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Abstract

Sponge hashing is a novel alternative to the popular Merkle-Damg̊ard hashing design. The sponge
construction has become increasingly popular in various applications, perhaps most notably, it underlies
the SHA-3 hashing standard. Sponge hashing is parametrized by two numbers, r and c (bitrate and
capacity, respectively), and by a fixed-size permutation on r+ c bits. In this work, we study the collision
resistance of sponge hashing instantiated with a random permutation by adversaries with arbitrary S-
bit auxiliary advice input about the random permutation that make T online queries. Recent work by
Coretti et al. (CRYPTO ’18) showed that such adversaries can find collisions (with respect to a random
c-bit initialization vector) with advantage Θ(ST 2/2c + T 2/2r).

Although the above attack formally breaks collision resistance in some range of parameters, its prac-
tical relevance is limited since the resulting collision is very long (on the order of T blocks). Focusing
on the task of finding short collisions, we study the complexity of finding a B-block collision for a given
parameter B ≥ 1. We give several new attacks and limitations. Most notably, we give a new attack that
results in a single-block collision and has advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

In certain range of parameters (e.g., ST 2 > 2c), our attack outperforms the previously-known best
attack. To the best of our knowledge, this is the first natural application for which sponge hashing
is provably less secure than the corresponding instance of Merkle-Damg̊ard hashing. Our attack relies
on a novel connection between single-block collision finding in sponge hashing and the well-studied
function inversion problem. We also give a general attack that works for any B ≥ 2 and has advantage
Ω(STB/2c + T 2/2min{r,c}), adapting an idea of Akshima et al. (CRYPTO ’20).

We complement the above attacks with bounds on the best possible attacks. Specifically, we prove
that there is a qualitative jump in the advantage of best possible attacks for finding unbounded-length
collisions and those for finding very short collisions. Most notably, we prove (via a highly non-trivial
compression argument) that the above attack is optimal for B = 2 in some range of parameters.

∗A preliminary version of this paper appears in the proceedings of CRYPTO 2022. This is the full version.
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1 Introduction

Due to a series of successful attacks on widely used hash functions such as MD5, SHA-0, and SHA-1, in 2006
the National Institute of Standards and Technology (NIST) organized a competition to create a new hash
standard. At that time, the existing hash functions were all based on the well-known Merkle-Damg̊ard hash
function construction [Mer82, Mer87, Mer89, Dam87]. The goal of the competition was to find an alternative,
dissimilar cryptographic hashing design. It took almost a decade until the winner, a family of cryptographic
functions called Keccak, become a hashing standard called SHA-3. The Keccak family is based on the sponge
construction [BDPVA07, BDPA08] which was a novel alternative to the popular Merkle-Damg̊ard design.
By now, the sponge paradigm is used for building collision resistant hash functions, message authentication
codes (MACs), pseudorandom functions (PRFs) [BDPVA11], key derivation functions [GT16], and more.

A sponge function Sp : {0, 1}∗ → {0, 1}r is defined via three parameters: (1) two natural numbers r (for

bitrate) and c (for capacity) so that n = c+ r, (2) an initial state σ(0) = (σ
(0)
r , σ

(0)
c ) ∈ {0, 1}r × {0, 1}c, and

(3) a function Π : {0, 1}n → {0, 1}n which is usually thought of as a (public) pseudorandom permutation.
The hashing operation (a.k.a. absorbing) is defined by iterating the state by computing a round function.
Specifically, given a sequence of r-bit blocks (m1,m2, . . . ,m`), Sp(m1,m2, . . . ,m`) is defined as:1

1. For i = 1, . . . , `, do:

(a) Compute the round function

Π((σ
(i−1)
r ⊕mi) ‖ σ(i−1)

c ) and let σ(i)

denote the output.

(b) Parse σ(i) as (σ
(i)
r , σ

(i)
c ) ∈ {0, 1}r × {0, 1}c.

2. Output the first r bits of σ(`), namely, σ
(`)
r .

Π Π

m1 m2

Π

mℓ

r

c

σ(0)
r

σ(0)
c σ(1)

c

σ(1)
r

σ(ℓ)
c

σ(ℓ)
r

Output

Typically, σ
(0)
r is initialized to 0 and σ

(0)
c is a random initialization vector (IV). If one wants to be explicit,

we write Spr,c,Π,IV for the sponge function. There are several common instances of r and c used in practice,
for example in SHA-3-256 c = 512 and r = 1088, and in SHA-3-512 c = 1024 and r = 576. These instance
are particularly useful since they were designed to be used as drop-in replacements for the corresponding
SHA-2 instances, and as such they were intended to have identical (or better) security properties.

Sponge in the random permutation model. The concrete permutations Π that are used in real-life do
not have solid theoretical foundations from the perspective of provable security. Therefore, when coming to
analyze the security of the sponge construction, we model the permutation Π as a completely random one.
That is, the permutation is randomly chosen, and all parties are given (black-box) access to it and its inverse.2

This is called the random permutation model (RPM). Such bounds are used as an approximation to the best
possible security level that can be achieved by the corresponding construction in the real-life implementation.
This heuristic has been extensively and successfully used in the past several decades, with exceptions (i.e.,
examples where the real-life implementation and the ideal world construction are separated) being somewhat
contrived and artificial. For “natural” applications it is widely believed that the concrete security proven
in the RPM is the right bound even in the real-world, assuming the “best possible” instantiation for the
idealized permutation is chosen.

As mentioned, the sponge construction was introduced by Bertoni et al. [BDPVA07] and its security was
analyzed in a follow-up work [BDPA08] assuming that the underlying hash function is an invertible random
permutation. The latter work showed a strong property called indifferentiability from a random oracle,
which directly implies many other properties such as collision resistance, pseudorandomness, and more.

For instance, the following is known about Sponge’s collision resistance (which is perhaps the most widely
used property). For fixed c, r, the collision resistance game is defined as follows: a challenger sends a uniformly
random IV to the adversary. The adversary “wins” if it is able to come up with distinct m,m′ ∈ {0, 1}∗

1For simplicity, we do not consider padding of the input.
2In typical permutation designs, including the permutations underlying the Keccak family, if you have the entire state, you

can apply the inverse permutation to go backward to the previous state. This is why we also give free access to the inverse of
the permutation as part of the model.
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for which Spr,c,Π,IV(m) = Spr,c,Π,IV(m′). There is a well-known attack due to the original works of Bertoni
et al. [BDPVA07, BDPA08]: the adversary is given an IV and it merely queries the permutation oracle on
inputs of the form (m‖IV), where the m’s are chosen uniformly at random. If a collision was observed (i.e.,
the adversary finds distinct m1,m2 such that the first r bits of Π(m1‖IV), Π(m2‖IV) are the same), then
the adversary wins. By the well-known birthday bound, the success probability of this event is Ω(T 2/2r).
Alternatively, if two messages m1,m2 such that the query returned a state with the same last c bits (i.e.,
Π(m1‖IV) = a1‖b and Π(m2‖IV) = a2‖b, then m1 ‖ a1 and m2 ‖ a2 form a collision. The success probability
of this event is Ω(T 2/2c). Overall, the attacker wins with probability Ω(T 2/2min{c,r}). This is known to be
the best possible attack due to the indifferentiability result of [BDPA08].

Non-uniformity / preprocessing attacks. The above discussion assumes that the adversary is uniform
in the sense that it starts off with no knowledge about Π, as if it did not exist before it was invoked.
However, this does not capture real-life attack scenarios where an attacker can invest a significant amount
of preprocessing on the public permutation Π to speed up the actual attack whenever the IV is chosen.
This is why most works (at least in theoretical cryptography) model attackers as non-uniform machines,
where the attacker could obtain arbitrary but bounded-length advice, before attacking the system. The
advice generation phase is called the offline phase and the “attack” given the advice and the challenge
is called the online phase. The output size of the offline phase (i.e., the size of the advice) is denoted S
and the number of queries allowed in the online phase is denoted T ; computation is free of charge in both
phases. This model, being an extension of the RPM where the online adversary may know a bounded-length
hint about the permutation, is called the auxiliary-input RPM, or AI-RPM in short. This model was first
explicitly put forward by Coretti, Dodis, and Guo [CDG18], naturally extending the influential auxiliary-
input random oracle model (AI-ROM) from the seminal work of Unruh [Unr07] (which in turn is an explicit
version of the model studied by Hellman [Hel80], Yao [Yao90], and Fiat-Naor [FN99]). Bounds on the power
of “auxiliary-input” adversaries are also referred to as “time-space” trade-offs.

Although the sponge paradigm is becoming widespread, very little is known about its formal security
guarantees against such attackers that may have a short preprocessed hint about the permutation computed
in an offline phase. In fact, there is an attack that utilizes this extra power to achieve advantage Ω(ST 2/2c+
T 2/2r) (notice the extra multiplicative S term).3 The attack is based on a combination of a birthday-style
attack, as above, together with a variant of an attack by Hellman [Hel80] which is nowadays referred to as
rainbow tables (due to Oechslin [Oec03]). While this attack uses known techniques, we were not able to find
an explicit description of it in the literature and so for completeness, we give the attack and its analysis in
Section 4.1.4 5 Only very recently, in the beautiful work of Coretti et al. [CDG18] (henceforth CDG) it was
shown that this attack is optimal; that is, no S-space T -query attackers can find a collision with probability
better than Ω(ST 2/2c + T 2/2r).

It turns out that the above attack results in a very long collision. Specifically, for parameters S and T as
above, the above attack results in a collision of length ≈ T . While this formally breaks collision resistance,
it is hard to imagine a natural application where such a collision would be helpful in an attack. Say we have
a system that uses a sponge-based hash with an output of size 256 bits. Running the above attack with
S = T = 260 would result in a collision of several petabytes long, which is likely to be practically useless
for any natural attack scenario. Therefore, we ask whether there exist attacks that find shorter collisions
and what is their success probability. Specifically, we introduce an additional parameter B (for blocks) and
require an attacker, on a random IV, to come up with two ≤ B-block messages that collide. The main
question studied in this work is:

What is the complexity of a preprocessing attacker in finding a B block collision in a Sponge hash function,
assuming the underlying permutation is modeled as random?

3Throughout the introduction, for easy of notation, we supress poly-logarithmic (i.e., poly(c, r) terms inside the big “O/Ω”
notation. The formal theorems state the precise bounds.

4More precisely, we give a generalization of this attack which finds collisions of length B ≥ 2, and this particular attack
follows by setting B = T .

5A related bound is stated in CDG [CDG18, Table 1] but after communication with an author, they confirmed that the
attack was never worked out.
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1.1 Detour: The Case of Merkle-Damg̊ard

Except being a fundamental problem with theoretical and practical importance, another motivation to
study the above question comes from the recent work of Akshima et al. [ACDW20] (henceforth ACDW),
who studied a similar question in the context of Merkle-Damg̊ard hashing (henceforth MD). Recall that
sponge hashing was designed to be used as a drop-in replacement for Merkle-Damg̊ard-based hash functions,
and as such, it is essential to compare their security guarantees in this natural model that allows attackers
to perform preprocessing.

Recall that a Merkle-Damg̊ard hash is defined relative to a compression function h : [N ] × [M ] → [N ].
Hashing is performed by breaking the input message into blocks from [M ], and processing them one at a time
with the compression function, each time combining a block of the input with the output of the previous
round, where the 0th round value is the IV.6 To obtain provable-security guarantees, the analysis models
the underlying compression function h as a completely random one. Preprocessing attackers are captured
by considering the AI-ROM [Hel80, Yao90, FN99, Unr07, CDG18, CDGS18] which models attackers as two-
stage algorithms (A1,A2). The first algorithm A1 is unbounded except that it generates an S-bit “advice”.
The second algorithm A2 gets the advice and makes T queries to the oracle.

Coretti et al. [CDGS18] fully characterize the collision resistance of salted-MD hashing: there exists an
attack with advantage Ω(ST 2/N + T 2/N) (loosely based on the idea of rainbow tables [Hel80, Oec03]),
and this is the best possible attack, as shown using the “bit-fixing” technique [Unr07]. As in the case of
sponge hashing, this attack results in a very long collision, on the order of T blocks. Motivated by this
observation, ACDW [ACDW20] ask whether it is strictly harder to find shorter collisions. They have two
main results. The first is an extension of the above simple attack to result in B-block collisions with advantage
Ω(STB/N +T 2/N). The second result is an upper bound on the advantage for B = 2 of O(ST/N +T 2/N),
showing that the above attack is tight. For B = 1, the problem is equivalent to finding collisions in a
compressing random function, and the advantage is precisely Θ(S/N + T 2/N) [DGK17].

ACDW [ACDW20] could not prove or disprove that their Ω(STB/N + T 2/N) attack is optimal for any
other value of B (except B = 2 and B ∈ Ω(T )). They conjectured that it is optimal and formulated it as
the STB conjecture. In very recent works, Akshima, Guo, and Liu [AGL22] and Ghoshal and Komargod-
ski [GK22] proved new bounds for this problem (almost resolving the conjecture). Can we prove similar
bounds for sponge hashing? Should we believe an analogous conjecture?

1.2 Our Results

We initiate the study of time-space tradeoffs for bounded length collisions in sponge hashing. First, the
known best attack that gives a single-block collision has advantage

Ω

(
S

2c
+
T 2

2r

)
. (1)

In this attack, the preprocessing is used to “remember” a collision for S different IVs. If the challenge IV
is in the set of remembered IVs, then the attack succeeds (this happens with probability S/2c); otherwise,
we run a birthday-style attack which succeeds with probability Ω(T 2/2r). For MD hashing, the analogous
bound for B = 1 is known to be tight. Second, there is an attack (loosely based on rainbow tables) that has
advantage Ω(ST 2/2c + T 2/2r) and results with a Ω(T )-blocks collision [CDG18].

At this point, if one were to speculate that sponge’s security guarantees are at least as good as MD’s,
one would guess that the above attacks should be tight, at least for B ∈ {1, 2}. With some luck and labor,
we may even be able to prove it. This is where the situation gets interesting. We show that the above
speculation is false for B = 1 and in some natural settings of parameters, sponge is strictly less secure
than MD for this task. On the other hand, for B = 2 we can only prove tightness for a certain range of
parameters.

6All of the results directly extend to the padded version, but we ignore it for simplicity.
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In what follows, we elaborate on our results. We design two new attacks, one designed for any B ≥ 2
and the other specifically for B = 1. We complement our attacks with “lower bounds”, which are actually
upper bounds on the best possible advantage. Specifically, we prove that there is a qualitative jump in the
advantage of best possible attacks for finding unbounded-length collisions and those for finding very short
collisions (i.e., B ≤ 2).

Attacks

We give two new attacks, one for any B ≥ 2 and the other is specialized for B = 1. The generic attack is the
first to result with an arbitrary block length collision while the one specialized to B = 1 beats the previously
known best attack, at least in some range of parameters. By the latter, to the best of our knowledge, we
show the first natural application for which sponge hashing is less secure than MD.

A new attack for B ≥ 2. The above-mentioned attack on sponge hashing that has advantage Ω(ST 2/2c +
T 2/2r) can be modified to result with a B-block collision for B ≥ 2 and with advantage

Ω

(
STB

2c
+

T 2

2min{c,r}

)
. (2)

The attack follows a similar observation of ACDW [ACDW20] regarding MD hashing. Given the upper
bound of CDG [CDG18] mentioned earlier, this attack is optimal for B ∈ Ω(T ). For MD hashing, the
analogous bound is known to be tight for B = 2 and B ∈ Ω(T ).

A new attack for B = 1. We design a new attack for sponge hashing that results with a a single-block
collision. Specifically, we show that if ST 2 > 2c, then there is an attack with advantage

Ω

((
S2T

22c

)2/3

+
T 2

2r

)
.

To see why this attack is superior to the previously known one (Eq. 1), we give a setting of parameters
where it achieves a significantly higher advantage. Consider r = c, S = 24c/5, and T = 22c/5. Indeed,
ST 2 > 2c and therefore we can apply the attack. The previously known best attack (Eq. 1) has advantage

Ω

(
S + T 2

2c

)
= Ω

(
1

2c/5

)
.

This attack is the analog of the provably best attack for MD. On the other hand, our new attack has strictly
better advantage

Ω

((
S2T

22c

)2/3

+
T 2

2c

)
= Ω

((
28c/522c/5

22c

)2/3

+
1

2c/5

)
= Ω (1) .

Thus, at least in this range of parameters, we beat the state-of-the-art attack and show that sponge is
less secure than MD. In the example above, we chose a setting of parameters where the gap between the
attacks is the largest (our attack succeeds with constant probability, while the previously known one succeeds
with exponentially small probability). However, there are many more concrete settings where our attack is
superior, although the gap could be less dramatic. We note that our bounds in this section and the technical
overview are simplified for ease of parsing and refer the reader to the technical sections for the exact bounds.

Conceptual novelty: Our attack for B = 1 use the famous time-space tradeoffs for function inversion
of Hellman [Hel80] and its extension by Fiat-Naor [FN99]. We leverage the possibility of inverse queries to
the underlying permutation Π in the random-permutation model. This is in contrast to Merkle-Damg̊ard
construction which is analyzed in the random-oracle model that does not permit inverse queries. At a very
high level, we use time-space tradeoffs for function inversion to “invert” the function Π−1 on a restricted
domain. We view this conceptual connection between time-space tradeoffs for collision resistance of sponge
hashing and function inversion as novel and hope that it will lead to better designs and additional attacks
in the future.
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Best Attack Advantage Upper Bound

B = 1 min

(
S2T 2

22c
,

(
S2T

22c

)2/3
)

+
S

2c
+
T 2

2r
[Thm 4.2]

ST

2c
+
T 2

2r
[Thm 5.2]

B = 2
ST

2c
+

T 2

2min{c,r} [Thm 4.1]
ST

2c
+
S2T 4

22c
+

T 2

2min(c,r)
[Thm 5.5]

B ≥ 3
STB

2c
+

T 2

2min{c,r} [Thm 4.1]
ST 2

2c
+
T 2

2r
[CDG18]

Figure 1: A summary of the attacks and advantage upper bounds for finding B-block collisions for the
Sponge hash function. All bounds are given ignoring poly(c, r) terms. We note that the attack for B = T is
implicitly claimed in [CDG18] based on [CDGS18].

Lower Bounds

We complement the picture by showing “lower bounds”, namely impossibility results for better attacks. (In
other words, these are upper bounds on the best possible advantage of any attacker.) We prove two such
lower bounds, one for the case where B = 1 and the other is for B = 2, corresponding to our attacks.

On optimal attacks for B = 2. We show that any attack for B = 2 must have advantage

O

(
ST

2c
+
S2T 4

22c
+

T 2

2min{c,r}

)
.

We note that this bound is tight with the best known attacks for a large range of parameters, but there still
may be a gap otherwise. Specifically, if ST 3 ≤ 2c, then the above bound simplifies to O(ST/2c+T 2/2min{c,r})
which matches the attack from Eq. (2). Thus, any improvement on the generic attack from Eq. (2) must
take advantage of the regime where ST 3 > 2c.

The proof of this result provably cannot be obtained via the bit-fixing method. Rather, we obtain the
result via a compression argument. In such arguments, an imaginary adversary that is successful too often
is used to compress a uniformly random string, a task which is (information-theoretically) impossible. The
compression technique has been instrumental in proving lower bounds in computer science (see the survey of
Morin et al. [MMR17]). It has become useful in the context of cryptographic constructions and primitives,
starting with the work of Gennaro and Trevisan [GT00]. Unfortunately, one common “feature” of such proofs
is that they tend to be extremely technical and involved. Our proof is no different; in fact, it is even much
more complicated than the analogous result for B = 2 of ACDW [ACDW20] since we work in the RPM and
need to handle inverse queries.

