
Doubly Efficient Private Information Retrieval
and Fully Homomorphic RAM Computation

from Ring LWE

Wei-Kai Lin
Northeastern University

Ethan Mook
Northeastern University

Daniel Wichs*

Northeastern University
and NTT Research

December 8, 2022

Abstract

A (single server) private information retrieval (PIR) allows a client to read data from a pub-
lic database held on a remote server, without revealing to the server which locations she is
reading. In a doubly efficient PIR (DEPIR), the database is first preprocessed, but the server can
subsequently answer any client’s query in time that is sub-linear in the database size. Prior
work gave a plausible candidate for a public-key variant of DEPIR, where a trusted party is
needed to securely preprocess the database and generate a corresponding public key for the
clients; security relied on a new non-standard code-based assumption and a heuristic use of
ideal obfuscation. In this work we construct the stronger unkeyed notion of DEPIR, where the
preprocessing is a deterministic procedure that the server can execute on its own. Moreover,
we prove security under just the standard ring learning-with-errors (RingLWE) assumption. For
a database of size N and any constant ε > 0, the preprocessing run-time and size is O(N1+ε),
while the run-time and communication-complexity of each PIR query is poly log(N). We also
show how to update the preprocessed database in time O(Nε). Our approach is to first con-
struct a standard PIR where the server’s computation consists of evaluating a multivariate
polynomial; we then convert it to a DEPIR by preprocessing the polynomial to allow for fast
evaluation, using the techniques of Kedlaya and Umans (STOC ’08).

Building on top of our DEPIR, we construct general fully homomorphic encryption for random-
access machines (RAM-FHE), which allows a server to homomorphically evaluate an arbitrary
RAM program P over a client’s encrypted input x and the server’s preprocessed plaintext
input y to derive an encryption of the output P (x, y) in time that scales with the RAM run-
time of the computation rather than its circuit size. Prior work only gave a heuristic candidate
construction of a restricted notion of RAM-FHE. In this work, we construct RAM-FHE under
the RingLWE assumption with circular security. For a RAM program P with worst-case run-
time T , the homomorphic evaluation runs in time T 1+ε · poly log(|x|+ |y|).

*Research supported by NSF grant CNS-1750795, CNS-2055510 and the Alfred P. Sloan Research Fellowship.

Contents

1 Introduction 1
1.1 Our Results . 4
1.2 Our Techniques: DEPIR . 5
1.3 Our Techniques: RAM-FHE . 9
1.4 Other Related Work . 11

2 Preliminaries 12
2.1 Multi-variate Polynomial Evaluation and Interpolation 13
2.2 Ring LWE . 14

3 Algebraic Somewhat Homomorphic Encryption (ASHE) 15
3.1 ASHE from RingLWE . 16

4 DEPIR 18
4.1 Definition . 18
4.2 Construction . 20

5 Updatable DEPIR 24
5.1 Multi-Round Updatable DEPIR . 26
5.2 Round-Optimal Updatable DEPIR . 30

6 ASHE-FHE 32
6.1 Leveled FHE from RingLWE . 34
6.2 ASHE-FHE Construction . 36

7 RAM-FHE 38
7.1 Definition of the RAM Model and RAM-FHE . 38
7.2 RAM-FHE with Random Access to y . 41
7.3 RAM-FHE with Random Access to x . 44
7.4 RAM-FHE with Random Access to z . 46

8 Extensions and Variants of RAM-FHE 51
8.1 Alternative Efficiency Tradeoffs . 51
8.2 Leveled RAM-FHE without Circular Security . 53
8.3 Updatable RAM-FHE . 55
8.4 Multi-Hop / Multi-Input RAM-FHE . 55

A Fast Polynomial Evaluation with Preprocessing 65
A.1 Polynomials Over Zq . 66
A.2 Polynomials Over Extension Rings . 69

B Multivariate Polynomial Interpolation 73

i

C Constructions from Other Assumptions 74
C.1 DEPIR from Approximate GCD . 74
C.2 DEPIR from Module LWE . 75

ii

1 Introduction

Can we design an encrypted version of Google’s search engine that would enable users to search
the Internet privately, without revealing their queries to Google? Fully homomorphic encryption
(FHE) gives an unsatisfactory solution to this problem, where Google would need to run a huge
computation over the entire content of the Internet to answer each encrypted search query. Is
there a way for Google to preprocess the Internet content into a special data structure that would
allow it to answer any future encrypted search query efficiently by only accessing a small number
of locations in the data structure? We give the first solution to this problem as a special case of our
work. We begin by describing the primitives that we construct and what was previously known.

PIR and its limitations. A (single-server) private information retrieval (PIR) scheme [CGKS95,KO00]
is a protocol between a server who holds a database DB ∈ {0, 1}N and a client who wishes to learn
the i’th location DB[i] of the database without revealing the index i ∈ [N] to the server. For exam-
ple, a client may want to retrieve a movie from Netflix without revealing to Netflix which one. A
trivial solution is for the server to simply send the entire database DB to the client. The goal of PIR
is to solve this problem with much lower communication complexity, which should be sub-linear in
the database size N , and ideally just poly logN .1

PIR is one of the most fundamental cryptographic primitives and has been studied extensively
over the last 25+ years. It has found a huge number of applications as well as connections to
many other problems in cryptography. Moreover, we can view PIR as a very basic form of fully
homomorphic encryption (FHE) for functions whose domain size N is polynomial, by taking the
database to be the truth table of the function.

However, PIR comes with a major limitation. While it provides low communication complexity,
it inherently requires the server to read the entire database DB during each protocol execution and
therefore the computational complexity on the server side is at least linear in N . For example, using
PIR, Netflix would need to perform a huge computation over its entire movie database to serve
a single movie to a client. Indeed, if the server did not access some database location during the
protocol execution, then it would learn that the client’s index is not equal to that location, which
would violate privacy. While inherent, this limitation significantly restricts PIR’s usefulness.

DEPIR. Doubly efficient PIR (DEPIR) [BIM00, CHR17, BIPW17] gets around the above limitation
and simultaneously provides low communication and server computation. To do so, it modifies
the original setting by allowing the database DB ∈ {0, 1}N to be preprocessed into some static data
structure D̃B that is stored on the server. This one-time preprocessing is allowed to run in time
that is linear, or even slightly super-linear, in the database size N . Subsequently, any client can
run a PIR protocol with the server to learn the value DB[i] without revealing the index i, where
both the communication and the server/client computation during the protocol are sub-linear in
the database size N , and ideally just poly logN . In particular, this means that the server only reads
a sub-linear number of locations in the data structure D̃B during each PIR protocol execution.

One can define 3 flavors of DEPIR, from strongest to weakest, depending on the nature of
the preprocessing: unkeyed, public-key and secret-key DEPIR. Unkeyed DEPIR is the simplest and
strongest notion, and will be the default notion in this paper. In unkeyed DEPIR, the preprocessing

1Throughout the introduction, we omit fixed polynomial factors in the security parameter in efficiency expressions.

1

that maps the database DB to the data structure D̃B is a deterministic function that the server
executes on its own, and subsequently any client can run a PIR protocol with the server. Prior
works also considered relaxations to public-key and secret-key DEPIR, both of which require a
trusted party with secret random coins to setup the system by generating a key that is given to
the client(s) and creating the preprocessed database D̃B that is given on the server. In a public-key
DEPIR, security holds even if the key is known to the server, meaning that it can be made public
and anybody can subsequently run a PIR protocol with the server using this key. In a secret-key
DEPIR, security only holds if key is kept secret from the server, meaning that the key can only be
given to some designated group of trusted clients who can run PIR protocol executions with the
server, but if any one of the clients is ever compromised then all security is lost.2

We note that there are other thematically related but fundamentally different methods for ac-
cessing data privately with sub-linear communication and computation, including oblivious RAM
(ORAM) and PIR with client-side preprocessing. Each of these notions fails to satisfy some of the
crucial goals of DEPIR. We defer a detailed comparison to Section 1.4.

Prior work on DEPIR. Beimel, Ishai and Malkin [BIM00] proposed the notion of (unkeyed) DE-
PIR, and asked whether it is possible in the single server setting. Two seminal prior works of
Canetti, Holmgren and Richelson [CHR17] and Boyle, Ishai, Pass and Wootters [BIPW17] gave the
first candidate constructions of keyed DEPIR. They showed how to construct the weakest flavor
of secret-key DEPIR under a new non-standard computational hardness assumption based on se-
cretly permuted Reed-Muller codes. This assumption was further studied by [BHW19,BHMW21],
but we don’t currently know how to relate it to any standard hardness assumptions previously
used in cryptography. The work of Boyle at al. [BIPW17] also showed how to upgrade secret-key
DEPIR to public-key DEPIR via a heuristic use of ideal program obfuscation. Unfortunately, we do
not know how to prove the security of this transformation under any concrete assumption, such as
indistinguishability obfuscation. Moreover, in the resulting public-key DEPIR, a trusted party is
crucially needed to create the obfuscated program in the public-key, and therefore the same ideas
do not yield even a heuristic candidate for unkeyed DEPIR.3 In summary, it was left as an open
problem to instantiate even the weakest form of secret-key DEPIR under any standard hardness
assumption studied previously, to instantiate public-key DEPIR under any concrete assumption
without using ideal obfuscation, or to give any plausibly secure candidate for unkeyed DEPIR.

FHE and its limitations. PIR can be thought of as a special case of fully homomorphic encryption
(FHE) [RAD78, Gen09, BV11b, BV11a] for functions with a polynomial-size domain. In a general
FHE scheme, a client can encrypt some input x and the server can homomorphically evaluate any
circuit C over the encrypted input and derive an encryption of the output C(x), without learning
anything about x. The run-time of the homomorphic evaluation scales with the circuit size O(|C|),
while encryption time only scales with the input size O(|x|) and decryption time scales with the
output size O(|C(x)|). Unfortunately, FHE suffers from the same underlying efficiency limitation

2Unkeyed DEPIR implies standard PIR, but neither secret-key nor public-key DEPIR appear to do so since they
require trusted setup. While secret-key DEPIR already captures a difficult technical challenge, it is unsuitable for most
of the target applications of DEPIR, where we want to make a database accessible to large group of untrusted clients.

3 The techniques in [BIPW17] may conceivably be adapted to achieve a stronger variant of public-key DEPIR than
explicitly claimed, where a trusted third party is only needed to generate the public key (AKA a structured common
reference string), but the server can then deterministically preprocess the database DB on its own using the public key.

2

as PIR. For example, the homomorphic evaluation of an Internet search over an encrypted query
would run in time that is linear in the entire size of the Internet! In general, FHE requires us to
express the computation as a circuit. Many computations, such as an Internet search, are very
efficient in the standard random-access machine (RAM) model of computation, but become hugely
inefficient when translated into circuits. In particular, computation in the circuit model is always
at least linear in the data size, while in the RAM model, many interesting computations (e.g.,
binary search) run in sub-linear (e.g., logarithmic) time, leading to huge (e.g., exponential) gaps in
efficiency between them. Moreover, even if the RAM computation already runs in at least linear
time, translating it into a circuit can still incur an additional quadratic overhead [CR72, PF79].

RAM-FHE. Analogously to how DEPIR gets around the limitations of PIR, we consider a general
notion of RAM-FHE [HHWW19] that gets around the limitations of FHE and allows us to directly
evaluate RAM programs over encrypted data. In a RAM-FHE, the server holds some plaintext
input y that it deterministically preprocesses into a static data structure ỹ. The client chooses
encryption/decryption keys and encrypts some input x, sending the resulting ciphertext ctx to the
server. Let P be some RAM program with worst-case run-time T that operates over the inputs x, y
stored in random-access memory, and has access to unlimited amounts of additional read/write
random-access memory. Then the server can homomorphically evaluate P by operating over ctx, ỹ
to derive an encryption of the output P (x, y), where the run-time of the homomorphic evaluation
should not be much larger than T , and in particular, can be sub-linear in |x| and |y|. The above
formulation is quite flexible, and captures several important special cases:

1. Encrypted queries over a public database. We can think of y as some large public database
held by the server and x as the client’s private query over the database. For example, this
captures the setting of encrypted Google search, where y contains Google’s Internet index
and x is the client’s search term. Note that the database y is preprocessed once and for
all, independently of the encryption/decryption key, and the resulting data structure ỹ can
then be used to perform many homomorphic computations with different clients who send
encrypted inputs ctx under different encryption keys.

2. Encrypted database. We can also think of x as being a large encrypted database that the client
outsources to the server. Later the server can homomorphically execute any computation
P (x, y) with some input y of its choice and derive an encrypted output for the client.

3. No database. RAM-FHE also captures the setting where x is some short encrypted input, y
is empty, and P (x) is a RAM program that uses random-access read/write memory during
the execution. In this case, we avoid the quadratic overhead of converting P into a circuit.

We also consider multi-input and multi-hop variants of RAM-FHE, that allow us to perform com-
putations over many encrypted inputs xi that were encrypted separately under the same key, and
many plaintext inputs yi that were preprocessed separately, and also to use the outputs of prior
RAM-FHE evaluations as encrypted inputs for future RAM-FHE evaluations.

