ∈ Rvsn)∫

Xv
1(x′ ∈ Rvsn) dx′

, (9)

where 1(•) is the indicator function; 1(Z) = 1 if Z is
true and 1(Z) = 0 otherwise, then yvsn is the average of
fvs(x) over Rvsn. One may also consider other aggregation
processes to suit the property of the attribute values, includ-
ing simple summation and population-weighted averaging
overRvsn. Σv = diag(σ2

v1I, . . . , σ
2
v|S|I) in (7) is an Nv ×Nv

block diagonal matrix, where σ2
vs is the noise variance for

the s-th attribute in the v-th domain, where I is the identity
matrix.

On domains. We here summarize our assumptions of
A-MoGP in modeling multiple domains, in order to avoid
possible misunderstandings. The field fv(x) (2) for at-
tribute values is assumed to be determined by the prod-
uct of the latent field gv(x) and the weight matrix Wv .
It should be noted that, for each domain v ∈ V , gv(x)

2. We assume that the integral appearing in (7) is well-defined.
Sample paths of a GP are in general not integrable without additional
assumptions; the conditions under which the integral is well-defined
are discussed in Supplementary Material of [25].
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Algorithm 1 Inference procedure for A-MoGP.
Input: Aggregate datasets D, the numbers of Monte-Carlo

samples Te, Tp
Output: Predictive distribution p(f∗v | x,D)

1: Initialize {Σv}, Γ(x,x′), {w̄sl}, {η2sl}, {w̄′sl}, {η′2sl}
2: /* Parameter learning */
3: repeat
4: for t = 1, . . . , Te do
5: for all v, s, l do
6: ŵ

(t)
vsl ← w̄′vsl + ε ·

√
η′2vsl, where ε ∼ N (0, 1)

7: end for
8: end for
9: Update {Σv}, Γ(x,x′), {w̄sl}, {η2sl}, {w̄′sl}, {η′2sl} by

maximizing the ELBO (14)
10: until Convergence
11: /* Prediction */
12: for t = 1, . . . , Tp do
13: for all v, s, l do
14: ŵ

(t)
vsl ← wvsl ∼ N (wvsl | w̄′vsl, η′vsl) (15)

15: end for
16: end for
17: Construct the predictive distribution p(f∗v | x,D) (22)

using the estimated parameters

and Wv in (2) are assumed to be realizations from the
prior distributions of (1) and (6), respectively, so that a
single realization of gv(x) on Xv , as well as a single re-
alization of Wv , is shared over the whole domain Xv to
define the field fv(x) on Xv via (2). Another assumption
is that {(g1(x),W1), (g2(x),W2), . . . , (g|V|(x),W|V|)} are
assumed independent. Due to this assumption we do not
have to consider cross-domain covariance Γ(x,x′) with
x ∈ Xv,x

′ ∈ Xv′ , v 6= v′. Meanwhile, we assume that
the prior distributions for (gv(x),Wv) are shared across
domains, which allows domain transfer. In the case where
the set of attributes is different across domains, we use
the same priors for the same kind of attributes in different
domains.

5 INFERENCE

Our aim is to obtain the predictive distribution on the basis
of variational Bayesian inference procedures. The model
parameters, {Wv | v ∈ V}, {Σv | v ∈ V}, Γ(x,x′),
{w̄sl | s ∈ S; l ∈ L}, and {η2sl | s ∈ S; l ∈ L}, are
estimated by maximizing the evidence lower bound (ELBO),
in which GPs are analytically integrated out. We adopt the
reparameterization trick [24] to estimate variational param-
eters via gradient-based optimization methods. One can
subsequently obtain the predictive distribution using the
estimated parameters. The inference procedure is shown in
Algorithm 1.

ELBO. Given the aggregate datasets in multiple domains
D, the marginal likelihood (i.e., evidence) of {yv} is given
by

p({yv}) =
∏
v∈V

∫
p(yv |Wv)p(Wv) dWv. (10)

Here, the likelihood of yv is

p(yv |Wv) = N (yv | 0,Cv) , (11)

where we analytically integrate out the GP prior fv(x), and
where Cv is an Nv ×Nv covariance matrix represented by

Cv =

∫∫
Xv×Xv

Av(x)Kv(x,x′)Av(x′)> dx dx′ + Σv.