On optimal attacks for B = 1. We show that any attack for B = 1 must have an advantage

O

(
ST

2c
+
T 2

2r

)
.

The proof of this result is relatively straightforward by using an optimized version of the remarkable bit-
fixing (or presampling) method [Unr07, CDGS18, CDG18]. The main point of distinction of our proof from
most previous ones is that we need to apply this technique in the RPM context, so our argument needs to
handle inverse queries. (This result might have been known before, but we could not find such a statement,
so we give it for completeness.)

We summarize our main results as well as the known best bounds in Fig. 1.

1.3 Future Directions

Our work is the first to address the question of characterizing the complexity of a preprocessing attacker
in finding a B-block collision in a Sponge hash function. Our results raise many natural open problems on
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both the attacks side and lower bounds side. Regarding attacks, we have shown, somewhat surprisingly,
that there is a non-trivial attack for B = 1 that takes advantage of inverse queries in a novel way. We hope
that these ideas can be pushed forward to obtain even better attacks for B = 1 or beyond. Specifically, is
it possible to beat the ST/2c attack for B = 2 in some range of parameters? In ruling out possible attacks,
it would be interesting to come up with a tight upper bound on the advantage for B = 1 or B = 2. Our
work suggests that ruling out attacks that use inverse queries may indeed be a complicated task. In fact, for
B = 3 we are not aware of any upper bound on the advantage that is better than O(ST 2/2c + T 2/2r).

1.4 Related Work

Time-space tradeoffs are fundamental to the existence of efficient algorithms. For example, look-up tables
(used to avoid “online” recalculations) have been implemented since the very earliest operating systems.
In cryptography (or cryptanalysis), they were first used by Hellman [Hel80] in the context of inverting
random functions. Hellman’s algorithm was subsequently rigorously analyzed by Fiat and Naor [FN99]
where it was also extended to handle arbitrary (not necessarily random) functions. Limitations of such
algorithms were studied by Yao [Yao90], and by De, Trevisan, and Tulsiani [DTT10] (building on works
by Gennaro and Trevisan [GT00] and Wee [Wee05]). More limitations were proven by Barkan, Biham, and
Shamir [BBS06] but for a restricted class of algorithms. Very recently, Corrigan-Gibbs and Kogan [CK19]
showed complexity-theoretic limitations for improving the lower bound of Yao. While these techniques have
mostly cryptographic origins, interesting relations were discovered to other classical problems in other fields
(e.g., [AAC+17, GGH+20]). Time-space tradeoffs have been studied for other problems beyond the ones
we mentioned (various cryptographic properties of random oracles, function and permutation inversion, and
security of common hashing paradigms). For instance, specific modes for block ciphers (e.g., [FJM14] studied
the Even-Mansour cipher), and various assumptions related to cyclic groups, such as discrete logarithms and
Diffie-Hellman problems [Mih10, BL13, CGK18, CDG18].

On the salt. In the theoretical cryptography literature collision resistance is defined with respect to a
family of hash functions indexed by a key. This is important to achieve the standard notion of non-uniform
security. Indeed, no single hash function can be collision-resistant as a non-uniform attacker can just hardwire
a collision. In practice, however, a single hash function is considered by fixing an IV. Thus, the relevance
of our model could be questioned. However, often in applications, the hash function used is salted by
prepending a random salt value to the input, for example in password hashing [ST79]. Salting essentially
brings us back to the random-IV/keyed setting, where our results become relevant.

2 Technical Overview

In this section, we provide a high-level overview of our techniques. We first describe the generic attack
for finding B-block collisions for B ≥ 2. This attack is a variant of an analogous attack for MD, given by
ACDW [ACDW20]. We also recall the known best attack for B = 1. Then, we describe our new attack for
finding 1-block collisions. In particular, our attack outperforms the optimal analogous attacks for MD for
specific regimes of parameter settings. Lastly, we overview the techniques used to prove limitations on the
best possible attacks for finding short collisions.

Sponge notation. A sponge function is a keyed hash function that takes as input an a c-bit initialization vec-
tor IV along with an arbitrary size input and outputs an r-bit string: Sp : {0, 1}c×{0, 1}∗ → {0, 1}r. The sec-
ond input is parsed as a sequence of r-bit blocks, denoted (m1,m2, . . .). On such an input Sp(IV, (m1,m2, . . .))
is defined as follows. The function Sp is defined relative to a permutation Π: {0, 1}r+c → {0, 1}r+c. An
input to or an output of this permutation, denoted σ ∈ {0, 1}r+c, contains an r-bit block, denoted σ[1], and
a c-bit block, denoted σ[2]. We sometimes use (σ[1], σ[2]) to mean σ[1]‖σ[2] = σ.

On input m1,m2, . . . ,m` to Sp, it works as follows:

1. Initialize σ(0) = (σ(0)[1], σ(0)[2]) = (0, IV).
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2. For i = 1, . . . , `, compute σ(i) = Π((σ(i−1)[1]⊕mi) ‖ σ(i−1)[2]).

3. Output σ(`)[1].

2.1 Attacks

Generic attack for finding length B collisions. In the preprocessing phase the adversary randomly
samples t ≈ S different IVs IV1, . . . , IVt and for i = 1, . . . , t it does as follows.

1. Compute σi,j for j ∈ [B/2− 1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV).

The sequence σi,0, . . . , σi,B/2−1 forms a “zero-walk” on IVi.

2. Find mi,m
′
i such that Π(mi, σi,B/2−1[2])[1] = Π(m′i, σi,B/2−1[2])[1].

The preprocessing phase outputs (σi,B/2−1[2],mi,m
′
i)i=1,...,t. In Fig. 2, we depict the preprocessing phase of

the attack. In the online phase, the adversary gets a challenge IV as input. For i = 1, . . . , T/B, it computes

σ1,1[2]𝖨𝖵1

𝖨𝖵2

𝖨𝖵t

σ1,2[2] σ1,l[2]

σ2,l[2]

f

σ2,1[2] σ2,2[2]

σt,l[2]σt,2[2]σ1,l[2]

c1

c2

ct

f( ⋅ ) := Π(0,⋅)[2]

f f

f f f

f f f

Π( , ⋅ )[1]m1

Π( , ⋅ )[1]m′ 1

Π( , ⋅ )[1]m2

Π( , ⋅ )[1]m′ 2

Π( , ⋅ )[1]mt

Π( , ⋅ )[1]m′ t

Figure 2: An illustration of the preprocessing phase of the generic attack. In red, we depict the components
that are part of the output of the preprocessing phase. In blue we see the collisions that will be outputted
in the online phase if some chain is hit. Notice that we denote f(·) := Π(0, ·)[2].

IVi = Π(i, IV)[2] (for simplicity, we assume that i is in its bit representation). For each of the IVi’s, it does
a zero-walk of length B − 2. Formally, it sets σi,0 ← Π(i, IVi) and then for j = 1, . . . , B − 1 it does the
following.

1. If there is a tuple of the form (σi,j−1[2],m,m′) in the preprocessing output, then return

(σi,0[1] ‖ . . . σi,j−1[1] ‖m), (σi,0[1] ‖ . . . σi,j−1[1] ‖m′).

2. Set σi,j ← Π(0, σi,j−1[2]).

Correctness is easy to verify. We next discuss the success probability of the adversary. Suppose that the
online phase of the adversary computes a σi,j during the first half of any of the T/B zero-walks such σi,j [2]
matches the last c bits of one of the σi′,j′s defined in the preprocessing phase. Then, it is guaranteed to
stumble on σi′,B/2−1[2] during its zero walk. Hence, in this case, it would output a collision.

Since the adversary encounters roughly Ω(SB) distinct σi,j [2]’s in expectation during the preprocessing
phase, this suffices to prove that with probability roughly Ω(STB/2c) the online phase will win. The term
Ω(T 2/2c + T 2/2r) appears due to birthday-style collisions. We refer the reader to Section 4.1 for details.

Attack for B = 1. As described in the introduction, the best attack known so far for B = 1 has an
advantage of O(S/2c + T 2/2r). The analogous attack for MD is provably optimal, as mentioned. However,
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in contrast to the setting in MD where the ideal object is a random function, here the ideal object is a
random permutation, which gives us the additional ability to make inverse queries. This is precisely the
leverage that we utilize to get our improved attack. We remark that we are not aware of any prior work that
takes advantage of making inverse queries in related contexts.

For B = 1, recall that the goal is, given a random IV, to find m,m′ such that Π(m, IV)[1] = Π(m′, IV)[1].
Our first step is a bit counter-intuitive since we actually aim to solve a harder task. Specifically, rather
than finding an arbitrary collision, we set out to find a collision on 0, that is, find m and m′ such that
Π(m, IV)[1] = Π(m′, IV)[1] = 0. This step helps us since a natural way to use inverse queries arises, as we
argue next.

Main observation: Finding a collision on 0 can be obtained by finding distinct y and y′ such that
Π−1(0, y)[2] = Π−1(0, y′)[2] = IV.

In other words, it suffices to find two pre-images of IV with respect to the function fΠ : {0, 1}c → {0, 1}c
where fΠ(x) outputs the last c bits of Π−1(0, x). In Fig. 3, we show the partite representations of Π(·) and
Π−1(0, ·). Note that while Π(·) is a perfect matching, the function fΠ(·) = Π−1(0, ·) has several elements in
its co-domain with multiple pre-images.

{0,1}c+r {0,1}c+r {0,1}c {0,1}c

Π( ⋅ ) Π−1(0,⋅)[2]

Figure 3: Partite representation of Π(·) and Π−1(0, ·). Notice that Π is a permutation and thus forms a
perfect matching while Π−1(0, ·) is not a permutation and in expectation a random image will have several
pre-images.

At this point, we made some progress: we reduced the problem of collision finding to a function inversion
problem (for the function fΠ : {0, 1}c → {0, 1}c). Indeed, preprocessing attacks for function inversion have
been well studied since the 80’s. Hellman [Hel80] described an algorithm that gets S bits of preprocessing
on the random function f : {0, 1}a → {0, 1}b as input and inverts it at a point in its image making T queries
to the function. It was later formally analyzed by Fiat and Naor [FN99] and shown to have advantage ε(a, b)
at inverting y = f(x) for a random x←$ {0, 1}a, where

ε(a, b) = Ω

(
min

{
1,

ST

2min(a,b)
,

(
S2T

22 min(a,b)

)1/3
})

(3)

We are almost done; three technical challenges remain. First, the result of Hellman applies only to
random functions. On the other hand, our function is a restriction of a random permutation (which is not a
random function). Fiat and Naor [FN99] showed a clever method to extend Hellman’s algorithm to support
any function (rather than only random ones), but this improvement is more complicated and comes with a
cost in efficiency, which we would like to avoid. To this end, we re-do and adapt the analysis of Hellman to
our setting by using the fact that restrictions of permutations are “close enough” to random functions. Our
analysis achieves the same parameters as the original one of Hellman, up to constants.

The second problem is that we want to find a pre-image of IV←$ {0, 1}c under fΠ, but IV may not even
have any pre-images under fΠ, let alone two which are required for our attack. Fortunately, as fΠ is at
least “close” to a random function, we can show via a balls-into-bins analysis that a constant fraction of
the co-domain will have at least two distinct pre-images. Still, could it be the case that Hellman’s attack
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somehow fails on this fraction of the co-domain? Via a closer analysis of Hellman’s attack, we show that for
any function f : {0, 1}a → {0, 1}b and fixed element y ∈ {0, 1}b, the attack succeeds at finding a pre-image
x′ ∈ f−1(y) with probability ε(a, b) where

ε(a, b) = Ω

(
1

b
min

(
1,
ST · |f−1(y)|

2a
,

(
S2T · |f−1(y)|2

22a

)1/3
))

(4)

The last problem we face is that we need to find two distinct pre-images for IV. However, applying an
inversion algorithm in a black box fashion does not guarantee that distinct inverses will be found. Thus, we
also prove that Hellman’s inversion algorithm finds a uniform pre-image among all possible pre-images for a
given element in the co-domain.

After resolving the above technical challenges, we show that if we run Hellman’s attack twice indepen-
dently for the function fΠ on the image IV, if IV has at least two pre-images (which it does with constant
probability), then we will find two distinct pre-images with at least 1/2 probability times the probability
that both attacks succeed. Thus, our overall success probability is roughly Ω(ε(c, c)2) where ε is defined
in (4). We refer the reader to section 4.2 for the details.

2.2 Impossibility Results for Best Attacks

When giving new attacks for finding short collisions, the natural question is how far we can go. In other
words, what are the best possible attacks? For B = 1, 2 in the case of MD, optimal attacks are known.
Our goal here is to prove an upper bound on the advantage for the best-possible adversary that has S bits
of preprocessing as input and can make T queries to Π,Π−1 in finding collisions of length 1 and 2 for the
sponge construction.

Impossibility result for B = 1. We use the pre-sampling technique proposed by [Unr07] and later
optimized and adapted to the AI-RPM by [CDG18] to get an advantage upper bound of roughly O(ST/2c+
T 2/2r). However, we note that this bound does not match the best B = 1 attacks, so it is open which side
can be improved. Ideally, one could use a compression-based technique as done in [DGK17] to get a tight
bound for the B = 1 case for MD, but it is not clear how to adapt this argument to handle inverse queries
in the AI-RPM model, as we shall see below.

Impossibility result for B = 2. The presampling technique of [Unr07, CDG18] provably cannot give an
advantage upper bound better than O(ST 2/2c+T 2/2r) for B = 2. Since we can prove this advantage upper
bound even for unbounded length collisions, it is natural to ask whether we can prove that 2-block collisions
are, in fact, harder to find than collisions of arbitrary length. Aside from presampling techniques, the main
technique used to rule out attacks is via a compression argument [GT00, Wee05], which we turn to for our
impossibility result. As a warm up, we first give an overview for the B = 1 compression argument for MD
from [DGK17] to highlight the key challenges in our setting.

Overview of B = 1 compression argument for MD. In a compression argument, the main idea is to use
an adversary A that succeeds at some task involving a random object O, to compress O beyond what is
information theoretically possible. This clearly establishes a contradiction, which gives an upper bound in
the success probability of A.

Let h : [N ]× [M ]→ [N ] be a hash function that is modeled as a random oracle, and A = (A1,A2) be an
(S, T ) adversary that tries to find a 1-block collision in h. A1 gets h as input and can output S bits of advice
σ. A2 gets σ along with a random salt a ∈ [N ], can make T queries to h, and tries to output m,m′ ∈ [M ]
such that h(a,m) = h(a,m′) and m 6= m′. We show that if A succeeds at this task for many salts a, then
we can describe h with fewer bits than possible.

To encode h, we first compute σ ← A1(h). We let G ⊆ [N ] be the set of elements for which A2 succeeds
on inputs (σ, a) for all a ∈ G. We run A2 on (σ, a) for all a ∈ G in lexicographic order. The hope is that
whenever A2 succeeds in finding a collision, we can use the corresponding queries for the collision it makes
to compress the function h.
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For example, if A2(σ, a) outputs a collision (m,m′), then we can assume that A2 must have queried
h(a,m) and h(a,m′) at some point (we assume without loss of generality that (a,m) was queried before
(a,m′)). So whenever it queries h(a,m′), rather than encoding the output of h, we write down information
to indicate that it’s the same output as the query for h(a,m). It is easy to see by a counting argument that
at least half of the a ∈ G cannot be queried by A2 more than 2T times. For all such a, we can refer back to
the previous query h(a,m) using log 2T bits, and we use another log 2T bits to identify the query h(a,m′).
Thus, we save logN − 2 log 2T bits per each of these a values in G, which gives a non-trivial compression of
h if T 2 < N .

The problem with inverse queries. As we stated before, the first major roadblock we encounter when adapting
this framework to the AI-RPM is the existence of inverse queries. Let’s try to adapt the argument above
to the setting of Sponge with 1-block collision. Now the preprocessing adversary A1 is given a random
permutation Π and outputs some state σ with |σ| ≤ S. The online adversary A2 receives σ and a random
IV, and tries to find m,m′ such that Π(m, IV)[1] = Π(m′, IV)[1].

Now suppose that A2 outputs a collision (m,m′) with respect to the sponge construction. We can no
longer even assume that A2 queries both Π(m, IV) and Π(m′, IV)! For example, it may have first queried
Π(m, IV) = (y, u1) and then queried Π−1(y, u2) = (m′, IV). At first glance, this doesn’t seem like a problem,
we can again note that part of the output of query (y, u2) is the same as the input to the query for (m, IV).
So maybe we can use the same trick as before and instead of storing the whole answer of Π−1(y, u′), store
information indicating that the last c bits of the answer is the same as the input of the query Π(m, IV). This
intuition is misleading. We can no longer do a counting argument to show that this information is short.
It is not clear how to identify the query Π−1(y, u′) with few bits to be able to point back to the Π(m, IV)
query. For example, the adversary may just query Π−1(y, ∗) many times and hope to hit IV twice. We hope
that this example sheds light on why, at a minimum, inverse queries significantly complicate the situation
and deserve extra attention.

Compression for B = 2 via multi-instance games. The above compression approach is not known to generalize
to the case of B ≥ 2 collisions for MD. To overcome this limitation, Akshima et al. [ACDW20] propose a
beautiful framework that gives non-trivial bounds B ≥ 2 for the case of MD. Their framework reduces the
problem to a related “multi-instance” game. We additionally note that the “multi-instance” framework was
also introduced in [CGLQ20], in a different context.

In a multi-instance game, the adversary has an arbitrary size string σ of S-bits hard-coded, and its goal
is to find a 2-block collision for a set of u ≈ S uniformly random a’s. The adversary A2 can make T queries
to h when running on each of the u IVs. The key distinctions in this multi-instance game is that (1) the
advice sigma that A2 receives is independent of h, and (2) we only need to analyze A2’s success probability
for a random set of u IVs. The core of the proof is a compression argument to upper bound the advantage
of this adversary. This framework unfortunately is not strong enough to deal with B = 1, as at best it gives
the same bound as bit-fixing. However, we adapt this framework to the setting of random permutations to
give a non-trivial bound for B = 2.

In our case, we need to build a compression argument to compress Π and a set of u random IVs,
IV1, . . . , IVu, (for u ≈ S) using an adversary A2 which has some fixed hard-coded advice. A2 runs on
the IVs one by one and succeeds in finding 2-block collisions for all of them. The encoding avoids storing
some of the values of Π explicitly, and instead stores information about the queries of A2 to Π and Π−1

which help during the decoding procedure to recover these particular values of Π.
For B = 2 collisions, there are possibly 4 “crucial” queries that the adversary might make that correspond

to a 2-block collision (two for each message). We possibly need to consider all combinations of ways that the
queries could have been made in either the forward or the reverse direction. For the case of this overview,
we zoom in on a single case where inverse queries complicate the situation, and explain how we overcome
this.