We note that an alternative to RAM-FHE would be for the client to run the program P over
her input x locally and use DEPIR whenever the program wants to read from y stored on the
server. The advantage of RAM-FHE is: (1) using just DEPIR, the round complexity is linear in
the program’s run-time T , while RAM-FHE gives the optimal two rounds of interaction, (2) using
only DEPIR, the client’s run-time is linear in T , while using RAM-FHE it is sub-linear.

3

Prior Work on RAM-FHE. The work of Hamlin, Holmgren, Weiss and Wichs [HHWW19] in-
troduced RAM-FHE, but only defined a more restricted form, which allows the server to homo-
morphically evaluate a RAM programs P over an encrypted input x, but does not allow for an
additional preprocessed plaintext input y from the server. In particular, it does not capture en-
crypted queries over a public database (e.g., encrypted Internet search). They gave a candidate
construction using generic secret-key DEPIR and a heuristic use of ideal obfuscation.4 The use of
ideal obfuscation in [HHWW19] goes far beyond what is needed to go from secret-key to public-
key DEPIR, and there is no known techniques to construct RAM-FHE generically from public-key
or even unkeyed DEPIR, without an additional heuristic use of ideal obfuscation. In summary, it
remained an open problem to give any plausibly secure candidate for our notion of RAM-FHE, or
to construct the restricted notion of RAM-FHE from [HHWW19] under any concrete assumption
without ideal obfuscation, let alone under standard assumptions.

1.1 Our Results

DEPIR. In this work, we construct the strongest notion of unkeyed DEPIR under the standard ring
learning with errors (RingLWE) [LPR10] assumption with quasi-polynomial approximation factors.
This is a well-studied hardness assumption, and is implied by the hardness of finding short vec-
tors in ideal lattices in the worst case. Furthermore, it is the basis of the new NIST standard for
public-key encryption [NIS].5 For any constant ε > 0, we get a scheme where, for a database
DB ∈ {0, 1}N , the preprocessing run-time and the size of the preprocessed data structure D̃B
is O(N1+ε), while the client and server run-times as well as the communication-complexity of
each PIR query are just poly log(N). Alternatively, we can also get smaller preprocessing run-
time/size of just N · 2Õ(

√
logN) = N1+o(1) at the cost of having slightly larger PIR query run-

time/communication of 2Õ(
√
logN) = No(1) and also requiring a slightly stronger form of RingLWE

with “sub-sub-exponential” approximation factors. Just like in [CHR17, BIPW17], our PIR proto-
col consists of just two rounds, where the client’s query fully determines some set of locations I in
the data structure D̃B, and the server’s response only depends on the bits D̃B[I] in those locations.

Updatable DEPIR. We also construct an updatable DEPIR that allows the server to update indi-
vidual bits of the database DB and correspondingly update the prepocessed data structure D̃B in
sub-linear time. In particular, for any constant ε > 0, we can achieve update time O(N ε) while
preserving preprocessing time/size O(N1+ε) and PIR query time/communication poly log(N).
Alternatively, we can achieve smaller update time No(1) and preprocessing time/size N1+o(1), at
the cost of increasing PIR query time/communication to No(1).

RAM-FHE. We show how to use the techniques behind our DEPIR construction to get general
RAM-FHE scheme under the RingLWE assumption with quasi-polynomial approximation fac-
tors, along with a circular-security assumption. This is the same circular-security assumption that

4The restricted notion of RAM-FHE from [HHWW19] is not known to even imply public-key DEPIR, whereas our
notion implies unkeyed DEPIR as a special case. It appears that the techniques of [HHWW19] may conceivably achieve
a stronger notion of RAM-FHE than claimed – one that would be similar to ours, with the caveat that a trusted party is
needed to generate a structured common reference string, analogously to footnote 3.

5Alternatively, we also mention how to construct unkeyed DEPIR under the approximate-GCD assumption
[vGHV10], the NTRU assumption [HPS98, LTV12], or the module LWE assumption [BGV12, LS15] with constant rank.

4

is needed to get standard (unleveled) FHE from RingLWE [BV11b,BGV12]. For any constant ε > 0
we get a scheme where, for any bound N , key generation takes time poly log(N), the the encryp-
tion of the input x ∈ {0, 1}≤N takes time O(|x|1+ε)poly log(N), the preprocessing of y ∈ {0, 1}≤N

takes time O(|y|1+ε)poly log(N), and the homomorphic evaluation of a RAM program P (x, y) hav-
ing worst-case run-time T ≤ N takes time T 1+εpoly log(N). The size of the evaluated ciphertext
and its decryption time are |P (x, y)|poly log(N). Alternatively, we can replace all ε’s in the expo-
nents by o(1), at the cost of replacing all the poly log(N) factors by No(1) and requiring a slightly
stronger form of RingLWE with “sub-sub-exponential” approximation factors.6 We also achieve
a more limited form of leveled RAM-FHE without a circular security assumption. Such a scheme
requires fixing an upper bound on the run-time T of the supported programs already during key
generation; the run-time of key generation and the size of the public key (which the client needs
to send to the server to enable homomorphic evaluation) become T · poly log(N), but all other
efficiency measures are preserved. Lastly, our schemes allows for multi-input and multi-hop ho-
momorphic evaluation.

1.2 Our Techniques: DEPIR

Our construction of DEPIR departs significantly from the prior works of [CHR17, BIPW17]. The
prior works start with a multi-server DEPIR based on Reed-Muller codes. It has the right effi-
ciency, but is completely insecure as a single-server scheme, when one server plays the role of
all others. They then propose to patch security by randomly permuting the locations inside the
data structure to get a plausibly secure secret-key scheme, which can be upgraded to a public-key
scheme via a heuristic use of ideal obfuscation.

We instead start by constructing a basic (single-server) PIR without preprocessing that is secure
under standard assumptions, but does not yet have the efficiency properties of DEPIR. We then
show how to preprocess the server computation to get the right efficiency, while security remains
unaffected. The basic PIR has special structure, where the client’s query consists of some small
number of ring elements α1, . . . , αm ∈ R, and the server responds by evaluating a low degree
multivariate polynomial fDB(α1, . . . , αm) over them, where fDB depends on the database DB. We
construct such a PIR using a special type of somewhat homomorphic encryption (SHE) that we call
“algebraic SHE” (ASHE). In an ASHE, ciphertexts are elements of a ring R, and to homomorphically
evaluate a low-degree multivariate polynomial f over the plaintexts, one just evaluates the same
polynomial f over the ciphertexts. Using ASHE, we get a PIR where the client encrypts each digit
(in some base d) of the index i ∈ [N] and sends the resulting ciphertext ring elements α1, . . . , αm

to the server. The server homomorphically evaluates the function fDB(i) = DB[i], which can
be expressed as a multivariate polynomial in the digits of i. To homomorphically evaluate fDB

over the encrypted digits of i, the server simply evaluates the same polynomial fDB over the
ciphertext ring elements and sends the response β = fDB(α1, . . . , αm). We then use preprocessing
to get DEPIR efficiency by relying on the beautiful work of Kedlaya and Umans [KU08, KU11],
which shows how to preprocess low-degree multivariate polynomials f over a ring R into a data
structure that can be used to evaluate the polynomial on any future input extremely efficiently, in
time sub-linear in the description length of the polynomial. Magically, by combining these ideas
and carefully setting the parameters, we get our result!

We fill in the details in the rest of the technical overview. We first review the result of [KU08,
6See Theorem 7.7 for a more fine-grained statement and Section 8.1 for alternative parameter trade-offs.

5

KU11] on preprocessing polynomials for fast evaluation in Section 1.2.1. We then discuss how to
construct the basic PIR using ASHE in Section 1.2.2. Finally, we discuss how to instantiate ASHE
from RingLWE by adapting the SHE of [BV11b] in Section 1.2.3.

1.2.1 Preprocessing Polynomials

Kedlaya and Umans [KU11] show how to preprocess polynomials f(X1, . . . , Xm) over a ring
R to create a data structure that allows us to later evaluate the polynomial on any given input
(α1, . . . , αm) ∈ Rm extremely efficiently, in time that is sublinear in the description length of the
polynomial. The result works over many types of rings R, including R = Zq for arbitrary q, as
well as polynomial rings R = Zq[Y]/(E(Y)) or even R = Zq[Y,Z]/(E(Y), E′(Z)) for monic poly-
nomials E,E′ (and more). Let r = |R| be the cardinality of the ring, and assume f(X1, . . . , Xm)
has individual degree < d in each variable. The description of such a polynomial consists of
N = dm coefficients and hence evaluating it naively would take at least Ω(N log r) time. The work
of [KU11] shows how to preprocess such a polynomial in time N ·O (m(logm+ log d+ log log r))m·
poly(d,m, log r) into a data structure of at most the above size, such that, on any future input
(α1, . . . , αm) ∈ Rm, we can use the data structure to evaluate f(α1, . . . , αm) in just poly(d,m, log r)
time.7 This gives significant savings, at least in some select parameter ranges. We will specifically
be interested in the case where the polynomial f has individual degree < d = logcN for a constant
c, the number of variables is m = logdN = logN/(c log logN), and the cardinality of the ring is
r = 2poly(λ,logN) for security parameter λ ≤ N . In this case, for any ε > 0, by choosing a sufficiently
large c, we get a preprocessing time/size of O(N1+ε)poly(λ) and evaluation time poly(λ, logN).

Technical Sketch. We include a sketch of the technique of [KU11] for the parameter regime dis-
cussed above. Start with the special case of R = Zq. We reinterpret the polynomial f(X1, . . . , Xm)
over Zq as a polynomial over the integers Z, where the coefficients and the inputs are taken
from the set {0, . . . , q − 1}. The maximal value that this polynomial can take over the integers
is ≤ M := dm(q − 1)dm = 2poly(λ,logN). Let p1, . . . , pℓ be the set of all primes pi ≤ 16 logM ,
which ensures that

∏ℓ
i=1 pi ≥ M . To evaluate the polynomial f over the integers, it suffices to

evaluate it modulo each of the primes pi separately and then reconstruct the answer over the
integers using the Chinese Remainder Theorem (CRT). So we reduced the problem of evaluating
the polynomial f modulo q = 2poly(λ,logN) to that of evaluating it modulo pi for a small set of
ℓ = O(logM) = poly(λ, logN) much smaller primes pi = O(logM) = poly(λ, logN).

As a first attempt towards preprocessing the polynomial, consider constructing ℓ tables, where
the i’th table simply stores all the possible evaluations of the polynomial f on all pmi possible in-
puts (α1, . . . , αm) modulo pi. This allows for extremely fast evaluation on any input (α1, . . . , αm) ∈
Zm
q just by looking up one entry in each table and then using CRT. Unfortunately, the size of the

tables is O(logM)m = poly(λ, logN)O(logN/ log logN), which is slightly super-polynomial in λ. In-
stead, we first use the above idea recursively to further reduce the problem of evaluating the
polynomial f modulo each of the primes pi to that of evaluating it modulo another list of even
smaller primes p′j of size p′j = poly(log λ, logN) = poly logN . Amazingly, now the primes are

7This is not the most general or optimized form of [KU11], but is the right one for our work. While all the techniques
are described in [KU11], the above theorem/parameters are not written explicitly. Therefore, we give a stand-alone
proof in Appendix A. Recent work [BGKM22, BGG+22] improves on [KU11], but does not seem to benefit our setting.

6

small enough that we can construct tables with all possible evaluations of the polynomial on all
(p′j)

m = poly(N) inputs efficiently! By a more careful analysis, we get the parameters claimed.
The result extends to rings R = Zq[Y]/(E(Y)), by reducing the problem over such rings to

that over Zr for some r ≫ q that depends on |R|. Instead of evaluating f(α1, . . . , αm) over R, we
evaluate it over Zr by taking all the coefficient/input ring elements and and substituting Y = M
for some sufficiently large integer M ∈ Z and doing all the computation modulo r for some
sufficiently large r ≫M , such that there is no wrap-around. The output is an integer whose base-
M digits correspond to the coefficients of Y in the correct evaluation of f(α1, . . . , αm) over R. We
can further extend the result to R = Zq[Y, Z]/(E(Y), E′(Z)) (and beyond) analogously.

1.2.2 PIR from ASHE

We construct a basic PIR scheme (without preprocessing) where the client query consists of a small
number of ring elements, and the server response is computed by evaluating some low-degree
multivariate polynomial fDB over them. Once we have such a scheme with the right parameters,
we can immediately convert it to a DEPIR by applying the preprorcessing of [KU11] on the poly-
nomial fDB. We construct such basic PIR by using an algebraic somewhat-homomorphic encryption
(ASHE) scheme, which is a special type of SHE that we define in our work as follows.

ASHE. In an ASHE, we can set the plaintext space to be a prime field Fd for any prime d, and
the ciphertext space is some ring R, such that there is a natural way to “lift” Fd into a subset of R.
For any polynomial f(X1, . . . , Xm) over Fd of some a-priori bounded total degree < D, if we’re
given ciphertexts ct1, . . . , ctm ∈ R encrypting plaintext values µ1, . . . , µm ∈ Fd respectively, one
can homomorphically evaluate f by simply evaluating a “lifted” version of it over the ciphertexts,
resulting in ct∗ = f(ct1, . . . , ctm) such that ct∗ ∈ R is an encryption of f(µ1, . . . , µm). The encryp-
tion/decryption time and the bit-size of ring elements can be poly(λ, d,D), growing polynomially
with the security parameter λ, the size of the plaintext space Fd, and the total degree D.