(12)

It is an |S| × |S| block matrix whose (s, s′)-th block Cvss′ is
a |Pvs| × |Pvs′ | matrix represented by

Cvss′ =

∫∫
Xv×Xv

kvss′(x,x
′)avs(x)avs′(x

′)> dx dx′

+ δs,s′σ
2
vsI, (13)

where δ•,• represents Kronecker’s delta; δZ,Z′ = 1 if Z = Z ′

and δZ,Z′ = 0 otherwise. The closed-form expression (12)
for Cv is not trivial for the following reason: One needs to
consider averaging with respect to the infinite-dimensional
Gaussian fv(x) since the attribute values are obtained by
aggregating the function values evaluated at an infinite
number of points within the corresponding supports. Our
works [25], [44] have shown that the integral with respect
to fv(x) under the integrability conditions mentioned in
footnote 2 can be analytically performed by the following
procedures: Consider the Riemann sums to define the in-
tegral of fv(x) using a regular grid covering Xv with the
grid cell volume ∆; integrate out the GP prior in a similar
way to the vanilla GP; take the limit ∆ → 0, obtaining the
likelihood (11). Details appear in Supplementary Material
of [25]. Equation (12) takes the form of the double integral
of the covariance function Kv(x,x′) over the respective
pairs of supports, which conceptually corresponds to the
aggregation of the covariance function values that are cal-
culated at the infinite pairs of points in the corresponding
supports; this allows one to evaluate the support-to-support
covariances taking into account support size and shape.
How to evaluate the integral of the covariance function
in (12) is described at the end of this section. In general,
it is difficult to evaluate the logarithm of the evidence (10),
so that we consider what is called the evidence lower bound
(ELBO), defined as

ln p({yv})
≥
∑
v∈V

{
Eq(Wv) [ln p(yv |Wv)]−KL [q(Wv) ‖ p(Wv)]

}
,

(14)

where E[•] is the expectation, KL[•‖•] is the Kullback-
Leibler (KL) divergence, and q(Wv) is a variational distri-
bution that approximates the true posterior p(Wv | {yv}).
On the basis of the mean-field approximation [45], we take,
for each domain, the variational distribution given by a
factorized Gaussian distribution,

q(Wv) =
∏
s∈S

∏
l∈L
N
(
wvsl | w̄′vsl, η′2vsl

)
, (15)

where w̄′vsl and η′2vsl are the element-wise variational pa-
rameters. It is, unfortunately, difficult to directly obtain the
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ELBO as the expectation in (14) is not tractable; we compute
it using Monte-Carlo approximation as follows:

Eq(Wv) [ln p(yv |Wv)] ≈ 1

Te

Te∑
t=1

ln p(yv | Ŵ(t)
v ), (16)

where Ŵ
(t)
v ∼ q(Wv) and Te is the number of Monte-Carlo

samples for evaluating the ELBO. We use the reparameteri-
zation trick [24], so that the t-th sample ŵ(t)

vsl of ŵvsl is given
by

ŵ
(t)
vsl = w̄′vsl + ε ·

√
η′2vsl, (17)

where ε ∼ N (0, 1). This technique allows us to use gradient-
based optimization methods for estimating the variational
parameters. Accordingly, the model parameters and the
variational parameters can be obtained by maximizing the
ELBO (14).