Suppose on an input IVj (where A2 had previously been run on inputs IV1, . . . , IVj−1), A2 arrives at a
collision by making the crucial queries q1, q2, q3, q4 (not necessarily in that order) such that

12



1. q1 was a query to Π on (m1, IVj) and returned (x1, IV
′
1)

2. q2 was a query to Π on (m2, IVj) and returned (x2, IV
′
2)

3. q3 was a query to Π on (m3 ⊕ x1, IV
′
1) and returned (y, IV′3)

4. q4 was a query to Π on (m4 ⊕ x2, IV
′
2) and returned (y, IV′4)

Clearly, (m1,m3) and (m2,m4) hash to the same output and hence are a collision. Now suppose queries q1

and q2 were first made during A2(IVj),
7 while queries q3 and q4 were each made previously while running

A2 on an earlier IVi value. Now, the strategy to compress on the lines of [ACDW20] is not to include the
last c bits of the answers of q1, q2 and the last r bits of the answer of q4 in the encoding. Instead, we can
store the index of the queries q3, q4 among all queries (these indices will be in [uT ] since there are u IVs and
T queries for each of them) and store the indices of the queries q1, q2 among the queries made while running
A2 on IVj (these indices will be in [T ]). This leads to a saving of roughly 2c+ r− 2 log T − 2 log uT bits. For
reasonable parameters of S, T, c, r, this implies a compression of at least c− log uT bits, so if uT ≈ ST < 2c,
this gives non-trivial compression. This implies an upper bound of ST/2c on the advantage for this case.

However, with inverse queries allowed, things get more complicated. Suppose instead that queries q3 and
q4 were made in the reverse direction, so A2 queries Π−1(y, IV′3) and Π−1(y, IV′4) prior to running A2(IVj).
In this case, we can still save the c bits from the answers of q1, q2. But there is no clear way to save in
storing the answer to query q4 since its answer (m4⊕ x2, IV

′
2) has seemingly no relation to either the answer

or input of q3. So, in this case, we are only able to save 2c − 2 log T − 2 log uT bits, which leads to non-
trivial compression only if u2T 4 ≈ S2T 4 < 2c. This implies an upper bound of S2T 4/22c on the attacker’s
advantage for this case. Note that this is actually better than the ST/2c bound we got when considering
only forward queries whenever ST 3 < 2c. However, it is important to note that we still need to consider all
possible ways in which the attacker may find a collision. We need to show even in the worst case, we can
compress Π in order to get an upper bound on the advantage.

The above highlights just one of the several subtleties that inverse queries introduce in the proof. The
ability of the adversary to make queries in two directions makes the encoding and decoding procedures
significantly more complicated and lengthy. See Section 5 for full details.

3 Preliminaries

We let [N ] = {1, 2, . . . , N} for N ∈ N and for k ∈ N such that k ≤ N , let
(
S
k

)
denote the set of k-sized

subsets of S. We use |X| to denote the size of a set X and use X+ to denote one or more elements of X.
The set of all permutations on D is denoted by Perm(D). We let ∗ denote a wildcard element. For example
(∗, z) ∈ L is true if there is an ordered pair in L where z is the second element (the type of the wildcard
element shall be clear from the context). For a random variable X we use E[X] to denote its expected value.

We use x←$D to denote sampling x according to the distribution D. If D is a set, we overload notation
and let x←$D denote uniformly sampling from the elements of D. For a bit-string s we use |s| to denote
the number of bits in s.

All logarithms in this paper are for base 2 unless otherwise specified.

Sponge-based hashing. For c, r ∈ N, let Π : {0, 1}c+r → {0, 1}c+r be a permutation. We define sponge-
based hashing SpΠ : {0, 1}c× ({0, 1}r)+ → {0, 1}r as follows. For s ∈ {0, 1}r+c we use s[1] to denote its first
r bits and s[2] to denote its last c bits.

SpΠ(IV,m = (m1, . . . ,mB))

s0 ← 0r ‖ IV
For i = 1, . . . , B
si[1] ‖ si[2]← Π ((mi ⊕ si−1[1]) ‖ si−1[2])

Return sB [1]

7Note that this assumption is easy to remove as otherwise we can achieve compression by not including IVj in the encoding
and recovering it from A2’s queries during decoding
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Game Gai-cr
c,r,B(A = (A1,A2))

1. Π←$ Perm({0, 1}c+r)

2. IV←$ {0, 1}c

3. Return AI-CRΠ,IV(A)

Subroutine AI-CRΠ,IV(A = (A1,A2))

1. σ←$A1(Π)

2. (α, α′)←$AΠ,Π−1

2 (σ, IV)

3. Return true if:

(a) α 6= α′,

(b) |α|, |α′| are at most B blocks long and

(c) SpΠ(IV, α) = SpΠ(IV, α′)

4. Else, return false

Figure 4: The bounded-length collision resistance game of salted sponge based hash in the AI-RPM, denoted
Gai-cr
c,r,B .

The elements of {0, 1}r shall be referred to as blocks and IV refers to the initialization vector (also referred to
as salt in the literature). This is the same abstraction of sponge-based hashing as the one used in [CDG18].

Auxiliary-input Random Permutation Model (AI-RPM). We use the Auxiliary-Input Random Per-
mutation Model (AI-RPM) introduced by Coretti, Dodis and Guo [CDG18] to study non-uniform adversaries
in the Random Permutation Model (this was a natural extension of the AI-ROM model proposed by Unruh
in [Unr07]). This model is parameterized by two non-negative integers S and T and an adversary A is divided
into two stages (A1,A2). Adversary A1, referred to as the preprocessing phase of A has unbounded access
to the random permutation Π and it outputs an S-bit auxiliary input σ. Adversary A2, referred to as the
online phase, gets σ as input and can make a total of T queries to Π,Π−1, and attempts to accomplish some
goal involving Π. Formally, we say that A = (A1,A2) is an (S, T )-AI adversary if A1 outputs S bits and A2

issues T queries to its oracles. We next formalize the collision resistance of sponge-based hash functions in
AI-RPM.

Short collision resistance of sponge-based hashing in AI-RPM. We formalize the hardness of
bounded-length collision resistance of sponge-based hash functions in the AI-RPM. The game is param-
eterized by c, r. The game first samples a permutation Π uniformly at random from Perm({0, 1}c+r) and
IV uniformly at random from {0, 1}c. Then, A1 is given unbounded access to Π, and it outputs σ. At this
time, A2 gets σ and IV as input and has oracle access to Π,Π−1. It needs to find α 6= α′ such that (1)
SpΠ(IV, α) = SpΠ(IV, α′) and (2) α, α′ consist of ≤ B blocks from {0, 1}r. This game, denoted Gai-cr

c,r,B , is
explicitly written in Fig. 4. In Fig. 4, we write the adversary’s execution in its own subroutine only for
syntactical purposes (as we shall use it later).

Definition 3.1 (AI-CR Advantage). For parameters c, r, B ∈ N, the advantage of an adversary A against
the bounded-length collision resistance of sponge in the AI-RPM is

Advai-crSp,c,r,B(A) = Pr
[
Gai-cr
c,r,B(A) = true

]
For parameters S, T ∈ N, we overload notation and denote

Advai-crSp,c,r,B(S, T ) = max
A

{
Advai-crSp,c,r,B(A)

}
,

where the maximum is over all (S, T )-AI adversaries.

The compression lemma. Our proof of the impossibility result for B = 2 uses the well-known technique
of finding an “impossible compression”. The main idea, formalized in the following proposition, is that it is
impossible to compress a random element in set X to a string shorter than log |X | bits long, even relative to
a random string.
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Proposition 3.2 (E.g., [DTT10]). Let Encode be a randomized map from X to Y and let Decode be a
randomized map from Y to X such that

Pr
x←$ X

[Decode(Encode(x)) = x] ≥ ε.

Then, log |Y| ≥ log |X | − log(1/ε).

4 Attacks

In this section, we first provide the generic attack for finding B-block collisions inspired by the analo-
gous attack for MD in [ACDW20]. We then provide our new AI-RPM attack for finding 1-block collision
(Section 4.2). Additionally, in Section 4.3, we prove the key lemma for our attack. The key lemma is a
preprocessing attack for inverting a function f which is a restricted random permutation. The attack is
closely related to that of Hellman [Hel80], but we provide rigorous analysis for our specific application for
completeness.

4.1 Generic Attack for B-Block Collisions

We give a (S, T ) adversary A that has advantage O(STB/2c + T 2/2c + T 2/2r) against Gai-cr
c,r,B . The main

idea for this attack is similar to the zero-walk attack for finding B-block collisions in the Merkle-Damg̊ard
construction introduced in [ACDW20] which was in turn inspired by an attack in [CDGS18].

High level idea. In the preprocessing phase the adversary randomly samples t ≈ S different IVs IV1, . . . , IVt
and for each of them computes σi,j for j ∈ [B/2 − 1] as σi,j = Π(0, σi,j−1[2]), where σi,0 = (0, IV). The
sequence σi,0, . . . , σi,B/2−1 forms a “zero-walk” on IVi. It then finds mi,m

′
i such that Π(mi, σi,B/2−1[2])[1] =

Π(m′i, σi,B/2−1[2])[1] for i = 1, . . . , t. It outputs

(σi,B/2−1[2],mi,m
′
i)i=1,...,t .

In the online phase, the adversary gets a challenge IV as input. For i = 1, . . . , T/B, it computes IVi =
Π(i, IV)[2]. For each of the IVi’s, it does a zero-walk of length B− 2. If on any of the walks it hits an IV that
the preprocessing phase output then it outputs a collision. The reason this attack achieves an advantage of
Ω(STB/2c) is because in the preprocessing phase the adversary roughly hits Ω(SB) distinct IVs and in the
online phase if it hits any of these IV’s in the first half of its T/B (i.e., in roughly T/2 of the queries) walks
it finds a collision.

We formally state our result below.

Theorem 4.1. Let S, T,B, c, r ∈ N such that SB ≤ 2c−1, T ≤ min{(2c−1, 2r−1)}, T ≥ 2B. There exists an
(S, T ) adversary A = (A1,A2) such that

Advai-crSp,c,r,B(A) ≥
⌊

S

c+ 2r

⌋⌊
B

2
− 1

⌋
T

2c+3
+

(T −B)(T −B − 1)

2c+1
+

3(T −B)(T −B − 1)

2r+3
− S

e(2r−1)
.

Proof. The adversary is A = (A1,A2) defined in Figure 5.
We first note that the probability that the preprocessing phase aborts in any of the iterations is at most∏2r−1

i=0 (2c+r − i2c)∏2r−1
i=0 (2c+r − i)

.

This follows since the numerator indicates the number of ways to sample Π(·, IV) such that no two outputs
match in the first r bits, while the denominator is the total number of ways to sample Π(·, IV). The above
product is upper bounded by∏2r−1

i=0 (2c+r − i2c)∏2r−1
i=0 2c+r−1

=

2r−1∏
i=0

(1− i21−r) ≤ e−21−r ∑2r−1
i=0 i = e−(2r−1) .
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Algorithm A1(Π)

1. t← bS/(c+ 2r)c
2. B′ ← bB/2c − 1

3. For i = 1, . . . , t

4. IVp,i,0←$ {0, 1}c

5. For j = 0, . . . , B′:

6. IVp,i,j ← Π(0, IVp,i,j−1)[2]

7. IVp,i ← IVp,i,B/2−1

8. Compute (mi,m
′
i) such that Π(mi ‖ IVp,i)[1] = Π(m′i ‖ IVp,i)[1]

9. If no such mi,m
′
i found, ABORT

10. Return {(IVp,i,mi,m
′
i)}i=1,...,B/2−1

Algorithm A2(IV, σ)

1. t← bS/(c+ 2r)c
2. B′ ← bB/2c − 1

3. T ′ ← bT/Bc
4. Parse σ as (IVp,i,mi,m

′
i)

t
i=1

5. If ∃i ∈ [t] : IVp,i = IV: return (mi,m
′
i)

6. For k = 1, . . . , T ′:

7. mk,0 ‖ IVk,0 ← Π(k, IV)

8. For j = 1, . . . , B − 1:

9. If IVk′,j′ = IVk,j−1 for some (k′, j′) 6= (k, j − 1):

10. Return (k′ ‖mk′,0 ‖mk′,1 ‖ . . . ‖mk′,j′ , k ‖mk,0 ‖mk,1 ‖ . . . ‖mk,j−1)

11. If IVk,j−1 = IVp,i for some i ∈ [t]:

12. Return (k ‖mk,0 ‖ . . . ‖mk,j−1 ‖mi, k ‖mk,0 ‖ . . . ‖mk,j−1 ‖m′i)
13. mk,j ‖ IVk,j ← Π(0 ‖ IVk,j−1)

14. If ∃(k, k′, j, j′) : mk,j = mk′j′ :

15. Return (k ‖mk,0 ‖ . . . ‖mk,j−1, k
′ ‖mk′,0 ‖ . . . ‖mk′,j′−1)

Figure 5: Adversary A used in the proof of Theorem 4.1.
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Using the union bound it follows that the preprocessing phase will abort with probability at most
S/e(2r−1).

We next calculate the probability that A2 succeeds in finding a collision. Let R be the event that the
adversary A2 returns due to the if statements in line 9 or line 14 and let Q be the event that it returns
due to the if statement in line 11. Clearly, adversary A2 succeeds with probability Pr[R] + Pr[Q]. First we
compute Pr[R]. Note that R happens if all the IVk,j ’s are not distinct or if all the IVk,j ’s are distinct but all
the mk,j ’s are not distinct. The probability that all the IVk,j ’s are not distinct is at least

1−
T ′B∑
i=1

(
1− i

2c − i

)
≥ 1− e−

∑T ′B
i=1

i
2c ≥ 1− e−

(T−B)(T−B−1))

2c+1 ≥ (T −B)(T −B − 1)

2c+1

The second inequality follows using 1 − x ≤ e−x and the third inequality follows using T ′B ≥ T − B, and
the last inequality follows using e−2x ≤ 1 − x for x ≤ 1/2 (this can be verified using elementary calculus).
It is also easy to see that the probability that all the IVk,j ’s are not distinct is at most T 2/2c+1 using an
union bound. Using T 2 ≤ 2c−1 we have that this probability is at most 1/4. Hence the probability that all
the IVk,j ’s are distinct is at least 3/4. Similarly we can show that the probability that all the mk,j ’s are not

distinct given all IVk,j ’s are distinct is at least (T−B)(T−B−1)
2r+1 . This would give us that

Pr[R] ≥ (T −B)(T −B − 1)

2c+1
+

3(T −B)(T −B − 1)

2r+3
.

It is also easy to see that the probability that all the mk,j ’s are not distinct is at most T 2/2r+1 using an
union bound. Using T 2 ≤ 2r−1 we have that this probability is at most 1/4. Hence the Pr[R] ≤ 1/2.

We next note that

Pr[Q] + Pr[R] ≥ Pr[Q|¬R](1− Pr[R]) + Pr[R] ≥ 1/2 Pr[Q|¬R] + Pr[R] .

Above we used Pr[R] ≤ 1/2. Now we shall show a lower bound on Pr[Q|¬R]. First note that the event ¬R
implies that all the IVk,j ’s are distinct.

Define
A = {IVp,i,j : 1 ≤ i ≤ t, 0 ≤ j ≤ B′} .

Let Fk,j be the event that IVk,j ∈ A and for all k′ < k, 0 < j′ < B − 1, IVk′,j′ 6∈ A and for all j′ < j,
xk,j′ 6∈ A. We have that

Pr[Fk,j |¬R] =
|A|

2c − ((k − 1)B + j)

(i−1)B+j∏
i=1

(
1− |A|

2c − i+ 1

)
.

Using T ≤ 2c−1 we have that 2c − i+ 1 ≥ 2c−1. Therefore

Pr[Fk,j |¬R] ≥ |A|
2c

(
1− 2|A|

2c

)(k−1)B+j

≥ |A|
2c

(
1− 2|A|((k − 1)B + j)

2c

)
≥ |A|/2c+1 .

It is clear that Fk,j are disjoint, and given that R does not happen, Q happens if for any k ∈ [T ′], in the
first B −B′ iterations of the loop in j, xi,j ∈ A. Therefore

Pr[Q|¬R] ≥
∑
k∈[T ′]

∑
j∈{0,...,B−1−B′}

Pr[Fk,j |¬R] = (B − 1−B′)T ′(|A|/2c+1)

= (dB/2e)bT/Bc|A|/2c+1 ≥ T |A|/2c+1 .

The last inequality follows using T ≥ 2B.
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Hence we have that the advantage of the adversary A is

Advai-crSp,c,r,B(A) ≥
t(B′+1)∑
i=1

Pr[|A| = i]Ti

2c+2
+

(T −B)(T −B − 1)

2c+1
+

3(T −B)(T −B − 1)

2r+3
− S

e(2r−1)

=
E[A]T

2c+2
+

(T −B)(T −B − 1)

2c+1
+

3(T −B)(T −B − 1)

2r+3
− S

e(2r−1)
.

The second equality follows from the definition of expectation. We next need to show that E[A] ≥ 1
2b

S
c+2r cb

B
2 −

1c to finish the proof.
Let Ei,j be the event that IVp,i,j is a new IV discovered while preprocessing. We compute a lower bound

on Pr[Ei,j ] as follows.

Pr[Ei,j ] ≥ Pr[Ei,0 ∩ Ei,1 ∩ . . . ∩ Ei,j ] =

j∏
k=0

Pr[Ei,k|Ei,0 ∩ . . . ∩ Ei,k−1]

≥
j∏

k=0

2c+r − ((i− 1)(B′ + 1) + k)2r

2c+r − ((i− 1)(B′ + 1) + k)
≥

j∏
k=0

2c+r − 2c+r−1

2c+r
= 1/2 .

The second inequality uses SB ≤ 2c−1. Hence we have that

E[A] =

t∑
i=1

B′∑
j=0

Pr[Ei,j ] ≥
1

2

⌊
S

c+ 2r

⌋⌊
B

2
− 1

⌋
.

This concludes the proof.

4.2 Preprocessing Attack for B = 1

We give a new AI-RPM attack for finding 1-block collisions in the Sponge construction. The key ingredient
in our attack is an (S, T ) adversary for a function f finds two distinct pre-images of a random element of
the co-domain under f . We construct this adversary in Lemma 4.3 based on the adversary from Lemma 4.5
that finds a single pre-image of a random element of the co-domain under f .

Theorem 4.2. Let c, r ∈ N. For any S, T ∈ N such that S ≥ 24c, 2c ≥ 24S, and 2c ≥ (S/(T −2)) ·243, there
exists an (S, T ) attacker A = (A1,A2) that on input {0, 1}c outputs a valid 1-block collision with probability
ε, where

ε ≥
(

1

20 · 2882 · c2

)
·min

(
1,
S2(T − 2)2

22c+2
,

(
S2(T − 2)

22c+1

)2/3
)
.

Proof. Let Π: {0, 1}c+r → {0, 1}c+r be a random permutation. Define the function fΠ : {0, 1}c → {0, 1}c
as fΠ(x) = Π−1(0r ‖x)[2]. Note that fΠ is equivalent to the function that outputs the first c bits of the
permutation Π′(x ‖ 0r), where Π′(x ‖ y) for x ∈ {0, 1}c, y ∈ {0, 1}r computes Π−1(y ‖x) and shifts the first
r bits of the output to the end of its output. Thus, we can invoke Lemma 4.3 for the function fΠ, which
implies an (S, T −2) attacker B = (B1,B2) for finding two distinct pre-images of a random y←$ {0, 1}c. The
attacker A = (A1,A2) is defined as follows.