PIR from ASHE. To construct PIR from ASHE, the client takes the index i ∈ [N] written in base-d
as i = (i1, . . . , im) for m = logdN and encrypts each digit ij ∈ Fd separately using an ASHE with
plaintext space Fd to get ciphertexts ct1, . . . , ctm ∈ R.8 There is a bijection between the N = dm

coefficients of a polynomial f(X1, . . . , Xm) of individual degree < d in each variable and its eval-
uation on all N = dm possible inputs in Fm

d . So there is a unique polynomial fDB(X1, . . . , Xm)
such that fDB(i1, . . . , im) = DB[i] for all i = (i1, . . . , im) ∈ [N]. Furthermore, we can compute the
coefficients of fDB given DB in quasi-linear time. To give a PIR response, the server needs to homo-
morphically evaluate the polynomial fDB over the encrypted data. In an ASHE scheme, the server
does so by simply evaluating the same polynomial (lifted to R) over the ciphertexts to compute
ct∗ = fDB(ct1, . . . , ctm) in the ring R. We need to select the parameters carefully to be able use the
result of [KU11] to preprocess the polynomial fDB to allow for fast online evaluation. Perhaps the
most natural first attempt would be to use the binary base with d = 2,m = logN . Unfortunately,
this parameter choice will not work since the expression for the run-time/size of the preprocessing
in [KU11] has a factor of mm = logN logN = N log logN which is super-polynomial! Instead, we use
d = logcN for some constant c and m = logdN = logN/(c log logN). This matches the parameter
regime of [KU11] that we already discussed previously, and yields the claimed efficiency.

8Let’s assume that the database size N = dm is a power of d, else we can pad it to make it so.

7

1.2.3 Constructing ASHE

We now turn to the problem of constructing ASHE. “Modern” FHE schemes based on [GSW13]
(often called 3rd and 4th generation) rely on non-algebraic operations (e.g., bit-decomposition)
at every step, and therefore don’t appear to give us ASHE. Instead, we go back to some of the
“older” (1st and 2nd generation) FHE/SHE schemes [vGHV10,BV11b,BGV12,LTV12], which con-
tain ASHE under the hood. In fact, the scheme of [vGHV10] based on approximate GCD directly
gives us an extremely simple ASHE over the integers, or equivalently, over Zq for a sufficiently
large q. Similarly, the scheme of [LTV12] based on NTRU directly gives an ASHE over a poly-
nomial ring Zq[Z]/(Zn + 1). As our main scheme, we show that (with a little more work), we
can get ASHE from just RingLWE via the FHE/SHE of Brakerski and Vaikuntanathan [BV11b].9

Concretely, we take the most basic symmetric-key SHE of [BV11b] and lightly modify it to handle
a plaintext space Fd for some prime d. The scheme works over a ring R = Zq[Z]/(Zn + 1) where
q ≫ d is relatively prime to d. Let χ be an error distribution that samples “small” ring elements.

• The secret key is a random ring element s← R.

• To encrypt µ ∈ Fd, choose a random a← R, an “error” e← χ and output (a, b = a·s+d·e+µ).

We can think of a ciphertext (a, b) as defining a formal linear polynomial pa,b(Y) = b−a ·Y over R,
such that if we evaluate the polynomial on the secret key s, the result pa,b(s) ∈ R is small relative
to q and its constant term is equal to µ modulo d. This allows us to decrypt. Furthermore, by
adding and multiplying such ciphertext polynomials, we can add and multiply the corresponding
encrypted messages. The degree of the ciphertext as a polynomial over R[Y] and the magnitude
of the error grow with the number of multiplications. To homomorphically evaluate polynomials
of total degree < D, then we need to set q = 2poly(D,log d) to handle the error growth.

At first sight, this does not quite give us an ASHE scheme. For one, the input ciphertexts
consist of 2 ring elements (a, b) ∈ R2 rather than a single ring element as desired, and output
ciphertexts consist of up to D ring elements. However, we can turn this into an ASHE scheme.
Instead of thinking of the ciphertexts as consisting of tuples of elements in R, we can think of them
as elements of the larger ring R[Y]/(Y D +1) ∼= Zq[Y,Z]/(Zn +1, Y D +1). Note that modding out
by (Y D + 1) is only needed to formally make this into a finite ring, but it does not have any affect
on the homomorphic evaluation when restricted to polynomials of degree < D.

In summary, by plugging the above ASHE from RingLWE into our construction of PIR from
ASHE, we get a PIR from RingLWE, where the server needs to evaluate the polynomial fDB over
the ring Zq[Y,Z]/(Zn + 1, Y D + 1). By preprocessing fDB, we then get DEPIR from RingLWE.

1.2.4 Updatable DEPIR

We also construct an updatable DEPIR scheme that allows the server to update individual bits of DB
and correspondingly update the preprocessed data structure D̃B in sub-linear time. The construc-
tion uses a basic (non-updatable) DEPIR scheme with sufficiently good parameters generically,
and is inspired by ideas from [HOWW19, HHWW19], which are in turn inspired by hierarchical
ORAM [GO96]. In a nutshell, our updatable DEPIR data structure D̃B consists of a hierarchy of
L = logN levels of exponentially increasing size. Each level ℓ ∈ {0, . . . , L} contains a database DBℓ

9See Appendix C for the alternative construction from approximate GCD or module LWE with a constant rank,
which generalizes RingLWE.

8

consisting of 2ℓ location/value pairs (i, b) sorted according to the location i ∈ [N], and a prepro-
cessed data structure D̃Bℓ for DBℓ under the basic DEPIR scheme. Initially, all the data is contained
inside the N = 2L pairs (i,DB[i]) in the largest level L, and the remaining levels are empty. To
update DB[i] := b, the server first puts the pair (i, b) in a temporary buffer and, after every 2ℓ up-
dates, the server will take all the pairs (i, b) contained in the first ℓ levels DB0, . . . ,DBℓ and in the
temporary buffer, and sort them according to location i into the database DBℓ at level ℓ, taking only
the freshest copy from the smallest level if there are conflicting location/value pairs (i, b) with the
same i at different levels. The server then applies the basic DEPIR-preprocessing to this database
DBℓ to create D̃Bℓ, and empties all the data from levels 0, . . . , ℓ− 1. The DEPIR-preprocessed data-
structure D̃Bℓ at every level ℓ allows the client to privately execute arbitrary RAM computation
over the data in DBℓ by making a sequence of basic DEPIR queries to the server. Therefore, to
query for a location i in the updatable DEPIR scheme, the client makes a sequence of queries to
the basic DEPIR to perform a binary search for the location i in every level ℓ ∈ [L] and takes the
freshest such tuple (i, b) found in the smallest level. This gives us a construction where the amor-
tized cost of the updates is as claimed.10 We can de-amortize this using the same techniques as
used by [OS97] in the context of hierarchical ORAM.

A downside of the above updatable DEPIR scheme is that the PIR protocol now requires
O(logN) rounds of interaction for the client to run binary search by making DEPIR queries. How-
ever, we can reduce this to the optimal 2 rounds by using RAM-FHE, discussed next. In particular,
RAM-FHE allows the client to send an encrypted index i to the server, and the server can homo-
morphically perform binary search over the data DBℓ in each level ℓ, by using random access to
the data structure D̃Bℓ to efficiently derive the encrypted output, without additional interaction.

1.3 Our Techniques: RAM-FHE

We extend the ideas behind our DEPIR construction to get a general RAM-FHE scheme that allows
us to homomorphically evaluate an arbitrary RAM program P (x, y) over an encrypted input x,
and a preprocessed plaintext input y. We will think of x, y as stored in read-only random-access
memory, but we also allow for additional read/write memory, denoted by z, that can be used during
the execution. Our construction proceeds in stages. We first start with a simpler case, where
the program only has random-access to y, while x, z can only be accessed in some fixed pre-
determined order. This already suffices for many interesting scenarios (e.g., encrypted Internet
search) where the encrypted input x and read/write memory z are small, and only the plaintext
input y (e.g., the Internet) is large. It also suffices to construct round-optimal updatable DEPIR
discussed above. We then augment this solution to allow random-access to x and finally also to z.

Random access to y. Our main observation is that we can take the RingLWE-based homomor-
phic encryption scheme of [BV11b, BGV12] and simultaneously think of it as an FHE scheme or
an ASHE scheme depending on need. In particular, we can perform arbitrary computations over
encrypted data using general FHE evaluation, by giving up on the algebraic structure of ASHE, or
we can also evaluate low-degree multivariate polynomials over the encrypted data using ASHE
evaluation, which simply evaluates the polynomial over the ciphertexts. Moreover, we can seam-
lessly go back and forth: we can take ciphertexts outputted by general FHE evaluation and think

10Note that the cost of an update depends on the preprocessing time of the underlying basic DEPIR, and therefore
we crucially rely on the fact that our preprocessing has low overhead.

9

of them as ASHE ciphertexts, and we can also take ciphertexts outputted by the ASHE evalua-
tion and translate them back into FHE ciphertexts. We can achieve this using a combination of
the re-linearization, modulus-switching and bootstrapping ideas from [BV11b, BGV12]. For boot-
strapping, we need an encrypted key cycle, which requires circular security.

Using such hybrid ASHE-FHE scheme, we can construct a RAM-FHE with random access to y
as follows. The server preprocesses the long input y into a data structure ỹ the same way as in our
DEPIR. The client encrypts the input x using the FHE. To valuate the program P , the server starts
running the program under FHE. Whenever the program wants to read some location i of y, the
server derives an FHE encryption of the location i. This is the same as an ASHE encryption of i,
which is a good query for the index i in our DEPIR scheme. Therefore, the server simply uses the
DEPIR scheme to answer the query by only looking up a few locations inside the data structure
ỹ. This results in a PIR response, which is an ASHE encryption of the memory location y[i]. The
server translates this back into an FHE encryption of y[i], which allows it to continue evaluating
the program under FHE.

Random access to x. We can extend the above idea to also allow random-access to the encrypted
input x. Instead of directly encrypting x via the FHE, the client first chooses a key k for a pseudo-
random function (PRF) Fk and one-time pads x with the PRF outputs to get x̄ = (x[i]⊕ Fk(i))i. It
then applies the DEPIR preprocessing on x̄ to get a data structure x̃. Finally it encrypts the PRF
key k under an FHE scheme to get ctk and sends ctx = (x̃, ctk) to the server as an encryption
of x. The server evaluates the program P under FHE as before. We already saw how to handle
random-access to y. We can handle random-access to x similarly. Whenever the program wants
to access some location i of x, the server derives an FHE encryption of i, interprets it as a DEPIR
query, and uses the data structure x̃ to answer it by only reading a few locations. This results in an
ASHE encryption of x̄[i] = x[i]⊕ Fk(i), which can be converted to an FHE encryption. The server
then use the FHE ciphertext ctk to remove Fk(i) under the FHE and get an FHE encryption of x[i],
which allows it to continue the computation.

Random-access to read/write memory. Finally, we show how to allow read/write random ac-
cess to some memory z, which initially starts out empty. To do so, we show that the server can
maintain some dynamic data structure z̃ that corresponds to the memory z. Given an FHE encryp-
tion of (i, b), there is a way for the server to efficiently perform a “write” operation that updates z̃
and corresponds to setting z[i] := b. Given an FHE encryption of i, there is a way for the server to
efficiently perform a “read” operation that outputs an FHE encryption of z[i] by reading a small
number of locations of z̃. Essentially, our implementation of z̃ is the same as updatable DEPIR,
but all the pairs (i, b) stored in DBℓ at each level ℓ are now encrypted under FHE. During a write
operation, the server performs all the sorting/merging of levels under FHE. The only subtlety is
that, during a “read” operation, the server is running DEPIR queries on top of data that is already
FHE encrypted, and therefore an output of the DEPIR query is a “double-FHE encryption” of the
data. Here we can rely on the fact that we have an encrypted key cycle, which is anyway needed
for FHE, to strip off one layer of FHE encryption and go from double-FHE encryptions to standard
FHE encryptions.

10

1.4 Other Related Work

We compare DEPIR to thematically related primitives that allow clients to efficiently access data
on a remote sever. We focus on the target use-case where a server holds a large public database
DB that it wants to make available to a large group of clients who want to privately read the data
without revealing the locations to the server.

ORAM. Oblivious RAM (ORAM) [GO96] allows a client to preprocess some data DB into a dy-
namic data structure stored on the server, while the client only keeps a short secret key. The
client can read (and write) to the database privately, and the data structure on the server is up-
dated in each such operation. The communication and server/client computation for each ac-
cess is only poly log(N), and as of recently, we even have solutions that achieve O(logN) effi-
ciency [PPRY18, AKL+20], which is known to be optimal [LN18, KL21]. The main limitation of
ORAM, compared to unkeyed and public-key DEPIR, is that the former only allows a single des-
ignated client with a secret key to access the data. If we wanted to use ORAM for our target
use-case where many mutually distrustful clients want private access to a common database, we
would need to set up a separate data structure that is as large as the entire database for every
client in the system. Moreover, this solution would only achieve good amortized efficiency when
the client eventually accesses a sufficiently large fraction of the database to amortize the linear
cost of the client-specific setup. In contrast, using unkeyed or public-key DEPIR, the database is
just preprocessed once and for all, and any client can privately access it later at a low cost without
any client-specific setup.11 The main advantage of ORAM over DEPIR is that we have practically
optimized constructions of the former under minimal cryptographic assumptions.