Predictive distribution. Let f∗v denote the predictive
value of f(x) at x. We first describe the posterior distribu-
tion for f∗v conditional on Wv , obtained in the closed form
as

p(f∗v | x,Wv,D) = N (f∗v |m∗v(x),K∗v(x,x′)) , (18)

where m∗v(x) : Xv → R|S| and K∗v(x,x′) : Xv × Xv →
R|S|×|S| are the mean function and the covariance function,
respectively, for the conditional posterior. Defining Hv(x) :
Xv → RNv×|S| as

Hv(x) =

∫
Xv

Av(x′)Kv(x′,x) dx′, (19)

which consists of the point-to-support covariances, the
mean function m∗v(x) and the covariance function
K∗v(x,x′) are given by

m∗v(x) = Hv(x)>C−1v yv, (20)

K∗v(x,x′) = Kv(x,x′)−Hv(x)>C−1v Hv(x′), (21)

respectively. Derivation of the conditional posterior (18) is
similar to that of the likelihood (11). According to variational
Bayesian inference procedures, the predictive distribution of
f∗v is given by the expectation of f∗v with respect to the
variational distribution of Wv ; however, it is intractable;
we thus compute it using Monte-Carlo approximation as
follows:

p(f∗v | x,D) =

∫
p(f∗v | x,Wv,D)q(Wv) dWv

≈ 1

Tp

Tp∑
t=1

p(f∗v | x,Ŵ(t)
v ,D) (22)

where Ŵ
(t)
v ∼ q(Wv), and where Tp is the number of

Monte-Carlo samples to approximate the predictive dis-
tribution. One can observe that the approximate distribu-
tion (22) is the form of a multivariate Gaussian mixture.
Then, one can obtain the mean function m̂∗v(x) and the co-

variance function K̂∗v(x,x′) for the approximate predictive
distribution, represented by

m̂∗v(x) =
1

Tp

Tp∑
t=1

m∗(t)v (x), (23)

K̂∗v(x,x′) =
1

Tp

Tp∑
t=1

(
K∗(t)v (x,x′) + m∗(t)v (x)m∗(t)v (x′)>

)
− m̂∗v(x)m̂∗v(x′)> (24)

Here, m∗(t)v (x) and K
∗(t)
v (x,x′) are the mean function (20)

and the covariance function (21), respectively, that are eval-
uated using the t-th sample Ŵ

(t)
v .

Integral of the covariance function. In (12) and (19), we
need the integrals of the covariance function Kv(x,x′) over
the domain Xv . If the dimension D of Xv is one, it can be
obtained in a closed form as long as the covariance function
is analytically integrable. One can find an example using
the squared-exponential kernel as the covariance function
in Section 2 of [35], which we adopt in the following exper-
iments. If D ≥ 2, on the other hand, this integral generally
requires a numerical approximation. In the implementation,
we approximate these integrals by using sufficiently fine-
grained D-dimensional square grid cells. We divide domain
Xv into square grid cells, and take Gvsn to be the set of
grid points that are contained in supportRvsn. Consider the
approximation of the integral in the covariance matrix (12).
The (n, n′)-entry Cvss′(n, n

′) of Cvss′ is approximated as
follows:

Cvss′(n, n
′)

=

∫∫
Xv×Xv

kvss′(x,x
′)avsn(x)avs′n(x′) dx dx′ + δs,s′σ

2
vs

≈ 1

|Gvsn|
1

|Gvs′n′ |
∑

i∈Gvsn

∑
j∈Gvs′n′

kvss′(i, j) + δs,s′σ
2
vs,

(25)

where we use the formulation of the support-average-
observation model (9). The integrals in (19) can be approxi-
mated in a similar way. Letting |Gv| denote the number of all
grid points in the v-th domain, the computational complex-
ity of Cvss′ (12) is O(|Gv|2). Assuming the constant weight
avsn(x) = avsn (e.g., support-average), the computational
complexity can be reduced to O(|Pvs||Pvs′ ||E|), where |E| is
the cardinality of the set of distinct distance values between
grid points. Here, we use the property that kvss′(i, j) in (25)
depends only on the distance between i and j, which is
helpful for saving the computation time and the memory
requirement. The average computation time for training was
738.7 seconds for the areal datasets from New York City and
Chicago; the experiments were conducted on an NVIDIA
Titan RTX GPU.

6 EXPERIMENTS

6.1 Datasets
We evaluated the proposed model, A-MoGP, using real-
world datasets defined in one- and two-dimensional do-
mains. The one-dimensional domain is a temporal domain,
and the attribute values are obtained by aggregating time
series on time bins. The two-dimensional domain is a spatial
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TABLE 2
Real-world areal datasets.