• A1(Π):

1. Output σ ← B1(fΠ).

• A2(IV, σ):

1. Compute (x1, x2)← B1(IV, σ).
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2. If fΠ(x1) = fΠ(x2) = IV and x1 6= x2, compute m1 ‖ IV = Π−1(0r ‖x1) and m2 ‖ IV = Π−1(0r ‖x2)
and output (m1,m2).

3. Otherwise, output ⊥.

For correctness, we note that if A2 outputs a non-⊥ value, then A2 succeeds in finding a 1-block collision.
Recall that SpΠ(IV,m1) = Π(m1 ‖ IV)[1] and SpΠ(IV,m2) = Π(m2 ‖ IV)[1]. By construction, fΠ(x1) =
fΠ(x2) = IV implies m1 ‖ IV = Π−1(0r ‖x1) and m2 ‖ IV = Π−1(0r ‖x2) for some m1,m2 ∈ {0, 1}r. But this
in turn implies that Π(m1 ‖ IV)[1] = Π(m2 ‖ IV)[1] = 0r. Since Π is a permutation and x1 6= x2, it must be
the case that m1 6= m2, so (m1,m2) is a valid 1-block collision, as required.

Whenever B succeeds, A succeeds, so the success probability follows immediately from Lemma 4.3.

Lemma 4.3. Let n ≥ 1, a ≤ n− 3 and Π be a random permutation over {0, 1}n. Let f : {0, 1}a → {0, 1}a
such that f(x) consists of the first a bits output by Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24a,
2a ≥ 24S, and 2a ≥ (S/T ) · 243, there exists an (S, T ) attacker A = (A1,A2) that on input y←$ {0, 1}a
outputs x1, x2 such that f(x1) = f(x2) = y and x1 6= x2 with probability ε, where

ε ≥
(

1

20 · 2882 · a2

)
·min

(
1,
S2T 2

22a+2
,

(
S2T

22a+1

)2/3
)
.

Proof. Let B = (B1,B2) be an (S/2, T/2) adversary from Lemma 4.5. In the offline phase, A1 on input the
function f runs B1(f) twice and gets σ1, σ2. A1 outputs σ = (σ1, σ2). In the online phase, A2 on input σ and
y = f(x) for x←$ {0, 1}a, computes x1 = B2(y, σ1) and x2 = B2(y, σ2). If f(x1) = f(x2) = y and x1 6= x2,
A2 outputs (x1, x2) and otherwise outputs ⊥. It directly follows that A uses space |σ| = |σ1|+ |σ2| ≤ S and
makes at most 2 · (T/2) = T queries. So it remains to analyze the advantage of A.

We define the following events that are relevant to the analysis. Let Success1, Success2 be the events that
B1(f, σ1) and B1(f, σ2) output a valid pre-image, respectively. Let Inverse be the event that |f−1(y)| ≥ 2
for the challenge y←$ {0, 1}a. Let Distinct be the event that the outputs x1 and x2 are distinct. Thus, the
probability of success is given by

ε = Pr[Success1 ∧ Success2 ∧ Inverse ∧ Distinct].

Note that Success1 and Success2 are identical and independently distributed given a fixed value for y. Thus,
we can rewrite the success probability as

ε = Pr[Inverse] · Pr[Success1 | Inverse] · Pr[Success2 | Inverse]
· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse].

= Pr[Inverse] · Pr[Success1 | Inverse]2

· Pr[Distinct | Success1 ∧ Success2 ∧ Inverse]

We analyze each of these terms separately.
In Claim 4.4, we show that Pr[Inverse] ≥ 1/10 as long as a ≤ n − 3. Pr[Success1 | Inverse] is given in

Lemma 4.5 using S′ = S/2 and T ′ = T/2. As |f−1(y)| ≥ 2 by assumption, it holds that

Pr[Success1 | Inverse] ≥
(

1

288 · a

)
·min

(
1,

ST

2a+1
,

(
S2T

22a+1

)1/3
)
.

For the event Distinct, note that in the worst case |f−1(y)| = 2. In this case, it is equally as likely that
x1 = x2 compared to x1 6= x2 since there are only two equally likely values for x1, x2. Thus,

Pr[Distinct | Success1 ∧ Success2 ∧ Inverse] = 1/2.
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Combining the above, we conclude that the attackers probability of success is at least

ε ≥ 1

2
· 1

10
·
(

1

2882 · a2

)
·min

(
1,
S2T 2

22a+2
,

(
S2T

22a+1

)2/3
)
,

as required.

Claim 4.4. Let n ≥ 1, a ≤ n−3 and Π be a random permutation over {0, 1}n. Let f : {0, 1}a → {0, 1}a such
that f(x) consists of the first a bits output by Π(x ‖ 0n−a). Then, Pr[y←$ {0, 1}a : |f−1(y)| ≥ 2] ≥ 1/10.

Proof. We analyze this as a balls-into-bins problem. Specifically, we imagine each output y ∈ {0, 1}a as
a bin, and for each x ∈ {0, 1}a, we put a ball in the bin corresponding to f(x). Let x1, . . . , x2a be an
arbitrary ordering of {0, 1}a that denotes the order we place the balls into the bins. Let Xi,b be a random
variable corresponding to the set of bins with i balls inside after placing b balls via this process. Since∑2a

i=0 |Xi,2a | = 2a, to get a lower bound on
∑2a

i=2 E[|Xi,2a |], it suffices to upper bound E[|X0,2a |+ |X1,2a |].
First, note that X0,0 = 2a. In general when adding the bth ball, X0,b either decreases if the ball hits

X0,b−1 or stays the same otherwise. This gives the following recursive expression for E[|X0,b|].

E[|X0,b|] = E[|X0,b−1|]− Pr[f(xb) ∈ X0,b−1].

We claim that Pr[f(xb) ∈ X0,b−1] = |X0,b−1| · (2n−a)/(2n − (b − 1)). This is because each y ∈ X0,b−1 has
not been mapped to, so there are 2n−a values y ‖u that Π(xb ‖ 0n−a) can take that cause f(xb) = y out of
2n − (b− 1) total values to choose from. We can thus rewrite the recursive expression as

E[|X0,b|] = E[|X0,b−1|]− E[|X0,b−1|] ·
(

2n−a

2n − (b− 1)

)
= E[|X0,b−1|] ·

(
1− 2n−a

2n − (b− 1)

)
.

Solving for this expression, we get

E[|X0,b|] = E[|X0,0|] ·
b∏
i=1

(
1− 2n−a

2n − (i− 1)

)

≤ 2a ·
(

1− 2n−a

2n

)b
= 2a ·

(
1− 1

2a

)b
.

Thus, E[|X0,2a |] ≤ 2a/e.
For X1,b, we first note that X1,0 = 0. Using our result for X0,b, we can again write a recursive expression

for E[|X1,b|]. The key point is that X1,b−1 increases by one if f(xb) lands in X0,b−1 and decreases by one if
f(xb) lands in X1,b−1.

E[|X1,b|] = E[|X1,b−1|]− Pr[f(xb) ∈ X1,b−1] + Pr[f(xb) ∈ X0,b−1].

We already have an expression for Pr[f(xb) ∈ X0,b−1]. For Pr[f(xb) ∈ X1,b−1], we note that now each
y ∈ X1,b−1 has been mapped to exactly once. So there are only 2n−a−1 possible y ‖u values that Π(xb ‖ 0n−a)
can take to cause f(xb) = y. It follows that Pr[f(xb) ∈ X1,b−1] = |X1,b−1| · (2n−a − 1)/(2n−a − (b− 1)), so
we can rewrite the recursive expression as

E[|X1,b|] = E[|X1,b−1|]− E[|X1,b−1|] ·
(

2n−a − 1

2n − (b− 1)

)
+ E[|X0,b−1|] ·

(
2n−a

2n − (b− 1)

)
= E[|X1,b−1|] ·

(
1− 2n−a − 1

2n − (b− 1)

)
+ 2a ·

b−1∏
i=1

(
1− 2n−a

2n − (i− 1)

)
·
(

2n−a

2n − (b− 1)

)
.
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We use the fact that (1 − 2n−a

2n−i ) ≤ (1 − 2n−a−1
2n−i ) and X1,0 = 0, we can solve for an upper bound on this

recurrence as follows.

E[|X1,b|] ≤ E[|X1,0|] ·
b∏
i=1

(
1− 2n−a − 1

2n − (i− 1)

)

+

(
b∑
i=1

2n

2n − (i− 1)

)
·
b∏
i=1

(
1− 2n−a − 1

2n − (i− 1)

)
.

=

(
b∑
i=1

2n

2n − (i− 1)

)
·
b∏
i=1

(
1− 2n−a − 1

2n − (i− 1)

)

≤ b · 2n

2n − 2a
·
(

1− 2n−a − 1

2n

)b
≤ 8b

7
·
(

1− 7

8 · 2a

)b
,

where the last inequality follows since a ≤ n− 3. Thus,

E[|X1,2a |] ≤ 2a · (8/7) · e−7/8 ≤ 2a/2.

It follows that

2a∑
i=2

E[|Xi,2a |] = 2a − E[|X0,2a |]− E[|X0,2a |]

≥ 2a · (1− 1/2− 1/e)

≥ 2a/10.

Define the set Si to be the set of functions f such that |{y : |f−1(y)| ≥ 2}| = i. Then

Pr[|f−1(y)| ≥ 2] =

2a∑
i=2

Pr[f ∈ Si] ·
i

2a

=
1

2a
· E[|{y : |f−1(y)| ≥ 2}|]

≥ 1

2a
· 2a

10
=

1

10
,

as required.

4.3 Time-Space Tradeoffs for Inverting a Restricted Permutation

In this section, we prove a time-space tradeoff for inverting a restricted permutation. Let n ∈ N, a, b < n,
and let Π← Perm (n) be a randomly chosen permutation. Consider the function f : {0, 1}a → {0, 1}b defined
such that f(x) outputs the first b bits of Π(x ‖ 0n−a). We show that there exists an (S, T ) adversary A that
inverts f with advantage roughly Ω(min(1, ST/2min(a,b), (S2T/22 min(a,b))1/3)). Additionally, we show that
on input y = f(x) for a random x←$ {0, 1}a, A outputs a uniformly random pre-image x′ ∈ f−1(y) if it
succeeds.

We note that our attack closely follows the approach of Hellman [Hel80] and its extension from Fiat and
Naor [FN99]. We provide the full details of the attack and analysis for completeness. We emphasize that
our analysis differs from Hellman’s analysis since our function f is not quite a random function. Still, we
do not need the full generality of the result of Fiat and Naor that works for arbitrary functions. We also
note that we show how to instantiate and analyze the “g” functions (see the proof for full details) used in
Hellman’s attack using only pairwise independence, whereas Fiat and Naor’s result for arbitrary functions
required k-wise independence for k ≈ T .
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Lemma 4.5. Let n ≥ 1, a, b ≤ n and Π be a random permutation over {0, 1}n. Let f : {0, 1}a → {0, 1}b
such that f(x) consists of the first b bits output by Π(x ‖ 0n−a). For any S, T ∈ N such that S ≥ 24 max(a, b),
2min(a,b) ≥ 24S, and 2min(a,b) ≥ (S/T ) · 243, there exists an (S, T ) attacker A = (A1,A2) that succeeds in
inverting f on input y = f(x) for x←$ {0, 1}a with probability ε, where

ε ≥
(

1

288 · b

)
·min

(
1,

ST

2min(a,b)
,

(
S2T

22 min(a,b)

)1/3
)
.

Additionally, the following hold:

• If the attacker A = (A1,A2) succeeds at inverting y = f(x), it outputs a uniform pre-image x′ ∈ f−1(y)
over the randomness of A1 and A2.

• For any fixed x ∈ {0, 1}a and y = f(x), the attack succeeds with probability at least

ε ≥
(

1

288 · b

)
·min

(
1,
ST · |f−1(y)|

2a
,

(
S2T |f−1(y)|2

22a

)1/3
)
.

Proof. We start by describing a “Hellman table,” which is the main building block in our attack. It is
helpful to think of a Hellman table as the preprocessing phase of an (S, T ) adversary B = (B1,B2) for a
restricted range of S and T . Our full adversary A = (A1,A2) uses many Hellman tables to boost its success
probability for any range of S and T .

Hellman tables. For any m, ` ∈ N, a Hellman table consists of m chains each of length ` and makes use of
a common function g : {0, 1}b → {0, 1}a that we provide as input to B1 and B2. We will specify the function
g to be used in our full construction. Let h : {0, 1}b → {0, 1}b be the function such that h(y) = f(g(y)).
Denote by h(j)(y) the jth iteration of h on input y, so h(j)(y) = h(h(. . . h(y) . . .)) consisting of j invocations
of h. For the ith of m chains, we sample a random yi,0←$ {0, 1}b, and compute the remaining ` entries
yi,j = h(j)(yi,0) for all j ∈ [`]. The preprocessing phase B1 outputs the starting point yi,0 and the final chain
entry yi,` for each chain, σ = {(yi,0, yi,`) : i ∈ [m]}.

The online attacker B2 receives as input σ, some y = f(x) for a random x←$ {0, 1}a, and the description
of a function g. B2 computes h(j)(y) for each j ∈ [`] number of steps. If, for any j ≥ 1, h(j)(y) = yi,` for any
final chain entry stored in σ, B2 computes yi,k = h(k)(yi,0) for each k ∈ [`]. If yi,k = y for some k ∈ [`], B2

outputs x′ = g(yi,k−1), and outputs ⊥ if no such k is found.
To see the correctness guarantee, consider the set of points Table = {yi,j : i ∈ [m], j ∈ [`]}. We claim

that if the challenge y received by B2 is in the set Table, then B2 outputs a valid pre-image x′ ∈ f−1(y).
Suppose y ∈ S. Then, by definition of S, we know that y = h(j)(yi,0) for some i ∈ [m], j ∈ [`]. But that
implies that yi,` = h(`)(yi,0) = h(`−j)(y), so B2 will compute yi,` during its online attack. At this point, B2

will then compute yi,k = h(k)(yi,0) for each k ∈ [`] and see that yi,j = y. It outputs x′ = g(yi,j−1), and it
holds that f(x′) = y by construction, as required.

The full construction. Our full adversary A = (A1,A2) is as follows. For any space bound S and time
bound T , we compute the parameter γ ∈ N as follows,

γ =

⌈
max

(
ST

2min(a,b)
,

(
ST 2

2min(a,b)

)1/3
)⌉

.

In the pre-processing phase, we sample functions g1, . . . , gγ : {0, 1}b → {0, 1}a from a pairwise independent
hash family where additionally gi and gj are independent for all i 6= j ∈ [γ]. This requires at most 6·max(a, b)
bits to describe, using the construction of Claim 4.9. Using these functions, we construct γ Hellman tables
of m chains each of length ` where,

m =

⌊
S − 6 max(a, b)

2γb

⌋
, ` =

⌊
T

6γ

⌋
− 1.
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For each t ∈ [γ], the function gt induces a new function ht(x) = f(gt(x)) used to construct the chains for
the tth Hellman table. For all t ∈ [γ], let σt ← B1(f, gt) be the output of B1, which depends on the function
gt as well as the choice of starting points yt,1,0, . . . , yt,m,0 sampled by B1 for the tth table. A1 outputs
{σt : t ∈ [γ]} plus the descriptions of g1, . . . , gγ .

The online attacker A2 receives pre-processing σ = ({σt : t ∈ [γ]}, (g1, . . . , gγ)) and the challenge y = f(x)
for a random x←$ {0, 1}a. For all t ∈ [k], it computes a candidate pre-image x′ = B2(σt, y, gt). If all such
x′ are invalid, A2 outputs ⊥. Otherwise A2 outputs the first x′ such that f(x′) = y.

By the correctness guarantee of B, it follows that if A2 outputs a non-⊥ value, it is valid pre-image of y.
Let x′ 6= ⊥ be the pre-image output by A2, we claim that x′ is a uniformly random pre-image of y. Suppose
x′ was first output by B2(σt, y, gt). Let P = f−1(y). We want to show that for all x̃ ∈ P , Pr[x′ = x̃] = 1/|P |.
By construction, it holds that x′ = gt(yt,i,j−1) for some index j ∈ [`] in chain i ∈ [m]. Thus, x′ is uniformly
distributed in {0, 1}a, so it is equally like to be equal to any x̃ ∈ P , as required.

Analyzing the attack’s efficiency. For space efficiency, we remark that |σt| = 2mb for each table t ∈ [k].
Additionally, by Claim 4.9, the functions g1, . . . , gk requires 6 ·max(a, b) bits to store. So, the space usage
overall is

|σ| = 2mbγ + 6 ·max(a, b) ≤ S,

since m ≤ (S − 6 ·max(a, b))/(2γb) by construction.
To analyze the time efficiency, consider the attacker Ã2 that does not stop at T queries. We will revisit

the analysis of A2 as opposed to Ã2 at the end of the proof after analyzing Ã2’s success probability. Let T̃

be the random variable describing the number of queries that Ã2 makes. Let S̃uccess be the event that Ã2

finds a valid pre-image in this experiment. We analyze the expected number of queries T̃ conditioned on Ã2

finding a valid pre-image, E[T̃ | S̃uccess].
For each t ∈ [γ], B2(σt, y, gt) always makes at least ` oracle calls to f in computing h

(k)
t (y) for all k ∈ [`].

For each i ∈ [m] and j ∈ [`] such that h
(j)
t (y) = yt,i,`, B2 potentially makes ` more oracle calls to f . However,

each time that B2 starts to search for y in one of these chains, it is either because (a) y is actually in Table
or (b) B2 got unlucky and hit some yt,i,` value that was not preceded by y in the chain. Whenever case
(a) occurs, B2 can terminate early at a cost of at most ` extra queries to f . Case (b) is known as a “false
alarm” [Hel80] and causes B2 to make ` more queries to f . We show in Claim 4.7 that the probability a
single chain in any table results in a false alarm is at most (` + 1)2/(2min(a,b)), so the expected number of
false alarms per table is at most m(` + 1)2/(2min(a,b)). Thus, given that Ã2 succeeds, it will make at most
2`γ queries plus ` times the number of false alarms across all tables, so

E[T̃ | S̃uccess] ≤ 2`γ +
γm` · (`+ 1)2

2min(a,b)
.

Since m ≤ (S/(2γb)) and ` + 1 ≤ T/(6γ), it follows that m(` + 1)2 ≤ (S/(2γb)) · (T 2/(36γ2)) ≤ N , by
construction. This implies that

E[T̃ | S̃uccess] ≤ 3`γ ≤ T/2,

where the last inequality follows since ` ≤ T/(6γ).

Analyzing the attack’s success probability. Again, we first analyze the hypothetical attack Ã2 that
does not stop at T queries, and we will analyze A2’s success probability at the end of the proof. Recall that

S̃uccess is the probability that Ã2 outputs a pre-image x′ ∈ f−1(y).

For each table t ∈ [k], let Tablet = {yt,i,j = h
(j)
t (yt,i,0) : i ∈ [m], j ∈ [`], yt,i,0 ∈ σt} be the set of points

that table t covers. For the full construction, we define Table = ∪t∈[γ]Tablet. Since A2 succeeds whenever
some B2(σt, y, gt) succeeds, it follows that A2 succeeds if y ∈ Tablet for any t ∈ [γ]. We first analyze the
success probability for y = f(x) for a random x←$ {0, 1}a, and then describe why it holds for any fixed x
as well. Note that over a random permutation Π, y = f(x) for x←$ {0, 1}a is uniformly distributed over

the range of f . Therefore, it follows that Pr[S̃uccess] ≥ E[|Table|]/2min(a,b) for a random x←$ {0, 1}a, so it
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suffices to lower bound the expected size of |Table|. By Claim 4.8, it follows that

Pr[S̃uccess] =
E[|Table|]
2min(a,b)

≥ γm`

6 · 2min(a,b)
.