PIR with Client-Side Preprocessing. Another related primitive is the recent works on PIR with
client-side preprocessing [CHK22, ZLTS22] (see also [CK20]). In this setting, the server just stores
the original database DB ∈ {0, 1}N . However, for each new client that wants to use the scheme,
the server must execute a client-specific preprocessing step in linear Õ(N) time that results in
the client storing an Õ(

√
N)-sized “hint”. Subsequently, the client can run a protocol to retrieve

DB[i] without revealing the index i to the server, where the amortized server/client computation
during the protocol is Õ(

√
N). The client’s hint is updated during each such protocol execution,

requiring the client to be stateful. Unfortunately, it is known that either the hint size or the server
work must be at least

√
N in any such protocol. Prior work constructed such schemes using fully

homomorphic encryption (LWE), or even just linearly homomorphic encryption with somewhat
worse parameters. The main limitations of PIR with client-side preprocessing compared to DEPIR
are as follows: (1) it requires performing a separate Ω(N)-time client-specific preprocessing for
each new client before the client can make any queries; as with ORAM this only gives good amor-
tized efficiency when the client eventually accesses a sufficiently large portion of the database to
amortize this cost, (2) the clients need to be stateful and maintain a dynamic hint of size Ω(

√
N),

(3) the amortized server work per query needs to be at least Ω(
√
N). In contrast, unkeyed DEPIR

only requires a universal one-time preprocessing that can be reused for all the clients without any

11The comparison between ORAM and secret-key DEPIR is more subtle, and the only real advantage of the latter is
that the data structure D̃B stored on the server is static rather than dynamic, meaning that the server’s state does not
need to be updated after each operation. While this makes the problem of secret-key DEPIR technically challenging, its
usefulness over ORAM as a stand-alone primitive is somewhat limited.

11

client-specific setup, state or keys. Furthermore, the server work per query can be just poly log(N).
On the other hand, the main advantage of PIR with client-side preprocessing is that the server just
stores the database DB in the clear, while in DEPIR it stores a larger data structure D̃B.

PANDA. The work of [HOWW19] constructs another related primitive called private anonymous
data access (PANDA). It allows a trusted third party to preprocess some database DB ∈ {0, 1}N
into a dynamic data structure stored on the server and give individual secret keys to each client
in some large group of users. After this setup, each of the clients can privately and anonymously
access the database, without revealing which client is performing each access. Security holds as
long as server colludes with at most t of the clients, for some collusion bound t. The run-time/size
of the preprocessing, as well as the run-time of each protocol execution scale similarly in the data
size N as our DEPIR, but both also scale linearly in the collusion bound t (but not in the total
number of clients). The work of [HOWW19] constructed PANDA generically from FHE. Unkeyed
(and public-key) DEPIR imply PANDA and therefore the former are strictly stronger primitives.
The main limitations of PANDA compared to DEPIR are: (1) it requires a trusted setup, (2) only
a designated group of clients with secret keys can access the data, (3) security only holds if the
collusion size is bounded by t, (4) the efficiency scales linearly with t.

Multi-Server Solutions. The work of Beimel, Ishai and Malkin [BIM00] introduced the concept
of (unkeyed) DEPIR and gave constructions in the multi-server setting with many non-colluding
servers. They left it as an open problem to construct single-server DEPIR, which we resolve in our
work.

Garbled RAM. We also mention related works on garbled RAM [LO13, GHL+14, GLO15] and
succinct garbled RAM [GHRW14, BGL+15, CHJV15, CH16, CCHR16], which allow a client to out-
source RAM computation, potentially over a long private input that the client previously prepro-
cessed. All of these solutions used ORAM under the hood and suffer from the same limitations. In
particular, only a designated client can outsource computations over her previously preprocessed
data. If we wanted to use these solutions to allow private access to a public database, we would
need the server to store a separately preprocessed version of the database DB for each client in
the system. Furthermore, all currently known succinct solutions, where the client’s work is sub-
linear in the run-time of the computation, rely on the “heavy machinery” of indistinguishability
obfuscation.

Functional Encryption for RAMs. Two recent works of [JLL22,ACFQ22] study functional encryp-
tion for RAMs (RAM-FE). The latter shows how to construct a strong form of RAM-FE, where the
decryption time is sublinear in the input, using functional encryption for circuits and public-key
DEPIR. Since unkeyed DEPIR is even stronger than public-key DEPIR, we can plug our result to
get functional encryption for RAMs from functional encryption for circuits and RingLWE.

2 Preliminaries

Define N = {0, 1, 2, . . .} to be the set of natural numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . .} to be the set
of integers and R to be the set of real numbers. For any integer n ≥ 1, define [n] = {1, . . . , n}, and

12

JnK = {0, 1, . . . , n − 1}. For an array A ∈ {0, 1}n, we index the array from 0, and A[i] denotes the
bit in position i ∈ JnK. By default, all our logarithms are base 2 and log n stands for log2 n. For
any q ∈ N, let Zq be the ring Z/qZ. For a prime p, let Fp be the finite field of order p. A function
ν : N→ N is said to be negligible, denoted ν(n) = negl(n), if for every positive polynomial p(·) and
all sufficiently large n it holds that ν(n) < 1/p(n). We use the abbreviation PPT for probabilistic
polynomial time. For a finite set S, we write a ← S to mean a is sampled uniformly randomly
from S. For a randomized algorithm A, we let a ← A(·) denote the process of running A(·) and
assigning the outcome to a; when A is deterministic, we write a := A(·) instead. We denote the
security parameter by λ. For two distributions X,Y parameterized by λ we say that they are
computationally indistinguishable, denoted by X ≈c Y if for every PPT distinguisher D we have
|Pr[D(X) = 1]− Pr[D(Y) = 1]| = negl(λ).

2.1 Multi-variate Polynomial Evaluation and Interpolation

For any ring R, let R[X1, . . . , Xm] denote the ring of polynomials with coefficients in R and
symbolic variables X1, . . . , Xm. For any polynomial f(X1, . . . , Xm) ∈ R[X1, . . . , Xm] and any
α = (α1, . . . , αm) ∈ Rm, f(α) ∈ R is the evaluation of f on α.

Polynomial Evaluation with Preprocessing. We rely on a result of Kedlaya and Umans [KU11],
which shows how to preprocess a multivariate polynomial f into a static data structure such that,
for any input α given later, we can use the data structure to evaluate f(α) quickly, in time that is
sublinear in the description-length of the polynomial. In this work, we will rely on the result for
multivariate polynomials f over rings of the form R = Zq[Y, Z]/(E1(Y), E2(Z)) for some q ∈ N
and arbitrary (non-constant) monic polynomials E1, E2. Note that this includes the rings Zq and
Zq[Y]/(E1(Y)) as a special case.

Theorem 2.1 (Preprocessing Polynomials [KU11]). Let R = Zq[Y,Z]/(E1(Y), E2(Z)) for some q ∈ N
and arbitrary monic polynomials E1 over Y and E2 over Z with degrees e1, e2 > 0 respectively. Let
f ∈ R[X1, X2, . . . , Xm] be a polynomial of individual degree < d in every variable. Then, there is some
preprocessing algorithm that takes the coefficients of f as an input, runs in time

S = dm · poly(m, d, log |R|) ·O (m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Rm and computes f(α) in time

poly(d,m, log |R|).

While the ideas behind the above theorem are discussed in [KU11], the concrete statement
with clear parameters is not stated explicitly.12 Therefore, for completeness, we give a stand-alone
proof of the above result in Appendix A.

12The relevant material appears in [KU11, Section 4], which focuses on algorithms for multipoint evaluation of a
polynomial f . Implicitly, all of these algorithms first preprocess the polynomial into a data structure as in our theorem
and then use the data structure to evaluate the polynomial on all the points. The results there are stated for rings of the
form R = Zq or R = Zq[Y]/(E(Y)), and it is informally noted that the results extend to other rings. The fact that these
algorithms can be seen as preprocessing polynomials into a data structure that allows for fast evaluation is discussed,
but is only stated explicitly in [KU11, Section 5] for the (harder) case of high-degree univariate polynomials, which then
reduces to our case of low-degree multivariate polynomials.

13

Polynomial Interpolation. Let Fd be a field of prime order d and let m ∈ N be an integer. Given
any dm values y(x1,...,xm) ∈ Fd for all (x1, . . . , xm) ∈ Fm

d there is a unique m-variate polyno-
mial f(X1, . . . , Xm) ∈ Fd[X1, . . . , Xm] having individual degree < d in each variable13 such that
f(x1, . . . , xm) = y(x1,...,xm) for all (x1, . . . , xm) ∈ Fm

d . This follows since there is a 1-to-1 mapping
from the dm coefficients of such polynomials to the dm evaluations on all inputs. Furthermore, it is
possible to “interpolate” the coefficients of the polynomial f(X1, . . . , Xm) given the dm evaluation
in quasi-linear time. We were unable to find a proof of this presumably known result in the liter-
ature, and therefore we give a simple proof in Appendix B. The algorithm is recursive and uses
single-variate polynomial interpolation in the base case.

Lemma 2.2 (Multi-variate polynomial interpolation). Let Fd be a field of prime order d, and let m ∈ N
an integer. Let {y(x1,...,xm) ∈ Fd}(x1,...,xm)∈Fm

d
be any set of dm values. Then there is an algorithm that runs

in quasi-linear time O(dm ·m · poly log d) and recovers the coefficients of a polynomial f(X1, . . . , Xm) ∈
Fd[X1, . . . , Xm] with individual degree < d in each variable such that f(x1, . . . , xm) = y(x1,...,xm) for all
(x1, . . . , xm) ∈ Fm

d .

2.2 Ring LWE

The “learning with errors over rings” problem (RingLWE) was introduced by Lyubashevsky, Peik-
ert, and Regev [LPR10], following a long line of earlier work constructing cryptosystems using
ideal lattices e.g., [HPS98, Mic02, PR06, LM06].

Norm in a Ring. Let R = Zq[Z]/(Zn + 1), and let a =
∑n−1

i=0 aiZ
i ∈ R. We define the norm

of a via ∥a∥∞
def
= max |ai|, where we identify ai ∈ Zq with its integer representative in the range

(−q/2, . . . , q/2]. A distribution χ over R is β-bounded if Pr[∥e∥∞ ≤ β : e← χ] = 1.

Definition 2.3 (The RingLWE assumption [LPR10]). Let n = n(λ) ∈ Z, and q = q(λ) ∈ Z be integers.
Define the ring R = Zq[Z]/(Zn + 1), and let χ = χ(λ) denote an error distribution over the ring R. The
RingLWEn,q,χ assumption, states that for any ℓ = poly(λ) it holds that

{(ai, ai · s+ ei)}i∈[ℓ] ≈c {(ai, ui)}i∈[ℓ],

where s← R, ai ← R, ei ← χ, and ui ← R.

As shown by Lyubashevsky, Peikert, and Regev [LPR10], the RingLWE assumption with some
β-bounded error distribution χ is implied by the worst-case hardness of the approximate shortest
vector problem in an ideal lattice with approximation factor ≈ q/β.

Theorem 2.4 (Lyubashevsky-Peikert-Regev [LPR10, BLP+13]). For any n that is a power of 2, ring
R = Z[Z]/(Zn + 1), prime integer q = q(n) = 1 mod n, and β = ω(

√
n log n), there is an efficiently

samplable β-bounded distribution χ over R, such that is a quantum reduction from the nω(1) · (q/β)-
approximate worst-case SVP in ideal lattices over R to RingLWEn,q,χ, where the reduction runs in time
poly(n, q).

Later work of [BLP+13,PRS17] further generalized this to any (not necessarily prime) modulus
q and also to other choices of the ring.

13This is without loss of generality since Xd = X in Fd.

14

We let RingLWE with sub-exponential approximation factors refer to the assumption that, given
any security parameter λ and any gap parameter t, we can, in poly(λ, t) deterministic time, find pa-
rameters: n = poly(λ, t), β = poly(λ, t), a β-bounded distribution χ that is efficiently samplable in
poly(λ, t) time, and q = λpoly(t) with q > (2βn)t, such that for any t(λ) = poly(λ) the correspond-
ing RingLWEn,q,χ assumption holds. Similarly, we let RingLWE with sub-sub-exponential approxima-
tion factors refers to the same assumption except with any t(λ) = λo(1), and RingLWE with quasi-
polynomial approximation factors refers to the same assumption except with any t(λ) = poly log(λ).