(a) New York City

Attribute Partition #regions Time range

Poverty rate Community 59 2009 – 2013
Unemployment rate Community 59 2009 – 2013
PM2.5 UHF42 42 2009 – 2010
Mean commute Community 59 2009 – 2013
Recycle diversion rate Community 59 2009 – 2013
Population density Community 59 2009 – 2013
Crime rate Police precinct 77 2010 – 2016

(b) Chicago

Attribute Partition #regions Time range

Poverty rate Community 77 2008 – 2012
Unemployment rate Community 77 2008 – 2012
Crime rate Police precinct 25 2012

domain; the attributes are aggregated on spatial regions. De-
tails of the datasets are described in subsequent paragraphs.
In the experiments, the attribute values were centered and
normalized so that each attribute in each domain has zero
mean and unit variance.

Time series of air pollutants. This dataset includes
hourly air pollutant concentrations from multiple air quality
monitoring stations in Beijing [46]; the observation period is
from March 1st, 2013, to February 28th, 2017. For evaluation,
we used three pollutants, NO2,CO,O3, which are denoted
in the following by NO2, CO, and O3, respectively, from
three monitoring stations, Changping, Aotizhongxin, and
Dingling. The observation period was divided equally into
three disjoint parts, each of which was regarded as the
domain for each monitoring station. In other words, in the
time series datasets we used in the following experiments,
there are three domains, that is, three observation periods
for respective monitoring stations. We explored the task of
refining the time series aggregated on the coarse-grained
time bins by using the aggregated time series from multiple
monitoring stations. Here, the support in the time series
datasets corresponds to each of the time bins. To evaluate
the performance in predicting the fine-grained attribute,
we first picked up one target dataset and used its coarser
version for learning model parameters; then, we predicted
the fine-grained target attribute via the learned model. We
created the coarse- and fine-grained target attributes by
aggregating the original data on time bins of different sizes.
More concretely, we prepared three kinds of coarse-grained
time bins to evaluate performance when changing bin sizes
as one, two, and four months. The bin size of the fine-
grained target attribute was set to one week.

Areal data in cites. We conducted the experiments using
seven and three real-world areal datasets from New York
City [47] and Chicago [48], respectively. There are two
domains in the areal datasets, where the domain corresponds
to the total region of each city. The areal dataset is associated
with one of the predefined geographical partitions with
various granularities: UHF42 (42), Community (59), and
Police precinct (77) in New York City; Police precinct (25),

and Community (77) in Chicago, where each number in
parentheses denotes the number of spatial regions in the
corresponding partition. In the areal datasets, the spatial
region corresponds to the support for data aggregation.
Details about the real-world areal datasets are shown in
Table 2. These datasets were gathered once a year at the
time ranges shown in Table 2; thus, we used the datasets
by yearly averaging their attribute values. The evaluation
procedure is similar to the case of the time series datasets
(described in the preceding paragraph). For evaluation, we
created the coarse-grained target attributes by aggregating
the original data on the coarse-grained partition: Borough
(5) in New York City and Side (9) in Chicago.

Evaluation metric. Let v′ ∈ V and s′ ∈ Sv′ be the do-
main index and the attribute index we targeted, respectively.
The evaluation metric is the mean absolute percentage error
(MAPE) of the fine-grained target attribute values, repre-
sented by

1

|Pv′s′ |
∑

n∈Pv′s′

∣∣∣∣ytruev′s′n − y∗v′s′n

ytruev′s′n

∣∣∣∣ , (26)

where ytruev′s′n is the true value associated with the n-th
support in the target fine-grained partition; y∗v′s′n is its
predicted value, obtained by integrating the s′-th posterior
mean function of the v′-th domain, m̂∗v′(x) (23), over the
corresponding target fine-grained support.