Now for any fixed x ∈ {0, 1}a and y = f(x), recall that each yt,i,j value added to Table from Claim 4.8 is
of the form f(gt(yt,i,j−1)). So gt(yt,i,j−1) is a uniformly random value in {0, 1}a. Thus, the probability that
f(x) = yt,i,j is at least |f−1(y)|/2a, and the probability that f(x) ∈ Table is at least E[|Table|] · |f−1(y)|/2a.

Putting it all together. Let ε be the probability that A2 succeeds at inverting y = f(x) for x←$ {0, 1}a.

ε = Pr[Success] = Pr[S̃uccess ∧ T ′ < T ]

= Pr[T ′ < T | S̃uccess] · Pr[S̃uccess]

≥

(
1− E[T ′ | S̃uccess]

T

)
· γm`

6 · 2min(a,b)

≥ γm`

12 · 2min(a,b)

≥ γ

12 · 2min(a,b)
· S − 6 max(a, b)

2γb
·
(
T

6γ
− 1

)
≥ ST − 6γS − 6T max(a, b)

144γb · 2min(a,b)

≥ ST

288γb · 2min(a,b)
,

where the last line holds if T ≥ 24γ and S ≥ 24 max(a, b). We note that T ≥ 24γ as long as

T ≥ 24 · dmax(ST/2min(a,b), (ST 2/2min(a,b))1/3)e,

which holds as long as 2min(a,b) ≥ 24S and 2min(a,b) ≥ (S/T ) · 243. We assume these hold in the statement

of our lemma. Note that for a fixed x ∈ {0, 1}a and y = f(x), the bound holds for ε ≥ ST ·|f−1(y)|
288γb·2a .

Finally, we note that either γ = 1, or we set γ such that

γ ≥ dmax(ST/2min(a,b), (ST 2/2min(a,b))1/3)e .

γ = 1 corresponds to the case where ST 2 ≤ 2min(a,b). In this case, we get,

ε ≥
(

1

288 · b

)
·
(

ST

2min(a,b)

)
Otherwise if γ > 1, which corresponds to the case where ST 2 > 2min(a,b), we get the following bound,

ε ≥ min

(
ST

288 · (ST/2min(a,b)) · b · 2min(a,b)
,

ST

288 · ((ST 2/2min(a,b))1/3) · b · 2min(a,b)

)
=

1

288 · b
·min

(
1,

(
S2T

22 min(a,b)

)1/3
)
.

However, note that if ST 2 > 2min(a,b), then(
S2T

22 min(a,b)

)1/3

>

(
ST

2min(a,b)

)
,
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so the second bound dominates in this case. This implies that the probability of success is always at least

ε ≥
(

1

288 · b

)
·min

(
1,

ST

2min(a,b)
,

(
S2T

22 min(a,b)

)1/3
)
,

as required.
Doing the same analysis for fixed x ∈ {0, 1}a and y = f(x), we get that the probability of success it as

least

ε ≥
(

1

288 · b

)
·min

(
1,
ST |f−1(y)|

2a
,

(
S2T |f−1(y)|2

22a

)1/3
)
.

Claim 4.6. Let n ≥ 1, a, b ≤ n and Π be a random permutation over {0, 1}n. Let f : {0, 1}a → {0, 1}b such
that f(x) consists of the first b bits output by Π(x ‖ 0n−a). Then

Pr

[
x1, x2←$ {0, 1}a,
Π← Perm ({0, 1}n)

: f(x1) = f(x2)

]
≤ 1

2a
+

1

2b
.

Proof. Let Π be a random permutation, x1, x2←$ {0, 1}a, and y ‖u = Π(x1 ‖ 0n−a) for y ∈ {0, 1}b. First,
if x1 = x2, then clearly f(x1) = f(x2). This happens with probability 1/2a. Otherwise, for any x2 ∈ {0, 1}a
such that x1 6= x2, we note that Π(x2 ‖ 0n−a) can take any value other that y ‖u. There are (2n−b − 1) such
values of the form y ‖u′ for u′ 6= u, so the probability over a random Π that the first b bits of Π(x2 ‖ 0n−a) = y

is 2n−b−1
2n−1 . This is at most 1/2b since

1

2b
=

2n−b − 1

2n − 1
· 2n − 1

2n − 2b
,

and (2n − 1)/(2n − 2b) ≥ 1 for b ≥ 1. Thus,

Pr[f(x1) = f(x2)] ≤ Pr[x1 = x2] + Pr[f(x1) = f(x2) | x1 6= x2] ≤ 1

2a
+

1

2b
,

as required.

Claim 4.7. The probability that a chain results in a false alarm is at most (`+1)2

2min(a,b) .

Proof. Let t ∈ [k] be the table considered and i ∈ [m] the chain in the table. Let y = f(x) for a random

x←$ {0, 1}a be the challenge. Let ỹ0 = y and define ỹj = h
(j)
t (y) for all j ∈ [`] be the steps computed in the

online phase. Recall that yt,i,0←$ {0, 1}a is the initial point of the chain, and yt,i,j = h
(j)
t (yt,i,0) for each

j ∈ [`] are the subsequent points.
A false alarm occurs if ỹj = yt,i,j′ for any j ∈ [`] and j′ ≥ j. This happens if the initial chain points

are equal, ỹ0 = yt,i,0, since then the chains immediately collide and we cannot find a pre-image for y. Note
that if y = ỹ0 = yt,i,j′ for some j′ > 0, then this is not a false alarm as this allows the attacker to invert.
Otherwise, there is a false alarm whenever ỹj = yt,i,j′ for any j′ ≥ j > 0, given that the preceding values are
not equal. By a union bound, we upper bound this probability as

Pr[ỹ0 = yt,i,0] + Pr[∃j ∈ [`], j′ ≥ j, ỹj = yt,i,j′ ]

= Pr[ỹ0 = yt,i,0] +
∑

j′≥j>0

Pr[ỹj = yt,i,j′ | ∀ĵ′ ≥ ĵ > 0 s.t. ĵ′ < j′ ∧ ĵ < j, ỹĵ 6= yt,i,ĵ′ ].

First, note that the probability that ỹ0 = yt,i,0 is at most 1/2b, since yt,i,0 is a uniformly random value in
{0, 1}b. Next, for any j′ ≥ j > 0, yt,i,j′ = f(gt(yt,i,j′−1)) and ỹj = f(gt(ỹj−1)). Given that yt,i,j′−1 6= ỹj−1,

25



it holds that gt(yt,i,j′−1) and gt(ỹj−1) are uniform and independent by pairwise independence of gt. Thus,
they collide with probability at most 1/2a + 1/2b. It follows that each term in the sum above is at most
1/2a + 1/2b, so the probability that a chain results in a false alarm is at most(

1 +
` · (`+ 1)

2

)
·
(

1

2a
+

1

2b

)
≤ (`+ 1)2

2min(a,b)
.

Claim 4.8. E[|Table|] ≥ γm`/6.

Proof. We consider the process of adding each element in each chain for each table one at a time. To
capture this, we define two sets, Progt,i,j and TableProgt,i,j . For each table t, chain i ∈ [m] with starting

point yt,i,0 ∈ σt, and value j ∈ [`], recall that yt,i,j = h
(j)
t (gt(yt,i,0)) is the jth element in the chain. Let

Progt,i,j be the set containing all preceding yt′,i′,j′ values before yt,i,j is computed. We also define a similar
set per table, TableProgt,i,j , which is the set of yt′,i′,j′ values for fixed t′ = t before yt,i,j is computed. For
convenience, we define Progt,i,0 = Progt,i,1 and TableProgt,i,0 = TableProgt,i,1. Thus, it follows that the
expected size of Table is the probability that each value yt,i,j is new and not contained in the set Progt,i,j , so

E[|Table|] =

γ∑
t=1

m∑
i=1

∑̀
j=1

Pr[yt,i,j 6∈ Progt,i,j ]

=

γ∑
t=1

m∑
i=1

∑̀
j=1

Pr[yt,i,j 6∈ Progt,1,1 ∧ yt,i,j 6∈ TableProgt,i,j ]

=

γ∑
t=1

m∑
i=1

∑̀
j=1

Pr[yt,i,j 6∈ Progt,1,1] · Pr[yt,i,j 6∈ TableProgt,i,j ],

where the last equality holds since the function gt is independent of each previous gt′ for t′ < t. We analyze
each of these two terms in the summation separately.

First, we analyze Pr[yt,i,j 6∈ Progt,1,1]. Recall that yt,i,j = f(gt(yt,i,j−1)) and consider yt′,i′,j′ =
f(gt′(yt′,i′,j′−1)) for any t′ < t, i′ ∈ [m], j′ ∈ [`]. Since the function gt and gt′ are universal and pair-
wise independent for all t′ < t, it holds that gt(yt,i,j−1) and gt(yt′,i′,j′−1) are independent and uniform on
{0, 1}a. Thus, by Claim 4.6,

Pr[yt,i,j = yt′,i′,j′ ] = Pr[f(gt(yt,i,j−1)) = f(gt′(yt′,i′,j′−1))] ≤ 1

2a
+

1

2b
.

Taking a union bound over all such t′, i′, j′, we have that

Pr[∃t′ < t, i ∈ [m], j ∈ [`], yt,i,j = yt′,i′,j′ ] = Pr[yt,i,j ∈ Progt,1,1] ≤ (t− 1)m` ·
(

1

2a
+

1

2b

)
.

Next, we analyze Pr[yt,i,j 6∈ TableProgt,i,j ]. Note that yt,i,j 6∈ TableProgt,i,j holds only if yt,i,j′ 6∈
TableProgt,i,j′ for all 1 ≤ j′ < j and yt,i,0 6∈ TableProgt,i,1, since otherwise the chain has already collided
with a previous chain in the table. It follows that, for all t ∈ [γ], i ∈ [m],

Pr[yt,i,j 6∈ TableProgt,i,j ]

≥ Pr[∀0 ≤ j′ ≤ j, yt,i,j′ 6∈ TableProgt,i,j′ ]

= Pr[yt,i,0 6∈ TableProgt,i,0]

· Pr[yt,i,1 6∈ TableProgt,i,1 | yt,i,0 6∈ TableProgt,i,0] · . . .
· Pr[yt,i,j 6∈ TableProgt,i,j | ∀0 ≤ j′ < j, yt,i,j′ 6∈ TableProgt,i,j′ ].
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We analyze each individual term in the product above. Specifically, consider the term corresponding to ĵ,
Pr[yt,i,ĵ 6∈ TableProgt,i,ĵ | ∀j′ < ĵ, yt,i,j′ 6∈ TableProgt,i,j′ ]. First, we consider the case where ĵ = 0. In

this case, yt,i,0←$ {0, 1}b is a uniformly random value. So the probability is it in TableProgt,i,0 is at most

|TableProgt,i,0|/2b ≤ i`/2b. For ĵ > 0, we are given that yt,i,ĵ−1 6∈ TableProgt, i, ĵ − 1. Thus, by pairwise
independence of gt, we have that gt(yt,i,ĵ−1) and gt(yt,i′,j′) are uniform and independent for all earlier values

of i′, j′ in table t. Thus, Pr[yt,i,ĵ = yt,i′,j′ ] = Pr[f(gt(yt,i,j−1)) = f(gt′(yt′,i′,j′−1))] ≤ 1
2a + 1

2b by Claim 4.6,
and by a union bound

Pr[yt,i,j ∈ TableProgt,i,j | ∀0 ≤ j′ < j, yt,i,j′ 6∈ TableProgt,i,j′ ] ≤ i` ·
(

1

2a
+

1

2b

)
.

Multiplying out all j + 1 terms in the product, we get that

Pr[yt,i,j 6∈ TableProgt,i,j ] ≥
(

1− i` ·
(

1

2a
+

1

2b

))j+1

.

Combining the previous two results, we get that

E[|Table|] ≥
γ∑
t=1

m∑
i=1

∑̀
j=1

(
1− (t− 1)m` ·

(
1

2a
+

1

2b

))
·
(

1− i` ·
(

1

2a
+

1

2b

))j+1

≥
γ∑
t=1

(
1− 2(t− 1)m`

2min(a,b)

)
·
m∑
i=1

∑̀
j=1

(
1− 2i`

2min(a,b)

)j+1

≥
γ∑
t=1

(
1− 2(t− 1)m`

2min(a,b)

)
·
m∑
i=1

∑̀
j=1

e−(2i`(j+1))/(2min(a,b)−2i`)

≥ γm` ·
(

1− (γ − 1)m`

2min(a,b)

)
· e−(4m`2)/(2min(a,b)−2m`).

In the third inequality above, we use the fact that (1 − 1/n)n−1 > 1/e for all n ∈ N, so if we set n =

2i`/2min(a,b), it follows that
(
1− 2i`

2min(a,b)

)(2min(a,b)−2i`)/(2i`) ≥ e−1.

For the above, we note that e−(4m`2)/(2min(a,b)−2m`) ≥ 1/e by the following sequence of inequalities,

4m`2 + 2m` ≤ 6m`2 ≤ 6

(
S

2γb

)(
T 2

36γ2

)
≤ ST 2

γ3
· 1

12b
≤ 2min(a,b),

where the last inequality holds since γ ≥ ((ST 2)/(2min(a,b)))1/3. Next, we note that (1−(γ−1)m`/(2min(a,b)) ≥
1/2 since

2(γ − 1)m` ≤ 2γ

(
S

2γb

)(
T

6γ

)
≤ ST

6γ
≤ 2min(a,b),

where the last inequality holds since γ ≥ ST/2min(a,b). Combining these two facts, it follows that

E[|Table|] ≥ γm` · (1/2) · (1/e) ≥ γm`/6,

as required.

Claim 4.9 ([FN99]). Let a, b ∈ N. For any q ∈ N, there exists a family G of universal q-wise independent
functions from {0, 1}b to {0, 1}a such that:

1. k functions g1, . . . , gk from G can be sampled using 2(q + 1) ·max(a, b) bits, and

2. for each i 6= j ∈ [k], gi and gj are independent.
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Proof. The construction is taken from [FN99]. Consider the finite field F of size 2max(a,b). The construction
samples 2(q+ 1) random elements from F, α0, . . . , αq and β0, . . . , βq. Let g′i be the polynomial over F whose
jth coefficient is αj · i+ βj , and then set gi(x) = g′i(x) mod 2a. Pairwise independence follows since each gi
is a random degree-2 polynomial. Independence of gi, gj for i 6= j holds since the coefficients themselves are
uniform and independent between any two functions.

5 Impossibility Results

We next give impossibility results for attacks for 1-block and 2-block collisions for sponge hashing. This
consists of upper bounding the best possible advantage of any (S, T ) adversary.

5.1 Advantage Upper Bound for B=1

We prove an upper bound for the advantage of an adversary in finding a 1-block collision for the sponge
construction. We use the result of [CDG18] which relates the advantage upper bound of an adversary in the
AI-RPM to that in BF-RPM (bit-fixing RPM). We also argue why the bit-fixing technique cannot be used
to prove a better advantage upper bound for B = 2 than the upper bounded for collisions of unbounded
length.

In the BF model, the first stage of a two stage adversary fixes P points of the permutation Π. The
permutation Π is then sampled uniformly at random from the set of permutations with the restriction of the
points fixed by the first stage adversary. The second stage adversary can make T queries to Π,Π−1 and has
to accomplish some given task involving Π. In Fig. 6, we formally define the game Gbf-cr which captures the
the bounded length collision resistance in the BF-RPM.

For parameters c, r, B ∈ N, the advantage of an adversary A against the bounded-length collision resis-
tance of sponge in the BF-RPM is

Advbf-crSp,c,r,B(A) = Pr
[
Gai-cr
c,r,B(A) = true

]
.

For parameters P, T ∈ N, we overload notation and denote

Advbf-crSp,c,r,B(P, T ) = max
A

{
Advbf-crSp,c,r,B(A)

}
,

where the maximum is over all (P, T )-AI adversaries.
We restate the following proposition from [CDG18] that relates upper bounds Advai-crSp,c,r,B(S, T ) in terms

of Advbf-crSp,c,r,B(P, T ).

Proposition 5.1. For any S, T, P,B ∈ N and γ > 0 such that P ≥ (S + log γ−1)T we have that

Advai-crSp,c,r,B(S, T ) ≤ Advbf-crSp,c,r,B(P, T ) + γ .

We prove the following theorem that upper bounds the advantage of finding 1-block collisions for sponge
in the AI-RPM.

Theorem 5.2. For all S, T, c, r ∈ N

Advai-crSp,c,r,1(S, T ) ≤ 2(S + c)T + 1

2c
+
T 2

2r
.

Proof. The proof of the theorem follows directly from from setting P = (S+c)T , γ = 2−c in Proposition 5.1
and the claim below.

Claim 5.3. For all P, T, c, r ∈ N

Advbf-crSp,c,r,1(P, T ) ≤ P/2c + T 2/2r+1 .
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Game Gbf-cr
c,r,B(A = (A1,A2))

1. (I,Q)← A1 // |I| = |Q|
2. S ← ∅
3. For j ∈ [|I|] set Π(I[j])← Q[j], S1 ← S1 ∪ {Q[j]}, S2 ← S2 ∪ {I[j]}
4. For j ∈ [2c+r] \ S2 sample Π[j]←$ [2c+r] \ S1, set S1 ← S1 ∪ {Π[j]}

5. (α, α′)←$AΠ,Π−1

2 (I,Q, IV)

6. Return true if:

7. α 6= α′ and |α|, |α′| are at most B blocks long, and SpΠ(IV, α) = SpΠ(IV, α′)

Figure 6: The bounded-length collision resistance game of salted sponge based hash in the BF-RPM, denoted
Gbf-cr
c,r,B .

Proof. If IV which is given as input to A2 is such that (∗, IV) not among any of the P points, IV’s then the
probability that A2 finds a 1-block collision is bounded by the birthday bound i.e., T 2/2r+1. The probability
that (∗, IV) is among the P fixed points is at most P/2c and hence the claim follows.

Bit-fixing upper bound for B = 2 is trivial. We note that we cannot prove an advantage upper
bound better than O(ST 2/2c) for B = 2, since there is a (P, T ) adversary that has advantage PT/2c in
finding 2-block collisions. This adversary chooses P/2 tuples (yi, xi, x

′
i) for i ∈ [P/2] such that yi ∈ {0, 1}c,

xi, x
′
i ∈ {0, 1}r, xi 6= x′i. It sets the P points of Π such that Π(xi, yi)[1] = Π(x′i, yi)[1] for i ∈ [P/2].

The second stage of the adversary on getting IV as input queries (m, IV) for T different m’s. With
probability roughly PT/2c it succeeds in finding m such that Π(m, IV) = (∗, yi) for some yi chosen by the
first stage adversary. In this case it can output a 2 block collision of (m,Π(m, IV)[1]⊕xi), (m,Π(m, IV)[1]⊕x′i)
with probability Ω(PT/2c). This would translate to an upper bound no better than O(ST 2/2c).

5.2 Advantage Upper Bound for B = 2

In this section we prove an upper-bound the advantage of an adversary in finding a 2-block collision for the
sponge construction in the AI-RPM, according to the game Gai-cr

c,r,B described in Fig. 4. First, without loss of
generality, in what follows we assume that the adversary is deterministic. This is because we can transform
any probabilistic attacker into a deterministic one by hard-wiring the best randomness (see Adleman [Adl78]).