The RingLWE assumption with sub-exponential approximation factors is implied by the worst-
case sub-exponential 2n

ε
quantum hardness of the approximate shortest vector problem in an ideal

lattice with sub-exponential approximation factors 2n
ε

for any ε > 0. Similarly, the RingLWE as-
sumption with quasi-polynomial (resp. sub-sub-exponential) approximation factors is implied by
the 2poly logn (resp. 2n

o(1)
) quantum hardness of the approximate shortest vector problem in an

ideal lattice with approximation factors 2poly logn (resp. 2n
o(1)

).
The RingLWEn,q,χ assumption is known to be equivalent to a hermite normal form variant where

we sample s ← χ from the error distribution rather than uniformly at random from the ring
[ACPS09, LPR10]. It is also equivalent to a scaled error variant where instead of adding the errors
ei ← χ we add d · ei for some integer d relatively prime to q [BV11b].

3 Algebraic Somewhat Homomorphic Encryption (ASHE)

This section defines algebraic somewhat homomorphic encryption (ASHE) and shows how to cast the
SHE scheme of Brakerski and Vaikuntanathan [BV11b] based on RingLWE as an ASHE. See Ap-
pendix C for alternative constructions from the approximate GCD assumption or the moudle LWE
assumption with constant rank.

An ASHE is a symmetric-key CPA-secure encryption scheme, where the plaintext space is Zd

for a prime d of our choosing, and the ciphertext space is some corresponding polynomial ring
R. An ASHE allows us to homomorphically evaluate low-degree multivariate polynomials f over
encrypted data, just by evaluating the same polynomial (appropriately lifted) over the ciphertexts.

Definition 3.1 (ASHE). An algebraic somewhat homomorphic encryption scheme (ASHE) is a tuple of
PPT algorithms (Setup,Gen,Enc,Dec, Lift) with the following syntax:

• params := Setup(1λ, 1d, 1D, N): On input a security parameter λ, total degree D, number of terms
N , plaintext space d, it deterministically fixes some public parameters params, which implicitly de-
fine a ring R of the form R = Zq[Y,Z]/(E1(Y), E2(Z)) for some q ∈ N and non-constant monic
polynomials E1, E2.14 All other algorithms, Gen,Enc,Dec, Lift, implicitly take params as input even
when not explicitly stated.

• s← Gen(params): Output a secret key s.

• ct← Enc(s, µ): Given a secret key s and a message µ ∈ Zd, outputs a ciphertext ct ∈ R.

• µ := Dec(s, ct): Given a secret key s and a ciphertext ct ∈ R, outputs a message µ ∈ Zd.

14 We restrict to these rings to match the rings for which we have have fast polynomial evaluation with preprocessing
(Theorem 2.1). As noted, this can be generalized further; for example, to rings R = Zq[Y1, . . . , Yt]/(E1(Y), . . . , Et(Y))
for some monic non-constant polynomials E1, . . . , Et with t = O(1) (see Remark A.1).

15

• µ̄ := Lift(µ): Lifts µ ∈ Zd to µ̄ ∈ R. For any polynomial f over Zd, we let f̄ := Lift(f) denote the
analogous polynomial over R derived by applying Lift to every coefficient of f .

We require that the scheme satisfies the following properties.

Correctness: We require that for all plaintexts µ1, . . . , µm ∈ Zd and for any polynomial f(X1, . . . , Xm)
over Zd consisting of at most N terms and total degree < D, it holds that

Pr

Dec(s, ct′) = f(µ1, . . . , µm) :

params := Setup(1λ, 1d, 1D, N)
s ← Gen(params)

ctj ← Enc(s, µj) for all j ∈ [m]
f̄ := Lift(f)
ct′ := f̄(ct1, . . . , ctm)

 = 1.

Security: We require the standard symmetric-key IND-CPA security for the encryption scheme (Gen,Enc,Dec)
when params := Setup(1λ, 1d, 1D, N) for any N = poly(λ), d = poly(λ), D = poly(λ).

We also define weaker notions of ASHE for polylogarithmic degree where we only require the above
to hold for d = poly log(λ), D = poly log(λ). Analogously, we define ASHE for sub-polynomial
degree with d = λo(1), D = λo(1).

Efficiency: We require that the description length of ring elements, the run-time of the ring operations,
and the run-time of Setup,Gen,Enc,Dec, Lift are all bounded by poly(λ,D, d, logN).

3.1 ASHE from RingLWE

Our ASHE construction is essentially the same as the somewhat homomorphic encryption (SHE)
scheme of Brakerski and Vaikuntanathan [BV11b, Theorem 2], which is based on the RingLWE
assumption. Their scheme works over a ring Q = Zq[Z]/(Zn+1), and ciphertexts are polynomials
in Q[Y] of degree < D. We observe that we can equivalently interpret ciphertexts as elements of
the ring R defined as R = Q[Y]/(Y D + 1) ∼= Zq[Y,Z]/(Zn + 1, Y D + 1).

Construction. For the construction of ASHE, we will identify elements of Zq with their represen-
tative in the range (−q/2, . . . , q/2]∩Z, and similarly for Zd. This allows us to reinterpret an element
µ ∈ Zd as an element of Zq by taking the representative of µ and reducing it modulo q (and vice
versa). Similarly, we can naturally reinterpret elements µ ∈ Zd as elements of Q = Zq[Z]/(Zn + 1)
or R = Zq[Y,Z]/(Zn+1, Y D+1) by first reinterpreting µ as an element of Zq and then interpreting
it as a constant polynomial in Q or R respectively. The scheme is described as follows:

params := Setup(1λ, 1d, 1D, N): Set the gap parameter t := D log d + logN + log d + 1 and choose
n = poly(λ, t), q = λpoly(t) and a β-bounded error distribution χ as in Section 2.2 so that
q > (2βn)t > 2Nd(d(β + 1)n)D and q is relatively prime to d. Define the rings

Q := Zq[Z]/(Zn + 1), R := Q[Y]/(Y D + 1) ∼= Zq[Y, Z]/(Zn + 1, Y D + 1).

s← Gen(1λ): Sample s← Q uniformly at random.

16

ct← Enc(s, µ): Reinterpret µ ∈ Zd as an element of Q. Sample a← Q, e← χ. Let

b = a · s+ d · e+ µ ∈ Q.

Define ct ∈ R as the formal polynomial with a symbolic variable Y via:

ct(Y) = −a · Y + b

µ := Dec(s, ct): Interpret ct ∈ R as a formal polynomial ct(Y) ∈ Q[Y]/(Y D + 1) and compute
g = ct(s) ∈ Q to be its evaluation on s ∈ Q. Interpret g ∈ Q as a formal polynomial
g(Z) ∈ Zq[Z]/(Zn + 1) and let h = g(0) ∈ Zq be its constant term. Reinterpret h as an
element of Zd and output it.

µ := Lift(µ): Reinterpret µ ∈ Zd as an element of R.

Theorem 3.2 (ASHE from RingLWE). The above scheme is an ASHE under RingLWE with sub-exponential
approximation factors. Alternately, it is an ASHE for poly-logarithmic (resp. sub-polynomial) degree under
RingLWE with quasi-polynomial (resp. sub-sub-exponential) approximation factors.

Proof. We argue that the scheme satisfies the correctness, security and efficiency properties of Def-
inition 3.1.

Correctness: Let f be any polynomial of total degree < D over Zd and let f = Lift(f). Fresh en-
cryptions cti = cti(Y) outputted by Enc are degree-1 polynomials in Y . Therefore ct′ = f(ct1, . . . , ctm)
is the same whether we do the computation over R = Q[Y]/(Y D + 1) or simply over Q[Y], since
in the latter case, ct′(Y) has degree < D in Y and hence modding out by (Y D + 1) does not do
anything. We therefore analyze correctness in the latter case where all operations are done in Q[Y].

We say that a ciphertext ct(Y) is an γ noisy encryption of µ ∈ Zd if ∥ct(s)∥ ≤ γ and Dec(s, ct) =
µ. A freshly encrypted ciphertext ct(Y) of a message µ is γ-noisy for γ = d(β + 1) as long as
γ < q/2. Assume ct1, ct2 are γ1, γ2 noisy encryptions of µ1, µ2 respectively. Then ct1 + ct2 is a
γ+ = (γ1 + γ2) noisy encryption of µ1 + µ2 as long as γ+ < q/2 since

(ct1 + ct2)(s) = ct1(s) + ct2(s) = (de1 + µ1) + (de2 + µ2) = d(e1 + e2) + (µ1 + µ2)

Similarly, ct1 · ct2 is a γ× = nγ1γ2 noisy encryption of µ1 · µ2 as long as γ× < q/2 since

(ct1 · ct2)(s) = ct1(s) · ct2(s) = (d · e1 + µ1) · (d · e2 + µ2) = d(de1e2 + e1µ2 + e2µ1) + µ1µ2.

For the above, we rely on the fact that for a, b ∈ Zq[Z]/(Zn + 1) with ∥a∥ ≤ γa, ∥b∥ ≤ γb, we have
∥a · b∥ ≤ nγaγb. Lastly, if a ∈ Zd is a constant then a · ct1 is a γc = dγ1 noisy encryption of aµ1

as long as γc < q/2. Therefore, if cti are fresh encryptions of µi then ct′ = f(ct1, . . . , ctm) is a
γf = N · d(dn(β+1))D noisy encryption of f(µ1 . . . , µm), as long as γf < q/2, which is ensured by
our choice of parameters. This means that Dec(sk, ct′) = f(µ1 . . . , µm) as desired.

Security: Security follows directly from the (scaled error variant of the) RingLWE assumption.
In particular, the ciphertexts consist of ai ← Q, bi = ai · s + d · ei + µi which is indistinguishable
from uniform under RingLWE. In general, we can bound t = D log d+ logN + log d+1 = poly(λ)
and therefore we need to rely on RingLWE with sub-exponential approximation factors. However,
in the case of ASHE for sub-polynomial (resp. polylogarithmic) degree, we can bound t = λo(1)

(resp. t = poly log λ) and therefore we only need to rely on RingLWE with sub-sub-exponential
(resp. quasi-polynomial) approximation factors.

17

Efficiency: By the definition of RingLWE, we can determine the parameters n, q, χ in poly(λ, t) =
poly(λ,D, log d, logN) time, which also bounds the efficiency of sampling from χ. We have q =
λpoly(t) = λpoly(D,log d,logN) and n = poly(λ, t) = poly(λ,D, log d, logN). The cardinality of the ring
R is qDn and therefore the ring elements have description length Dn log q = poly(λ,D, log d, logN)
bits. The run-time of ring operations and the algorithms Setup,Gen,Enc,Dec is therefore also
bounded by poly(λ,D, log d, logN).15

4 DEPIR

In this section, we formally define doubly efficient private information retrieval (DEPIR) and give a
generic construction from ASHE, via fast polynomial evaluation with preprocessing.

4.1 Definition

At high level, an (unkeyed) DEPIR scheme is a protocol between a Server and an arbitrary Client.
The protocol consists of four algorithms, Prep,Query,Resp,Dec, and the algorithms are performed
in two phases of the protocol, preprocessing and query, illustrated as follows.

Preprocessing. Server has a database DB ∈ {0, 1}N and runs the deterministic preprocessing al-
gorithm D̃B := Prep(1λ,DB). It stores the static data structure D̃B in random-access memory.

Query. Client knows the database size N , has index i ∈ JNK and wants to learn the entry DB[i]
without revealing i.

1. Client runs (ct, s) ← Query(1λ, N, i) to generate query ciphertext ct that it sends to
Server, and a query-specific secret decoding key s that it keeps locally.

2. Server responds with the answer ans ← Resp(D̃B, ct) using random-access to the data
structure D̃B.

3. Client decodes the answer using the algorithm b := Dec(s, ans) to learn the bit b = DB[i].

We next describe the definition formally. Our definition is based on those of Boyle et al. [BIPW17,
Definition 3.5] and Canetti et al. [CHR17, Definition 1]. The main difference is that our setting is
unkeyed: the preprocessing algorithm Prep is deterministic and does not require any secret coins,
nor does it output any keys needed by clients to run queries in the future. Therefore, the Server
can perform the preprocessing on its own, and there is no need for a trusted third party to do it.

Definition 4.1 (DEPIR). An (unkeyed) doubly efficient private information retrieval (DEPIR) is a
tuple of algorithms (Prep,Query,Resp,Dec) with the following syntax.

• D̃B := Prep(1λ,DB) takes the security parameter 1λ and a database DB ∈ {0, 1}N , and determinis-
tically outputs a preprocessed database D̃B.

• (ct, s)← Query(1λ, N, i) takes the security parameter 1λ a database size N , and index i ∈ JNK, and
it outputs a query ciphertext ct and a query-specific decoding key s.

15Note that the definition of ASHE allows efficiency to scale polynomially with d, while the above construction
“overachieves” by only scaling polylogarithmically with d.

18

• ans := Resp(D̃B, ct) takes the preprocessed database D̃B stored in random-access memory and a
query ct, and it responds with an answer ans.

• b := Dec(s, ans) takes the query-specific decoding key s and the answer ans, and it outputs a decoded
bit b ∈ {0, 1}.