6.2 Setup of A-MoGP

In the experiments, we used the squared-exponential kernel
as the covariance function for the latent GPs, represented by

γl(x,x
′) = α2

l exp

(
− 1

2β2
l

‖x− x′‖2
)
, (27)

where α2
l is a signal variance that controls the magnitude

of the covariance, where βl is a scale parameter that de-
termines the covariances of data points, and where ‖ · ‖
is the Euclidean norm. Here, we set α2

l = 1 because the
variance can already be modeled by scaling the columns
of Wv in (4). The model parameters were estimated by
maximizing the ELBO (14) using the Adam optimizer [49]
with learning rate 0.001, implemented in PyTorch [50]. As
described in the last paragraph of Section 5, we need to
approximate the integral of kernel over the regions in the
areal data setting. We divided the total region of each city
into sufficiently fine-grained square grid cells, the size of
which was 300 m × 300 m for both cities; the resulting sets
of grid points Gv for New York City and Chicago include
9,352 and 7,400 grid points, respectively. The number |L| of
the latent GPs was chosen from {1, . . . , S} via leave-one-out
cross-validation [45], where S =

∑
v∈V |Sv|. We obtained

the validation error using each held-out coarse-grained at-
tribute value, namely, we did not use the fine-grained target
data in the validation process. We set the numbers of Monte-
Carlo samples as Te = 1 and Tp = 100, where the choice
Te = 1 amounts to estimating the variational parameters
via stochastic gradient ascent of the ELBO with sample size
1.
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Fig. 3. MAPE and standard errors for the prediction of fine-grained aggregated time-series datasets. Each row shows the results for each of the
monitoring stations, and each column shows the results for each of the pollutants.

6.3 Baselines

We compared A-MoGP with Gaussian process regression for
binned data [35]. This model is a special case of A-MoGP
when only target aggregate dataset in a single domain
is available; in this article, we call it aggregated Gaussian
process (A-GP) with single-output. Another baseline is one
of the standard MoGP models, semiparametric latent factor
model (SLFM) [17]. A-MoGP is an extension of SLFM;
A-MoGP newly incorporates the observation model with
aggregation processes for handling aggregate data. SLFM
assumes that samples are observed at location points rather
than supports; we thus associate each attribute value with
the centroid of the support. Additionally, A-GP and SLFM
do not have a mechanism for knowledge transfer across
domains.

6.4 Results for time-series data

In this section, we present the experimental results for time-
series data of air pollutants. Figure 3 shows MAPE and
standard errors for A-GP, SLFM, A-MoGP, and A-MoGP
(trans). Here, A-GP, SLFM, and A-MoGP were trained and
tested using the aggregate datasets from a single domain; A-
MoGP (trans) utilized all the datasets from three domains.
As expected, one observes that for all models, MAPE in-
creased with the bin size for creating the coarse-grained
target dataset. In many cases, A-MoGP achieved better
performance than A-GP and SLFM. This result shows that
A-MoGP can effectively utilize multiple aggregate datasets
from a single domain. Moreover, A-MoGP (trans) outper-
formed A-MoGP, especially when the bin size was set to
two and four months. This result shows that the refinement
performance can be improved by making use of aggregate
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Fig. 4. Prediction result of A-GP for the attributes in Aotizhongxin. In the first row, the black and red lines are the true and predicted values,
respectively; the red shaded area denotes twice the standard deviation in prediction at each fine-grained bin. The blue and red lines in the second
row are the training data and its prediction, respectively; the predictive variance is calculated on a continuous timeline.
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Fig. 5. Prediction result of SLFM for the attributes in Aotizhongxin. Further figure details are the same as Figure 4.

datasets from other domains even if the target dataset is
coarser.