We reduce the task of bounding the advantage of an attacker in finding a 2-block collision in the sponge
construction, to a “multi-instance” game where the adversary does not have a preprocessing phase but rather
only has non-uniform auxiliary input, chosen before the random permutation Π. The latter game is easier
to analyze. This is in line with the work of Akshima et al. [ACDW20].

We define the following “multi-instance” game Gmi-cr
c,r,B,u(σ,A2), where the preprocessing part of the ad-

versary A1 is degenerate and outputs the fixed string σ. More precisely, the game has the following steps:

1. Π←$ Perm({0, 1}c+r)

2. U ←$

({0,1}c
u

)
3. Define A1 to be the algorithm that always outputs the string σ.

4. Return true if AI-CRΠ,IV(A = (A1,A2)) = true for every IV ∈ U . Otherwise, return false.

For a string σ and an adversary A2, define

Advmi-cr
Sp,c,r,B,u(σ,A2) = Pr

[
Gmi-cr
c,r,B,u(σ,A2)

]
.
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Lemma 5.4 (Reducing the problem to the multi-instance game). Fix c, r, B, S, T, u ∈ N. Then,

Advai-crSp,c,r,B(S, T ) ≤ 6 ·
(

max
σ,A2

{
Advmi-cr

Sp,c,r,B,u(σ,A2)
}) 1

u

+ 2S−u,

where the maximum is taken over all σ ∈ {0, 1}S and T -query algorithms A2.

We refer the reader to [GK22] for a proof.
We next prove an upper bound on the advantage of any auxiliary-input adversary in finding a 2-block

collision for the sponge construction. The main theorem is stated next.

Theorem 5.5. For any c, r, S, T ∈ N and fixing Ŝ := S + c, it holds that

Advai-crSp,c,r,2(S, T ) ≤

(
27e ·max

{
T 2

2c−1
,
T 2

2r−1
,
ŜT

2c−3
,
Ŝ2T 4

22c−2

})
+

1

2c
.

Theorem 5.5 follows as a direct corollary of Lemma 5.4 together with the following lemma, setting

u = S + c and observing that (1) the lemma holds trivially when T 2

2r−1 > 1 and (2) uT 3

2c+r−2 ≤ uT
2c−1 whenever

T 2

2r−1 ≤ 1.

Lemma 5.6 (Hardness of the multi-instance game). Fix c, r, T , u ∈ N and σ ∈ {0, 1}S. Then, for any A2

that makes at most T queries to its oracle, it holds that

Advmi-cr
Sp,c,r,2,u(σ,A2) ≤

(
27 · e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
.

The rest of this section is devoted to the proof of Lemma 5.6.
We are interested in bounding the advantage of the best strategy, i.e., a pair (σ,A2) where σ ∈ {0, 1}S

is a fixed string and A2 is a T -query algorithm, of finding collisions of length 2 in a sponge with respect to
the game Gmi-cr

c,r,2,u(σ,A2). Recall that in this game A2 needs to find proper collisions for u randomly chosen
IVs, denoted U . The main idea in the proof is to use any such adversary (σ,A2) in order to represent the
permutation Π as well as the set of random IVs U with as few bits as possible. If the adversary is “too good
to be true” we will get an impossible representation, contradicting Proposition 3.2.

Setup. Denote

ζ∗ := log

((
25 · 4e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
·
(

2c

u

)
· (2c+r)!

)
.

Assume the existence of an adversary A = (σ,A2), where σ ∈ {0, 1}S is a string and A2 is a T -query
adversary, that contradict the inequality stated in the lemma. That is, there is ζ > ζ∗ such that

Advmi-cr
Sp,c,r,2,u(A) := ζ > ζ∗. (5)

Define G to be the set of permutations-sets of IV pairs for which the attacker succeeds in winning the game
for every IV in the set relative to the permutation, That is,

G =

{
(U,Π)

∣∣∣∣∣ U ∈
({0,1}c

u

)
,

Π ∈ Perm({0, 1}c+r),
∀IV ∈ U : AI-CRΠ,IV(A) = true

}
.

Recall that ζ is defined to be the advantage of A in the game Gmi-cr
c,r,2,u(A) in which Π and U are chosen

uniformly, and then A needs to find a collision with respect to every one of the u IVs in U . Therefore,

|G| = ζ ·
(

2c

u

)
· (2c+r)!.
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In what follows we define an encoding and a decoding procedure such that the encoding procedure gets
as input U,Π such that U ∈

({0,1}c
u

)
and Π ∈ Perm({0, 1}c+r), and it outputs an L bit string, where

L = log
(
ζ∗ ·

(
2c

u

)
· (2c+r)!

)
. The decoding procedure takes as input the string L and outputs U∗,Π∗. It will

hold that U∗ = U and Π∗ = Π with probability ζ.8 Using Proposition 3.2, this would give us that

log ζ ≤ L− log

((
2c

u

)
· (2c+r)!

)
=⇒ ζ ≤ ζ∗

which is a contradiction to the assumption (see (5)).
UsingA, we shall define procedures Encode,Decode such that for every (U,Π) ∈ G, Decode(Encode(U,Π)) =

(U,Π) and the size of the output of Encode(U,Π) is at most L bits where

L = log

((
25 · 4e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
·
(

2c

u

)
· (2c+r)!

)
.

Using Proposition 3.2, this would give us that

ε ≤
(

27 · e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
.

This immediately gives the bound claimed in the statement of the lemma. The rest of the proof of the
lemma would define Encode,Decode, show an upper bound on the size of the output of Encode and that
Decode(Encode(U,Π)) = (U,Π) for all (U,Π) ∈ G.

Notation and Definitions. Fix (U,Π) ∈ G. Let U = {IV1, . . . , IVu} where the IVi’s are ordered lexico-
graphically. Let Qrs(IV) ∈ ({0, 1}r+c)T be the list of queries that A2 makes to Π or Π−1 when executed with
input (σ, IV). Namely, for IV ∈ {0, 1}c,

Qrs(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
Note that Qrs(IV) is indeed a set as we can assume (without loss of generality) that A2 never repeats queries
in a single execution (since A2 can just remember all of its past queries).

Let Ans(IV) ∈ ({0, 1}r+c)T be the list of answers to the queries of that A2 to Π or Π−1 when executed
with input (σ, IV). Namely, for IV ∈ {0, 1}c,

Ans(IV) =
{
s ∈ {0, 1}c+r | A2(σ, IV) queries Π or Π−1 on s

}
We say that IV′ ∈ SIVs(IV) if there is some s[2] ∈ {0, 1}r such that s[2] ‖ IV′ is an entry in Qrs(IV) or Ans(IV).
Namely, for IV, IV′ ∈ {0, 1}c,

IV′ ∈ SIVs(IV)⇐⇒ ∃s[2] ∈ {0, 1}r s.t. s[2] ‖ IV′ ∈ Qrs(IV) ∪ Ans(IV).

We define the set of fresh IVs in U . An IV IVi for i ∈ [u] is called fresh if it was never an IV in either input
or output of any query performed by A2 while being executed on IVj for j ≤ i− 1 which are fresh. The first
IV IV1 is always fresh. An IV IVi for i ≥ 2 is fresh if for any fresh IVj for j ≤ i− 1, IVi /∈ SIVs(IVj). Namely,
denoting the set of fresh IVs by Ufresh, we have the following inductive (on i ∈ [u]) definition:

IVi ∈ Ufresh ⇐⇒ ∀j ≤ i− 1, IVj ∈ Ufresh : IVi 6∈ SIVs(IVj).

Looking ahead, we define Ufresh like this because we run A2 on the IVs in Ufresh in lexicographical order, and
this definition ensures that each IV that A2 is executed on was not queried by it previously. Denote

F := |Ufresh| and Ufresh = {IV′1, . . . , IV
′
F } (ordered lexicographically).

8Essentially, we will show that for all (U,Π) ∈ |G|, if the encoding procedure produces output L, then the decoding procedure
on input L outputs U∗,Π∗ such that U∗ = U and Π∗ = Π.
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Denote

∀i ∈ [F ] : Qi := Qrs(IV′i) and Qfresh := Q1 ‖Q2 ‖ . . . ‖QF ,

where ‖ is the concatenation operator. Let Qfresh[r] be the rth query in the list Qfresh. Note that r ∈ [F ·T ].
For every IV ∈ U \ Ufresh, let tIV be the minimum value such that Qfresh[tIV] is a query either with input or
output of the form (∗, IV). Let bIV = 0 if input of Qfresh[tIV] was of the form (∗, IV) and 1 otherwise. Define
the set of prediction queries as

P := {2tIV − bIV | IV ∈ U \ Ufresh}.

The encoding algorithm will output Ufresh,P, which suffices to recover the set U by running A2.

Structure of collisions. Since adversary A2 succeeds on all of the IVs in U , it holds that for every j ∈ [F ],
the output of the adversary is (αj , α

′
j) such that αj 6= α′j , SpΠ(IV′j , αj) = SpΠ(IV′j , α

′
j) and both αj 6= α′j .

We can assume without loss of generality that the last blocks of αj and α′j are distinct (because otherwise
we can trim αj , α

′
j to obtain a shorter collision).

Definition 5.7 (Crucial queries). The queries to Π,Π−1 in Qj include a subset of queries that we call
the crucial queries. The subset consists of earliest appearing queries in Qj that are required to compute
SpΠ(IV′j , αj) and SpΠ(IV′j , α

′
j). It follows that for 2-block collisions, this subset consists of at most four

queries.

We say that a query made by running while running on (σ, IV′j) is new if either of the following hold.

• the query is Π(m, IV) with answer (m′, IV′) and neither Π(m, IV) or Π−1(m′, IV′) had been queried by
A2 while running on IV′1, . . . , IV

′
j−1.

• the query is Π−1(m, IV) with answer (m′, IV′) and neither Π−1(m, IV) or Π(m′, IV′) had been queried
by A2 while running on IV′1, . . . , IV

′
j−1.

If a query is not new we classify it into one of 2 types: repeatedUsed, and repeatedUnused. A
repeatedUsed query is one such that it was a crucial query for IV′i where i < j. A repeatedUnused
query is one such that it is not a new or a repeatedUsed query.

Our goal is to compress (U,Π) and we are going to achieve this by using our collision finding adversary
A2. The encoding procedure shall output the set Ufresh, the set P, the list Π̃ with some entries removed
and some additional lists and sets. We will be describing the details of these lists and sets below and which
entries we remove from Π̃. It is instructive to think about how decoding would work to understand the
intuition behind out encoding strategy. The decoding procedure will run A2 on the IVs in Ufresh and answer
its queries using the entries in Π̃ and the other lists and sets it gets as input. We need to encode enough
information in these lists and sets so that decoding procedure can correctly answer the queries whose answers
will be removed from Π̃. The IVs in U \Ufresh will be recovered using P. Our main goal is to show that when
we remove entries of Π̃ and instead using additional lists and set, we are actually compressing. Our ways to
compress will depend on the crucial queries in each Qj for j ∈ [F ].

We classify the IV′jth for each j ∈ [F ] into the first of the following cases it satisfies, e.g., if the crucial

queries for IV′j satisfies both cases 1 and 2, we categorize it into 1.

1. One of the crucial queries for IV′j is a query such that the last c bits of the answer is IV′j

2. All of the crucial queries to are new.

3. At least one of the crucial queries is repeatedUsed.

4. There is exactly one repeatedUnused crucial query.

5. There are exactly two repeatedUnused crucial queries.
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Claim 5.8. We claim that each IV′j will be categorized into one of the above cases.

Proof. To begin with, observe that given how we define fresh IV′j , there will have to be a new crucial query

such that either it is a query to Π with input of the form (∗, IV′j) or it is a query to Π−1 with answer of

the form (∗, IV′j), because we have assumed without loss of generality that A2 makes all the queries while

running on IV′j required to find the collision. If there is a new crucial query to Π−1 with answer of the form

(∗, IV′j) then case 1 is satisfied. Also observe that there are at most two crucial queries that are not new

since we are looking at 2-block collisions because any query whose input or output is of the form (∗, IV′j)
is new for all IV′j as they are fresh. So it follows if IV′j is not categorized into 1, it will either have all
new crucial queries (case 2) or have at least one repeatedUsed query (case 3) or have one (case 4) or two
repeatedUnused (case 5) queries. This proves the claim.

Compression budget. Recall that we need to prove that the size of the output of the encoding procedure
is

L = log

((
25 · 4e ·max

{
T 2

2c−1
,
T 2

2r−1
,
uT

2c−3
,
uT 3

2c+r−2
,
u2T 4

22c−2

})u
·
(

2c

u

)
· (2c+r)!

)
bits.

In other words, we need to show that the encoding procedure saves at least

u ·min{min{(c− 1), (r − 1)} − 2 log T, (c− 1)− log 4uT,

c+ r − 2− log uT − 2 log T, 2c− 2− 2 log T − 2 log uT}
− 5u− u log 4e (6)

bits overall.
We make the following claim.

Claim 5.9. To show that the compression indeed achieves the savings from (6), for every IV in Ufresh, it
suffices to save at least the following number of bits.

min{min{(c− 1), (r − 1)} − 2 log T, (c− 1)− log 4FT,

c+ r − 2− logFT − 2 log T, 2c− 2− 2 log T − 2 logFT} .

Proof. First we look at the amount of savings we get from Π̃.

Required savings in Π̃. As mentioned earlier, the output of the encoding algorithm will consist of
Ufresh,P, Π̃, and some additional sets and lists. The lists Ufresh and P will suffice to recover the set U . The
list Π̃ along with the additional sets and lists are used to recover Π.

First we compute the amount of bits we save for encoding U , then that would give us the amount of
bits we need to save for encoding Π. Denoting |Ufresh| = F and |U | = u, we can describe P using

(
FT
u−F

)
bits. Therefore, U , which is trivially described using log

(
2c

u

)
bits, can be encoded using log

((
2FT
u−F

)(
2c

F

))
bits. Therefore, the saving in bits in the description of U is at least

log

(
2c

u

)
− log

((
2FT

u− F

)(
2c

F

))
≥ log

 (
2c

u

)u(
2eFT
u−F

)u−F (
e2c

F

)F


= log

(
2c(u−F )(u− F )u−FFF

eu2u−F (FT )u−Fuu

)
= (u− F ) log

(
2c−1

FT

)
+ log

(
(u− F )u−FFF

euuu

)
= (u− F ) log

(
2c−1

FT

)
− log

(
eu
( u
F

)F ( u

u− F

)u−F)

≥ (u− F ) log

(
2c−1

uT

)
− u log 4e . (7)
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where the first inequality uses the basic bounds for binomial coefficients (n/r)r ≤
(
n
r

)
≤ (en/r)r, and the

last inequality follows since x ≤ 2x for every x ≥ 0, and u ≥ F .
By subtracting (7) (how much we save in U) from (6) (how much we need to save in total), it suffices to

show that we save at least

u ·min{min{(c− 1), (r − 1)} − 2 log T, (c− 1)− log 4uT, c+ r − 2− log uT − 2 log T,

2c− 2− 2 log T − 2 log uT} − 5u− (u− F ) log

(
2c

uT

)
(8)

bits while encoding Π. Observe that

log(2c/uT ) = c− log uT ≥ min{min{(c− 1), (r − 1)} − 2 log T,

(c− 1)− log 4uT, c+ r − 2− log uT − 2 log T, 2c− 2− 2 log T − 2 log uT} .

Using this observation and u ≥ F , we have that the expression in (8) is at least

F ·min{min{(c− 1), (r − 1)} − 2 log T, (c− 1)− log 4FT,

c+ r − 2− logFT − 2 log T, 2c− 2− 2 log T − 2 logFT} − 5u (9)

bits.
We will label each of the IVs in F with few bits that described its “type” (according to the cases described

above – case 1 will have 2 subcategories, case 2 will have 4 subcategories, case 3 will have 2 subcategories,
case 4 will have 13 subcategories and case 5 will have 8 subcategories), and for this 5 bits will suffice. This
will cost, in total, another 5u bits, and therefore for each IV in Ufresh it suffices to save the following number
of bits.

min{min{(c− 1), (r − 1)} − 2 log T, (c− 1)− log 4FT,

c+ r − 2− logFT − 2 log T, 2c− 2− 2 log T − 2 logFT} .

We make the following observation- the values of Π which are never queried by the adversary will be
stored at the end of Π̃ and these will be at least 2c+r−T ·2c values (since on every IV there will be T queries
made). Since we have assumed r ≥ 2 and T ≤ 2r/2, it follows that at least 2c+r−1 values will be at the end
of Π̃- meaning for every value of Π we will remove from Π̃ to recover from m bits of other data structures,
we make a saving of c+ r − 1−m bits.

For each of these cases we will devise strategies to compress the amount of specified amount of bits.
Before diving into the details, we give a brief glimpse of the complexity of this task in terms of handling a
large number of subcases for some of the cases. Cases 1 to 3 are fairly simple in this regard (they do not
lead to a large number of sub-cases). Handling cases 4 and 5 requires way more care since they give rise to
many subcases.

For instance in case 4 where there is one crucial query that is repeatedUnused, one of these possibilities
arise: namely a) there are only two crucial queries b) there are three crucial queries, or c) there are four
crucial queries. For the possibility b) we have three different scenarios depending on the structure formed
by the crucial queries – the collision could be caused by either the answer of the two new queries sharing
common bits with the input and answer of the repeatedUnused query, or the input of one new query
sharing bits with the input/answer of the repeatedUnused query and the output of the same new query
sharing bits with the answer/input of the repeatedUnused query or the answer of one new query sharing
common bits with the answer or input of the other new query.

Further depending on whether queries were made in the forward direction or the reverse direction, even
more possibilities come up. Similarly for case 5, there are numerous possibilities that arise. We need to give
a strategy covering all of these possibilities, making the compression argument extremely cumbersome by
design.
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We now describe the details of how we handle each case. Assuming that the crucial queries for IV′j satisfies
a particular case, we describe the encoding and decoding procedures, and the amount of savings. We provide
this locally verifiable view for ease of parsing- in Appendix A, we also include the full descriptions of the
encoding and decoding procedures for the sake of completeness.

Handling case 1. Assume that the query for which the answer is of the form (m, IV′j) is a query to Π−1

on (m′, IV′). This query has to be new since IV′j is fresh. Let the index of this query among all the queries

made by A2 when running on IV′j be i. The encoding procedure stores (i,m) in a list and removes the entry

for Π(m, IV′j) from Π̃.

In decoding, if the IV′j is categorized as case 1, then it removes the front element (i,m) the list. It answers

the ith query made while running on IV′j with (m, IV′j), and appropriately sets Π(m, IV′j) to (m′, IV′).

If the query for which the answer is of the form (∗, IV′j) is a query to Π, the encoding and decoding

procedure will be similar with appropriate changes (e.g., what is removed from Π̃ etc).
In this case we save at least (c + r − 1) − r − log T = (c − 1) − log T bits, which is more than what we

need.

Handling case 2. If IV′j gets categorized into this case then there will always be two new queries q1, q2

with q1 queried before q2 such that either the last c bits in the answer of q2 is the same as the last c bits in
the input or answer of q1 or the first r bits in the answer of q2 is the same as the first r bits in the input or
answer of q1 (giving rise to four sub-cases as claimed).