The algorithms (Prep,Query,Resp,Dec) should satisfy the following correctness, security, and efficiency:

Correctness: Honest execution of Prep,Query,Resp, and Dec successfully recovers requested data items
with probability 1. That is, for every DB ∈ {0, 1}N and every i ∈ JNK, it holds that

Pr

Dec(s, ans) = DB[i] :
D̃B := Prep(1λ,DB);

(ct, s)← Query(1λ, N, i);

ans := Resp(D̃B, ct)

 = 1.

Security: No efficient adversary can distinguish the queries output by Query on input index i0 and i1.
Namely, we define the following game between a challenger and an adversary A:

1. (i0, i1, 1
N , aux)← A(1λ): A selects a size N , a challenge index pair i0, i1 ∈ JNK, and auxiliary

information aux.

2. b ← {0, 1}; (s, ct) ← Query(1λ, N, ib): The challenger selects a random bit b and generates a
sample query ct for the chosen index ib.

3. b′ ← A(aux, ct): A outputs a guess for b, given the query ct.

We require that for every PPT adversary A, there exists a negligible function negl such that the
distinguishing advantage of A in the above security game is |Pr[b′ = b]− 1/2| ≤ negl(λ).

Efficiency: Suppose that Resp is given random accesses to D̃B. We say the scheme (Prep,Query,Resp,Dec)
is doubly efficient if Prep runs in time poly(λ,N), and Query,Resp,Dec run in time sublinear in N .
Ideally, we want Prep to run in quasilinear time in N , and Query,Resp,Dec run in polylogarithmic
time in N .

We remark that the security game does not talk about the preprocessing step Prep at all, and
that this step is only needed for efficiency/correctness. When the client issues a query, its security
is guaranteed no matter what the server does, even if it does not preprocess the database correctly.
This is contrast to secret-key or even public-key DEPIR, where the client gets some key associated
with the preprocessed database and it is essential that this key is generated honestly. Also, we
remark that the above security game explicitly defines security for only one query, but the security
generically extends to any polynomial number of queries via a straightforward hybrid argument.

Our syntax is slightly different from the “passive” syntax of Boyle et al. [BIPW17, Definition
3.5], which is more restrictive. Their Query algorithm outputs a list of indices I , and the server
passively responds D̃B[I] denoting the entries of D̃B at locations I . In our syntax (and also that of
Canetti et al.), the server’s response Resp may perform arbitrary computation using D̃B. In partic-
ular, our syntax allows Resp to read various locations of D̃B adaptively for many rounds, where
the choice of each location may depend on the contents of the locations read so far. However, our
actual construction (presented later) is compatible with the passive syntax: the query ciphertext ct
fully determines a non-adaptive list of indices I and Resp only accesses entries of D̃B[I].

19

Definition 4.2 (Efficiency metrics). For any DEPIR scheme (Prep,Query,Resp,Dec), the preprocess-
ing time is the running time of Prep, the server storage is the output size of Prep, the query time denotes
the total time of (Query,Resp,Dec), and the communication is the total output size of Query and Resp.

4.2 Construction

In this subsection, we construct a DEPIR from an ASHE. The construction relies on some param-
eters d,m such that d is prime and dm > N ; we discuss how to set them later. The construction
consists of 3 steps that carefully fit together:

• Express the function fDB(i) = DB[i] as an m-variate polynomial of individual degree < d
over Fd, where the inputs are the base-d digits of the index i.

• Construct a basic PIR scheme by using ASHE to homomorphically evaluate the polynomial
fDB over the encryptions of the base-d digits of i; the ciphertext consists of m ring elements
and the server computation consists of evaluating the “lifted” polynomial fDB over them.

• Preprocess the polynomial fDB into a data structure D̃B that enables fast online evaluation
using Theorem 2.1.

We first discuss each of the steps, introducing some useful notation and claims along the way. We
then formally describe the entire DEPIR scheme by combining all 3 steps.

Encoding a database as a polynomial. For i ∈ JNK let (i1, . . . , im) = based,m(i) be the based-d
representation of i such that i =

∑m
j=1 ij · dj−1 with ij ∈ JdK. The following claim says that we can

encode the database DB as an m-variate polynomial fDB over Fd such that fDB(based,m(i)) = DB[i],
and moreover we can find the coefficient representation of this polynomial efficiently in quasi-
linear time.

Claim 4.2.1. For any DB ∈ {0, 1}N , any prime d ∈ N, and any m ∈ N such that dm ≥ N , there exists
some m-variate polynomial fDB(X1, . . . , Xm) over Fd with individual degree < d in each variable such
that, for all i ∈ JNK, it holds that fDB(i1, . . . , im) = DB[i] where (i1, . . . , im) = based,m(i). Moreover,
there is an algorithm fDB := ToPolyd,m(DB) that outputs the coefficients of fDB in time O(dm · m ·
poly log(d)).

Proof. We invoke multivariate polynomial interpolation from Lemma 2.2. Define the dm evalu-
ation points {y(x1,...,xm) ∈ Fd}(x1,...,xm)∈Fm

d
via y(x1,...,xm) = DB[i] when (x1, . . . , xm) = based,m(i)

for i ∈ JNK and y(x1,...,xm) = 0 else. The Lemma says that in time O(dm ·m · poly log(d)) we can
interpolate the coefficients of a polynomial fDB(X1, . . . , Xm) such that fDB(x1, . . . , xm) = yx1,...,xm

for all (x1, . . . , xm) ∈ Fm
d , which satisfies the Claim.

Basic PIR. We construct a basic PIR scheme (without preprocessing) by using an ASHE scheme;
the client encrypts the the m base-d digits of i and the server homomorphically evaluates the
polynomial fDB over them. Concretely, we use ASHE with plaintext space Fd, total degree D =
dm, and number of terms N , with some corresponding ciphertext space consisting of a ring R. The
Query algorithm, given an index i, finds its base-d representation (i1, . . . , im) = based,m(i), chooses
an ASHE secret s and uses it to encrypt each of the m plaintexts ij ∈ Zd resulting in ciphertexts

20

ctj ∈ R, which it sends to the server. The server responds by taking the polynomial fDB defined
above, lifting it to R to get f̄DB, and sending the homomorphically evaluated ciphertext ct∗ :=
f̄DB(ct1, . . . , ctm) to the client. The client uses ASHE decryption Dec(s, ct∗) to recover DB[i] =
fDB(i1, . . . , im).

Preprocessing. Lastly, we take the basic PIR scheme above and convert it to DEPIR by prepro-
cessing the polynomial f̄DB. Our DEPIR scheme uses the same Query,Dec algorithms as the basic
PIR above. In particular, from the client’s point of view, there is no difference between the DEPIR
scheme and the basic PIR scheme, and the security of the former directly follows from that of the
latter, which in turns follows from that of the ASHE, which in turn follows from RingLWE. How-
ever, we improve the server’s efficiency and accelerate the computation of ct∗ := f̄DB(ct1, . . . , ctm)

by preprocessing f̄DB using Theorem 2.1. The preprocessing results in some data structure D̃B that
lets us evaluate f̄DB on any input ct1, . . . , ctm in time sublinear in N . Here we have to be careful
with the parameter choice of d,m and different options will result in different trade-offs between
preprocessing time/size and evaluation time.

Full DEPIR Construction. We now give a full construction of DEPIR from an ASHE scheme
(ASHE.Setup,ASHE.Gen,ASHE.Enc,ASHE.Dec,ASHE.Lift). We leave the choice of the parameters
d and m flexible and will later plug in concrete choices of d and m to achieve different trade-offs.

Algorithm 4.3: DEPIR from ASHE

Parameters: The database size N , determines some parameters d,m ∈ N such that d prime and
dm ≥ N , as specified later. Let params := ASHE.Setup(1λ, 1d, 1D, dm) with D = dm, which
determines a ring R = Zq[Y,Z]/(E1(Y), E2(Z)). Without loss of generality, we implicitly
assume all algorithms have access to these parameters, which they can derive from λ,N .

Prep(1λ,DB):

1. Let fDB := ToPolyd,m(DB) be computed using the algorithm in Claim 4.2.1.
Note that fDB(X1, . . . , Xm) is an m-variate polynomial over Fd with individual degree
< d in each variable such that fDB(based,m(i)) = DB[i] for all i ∈ JNK. The total degree
of fDB is < dm and the total number of terms is ≤ dm.

2. Lift fDB ∈ Fd[X1, . . . , Xm] to f̄DB ∈ R[X1, . . . , Xm] via f̄DB := ASHE.Lift(fDB).

3. Invoke the preprocessing algorithm from Theorem 2.1 on the polynomial f̄DB over R

and let the resulting data structure be D̃B.

4. Output D̃B.

Query(1λ, N, i):

1. Let (i1, . . . , im) = based,m(i) be the base-d digits of i.

2. Sample s← ASHE.Gen(1λ).

3. For each j ∈ [m], encrypt ij by invoking ctj ← ASHE.Enc(s, ij).

4. Output (ct = (ct1, . . . , ctm), s).

21

Resp(D̃B, ct):

1. Parse ct = (ct1, . . . , ctm).

2. Invoke the evaluation algorithm from Theorem 2.1 to evaluate ans = f̄DB(ct1, . . . , ctm)

using random-access to the data structure D̃B.

3. Output ans.

Dec(s, ans):

1. Output ASHE.Dec(s, ans).

Correctness. Consider any DB ∈ {0, 1}N and any i ∈ JNK with (i1, . . . , im) = based,m(i). Let
D̃B := Prep(1λ,DB), (ct, s) ← Query(1λ, N, i), ans := Resp(D̃B, ct), b = Dec(s, ans). By Claim 4.2.1,
we know that the polynomial fDB computed during preprocessing satisfies fDB(i1, . . . , im) =
DB[i]. Also, by the correctness of polynomial evaluation with preprocessing (Theorem 2.1), we
have that the value ans computed during Resp satisfies ans = f̄DB(ct1, . . . , ctm). Hence, by the
definition of correctness for ASHE (Definition 3.1), we have that

b = ASHE.Dec
(
s, ans = f̄DB(ct1, . . . , ctm)

)
= fDB(i1, . . . , im) = DB[i].

Security. The security of the DEPIR follows directly from that of ASHE, since the adversary only
sees m ASHE ciphertexts. Notice that the adversary runs in time poly(λ) and chooses the bound
1N , meaning that N = poly(λ). Depending on the choice of d,m as functions of N , we can rely on
restricted forms of ASHE security. In particular, if d,m = poly log(N) = poly log(λ) then we only
need ASHE security for polylogarithmic degree, and if d,m = No(1) = λo(1) then we only need
ASHE security for sub-polynomial degree.

Efficiency. We calculate the computation time and output size for each algorithm. Recall that,
by the definition of ASHE efficiency, the bit-length of ring elements and the run-time of the ring
operations are bounded by poly(λ, d,m).

• Prep: The interpolation takes time dm ·m · poly log d (Lemma 2.2), and ASHE.Lift takes time
dm · poly(λ, d,m). By Theorem 2.1, computing the data structure D̃B takes time

dm ·mm · poly(m, d, log |R|) ·O(logm+ log d+ log log |R|)m

=dm ·mm · poly(m, d, λ) ·O(logm+ log d+ log λ)m,

which therefore dominates the run-time of Prep and also bounds the size of D̃B.

• Query: The run-time of Query is bounded by that of ASHE.Gen and that of running m copies
of ASHE.Enc, which is bounded by poly(λ, d,m) by the definition of ASHE efficiency.

• Resp: By Theorem 2.1, the run-time of Resp is bounded by poly(d,m, log |R|) = poly(λ, d,m).

• Dec: By the definition of ASHE efficiency, the run-time of Dec is bounded by poly(λ, d,m).

22

We consider two potential options of how to choose d,m with different tradeoffs between prepro-
cessing time/size an query time/communication.

• Option A: For any constant ε > 0, choose d to be the first prime d > log2/εN . By Bertrand’s
postulate d < 2 · ⌈log2/εN⌉ = O(log2/εN). We can find d in deterministic poly logN time
using deterministic primality testing. Let m := ⌈logdN⌉ = ε

2 logN/ log logN +O(1).

The preprocessing run-time and the server storage are bounded by:

dm ·mm · poly(m, d, λ) ·O(logm+ log d+ log λ)m

=O(N1+ε)poly(λ, logN),

where we bound mm ≤ O(logN)m ≤ (logN)
ε
2
logN/ log logN+O(1) ≤ N ε/2poly logN , and sim-

ilarly O(logm+ log d+ log λ)m ≤ O(logN)m ≤ N ε/2poly logN .16

The query time (i.e., run-time of Query,Resp,Dec) and communication are bounded by:

poly(λ, d,m) = poly(λ, logN).

• Option B: Choose d to be the first prime d > 2
√
logN . By Bertrand’s postulate d = O(2

√
logN).

We can find d in deterministic 2O(
√
logN) time. Let m := ⌈logdN⌉ ≤

√
logN +O(1).

The preprocessing run-time and server storage are bounded by:

dm ·mm · poly(m, d, λ) ·O(logm+ log d+ log λ)m

=N · 2Õ(
√
logN)poly(λ) = N1+o(1)poly(λ)

The query time (i.e., run-time of Query,Resp,Dec) and communication are bounded by:

poly(λ, d,m) = 2O(
√
logN)poly(λ) = No(1)poly(λ).