Figures 4, 5, 6, and 7 illustrate the prediction results of
the attributes in Aotizhongxin, by A-GP, SLFM, A-MoGP,
and A-MoGP (trans), respectively. Here, the target dataset
is set to NO2 in Aotizhongxin. In these figures, the first
row is the result for the test dataset (i.e., fine-grained target
dataset). The remaining rows in these figures are the results
for the training datasets, including the coarse-grained target
dataset. In the results of A-GP, A-MoGP, and A-MoGP
(trans), the predictive variance (depicted by the red shaded
area) was obtained via the double integral of the posterior
covariance function K̂∗v′(x,x′) (24) over the corresponding

bin. Each column in these figures shows the result when us-
ing the coarse-grained target dataset with the corresponding
bin size (described by the bold font in the figures). As one
can see from Figure 4, A-GP incorporating the aggregation
process can effectively interpolate the target aggregated
attribute without over-fitting while encouraging consistency
between the coarse- and the fine-grained target dataset.
However, the performance of A-GP is limited because it
does not use multiple datasets to refine the coarse-grained
target dataset. Although SLFM can utilize multiple datasets
from a single domain, it does not have the observation
model for handling aggregate datasets; this might prevent
the model from learning properly. In the third column of
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Fig. 6. Prediction result of A-MoGP for the attributes in Aotizhongxin. Further figure details are the same as Figure 4.
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Fig. 7. Prediction result of A-MoGP (trans) for the attributes in Aotizhongxin. Further figure details are the same as Figure 4.
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TABLE 3
MAPE and standard errors for the prediction of fine-grained areal data in New York City and Chicago. The numbers in parentheses denote the

number L of the latent GPs estimated by the leave-one-out cross-validation.

(a) New York City

A-GP SLFM A-MoGP A-MoGP (trans)

Poverty rate 0.263 ± 0.032 (–) 0.184 ± 0.019 (2) 0.186 ± 0.018 (3) 0.168 ± 0.018 (3)
Unemployment rate 0.215 ± 0.023 (–) 0.172 ± 0.020 (6) 0.177 ± 0.021 (7) 0.151 ± 0.020 (6)
PM2.5 0.054 ± 0.007 (–) 0.037 ± 0.005 (3) 0.037 ± 0.006 (3) 0.039 ± 0.007 (4)
Mean commute 0.072 ± 0.009 (–) 0.072 ± 0.009 (6) 0.054 ± 0.006 (3) 0.051 ± 0.006 (4)
Recycle diversion rate 0.282 ± 0.037 (–) 0.257 ± 0.029 (4) 0.180 ± 0.022 (2) 0.166 ± 0.021 (4)
Population density 0.354 ± 0.039 (–) 0.386 ± 0.046 (4) 0.355 ± 0.040 (3) 0.325 ± 0.052 (4)
Crime rate 0.601 ± 0.129 (–) 0.472 ± 0.081 (3) 0.427 ± 0.105 (2) 0.426 ± 0.124 (8)

(b) Chicago

A-GP SLFM A-MoGP A-MoGP (trans)

Poverty rate 0.255 ± 0.031 (–) 0.309 ± 0.030 (2) 0.243 ± 0.031 (3) 0.223 ± 0.021 (7)
Unemployment rate 0.414 ± 0.073 (–) 0.356 ± 0.049 (2) 0.240 ± 0.025 (3) 0.268 ± 0.037 (8)

(a) Relationships estimated by A-MoGP.

(b) Relationships estimated by A-MoGP (trans).

Fig. 8. Estimated relationships between attributes when using NO2 in
Aotizhongxin as the target dataset.

Figure 5, one observes the over-fitting of SLFM to the CO
dataset because SLFM regarded the areal data as the point-
referenced data. It is one of the reasons why SLFM does
not yield better performance in refining the coarse-grained
dataset. As one can see from Figure 6, A-MoGP captured
the fine-scale variation of the target attribute by utilizing the
relevant attribute (i.e., CO), only in the case where the target
dataset has the relatively fine granularities (i.e., one month).
In Figure 7, one can see that A-MoGP (trans) yielded an ex-
cellent prediction even if there is only the target dataset with
coarser granularities. By comparing the estimated function
(depicted by the red lines in Figures 4, 5, 6, and 7) when
setting the target coarse-grained bin size to four months
among all the models, we can see that the improvement with
A-MoGP (trans) is obvious. This is because A-MoGP (trans)
can utilize the aggregate datasets in multiple domains and
appropriately learn the relationships between attributes and