The encoding procedure stores in a list the tuple consisting of the indices of q1, q2, and the other c or r
bits. It removes the entry corresponding to q2 from Π̃.

In decoding, if the IV′j is categorized as case 2, the front element of list is removed and the information

is sufficient to answer the new query whose entry was removed from Π̃.
In this case we save at least min{(c− 1), (r − 1)} − 2 log T bits, which suffices.

Handling case 3. In this case it is easy to see that there is a new query to Π on (m′, IV′j) such that the
last c bits of the answer is same as that of the last c bits of the answer or input of a repeatedUsed query q
(giving rise to two sub-cases as claimed). Let the index of the query Π(m′, IV′j) among all the queries made

by A2 when running on IV′j be i and its answer be (m, IV). Let the repeatedUsed query q be a crucial

query for IV′k such that k < j and let it be the nth crucial query (n < 4).
The encoding procedure stores (i, k, n,m) in a list and removes the entry for Π(m′, IV′j) from Π̃.

In decoding, if the IV′j is categorized as case 3, then it removes the front element (i, k, n,m) the list. It

answers the ith query made while running on IV′j with (m′, IV′j), where IV′j is computed using (k, n) (and

the relevant sub-case categorization) and appropriately sets Π(m′, IV′j) to (m, IV).
In this case we save at least (c+ r−1)− log T − logF − log 4− r = (c−1)− log 4FT bits, which suffices.

Handling case 4. First we observe that if IV′j is categorized into this case, then there are five following
possibilities.

(a) There is a new crucial query q1 of the form (∗, IV′j) to Π with answer (m′, IV′) and there is only one
other crucial query q2 which is repeatedUnused such that either it is a query to Π with input of the
form (∗, IV′) and answer of the form (m′, ∗) or it is a query to Π−1 with input of the form (m′, ∗) and
answer of the form (∗, IV′) (i.e., two sub-sub-cases).

(b) There are two new crucial queries q1, q2 to Π with input (∗, IV′j) and a repeatedUnused crucial

query q3 such that if q3 is a query with input of the form (∗, IV′) and output of the form (m′, ∗) then
the answer of q1 is of the form (∗, IV′) and the answer to q2 is of the form (m′, ∗).

(c) There is a new crucial query q1 to Π with input of the form (∗, IV′j) and answer of the form (∗, IV′)
and there is a second new crucial query q2 and a repeatedUnused crucial query q3 such that one of
the following happen.
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(i) q2 is a query to Π on input of the form (∗, IV′) and answer of the form (m′, ∗) and q3 is a query
to Π on input (∗, IV′) and answer (m′, ∗).

(ii) q2 is a query to Π on input of the form (∗, IV′) and answer of the form (m′, ∗) and q3 is a query
to Π−1 on input (m′, ∗) and answer (∗, IV′).

(iii) q2 is a query to Π−1 on input of the form (m′, ∗) and answer of the form (∗, IV′) and q3 is a query
to Π on input (∗, IV′) and answer (m′, ∗).

(iv) q2 is a query Π−1 on input of the form (m′, ∗) and answer of the form (∗, IV′) and q3 is a query
to Π−1 on input (m′, ∗) and answer (∗, IV′).

(d) There are two new crucial queries q1, q2 such that q1 is made before q2 and the last c bits of the answer
of q2 is same as the last c bits of the input or answer of q1

(e) There are two new crucial queries q1, q2 to Π both with input of the form (∗, IV′j) and answer of

the form (∗, IV′), (∗, IV′′) respectively and there is a third new crucial query q3 made after q1, and a
repeatedUnused crucial query q4 such that one of the following happen.

(i) q3 is a query to Π on input of the form (∗, IV′) and answer of the form (m′, ∗) and q4 is a query
to Π on input (∗, IV′′) and answer (m′, ∗).

(ii) q3 is a query to Π on input of the form (∗, IV′) and answer of the form (m′, ∗) and q4 is a query
to Π−1 on input (m′, ∗) and answer (∗, IV′′).

(iii) q3 is a query to Π−1 on input of the form (m′, ∗) and answer of the form (∗, IV′) and q4 is a query
to Π on input (∗, IV′′) and has answer (m′, ∗).

(iv) q3 is a query to Π−1 on input (m′, ∗) and has answer (∗, IV′) and q4 is a query to Π−1 on input
(m′, ∗) and has answer (∗, IV′′).

First we argue why these possibilities are exhaustive for an IV′j that has gotten categorized in case 4.
Since we are looking for 2-block collisions, there can be only one or two other crucial queries that do not
involve IV′j- these will be repeatedUnused or new in this case. If there are only two crucial queries- one
new query and one repeatedUnused query then it will satisfy sub-case (a). Otherwise if there are three
crucial queries: two new queries and one repeatedUnused query such that both new queries are to Π
and of the form (∗, IV′j), then it will satisfy sub-case (b). It is easy to see that sub-case (c) covers the other
possibility of two new queries and one repeatedUnused query when there are three crucial queries because
for a 2-block collision, the new query which is not of the form (∗, IV′j) and the repeatedUnused query will
share either the the first c or last r bits in input or output (hence four sub-sub cases) and share the c bits of
either input or output with the new query of the form (∗, IV′j). Similarly it is easy to see that if there are
four crucial queries- three new and one repeatedUnused then it is covered by sub-cases (d), (e).

For 4(a), the encoding algorithm stores in a list the tuple consisting of the index of the new crucial query
among the queries made while running on IV′j and the index of the first occurrence of the repeatedUnused

crucial query among all queries made by A2. The answer of the new crucial query is removed from Π̃.
During decoding the repeatedUnused and new queries can be correctly identified and from the input

and answer of the repeatedUnused query both m′, IV′ can be inferred and the new query can be answered
correctly.

It follows that savings for this sub-case is at least c+ r − 2− logFT − log T bits.
For 4(b), the encoding algorithm stores in a list the tuple consisting of the indices of q1, q2 among the

queries made while running on IV′j and the index of the first occurrences of the queries q3 among all queries
made by A2 and the remaining c and r bits of the answers of q1, q2 respectively . It removes the answers of
q1, q2 from Π̃.

During decoding queries q1, q2, q3 can be identified correctly using the information from the encoding and
q1, q2 can be correctly answered using the answer of q3 and whatever is present in the encoding.

It follows that savings for this sub-case is at least c+ r − 2− 2 log T − logFT bits.
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For 4(c), the encoding algorithm stores in a list the tuple consisting of the indices of q1, q2 among the
queries made while running on IV′j and the index of the first occurrences of the queries q3 among all queries
made by A2 and the remaining c and r bits of the answers of q1, q2 (depending on the sub-sub case) . It
removes the answers of q1, q2 from Π̃.

During decoding queries q1, q2, q3 can be identified correctly using the information from the encoding and
q1, q2 can be correctly answered using the answer of q3 and whatever is present in the encoding.

It follows that savings for this sub-case is at least min{2c− 2, c+ r − 2} − 2 log T − logFT bits.
For 4(d), the encoding algorithm stores in a list the tuple consisting of the indices of q1, q2 among the

queries made while running on IV′j and the remaining c or r bits of the answer of q2 (depending on the

sub-sub case). It removes the answer of q2 from Π̃.
During decoding queries q1, q2, can be identified correctly using the information from the encoding and

q2 can be correctly answered using the answer of q1 and whatever is present in the encoding.
It follows that savings for this sub-case is at least min{c− 1, r − 1} − 2 log T bits.
For 4(e), the encoding algorithm stores in a list the tuple consisting of the indices of q2, q3 among the

queries made while running on IV′j and the indices of the first occurrence of the query q4 among all queries
made by A2 and the remaining c and r bits of the answers of q2, q3 (depending on the sub-sub case) . It
removes the answers of q2, q3 from Π̃.

During decoding queries q2, q3, q4 can be identified correctly using the information from the encoding and
q2, q3 can be correctly answered using the answer of q3 and whatever is present in the encoding.

It follows that savings for this sub-case is at least min{2c− 2, c+ r − 2} − 2 log T − logFT bits.
To conclude, in this case we save at least the following number of bits which suffices.

min{min{2c− 2, c+ r − 2} − logFT − 2 log T,min{c− 1, r − 1} − 2 log T} .

Handling case 5. First we observe that if IV′j is categorized into this case, then one of the following must
happen.

(a) There is a new crucial query q1 of the form (∗, IV′j) to Π with answer (m′, IV′) and there are two other
crucial queries q2, q3 (q2 is made for the first time before q3 is made for the first time) both of which
are repeatedUnused such that one of the following happen.

(i) q2 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q3 is a query to Π on input (∗, IV′)
and with answer (m′, ∗).

(ii) q2 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q3 is a query to Π−1 on input
(m′, ∗) and with answer (∗, IV′).

(iii) q2 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q3 is a query to Π on input
(∗, IV′) and with answer (m′, ∗).

(iv) q2 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q3 is a query to Π−1 on input
(m′, ∗) and with answer (∗, IV′).

(b) There are two new crucial queries q1, q2 to Π both with input of the form (∗, IV′j) and answer of the

form (∗, IV′), (∗, IV′′) respectively and there are two crucial repeatedUnused queries q3, q4 (q3 is
made for the first time before q4 is made for the first time) such that one of the following happen.

(i) q3 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q4 is a query to Π on input (∗, IV′′)
and with answer (m′, ∗).

(ii) q3 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q4 is a query to Π−1 on input
(m′, ∗) and with answer (∗, IV′′).

(iii) q3 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q4 is a query to Π on input
(∗, IV′′) and with answer (m′, ∗).
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(iv) q3 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q4 is a query to Π−1 on input
(m′, ∗) and with answer (∗, IV′′).

First we argue why these possibilities are exhaustive for an IV′j that has gotten categorized in case 5. Since
we are focusing on two block collisions and we are not in the case 3, the queries other than new queries will
be repeatedUnused queries. Again from the definition of fresh IVs and since IV′j did not get categorized

into 1, there must be one or two crucial new queries (sub-cases 5(a), 5(b)) on (∗, IV′j). Since we are looking

for 2-block collisions, there can be only two other crucial queries that do not involve IV′j- these will be
repeatedUnused in this case. It is easy to see that these two repeatedUnused queries will satisfy one
of the four sub-sub-cases of 5(a) and 5(b). Hence this categorization is exhaustive for this case.

For 5(a), the encoding algorithm stores in a list the tuple consisting of the index of q1 among the queries
made while running on IV′j and the indices of the first occurrences of the queries q2, q3 (assume wlog that q2

is queried earlier) among all queries made by A2, the message m′ and r or c bits of rest of the answer of q2

or q3 depending the on the sub-sub-case. The answer of q1 and q3 is removed from Π̃.
During decoding the queries q1, q2, q3 can be inferred from what is present in the encoding and hence the

answers of q1 and whichever of q2 or q3 was removed can be computed correctly.
It follows that savings for this sub-case is at least min{2c− 2, c+ r − 2} − log T − 2 logFT bits.
For 5(b), the encoding algorithm stores in a list the tuple consisting of the indices of q1, q2 among the

queries made while running on IV′j and the indices of the first occurrences of the queries q3, q4 among all
queries made by A2, the messages m′,m′′ and r or c bits of rest of the answer of q3 or q4 depending the on
the sub-sub-case.

During decoding the queries q1, q2, q3, q4 can be inferred from what is present in the encoding and hence
the answers of q1 and q2 can be computed correctly using things present in the encoding and answers of
q3, q4.

The decoding for this is similar to that for 5(a).
It follows that savings for this sub-case is at least 2c− 2− 2 log T − 2 logFT bits.
In this case we save at least the following number of bits which suffices.

min{c+ r − 2− log T − 2 logFT, 2c− 2− 2 log T − 2 logFT} .
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The encoding algorithm Encode(σ, U,Π):

• Parse U as {IV1, . . . , IVu} where IV1, . . . , IVu are in lexicographical order.

• Set j ← 0.

• Initialize the set P to be empty, the lists Cases and Π̃ to be empty
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• For i = 1, . . . , u, do:

– If IVi ∈ SIVs(a) for some a ∈ Ufresh, let r ∈ [jT ] be the smallest index such that either Qfresh[r] or
its answer is of the form (∗, IVj). If Qfresh[r] = (∗, IVj) then set b← 1 and 0. Add 2r− b to P, and
continue to next iteration.

– Otherwise, increment j, set IV′j ← IVi. Run A2 on (σ, IV′j), answering its queries to Π,Π−1. If

the query was one to Π with input (m, IV), add Π(m, IV) to the list Π̃ if it was not already added
earlier. If the query was one to Π−1 with output (m, IV), add Π(m, IV) to the list Π̃ if it was
not already added earlier. Classify the queries as new, repeatedUsed, repeatedUnusedas
defined above.

– Determine the crucial queries as specified in Definition 5.7. Determine which category IV′j belongs
to among Cases 1 to 5 based on the crucial queries. According to the categorization do the
following.

∗ If IV′j gets categorized into case 1

(a) If the query for which the answer is of the form (m′, IV′j) is a query to Π−1 on (m′′, IV′),

then let index of this query among all the queries made by A2 when running on IV′j be d.

Set Cases[j]← 1a, add (d,m′) to a list L1a and remove the entry for Π(m′, IV′j) from Π̃.

(b) If the query for which the answer is of the form (m′, IV′j) is a query to Π on (m′′, IV′),

then let index of this query among all the queries made by A2 when running on IV′j be d.

Set Cases[j]← 1a, add (d,m′) to a list L1b and remove the entry for Π(m′′, IV′) from Π̃.

Continue to next iteration

∗ Else if IV′j gets categorized into case 2, define q1, q2 as specified above under heading “Handling

case 2”. Let the input of q1 be (m′, IV′) and its answer be (m′′, IV′′). Let the indices of queries
q1, q2 among the queries made by A2 when running on IV′j be d1, d2.

(a) If the answer of q2 is (m′′′, IV′) for some m′′′, set Cases[j] ← 2a, add (d1, d2,m
′′′) to list

L2a, remove the entry in Π̃ corresponding to the answer of q2 (i.e. if q2 was a query to
Π on (m, IV) remove Π(m, IV) and if q2 was a query to Π−1 with answer (m, IV) remove
Π(m, IV) from Π̃).

(b) If the answer of q2 is (m′, IV′′′) for some IV′′′, set Cases[j] ← 2b, add (d1, d2, IV
′′′) to list

L2a, remove the entry in Π̃ corresponding to the answer of q2.

(c) If the answer of q2 is (m′′′, IV′′) for some m′′′, set Cases[j] ← 2c, add (d1, d2,m
′′′) to list

L2c, remove the entry in Π̃ corresponding to the answer of q2.

(d) If the answer of q2 is (m′′, IV′′′) for some IV′′′, set Cases[j]← 2d, add (d1, d2,m
′′′) to list

L2d, remove the entry in Π̃ corresponding to the answer of q2.

Continue to the next iteration.

∗ Else if IV′j gets categorized into case 3, define q as specified above under heading “Handling

case 3”. Let q be a crucial query for IV′k and let it be the n-th crucial query (in query order)
among the crucial queries for IV′k. Let the input of q be (m′, IV′) and its answer be (m′′, IV′′).
Let the new crucial query for IV′j the last c bits of whose answer is same as the last c bits
of the answer or input of q. Let the index of query q′ among the queries made by A2 when
running on IV′j be d.

(a) If the answer of q′ is (m′′′, IV′) for some m′′′, set Cases[j] ← 3a, add (d, k, n,m′′′) to list
L3a, remove the entry in Π̃ corresponding to the answer of q′.

(b) If the answer of q′ is (m′′′, IV′′) for some m′′′, set Cases[j] ← 3b, add (d, k, n,m′′′) to list
L3b, remove the entry in Π̃ corresponding to the answer of q′.

∗ Else if IV′j gets categorized into case 4, determine which of the sub-cases IV′j belongs to
according to the categorization specified above under heading “Handling case 4”.
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(a) If IV′j gets categorized into sub-case (a), define q1, q2, (m
′, IV′) as specified above for the

sub-case. Let d be the index of q1 among all the queries made by A2 when running on
IV′j and let e be the smallest index of the query q2 in Qfresh.

(i) If q2 was a Π query with input of the form (∗, IV′) and answer of the form (m′, ∗), set
Cases[j]← 4a1, add (d, e) to the list L4a1, remove the entry in Π̃ corresponding to the
answer of q1.

(ii) If q2 was a Π−1 query with input of the form (m′, ∗) and answer of the form (∗, IV′),
set Cases[j]← 4a2, add (d, e) to the list L4a2, remove the entry in Π̃ corresponding to
the answer of q1.

(b) If IV′j gets categorized into sub-case (b), define q1, q2, q3,m
′, IV′ as specified above for

the sub-case. Let d1, d2 be the indices of q1, q2 among all the queries made by A2 when
running on IV′j and let e be the smallest index of the query q3 in Qfresh. Suppose the answer

of q1 is (m′′, IV′) and that of q2 is (m′, IV′′).Set Cases[j] ← 4b, add (d1, d2, e,m
′′, IV′′) to

the list L4b, remove the entry in Π̃ corresponding to the answers of q1, q2.

(c) If IV′j gets categorized into sub-case (c), define q1, q2, q3, IV
′ as specified above for the sub-

case. Let d1, d2 be the indices of q1, q2 among all the queries made by A2 when running
on IV′j and let e be the smallest index of the query q3 in Qfresh. Let the answer of q1 be

(m′′′, IV′).

(i) If q2 is a query to Π on input (m′′, IV′) and with answer (m′, IV′′) and q3 is a query to
Π on input (∗, IV′) and answer (m′, ∗), then set Cases[j]← 4c1, add (d1, d2, e,m

′′′, IV′′)
to the list L4c1, remove the entry in Π̃ corresponding to the answers of q1, q2.

(ii) If q2 is a query to Π on input (m′′, IV′) and with answer (m′, IV′′) and q3 is a query to
Π−1 on input (m′, ∗) and answer (∗, IV′), then set Cases[j]← 4c2, add (d1, d2, e,m

′′′, IV′′)
to the list L4c2, remove the entry in Π̃ corresponding to the answers of q1, q2.

(iii) If q2 is a query to Π−1 on input (m′, IV′′) and with answer (m′′, IV′) and q3 is a query to
Π on input (∗, IV′) and answer (m′, ∗), then set Cases[j]← 4c3, add (d1, d2, e,m

′′′,m′′)
to the list L4c3, remove the entry in Π̃ corresponding to the answers of q1, q2.

(iv) If q2 is a query to Π−1 on input (m′, IV′′) and with answer (m′′, IV′) and q3 is a
query to Π−1 on input (m′, ∗) and answer (∗, IV′), then set Cases[j] ← 4c4, add
(d1, d2, e,m

′′′,m′′) to the list L4c4, remove the entry in Π̃ corresponding to the an-
swers of q1, q2.

(d) If IV′j gets categorized into sub-case (d), define q1, q2 as specified above for the sub-case.

Let d1, d2 be the indices of q1, q2 among all the queries made by A2 when running on IV′j .

(i) If the answer of q2 is (m′, IV′) and the input of q1 is of the form (∗, IV′), set Cases[j]←
4d1, add (d1, d2,m

′) to list L4d1, remove the entry in Π̃ corresponding to the answer of
q2.

(ii) If the answer of q2 is (m′, IV′) and the answer of q1 is of the form (∗, IV′), set Cases[j]←
4d2, add (d1, d2,m

′) to list L4d2, remove the entry in Π̃ corresponding to the answer of
q2.