Summarizing, the above gives us the following theorem, where the two parts correspond to
parameter options A and B respectively.

Theorem 4.4. Assuming ASHE for polylogarithmic degree, for any constant ε > 0 there is a DEPIR
scheme such that, for a database of size N and security parameter λ, the preprocessing run-time and the
server storage are bounded by O(N1+ε)poly(λ, logN) and the query time and communication are bounded
by poly(λ, logN). In particular, such a scheme exists assuming RingLWE with quasi-polynomial approxi-
mation factors.

Alternatively, assuming ASHE for sub-polynomial degree, there is a DEPIR scheme such that, for a
database of size N and security parameter λ, the preprocessing run-time and the server storage are bounded
by N · 2Õ(

√
logN)poly(λ) = N1+o(1)poly(λ) and the query time and communication are bounded by

2O(
√
logN)poly(λ) = No(1)poly(λ). In particular, such a scheme exists assuming RingLWE with sub-sub-

exponential approximation factors.
16Without loss of generality, we assume N ≥ λ, as otherwise we can switch to “trivial PIR”, where the server sends

the entire database in each query to get the required efficiency.

23

Remark on Passive Syntax. As mentioned in Section 4.1, Boyle et al. defines a passive syntax
for DEPIR, where the client’s query consists of a set of indices I and the server’s response consists
of D̃B[I] = (D̃B[i] : i ∈ I). We can modify our scheme, described in Algorithm 4.3, to satisfy
the passive syntax while preserving the efficiency. To see this, we have to go under the hood of
polynomial evaluation with preprocessing (Theorem 2.1). The preprocessing of the polynomial
f̄DB creates a data structure D̃B consisting of some tables. To evaluate the polynomial at some
point (ct1, . . . , ctm) ∈ Rm, the point fully determines a small set I of locations in the tables to look
up. Using the values in these locations, one can efficiently reconstruct ans = f̄DB(ct1, . . . , ctm).
In our DEPIR scheme as described in Algorithm 4.3, the client sends (ct1, . . . , ctm) to the server,
and the server then uses these to figure out the set I , looks up D̃B[I] and uses it to compute ans.
However, we can convert this to passive syntax by having the client use (ct1, . . . , ctm) to figure out
I locally, send only the set I to the server who responds with D̃B[I], and then have the client uses
this to compute ans. Moreover, since our notion of query time already combines the total of server
+ client work, shifting some of the work from server to client does not change the overall cost.

Remark on Efficiency Optimizations. We are being wasteful by thinking of the database as N
bits and only retrieving a single bit in each DEPIR query. We could optimize the scheme by think-
ing of the database as N blocks in Fd, and retrieve an entire block in each query.

We can also achieve some minor efficiency optimizations by going under the hood of our
ASHE construction from RingLWE and polynomial preprocessing. While we think of ASHE ci-
phertexts ct1, . . . , ctm and the coefficients of the polynomial f̄DB as being elements of the ring
R = Zq[Y,Z]/(Zn + 1, Y D + 1), they actually live in a small subset. In particular, all the coeffi-
cients are just constant polynomials and all the ciphertext polynomials only have degree 1 in Y .
This observation would allow us to optimize the preprocessing (see Appendix A) by getting better
bounds on the degree/magnitude of the polynomial outputted by f̄DB(ct1, . . . , ctm) when evalu-
ated without reducing modulo q or Y D +1. While this would provide an efficiency improvement,
it does not affect our asymptotic statement.

5 Updatable DEPIR

We show how to construct an updatable DEPIR scheme where the server can efficiently update
bits of the database, by setting DB[i] := b, and correspondingly update the preprocessed data
structure D̃B in sublinear time.

Definition. An updatable DEPIR inherits the same syntax, correctness and efficiency proper-
ties as standard DEPIR. However, it also has an additional Update algorithm such that D̃B

′
:=

Update(D̃B, i, b) updates the data structure in a way that corresponds to setting DB[i] := b. More-
over, it does so in sub-linear time given read/write random-access to D̃B.

Definition 5.1 (Updatable DEPIR). An (unkeyed) updatable DEPIR is a tuple of algorithms (Prep,
Query, Resp, Dec, Update) such that (Prep,Query,Resp,Dec) satisfy the definition of standard DEPIR
(Definition 4.1). Moreover Update has the following syntax:

• D̃B
′
:= Update(D̃B, i, b): Takes as input a location i ∈ JNK and a bit b ∈ {0, 1}. Uses random-access

to the data structure D̃B and updates it to D̃B
′
.

24

We require the following notion of correctness with updates. There is a predicate GOODλ(D̃B,DB) that
corresponds to D̃B being a “good” preprocessing of DB with respect to security parameter λ, such that the
following properties hold:

1. For any DB ∈ {0, 1}N and for D̃B := Prep(1λ,DB) we have GOODλ(D̃B,DB) = 1.

2. For any DB ∈ {0, 1}N , any i ∈ JNK, and any b ∈ {0, 1}, let DB′ be the same as DB except
with DB′[i] := b. For any D̃B such that GOODλ(D̃B,DB) = 1, if D̃B

′
:= Update(D̃B, i, b) then

GOODλ(D̃B
′
,DB′) = 1.

3. For any DB ∈ {0, 1}N any λ ∈ N, any D̃B such that GOODλ(D̃B,DB) = 1, any i ∈ JNK,

Pr

[
Dec(s, ans) = DB[i] :

(ct, s)← Query(1λ, N, i);

ans := Resp(D̃B, ct)

]
= 1.

Definition 5.2 (Efficiency metrics with updates). For any updatable DEPIR (Prep, Query, Resp, Dec,
Update), the preprocessing time, server storage, query time and communication are defined the same
way as in standard DEPIR. Further, we define the update time to be the run-time of the Update procedure.

Construction overview. Our previous construction of DEPIR in Section 4.2 does not appear to
be udpatable directly; every bit of DB affects almost every bit of D̃B. In fact, there seems to be
an inherent difficulty in constructing updatable DEPIR. If an update for an index i touches some
set of locations Ii in the data structure D̃B, then a PIR query for i must touch some of the same
locations in Ii, else it will be unaware of the update. But then, it may seem that by observing the
set of locations accessed during the PIR query and checking if they coincide with Ii, the server
can learn whether the queried index is i or not! It turns out that the above intuition is false,
and in fact, we can ensure that the set Ii of locations accessed during an update is completely
independent of i. To do so, we borrow ideas from hierarchical ORAM [GO96], which were also used
previously used in a related manner in conjunction with multi-server DEPIR [HOWW19] and with
secret-key DEPIR [HHWW19]. We show how to use these ideas to generically upgrade any basic
(non-updatable) DEPIR into an updatable DEPIR. Essentially, our updatabe DEPIR will consist
of a hierarchy of L = logN levels of exponentially increasing size, where each level ℓ contains a
preprocessed database D̃Bℓ under the standard DEPIR. Whenever we update the database, we will
put this data in the smallest level, no matter what index i we are updating, and therefore the set
of accessed locations Ii is independent of i. After every 2ℓ updates, we move all the information
from the smallest ℓ− 1 levels into level ℓ. To read from the updatabase DEPIR, the client makes a
small number of basic DEPIR queries at every level of the hierarchy.

As a first step, we construct a multi-round updatabe DEPIR, where the PIR protocol, in which the
client privately reads some location DB[i], now requires several rounds of interaction instead of the
default 2 rounds. The update procedure in which the server updates the data structure D̃B is still
non-interactive and performed by the server on its own without any involvement from the clients.
We then show how to remove the need for many rounds and give a construction that achieves the
above round-optimal definition, where the entire protocol consists of the client sending a query
ciphertext and the server responding with an answer.

25

5.1 Multi-Round Updatable DEPIR

We generalize the syntax of updatable DEPIR to allow a multi-round protocol Π between the
server S who holds the preprocessed data structure D̃B and the client C who holds an index i,
such that the client should output DB[i] at the end of the protocol. This protocol Π replaces the
functions Query,Resp,Dec, which implicitly defined a basic 2-round protocol. The correctness,
security and efficiency of this generalized syntax are defined analogously in the natural way. In
particular, security says that a (malicious) server cannot learn anything about the client’s index i
during the execution of Π.

Definition 5.3 (Updatable Multi-Round DEPIR). An updatable multi-round DEPIR consists of a
tuple of algorithms (Prep,Update) with the same syntax as Definition 5.1, together with a protocol Π =

(S, C) between a server S(D̃B) and a client C(1λ, N, i).

Correctness: There is a predicate GOODλ(D̃B,DB) that satisfies properties (1),(2) of the correctness re-
quirement of Definition 5.1 as well as the following modification of property (3): For any DB ∈
{0, 1}N , any λ ∈ N, any D̃B such that GOODλ(D̃B,DB) = 1, and any i ∈ JNK, an honest execution
of the protocol Π between the server S(D̃B) and the client C(1λ, N, i) results in the client outputting
DB[i] with probability 1.

Security: We define the following game between a challenger and a stateful adversary A:

1. A(1λ) selects a size 1N and a challenge index pair i0, i1 ∈ JNK.

2. The challenger selects a random bit b← {0, 1}.
3. The adversary participates in a protocol execution A ↔ C(1λ, N, ib) with the honest client
C(1λ, N, ib). The honest client follows the protocol specification, but A can act arbitrarily. At
the end of the protocol execution A outputs a guess for b′.

We require that for every PPT adversary A, there exists a negligible function negl such that the
distinguishing advantage of A in the above security game is |Pr[b′ = b]− 1/2| ≤ negl(λ).

Efficiency: The preprocessing time, server storage, and update time are defined the same way as
Definition 5.1. We now define query time (resp. communication) to be the total run time (resp.
total communication complexity) of the server and the client in the protocol Π.

Construction. We show how to generically upgrade any (non-updatable) DEPIR (Prep,Query,Resp,Dec)
with sufficiently good parameters into a multi-round updatable DEPIR (Prep′,Update,Π = (S, C)).
The construction follows the high-level description in Section 1.2.4.

Algorithm 5.4: Multi-Round Updatable DEPIR

D̃B := Prep′(1λ,DB): Let N := |DB|. Let L := ⌈logN⌉.

1. Construct DBL to consist of a list of 2L pairs (i, b) with i ∈ JNK∪ {∞}, b ∈ {0, 1}, where
the list contains all pairs (i,DB[i]) for i ∈ JNK, and is padded with 2L − N additional
“dummy pairs” (∞, 0). The list is sorted according to i.

2. Let D̃BL := Prep(1λ,DBL).

26

3. For ℓ < L: Let DBℓ = ⊥ and D̃Bℓ := ⊥.

4. Set count := 0. Output D̃B = (DB0, . . . ,DBL, D̃B0, . . . , D̃BL, count).

D̃B
′
:= Update(D̃B, i∗, b∗): Update count := count+ 1 (mod 2L).

Let ℓ∗ be the max of ℓ ∈ {0, . . . , L} such that 2ℓ divides count.

1. Construct an updated list DB′
ℓ∗ as follows:

(a) Define DB−1 := {(i∗, b∗)} to be a list containing a single tuple.
(b) Take all the non-dummy pairs (i, b) contained in the lists DB−1,DB0, . . . ,DBℓ∗ and

sort them by index i into DB′
ℓ∗ .17 If there are multiple pairs with the same index i,

take only the one from DBℓ with the smallest ℓ and discard the rest.
(c) Append additional dummy pairs (∞, 0) to DB′

ℓ∗ until the final list is of size 2ℓ
∗
.

2. Set DBℓ∗ := DB′
ℓ∗ , D̃Bℓ∗ := Prep(1λ,DB′

ℓ∗).

3. For ℓ ∈ {0, . . . , ℓ∗ − 1}: Set DBℓ := ⊥, D̃Bℓ := ⊥.

Π = (S(D̃B), C(1λ, N, i)): Let L := ⌈logN⌉. Let Nℓ := 2ℓ(⌈log(N + 1)⌉+ 1) be the bit-size of DBℓ.

Let BinSearch be a RAM program implementing binary search, such that BinSearchN,ℓ(i,DBℓ)
has read-only random-access to a sorted list DBℓ consisting of 2ℓ tuples, and checks if the list
contains some tuple of the form (i, b): if so it outputs the first such tuple, else it outputs ⊥.
The program is padded to always run in worst-case time TN,ℓ = poly log(N).

The server S(D̃B) and client C(1λ, N, i) run the following protocol:

1. For ℓ = 0, . . . , L:

The client C(1λ, N, i) starts running the program BinSearchN,ℓ(i,DBℓ), without hav-
ing a copy of DBℓ. Each time the program wants to read some bit DBℓ[j] in location
j ∈ JNℓK of DBℓ, the client/server run the following “basic DEPIR” sub-protocol:

i. The client runs (ct, s) ← Query(1λ, Nℓ, j) and sends (ct, ℓ) to the server, and
keeps s locally.

ii. If D̃Bℓ ̸= ⊥, the server responds with the answer ans ← Resp(D̃Bℓ, ct) using
random-access to the data structure D̃Bℓ, else the server responds with ⊥.

iii. If ans ̸= ⊥, the client runs b := Dec(s, ans) else it sets b := ⊥.
If b ̸= ⊥, the client continues running the program BinSearchN,ℓ(i,DBℓ) with DBℓ[j] =
b. Else the client terminates the execution and sets the output to be ⊥.