the covariances of data points. To confirm this observation,
in Figure 8, we show the visualization of the relationships
between attributes, estimated by A-MoGP and A-MoGP
(trans). Letting W̄′

v be an |Sv| × |L| matrix whose (s, l)-
entry is the variational posterior mean w̄′vsl in (15), the
relationships between attributes were calculated as follows:
W̄′

vW̄
′>
v ∈ R|Sv|×|Sv|, which is known as a coregionalization

matrix [15]. Figure 8 illustrates the absolute values of the
elements of the coregionalization matrix. This result shows
that A-MoGP captured the useful relationship between
attributes, that is, the correlation between NO2 and CO,
only in the case where the bin size for the coarse-grained
target attribute was one month. Meanwhile, A-MoGP (trans)
emphasized this relationship even if the target attribute was
associated with coarser time bins.

6.5 Results for areal data

This section presents the experimental results for areal
datasets in cities. Table 3 shows MAPE and standard errors
for A-GP, SLFM, A-MoGP, and A-MoGP (trans). Here, the
experiments for the Crime rate dataset in Chicago have not
been conducted because the coarser version for training is
not available online. For all datasets, A-MoGP and A-MoGP
(trans) achieved better performance in refining the coarse-
grained areal dataset than the baseline models. Also, in
most cases, A-MoGP (trans) was able to use the aggregate
datasets in two cities to improve refinement performance.
Figure 10 shows the Poverty rate dataset in New York City
and the refinement results attained by A-GP, SLFM, A-
MoGP, and A-MoGP (trans). Compared with the true values
in Figure 10(b), A-MoGP (trans) yielded more accurate
estimates of the fine-grained data than the other models.

We analyzed the relationships between the attributes,
estimated by A-MoGP (trans). Figure 11 shows the vi-
sualization of the relationships when setting the Poverty
rate dataset in New York City as the target dataset, which
was illustrated by the same procedure as that described in
Section 6.4. In Figure 11, one can see that the poverty rate
and the unemployment rate had strong relationships in both
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Fig. 10. Refinement results of the Poverty rate dataset in New York City.

cities; meanwhile, the strength of the relationship between
the poverty rate and the crime rate was stronger in Chicago
than that in New York City. Comparing these results with
the visualizations of training datasets in Figure 12, we
can confirm that A-MoGP (trans) captures the correlations
between three attributes (i.e., poverty rate, unemployment
rate, and crime rate) appropriately. One advantage of A-
MoGP (trans) is that it has the mechanism for knowledge
transfer across domains, allowing for utilizing datasets from
multiple domains to learn weight parameters defining re-
lationships between attributes. Sharing the prior distribu-
tion (6) for the weight parameters among all domains makes
the knowledge transfer possible; Figure 13 visualizes the
prior (6) and the variational posterior (15), estimated by
A-MoGP (trans). Each tile shows the distribution for the
weight wvsl of the l-th latent GP in each attribute. One
observes that the prior variances were small in the case of
l = 1 and in the case of the Crime rate dataset of l = 2 (see
black lines in Figure 13); the variational posteriors for New
York City (blue lines in Figure 13) and Chicago (red lines
in Figure 13) were close to the prior distributions. In these
cases, knowledge transfer is more encouraged. Accordingly,
Table 3 and Figure 13 show that A-MoGP (trans) achieves
performance improvement by using the aggregate datasets
from both cities via the knowledge transfer.

7 CONCLUSION

In this article, we have proposed the Aggregated Multi-
output Gaussian Process (A-MoGP) that can estimate func-
tions for attributes by utilizing aggregate datasets of respec-
tive granularities from multiple domains. Experiments on

real-world datasets have confirmed that the A-MoGP can
perform better than baselines in refining coarse-grained ag-
gregate data; moreover, the A-MoGP has improved perfor-
mance by using aggregate datasets from multiple domains
via the knowledge transfer across domains.