(e) If IV′j gets categorized into sub-case (e), define q1, q2, q3, q4 as specified above for the sub-
case. Let d1, d2 be the indices of q2, q3 among all the queries made by A2 when running
on IV′j . Let e be the smallest index of the query q4 in Qfresh. Suppose the answer of q2 is

(m′′, IV′′).

(i) If q3 is a query to Π on input of the form (∗, IV′) and with answer (m′, IV′′′) and q4

is a query to Π on input (∗, IV′′) and answer (m′, ∗), then set Cases[j] ← 4e1, add
(d1, d2, e,m

′′, IV′′′) to the list L4e1, remove the entry in Π̃ corresponding to the answers
of q2, q3.

(ii) If q3 is a query to Π on input of the form (∗, IV′) and with answer (m′, IV′′′) and q4

is a query to Π−1 on input (m′, ∗) and answer (∗, IV′′), then set Cases[j] ← 4e2, add
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(d1, d2, e,m
′′, IV′′′) to the list L4e2, remove the entry in Π̃ corresponding to the answers

of q2, q3.

(iii) If q3 is a query to Π−1 on input of the form (m′, ∗) and with answer (m′′′, IV′) and
q4 is a query to Π on input (∗, IV′′) and answer (m′, ∗), then set Cases[j] ← 4e3, add
(d1, d2, e,m

′′,m′′′) to the list L4e3, remove the entry in Π̃ corresponding to the answers
of q2, q3.

(iv) If q3 is a query to Π−1 on input of the form (m′, ∗) and with answer (m′′′, IV′) and q4

is a query to Π−1 on input (m′, ∗) and answer (∗, IV′′), then set Cases[j] ← 4e4, add
(d1, d2, e,m

′′,m′′′) to the list L4e4, remove the entry in Π̃ corresponding to the answers
of q2, q3.

∗ Else if IV′j gets categorized into case 5, determine which of the sub-cases IV′j belongs to
according to the categorization specified above under heading “Handling case 5”.

(a) If IV′j gets categorized into sub-case (a), define q1, q2, q3 as specified above for the sub-

case. Let d be the index of q1 among all the queries made by A2 when running on IV′j .

Let e1, e2 be the smallest indices of q2, q3 in Qfresh. Let the answer of q1 be (m′′, IV′).

(i) If q2 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q3 is a query to Π on
input (∗, IV′) and with answer (m′, IV′′), then set Cases[j]← 5a1, add (d, e1, e2,m

′′, IV′′)
to the list L5a1, remove the entry in Π̃ corresponding to the answers of q1, q3.

(ii) If q2 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q3 is a query
to Π−1 on input (m′, ∗) and with answer (m′′′, IV′), then set Cases[j] ← 5a2, add
(d, e1, e2,m

′′,m′′′) to the list L5a2, remove the entry in Π̃ corresponding to the answers
of q1, q3.

(iii) If q2 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q3 is a query to Π on
input (∗, IV′) and with answer (m′, IV′′), then set Cases[j]← 5a3, add (d, e1, e2,m

′′, IV′′)
to the list L5a3, remove the entry in Π̃ corresponding to the answers of q1, q3.

(iv) If q2 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q3 is a query
to Π−1 on input (m′, ∗) and with answer (m′′′, IV′), then set Cases[j] ← 5a4, add
(d, e1, e2,m

′′,m′′′) to the list L5a4, remove the entry in Π̃ corresponding to the answers
of q1, q3.

(b) If IV′j gets categorized into sub-case (b), define q1, q2, q3, q4 as specified above for the sub-
case. Let d1, d2 be the indices of q1, q2 among all the queries made by A2 when running on
IV′j . Let e1, e2 be the smallest indices of q3, q4 in Qfresh. Let the answer of q1 be (m′′, IV′)

and that of q2 be (m′′′, IV′′).

(i) If q3 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q4 is a query to Π on in-
put (∗, IV′′) and with answer (m′, ∗), then set Cases[j]← 5b1, add (d1, d2, e1, e2,m

′′,m′′′)
to the list L5b1, remove the entry in Π̃ corresponding to the answers of q1, q2.

(ii) If q3 is a query to Π on input (∗, IV′) and with answer (m′, ∗) and q4 is a query
to Π−1 on input (m′, ∗) and with answer (∗, IV′′), then set Cases[j] ← 5b2, add
(d1, d2, e1, e2,m

′′,m′′′) to the list L5b2, remove the entry in Π̃ corresponding to the
answers of q1, q2.

(iii) If q3 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q4 is a query to Π on
input (∗, IV′′) and with answer (m′, ∗), then set Cases[j]← 5b3, add (d1, d2, e1, e2,m

′′,m′′′)
to the list L5b3, remove the entry in Π̃ corresponding to the answers of q1, q2.

(iv) If q3 is a query to Π−1 on input (m′, ∗) and with answer (∗, IV′) and q4 is a query
to Π−1 on input (m′, ∗) and with answer (∗, IV′′), then set Cases[j] ← 5b4, add
(d1, d2, e1, e2,m

′′,m′′′) to the list L5b4, remove the entry in Π̃ corresponding to the
answers of q1, q2.

– Add all the evaluations of Π(m, IV) to Π̃ in lexicographical order for all (m, IV)’s such that no Π
query was not made on them and no Π−1 query had (m, IV) as answer.
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– Output F , U ′, P, L1a,L1b, L2a, L2b, L2c, L2d, L3a, L3b, L4a1, L4a2, L4b, L4c1, L4c2, L4c3, L4c4,
L4d1, L4d2, L4e1, L4e2, L4e3, L4e4, L5a1, L5a2, L5a3, L5a4, L5b1, L5b2, L5b3, L5b4, Π̃.

The decoding algorithm Decode:

1. Parse U ′ as {IV′1, . . . , IV
′
F } where IV′1, . . . , IV

′
F are in lexicographical order.

2. Set j ← 0.

3. For j = 1, . . . , F do:

(i) Run A2 on (σ, IV′j), answering its queries to Π,Π−1.

(ii) Answer the ith query made by A2 on (m, IV) as follows.

(iii) If 2 · ((j − 1) · T + i) ∈ P then add IV to U .

(iv) If 2 · ((j − 1) · T + i)− 1 ∈ P then add the IV of the answer to U before returning it.

(v) If (∗, d, c, ∗, IV′′) ∈ L5a1 then let the answer of the query with index d in Qfresh be (m′, ∗). Set
Π(m, IV)← (m′, IV′′), return (m′, IV′′)

(vi) If (∗, d, c, ∗,m′′′) ∈ L5a2 then let the input of the query with index d in Qfresh be (∗, IV′). Set
Π(m′′′, IV′)← (m, IV), return (m′′′, IV′)

(vii) If (∗, d, c, ∗, IV′′) ∈ L5a3 then let the input of the query with index d in Qfresh be (m′, ∗). Set
Π(m, IV)← (m′, IV′′), return (m′, IV′′)

(viii) If (∗, d, c, ∗,m′′′) ∈ L5a4 then let the answer of the query with index d in Qfresh be (∗, IV′). Set
Π(m′′′, IV′)← (m, IV), return (m′′′, IV′)

(ix) If Cases[j] = 1a and the tuple in front of list L1a is (i,m′). Set Π(m′, IV′j)← (m, IV), and remove

the tuple from L1a. Return (m′, IV′j).

(x) Else if Cases[j] = 1b and the tuple in front of list L1b is (i,m′). Set Π(m, IV) ← (m′, IV′j), and

remove the tuple from L1b. Return (m′, IV′j).

(xi) Else if Cases[j] = 2a and the tuple in front of list L2a is (d, i,m′′′), let the query with index d in
Qi have input (m′, IV′) and answer (m′′, IV′′). Set Π(m, IV) ← (m′′′, IV′), and remove the tuple
from L2a. Return (m′′′, IV′).

(xii) Else if Cases[j] = 2b and the tuple in front of list L2a is (d, i, IV′′′), let the query with index d in
Qi have input (m′, IV′) and answer (m′′, IV′′). Set Π(m, IV) ← (m′, IV′′′), and remove the tuple
from L2b. Return (m′, IV′′′).

(xiii) Else if Cases[j] = 2c and the tuple in front of list L2a is (d, i,m′′′), let the query with index d in
Qi have input (m′, IV′) and answer (m′′, IV′′). Set Π(m, IV) ← (m′′′, IV′′), and remove the tuple
from L2c. Return (m′′′, IV′′).

(xiv) Else if Cases[j] = 2d and the tuple in front of list L2a is (d, i, IV′′′), let the query with index d in
Qi have input (m′, IV′) and answer (m′′, IV′′). Set Π(m, IV) ← (m′′, IV′′′), and remove the tuple
from L2d. Return (m′′, IV′′′).

(xv) Else if Cases[j] = 3a and the tuple in front of list L3a is (i, k, n,m′′′), let the query with index e
in Qfresh have input (∗, IV′) and answer (∗, IV′′). Set Π(m, IV)← (m′′′, IV′), and remove the tuple
from L3a. Return (m′′′, IV′).

(xvi) Else if Cases[j] = 3b and the tuple in front of list L3b is (i, k, n,m′′′), let the query with index e
in Qfresh have input (∗, IV′) and answer (∗, IV′′). Set Π(m, IV)← (m′′′, IV′′), and remove the tuple
from L3b. Return (m′′′, IV′′).

(xvii) Else if Cases[j] = 4a1 and the tuple in front of list L4a1 is (i, e), let the query with index e in
Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV)← (m′, IV′), and remove the tuple from
L4a1. Return (m′, IV′).
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(xviii) Else if Cases[j] = 4a2 and the tuple in front of list L4a2 is (i, e), let the query with index e in
Qfresh have answer (∗, IV′) and input (m′, ∗). Set Π(m, IV)← (m′, IV′), and remove the tuple from
L4a2. Return (m′, IV′).

(xix) Else if Cases[j] = 4b and the tuple in front of list L4b is (i, d2, e,m
′′, IV′′), let the query with index

e in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV)← (m′′, IV′), and remove the tuple
from L4b if d2 < i. Return (m′′, IV′).

(xx) Else if Cases[j] = 4b and the tuple in front of list L4b is (d1, i, e,m
′′, IV′′), let the query with index

e in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV)← (m′, IV′′), and remove the tuple
from L4b if d1 < i. Return (m′, IV′′).

(xxi) Else if Cases[j] = 4c1 and the tuple in front of list L4c1 is (i, d2, e,m
′′′, IV′′), let the query with

index e in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV) ← (m′′′, IV′), and remove
the tuple from L4c1 if d2 < i. Return (m′′′, IV′).

(xxii) Else if Cases[j] = 4c1 and the tuple in front of list L4c1 is (d1, i, e,m
′′′, IV′′), let the query with

index e in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV)← (m′, IV′′), and remove the
tuple from L4c1 if d1 < i. Return (m′, IV′′).

(xxiii) Else if Cases[j] = 4c2 and the tuple in front of list L4c2 is (i, d2, e,m
′′′, IV′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′). Set Π(m, IV) ← (m′′′, IV′), and remove
the tuple from L4c2 if d2 < i. Return (m′′′, IV′).

(xxiv) Else if Cases[j] = 4c2 and the tuple in front of list L4c2 is (d1, i, e,m
′′′, IV′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′). Set Π(m, IV)← (m′, IV′′), and remove the
tuple from L4c2 if d1 < i. Return (m′, IV′′).

(xxv) Else if Cases[j] = 4c3 and the tuple in front of list L4c1 is (i, d2, e,m
′′′,m′′), let the query with

index e in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m, IV) ← (m′′′, IV′), and remove
the tuple from L4c3 if d2 < i. Return (m′′′, IV′).

(xxvi) If Cases[j] = 4c3 and the tuple in front of list L4c3 is (d1, i, e,m
′′′,m′′), let the query with index e

in Qfresh have input (∗, IV′) and answer (m′, ∗). Set Π(m′′, IV′) ← (m, IV), and remove the tuple
from L4c3 if d1 < i. Return (m′′, IV′).

(xxvii) Else if Cases[j] = 4c4 and the tuple in front of list L4c4 is (i, d2, e,m
′′′,m′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′). Set Π(m, IV) ← (m′′′, IV′), and remove
the tuple from L4c4 if d2 < i. Return (m′′′, IV′).

(xxviii) Else if Cases[j] = 4c4 and the tuple in front of list L4c4 is (d1, i, e,m
′′′, IV′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′). Set Π(m′′, IV′)← (m, IV), and remove the
tuple from L4c4 if d1 < i. Return (m′′, IV′).

(xxix) Else if Cases[j] = 4d1 and the tuple in front of list L4d1 is (d1, i,m
′), let the query with index

d1 in Qj have input (∗, IV′). If the query is a query to Π, set Π(m, IV) ← (m′, IV′) else set
Π(m′, IV′)← (m, IV), and remove the tuple from L4d1. Return (m′, IV′).

(xxx) Else if Cases[j] = 4d2 and the tuple in front of list L4d2 is (d1, i,m
′), let the query with index

d1 in Qj have answer (∗, IV′). If the query is a query to Π, set Π(m, IV) ← (m′, IV′) else set
Π(m′, IV′)← (m, IV), and remove the tuple from L4d2. Return (m′, IV′).

(xxxi) Else if Cases[j] = 4e1 and the tuple in front of list L4e1 is (i, d2, e,m
′′, IV′′′), let the query with

index e in Qfresh have input (∗, IV′′) and answer (m′, ∗). Set Π(m, IV) ← (m′′, IV′′), and remove
the tuple from L4e1 if d2 < i. Return (m′′, IV′′).

(xxxii) Else if Cases[j] = 4e1 and the tuple in front of list L4e1 is (d1, i, e,m
′′, IV′′′), let the query with

index e in Qfresh have input (∗, IV′′) and answer (m′, ∗). Set Π(m, IV) ← (m′, IV′′′), and remove
the tuple from L4e1 if d2 < i. Return (m′, IV′′′).

(xxxiii) Else if Cases[j] = 4e2 and the tuple in front of list L4e2 is (i, d2, e,m
′′, IV′′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′′). Set Π(m, IV) ← (m′′, IV′′), and remove
the tuple from L4e2 if d2 < i. Return (m′′, IV′′).
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(xxxiv) Else if Cases[j] = 4e2 and the tuple in front of list L4e2 is (d1, i, e,m
′′, IV′′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′′). Set Π(m, IV) ← (m′, IV′′′), and remove
the tuple from L4e2 if d2 < i. Return (m′, IV′′′).

(xxxv) Else if Cases[j] = 4e3 and the tuple in front of list L4e3 is (i, d2, e,m
′′,m′′′), let the query with

index e in Qfresh have input (∗, IV′′) and answer (m′, ∗). Set Π(m, IV) ← (m′′, IV′′), and remove
the tuple from L4e3 if d2 < i. Return (m′′, IV′′).

(xxxvi) Else if Cases[j] = 4e3 and the tuple in front of list L4e3 is (d1, i, e,m
′′,m′′′), let the query with

index e in Qfresh have input (∗, IV′′) and answer (m′, ∗). Set Π(m′′′, IV′) ← (m, IV), and remove
the tuple from L4e3 if d2 < i. Return (m′′′, IV′).

(xxxvii) Else if Cases[j] = 4e4 and the tuple in front of list L4e4 is (i, d2, e,m
′′,m′′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′′). Set Π(m, IV) ← (m′′, IV′′), and remove
the tuple from L4e4 if d2 < i. Return (m′′, IV′′).

(xxxviii) Else if Cases[j] = 4e4 and the tuple in front of list L4e4 is (d1, i, e,m
′′,m′′′), let the query with

index e in Qfresh have input (m′, ∗) and answer (∗, IV′′). Set Π(m′′′, IV′) ← (m, IV), and remove
the tuple from L4e4 if d2 < i. Return (m′′′, IV′′).

(xxxix) Else if Cases[j] = 5a1 and the tuple in front of list L5a1 is (i, e1, e2,m
′′, IV′′), let the query with

index e1 in Qfresh have input (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from L5a1.
Return (m′′, IV′).

(xl) Else if Cases[j] = 5a2 and the tuple in front of list L5a2 is (i, e1, e2,m
′′,m′′′), let the query with

index e1 in Qfresh have input (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from L5a2.
Return (m′′, IV′).

(xli) Else if Cases[j] = 5a3 and the tuple in front of list L5a3 is (i, e1, e2,m
′′, IV′′), let the query with

index e1 in Qfresh have answer (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from L5a3.
Return (m′′, IV′).

(xlii) Else if Cases[j] = 5a4 and the tuple in front of list L5a4 is (i, e1, e2,m
′′,m′′′), let the query with

index e1 in Qfresh have answer (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from L5a4.
Return (m′′, IV′).

(xliii) Else if Cases[j] = 5b1 and the tuple in front of list L5b1 is (i, d2, e1, e2,m
′′,m′′′, IV′′′), let the query

with index e1 in Qfresh have input (∗, IV′). Set Π(m, IV) ← (m′′, IV′), and remove the tuple from
L5b1 if i > d2. Return (m′′, IV′).

(xliv) Else if Cases[j] = 5b1 and the tuple in front of list L5b1 is (d1, i, e1, e2,m
′′,m′′′, IV′′′), let the query

with index e2 in Qfresh have input (∗, IV′′). Set Π(m, IV)← (m′′′, IV′′), and remove the tuple from
L5b1if i > d1. Return (m′′′, IV′′).

(xlv) Else if Cases[j] = 5b2 and the tuple in front of list L5b2 is (i, d2, e1, e2,m
′′,m′′′,m′′′′), let the query

with index e1 in Qfresh have input (∗, IV′). Set Π(m, IV) ← (m′′, IV′), and remove the tuple from
L5b2 if i > d2. Return (m′′, IV′).

(xlvi) Else if Cases[j] = 5b2 and the tuple in front of list L5b2 is (d1, i, e1, e2,m
′′,m′′′,m′′′′), let the query

with index e2 in Qfresh have answer (∗, IV′′). Set Π(m, IV) ← (m′′′, IV′′), and remove the tuple
from L5b2 if i > d1. Return (m′′′, IV′′).

(xlvii) Else if Cases[j] = 5b3 and the tuple in front of list L5b3 is (i, d2, e1, e2,m
′′,m′′′, IV′′′), let the query

with index e1 in Qfresh have answer (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from
L5b3 if i > d2. Return (m′′, IV′).

(xlviii) Else if Cases[j] = 5b3 and the tuple in front of list L5b3 is (d1, i, e1, e2,m
′′,m′′′, IV′′′), let the query

with index e2 in Qfresh have input (∗, IV′′). Set Π(m, IV)← (m′′′, IV′′), and remove the tuple from
L5b3 if i > d1. Return (m′′′, IV′′).

(xlix) Else if Cases[j] = 5b4 and the tuple in front of list L5b4 is (i, d2, e1, e2,m
′′,m′′′,m′′′′), let the query

with index e1 in Qfresh have answer (∗, IV′). Set Π(m, IV)← (m′′, IV′), and remove the tuple from
L5b4 if i > d2. Return (m′′, IV′).
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(l) Else if Cases[j] = 5b4 and the tuple in front of list L5b4 is (i, d2, e1, e2,m
′′,m′′′,m′′′′), let the query

with index e2 in Qfresh have answer (∗, IV′′). Set Π(m, IV) ← (m′′′, IV′′), and remove the tuple
from L5b4 if i > d1. Return (m′′′, IV′′).

4. Populate the rest of Π by remaining elements in Π̃ in lexicographical order.

5. Output (U,Π).
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