There are several research directions that can be explored
in the future. First, we can introduce alternative likelihoods
such as the Poisson distribution for count data. Second, we
can speed up the inference using the inducing point tech-
nique, similarly to [51]. Third, incorporating rich additional
data is promising to improve refinement performance. For
example, satellite images are known to be helpful in the
refinement of spatially aggregated data [36]. A powerful
option to leverage such data is to use deep neural networks
as a model component, which would help automatically
extract meaningful representations from data.
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[15] M. A. Álvarez, L. Rosasco, and N. D. Lawrence, “Kernels for
vector-valued functions: A review,” Foundations and Trends® in
Machine Learning, vol. 4, no. 3, pp. 195–266, 2012. [Online].
Available: http://dx.doi.org/10.1561/2200000036

[16] E. Bonilla, K. M. Chai, and C. Williams, “Multi-task Gaussian
process prediction,” in NeurIPS, 2008, pp. 153–160.

[17] Y. W. Teh, M. Seeger, and M. I. Jordan, “Semiparametric latent
factor models,” in AISTATS, 2005, pp. 333–340.

[18] P. Boyle and M. Frean, “Dependent Gaussian processes,” in
NeurIPS, 2005, pp. 217–224.

[19] T. V. Nguyen and E. V. Bonilla, “Collaborative multi-output Gaus-
sian processes,” in UAI, 2014, pp. 643–652.

[20] K. Yu, V. Tresp, and A. Schwaighofer, “Learning Gaussian pro-
cesses from multiple tasks,” in ICML, 2005, pp. 1012–1019.

[21] C. A. Micchelli and M. Pontil, “Kernels for multi-task learning,”
in NeurIPS, 2004, pp. 921–928.

[22] D. Higdon, “Space and space-time modelling using process con-
volutions,” Quantitative Methods for Current Environmental Issues,
pp. 37–56, 2002.

[23] J. Luttinen and A. Ilin, “Variational Gaussian-process factor analy-
sis for modeling spatio-temporal data,” in NeurIPS, 2009, pp. 1177–
1185.

[24] D. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
ICLR, 2014.

[25] Y. Tanaka, T. Tanaka, T. Iwata, T. Kurashima, M. Okawa, Y. Ak-
agi, and H. Toda, “Spatially aggregated Gaussian processes with
multivariate areal outputs,” in NeurIPS, 2019.

http://www.narccap.ucar.edu/doc/tgica-guidance-2004.pdf
http://dx.doi.org/10.1561/2200000036


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

[26] C. A. Gotway and L. J. Young, “Combining incompatible spatial
data,” Journal of the American Statistical Association, vol. 97, no. 458,
pp. 632–648, 2002.

[27] W. S. Robinson, “Ecological correlations and the behavior of indi-
viduals,” Americal Sociological Review, vol. 15, pp. 351–357, 1950.

[28] G. King, A solution to the ecological inference problem: Reconstructing
individual behavior from aggregate data. Princeton University Press,
2013.

[29] N. W. Park, “Spatial downscaling of TRMM precipitation using
geostatistics and fine scale environmental variables,” Advances in
Meteorology, vol. 2013, pp. 1–9, 2013.

[30] D. Murakami and M. Tsutsumi, “A new areal interpolation tech-
nique based on spatial econometrics,” Procedia-Social and Behavioral
Sciences, vol. 21, pp. 230–239, 2011.

[31] B. M. Taylor, R. Andrade-Pacheco, and H. J. W. Sturrock, “Con-
tinuous inference for aggregated point process data,” Journal of the
Royal Statistical Society: Series A (Statistics in Society), p. 12347, 2018.

[32] K. Wilson and J. Wakefield, “Pointless spatial modeling,” Biostatis-
tics, vol. 21, no. 2, pp. e17–e32, 2018.

[33] T. M. Burgess and R. Webster, “Optimal interpolation and is-
arithmic mapping of soil properties I: The semi-variogram and
punctual kriging,” Journal of Soil Science, vol. 31, no. 2, pp. 315–
331, 1980.

[34] R. Murray-Smith and B. A. Pearlmutter, “Transformations of Gaus-
sian process priors,” in DSMML, 2004, pp. 110–123.
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