Eventually each of the programs outputs some bℓ = BinSearchN,ℓ(i,DBℓ) such that bℓ ∈
{0, 1} ∪ {⊥}.

2. Let ℓ∗ be the minimal ℓ ∈ {0, . . . , L} such that bℓ ̸= ⊥. The client outputs bℓ∗ .

Theorem 5.5. Assume there is a DEPIR scheme with preprocessing time / server storage ηp(λ,N) and
query time / communication ηq(λ,N). Then the above construction yields a multi-round updatable DE-
PIR with preprocessing time / server storage ηp(λ,O(N logN)) · poly logN , query time / communication
ηq(λ,O(N logN)) · poly logN , and amortized update time poly logN +

∑⌈logN⌉
ℓ=0

1
2ℓ
ηp(λ,O(2ℓ logN)).

17If ℓ∗ < L, then DBℓ∗ must be ⊥, an empty list, as we will argue in the correctness.

27

In particular, assuming RingLWE with quasi-polynomial approximation factors, for any ε > 0, there
is a multi-round updatable DEPIR with preprocessing time / server storage N1+εpoly(λ), query time /
communication poly(λ, logN), and amortized update time N εpoly(λ, logN).

Alternatively, assuming RingLWE with sub-sub-exponential approximation factors, there is a multi-
round updatable DEPIR with preprocessing time / server storage N1+o(1)poly(λ), query time / communi-
cation No(1)poly(λ), and amortized update time No(1)poly(λ).

Proof. We show correctness, security and efficiency in turn. Throughout, for database size N , we
define L := ⌈logN⌉ and for ℓ ∈ {0, . . . , L}we define Nℓ := 2ℓ(⌈log(N + 1)⌉+ 1).

Correctness. Define the predicate GOODλ(D̃B,DB) to hold if

D̃B = (DB0, . . . ,DBL, D̃B0, . . . , D̃BL, count)

with DBℓ ∈ {0, 1}Nℓ such that:

i. For all ℓ ∈ {0, . . . , L}, D̃Bℓ = Prep(1λ,DBℓ).

ii. For all ℓ ∈ {0, . . . , L}, either DBℓ = ⊥ or DBℓ consists of a list of 2ℓ pairs (i, b) with i ∈
JNK ∪ {∞}, b ∈ {0, 1} and the pairs are sorted by the index i. Furthermore, for any i ∈ JNK,
there is at most one tuple of the form (i, b) in DBℓ.

iii. For each i ∈ JNK, let ℓ ∈ {0, . . . , L} be the minimal value such that DBℓ contains a tuple of the
form (i, b). Then such an ℓ always exists and b = DB[i].

iv. Let count = (count0, . . . , countL−1) be the binary representation of count ∈ J2LK with count =∑
ℓ countℓ · 2ℓ and counti ∈ {0, 1}. For each ℓ such that countℓ = 0 we have DBℓ = ⊥.

With the above predicate, we show that the 3 correctness properties (Definition 5.1) hold.
By the definition of D̃B := Prep′(1λ,DB), it is easy to see that correctness property (1) holds,

meaning that GOODλ(D̃B,DB) = 1.
By the definition of D̃B := Update(D̃B, i∗, b∗), it is also relatively easy to see that correctness

property (2) holds, meaning that if GOODλ(D̃B,DB) = 1 for some DB then GOODλ(D̃B
′
,DB′) = 1,

where DB′ is the same as DB except DB′[i∗] = b∗. There are two subtleties to check. Firstly, we
verify that property (iv) is preserved by the update. Let ℓ∗ be the value defined during the update.
Then it must be the case that, after the update, we have countℓ = 0 for ℓ < ℓ∗, countℓ∗ = 1 or
ℓ∗ = L, and countℓ remain the same as before the update for ℓ > ℓ∗. The update procedure ensures
that for ℓ < ℓ∗ we have DBℓ = ⊥ and for ℓ > ℓ∗ the lists DBℓ are unaffected by the update.
Therefore property (iv) is preserved. Secondly, in step 1b of the update procedure, when we take
all the non-dummy pairs in DB−1,DB0, . . . ,DBℓ∗ , we need to make sure there are ≤ 2ℓ

∗
of them

with distinct indices i, otherwise we would “overflow” DBℓ∗ . If ℓ∗ < L then, before the update
starts, we must have countℓ∗ = 0 and therefore DBℓ∗ = ⊥ by (iv). The total number of pairs in
DB−1,DB0, . . . ,DBℓ∗−1 is ≤ 1 + 1 + 2 + 4 + · · · + 2ℓ

∗−1 = 2ℓ
∗

and therefore the total number of
non-dummy pairs is ≤ 2ℓ

∗
. If ℓ∗ = L then the total number of possible non-dummy pairs with

distinct indices is N ≤ 2L.
Finally, by the definition of the protocol Π and the correctness of the underlying non-updatable

DEPIR, it is easy to see that correctness property (3) holds, meaning that if GOODλ(D̃B,DB) = 1

28

for some DB then the execution of Π with S(D̃B) and C(1λ, N, i) results in the latter outputting
DB[i]. In particular, the correctness of the underlying DEPIR and properties (i) and (ii) above
ensure that each of the program executions correctly outputs bℓ = BinSearchN,ℓ(i,DBℓ) such that
bℓ ̸= ⊥ iff the tuple (i, bℓ) is contained in DBℓ. Property (iii) then ensures that for ℓ∗ being the
minimal ℓ ∈ {0, . . . , L} such that bℓ ̸= ⊥we have the client output bℓ∗ = DB[i].

Security. The security of the protocol follows directly from that of the underlying non-updatable
DEPIR, via a standard hybrid argument. In particular, the adversary only sees pairs of the form
(ℓ, ct) with a level index ℓ and a query ciphertexts ct from the underlying DEPIR, which ensures
that the ciphertexts are computationally indistinguishable whether the client’s input is i0 or i1.
Furthermore, by padding the programs BinSearchN,ℓ(i,DBℓ) to always make the worst-case num-
ber of accesses, the number of pairs (ℓ, ct) that the adversary sees for each ℓ is always the same.

Efficiency. The preprocessing algorithm Prep′ of the updatable DEPIR makes L = O(logN)
calls to the preprocessing algorithm Prep of the underlying DEPIR on databases of size Nℓ =
2ℓ logN = O(N logN) for a total run time of ηp(λ,O(N logN))poly log(N). The query proto-
col of the updatable DEPIR runs L = O(logN) copies of binary search over databases of size
Nℓ = O(N logN), where accessing each bit of the database is done by running a query proto-
col of the underlying DEPIR which takes time ηq(λ,Nℓ) = ηq(λ,O(N logN)), for a total run time
ηq(λ,O(N logN)) · poly log(N). For the amortized complexity of the update protocol, consider
any sequence of T updates. For each level ℓ ∈ {0, . . . , L} we have ≤ T/2ℓ updates where the
value of ℓ∗ in the update is ℓ∗ = ℓ. Each such update takes Nℓ · poly logN +

∑ℓ
i=0 ηp(λ,Nℓ) ≤

2ℓpoly logN + ηp(λ,O(2ℓ logN))poly logN time. Therefore the total cost of the T updates is

L=⌈logN⌉∑
ℓ=0

T

2ℓ
(2ℓpoly logN+ηp(λ,O(2ℓ logN))·poly logN) = T ·poly log(N)·

⌈logN⌉∑
ℓ=0

1

2ℓ
ηp(λ,O(2ℓ logN)).

which gives the amortized update time per operation as claimed.

Remark 5.1 (Deamortization). The above scheme only achieves good amortized efficiency of the
updates, but the worst-case run-time of an update can be ≥ N . However, we can deamortize
the scheme and get the same parameters as above with worst-case efficiency. The idea follows
the technique of [OS97] and is simple conceptually, but slightly cumbersome to describe. In
the scheme above, each time we do an update with some ℓ∗ we have to (1) sort the data from
DB−1,DB0, . . . ,DBℓ∗ into DBℓ∗ , (2) redo the preprocessing of DBℓ∗ to get an updated D̃Bℓ∗ . We
do this every ≤ 2ℓ

∗
steps and, therefore, although all the work is performed during one update,

the amortized analysis spreads the accounting of this cost over the subsequent 2ℓ
∗

updates. In the
deamortized scheme, instead of doing the work of steps (1) and (2) during one update itself, we
will actually spread the execution (not just the accounting) of these steps across the subsequent
2ℓ

∗
updates. This however raises the issue that the updated DBℓ∗ , D̃Bℓ∗ are not available during

the subsequent 2ℓ
∗

updates. To solve this we keep an “old auxiliary copy” of DB−1,DB0, . . . ,DBℓ∗

and D̃B0, . . . , D̃Bℓ∗ around and use these to handle accesses to DBℓ∗ for the next 2ℓ
∗

steps.

29

5.2 Round-Optimal Updatable DEPIR

We now describe how to adapt our multi-round updatable DEPIR construction above to get a
round-optimal construction that matches the syntax of definition 5.1. In particular, query protocol
consists of the client sending a query ciphertext and the server responds with an answer ciphertext
that the client decrypts. To do so, we will rely on RAM-FHE (Section 7); namely, we rely on the
simplest variant (Section 7.2), where the RAM program is just binary search BinSearchN,ℓ(i,DBℓ)

over a large plaintext input y = DBℓ of size Õ(N), and a small encrypted input x = i of size
O(logN); furthermore the program only need O(logN) bits of read/write memory. On a high
level, we modify the previous protocol Π so that, instead of the client running the programs
BinSearchN,ℓ(i,DBℓ) locally on her input i and interactively using the basic DEPIR scheme to read
from the preprocessed databases DBℓ on the server, we have the client send the RAM-FHE encryp-
tion of i and have the server homomorphically execute the programs BinSearchN,ℓ(i,DBℓ) using
the preprocessed databases DBℓ without any additional interaction.

Let (Setup,Gen,Prep,Enc,Eval,Dec) be a RAM-FHE. The updatable DEPIR scheme (Prep′,Update,
Query, Resp, Dec′) is defined as follows.

Algorithm 5.6: Updatable DEPIR

D̃B := Prep′(1λ,DB): Let N := |DB|. Let L := ⌈logN⌉. Let BinSearchN,ℓ be the binary search algo-
rithm as described in the multi-round scheme (5.4). Let Nx := L and let Ny := 2L(⌈log(N +
1)⌉ + 1) be a bound on the bit-size of the databases DBℓ. Let NS = poly logN be the
maximal size of read/write memory needed for BinSearchN,ℓ for ℓ ≤ L. Let params :=
Setup(1λ, Nx, Ny, NS) be the parameters of the RAM-FHE. We assume params is available
to all other algorithms, as they can re-compute it deterministically given λ,N .

The Prep′ procedure is otherwise the same as in the multi-round scheme (5.4), but using the
Prep algorithm of RAM-FHE instead of the one of DEPIR. It outputs

D̃B = (DB0, . . . ,DBL, D̃B0, . . . , D̃BL, count).

D̃B
′
:= Update(D̃B, i∗, b∗): This is the same as in the multi-round scheme (5.4), but using the Prep

algorithm of RAM-FHE instead of the one of DEPIR.

(ct, s)← Query(1λ, N, i): Let (pk, sk) ← Gen(params) and let ct′ ← Enc(pk, i). Output s := sk,
ct := (pk, ct′).

ans := Resp(D̃B, ct): Parse ct = (pk, ct′). For ℓ = 0, . . . , L, let ctℓ := Eval(pk,BinSearchN,ℓ, ct
′, D̃Bℓ).

Output ans := (ct0, . . . , ctL).

b = Dec′(s, ans): Parse s = sk, ans = (ct0, . . . , ctL). For ℓ = 0, . . . , L, let bℓ := Dec(sk, ctℓ). Take the
smallest ℓ such that bℓ ̸= ⊥ and output and output bℓ.

Theorem 5.7. Assume there is a RAM-FHE scheme for programs with run-time T = poly log(N), en-
crypted input size Nx = O(logN), maximal plaintext input size Ny = O(N logN), space complexity
NS = poly log(N) and output size M = O(1), such that the preprocessing of the plaintext input y runs
in time ηp(λ,N, |y|), and the sum of the encryption, evaluation and decryption time is ηq(λ,N). Then

30

the above construction yields an updatable DEPIR with preprocessing time / server storage bounded by
ηp(λ,N,O(N logN)) · poly logN , query time / communication bounded by ηq(λ,N) · poly logN , and
amortized update time bounded by poly logN +

∑⌈logN⌉
ℓ=0

1
2ℓ
ηp(λ,N,O(2ℓ logN)).

In particular, assuming RingLWE with quasi-polynomial approximation factors, for any ε > 0, there
is an updatable DEPIR with preprocessing time / server storage bounded by N1+εpoly(λ), query time /
communication bounded by poly(λ, logN), and amortized update time bounded by N εpoly(λ, logN).

Alternatively, assuming RingLWE with sub-sub-exponential approximation factors, there is an updat-
able DEPIR with preprocessing time / server storage bounded by N1+o(1)poly(λ), query time / communi-
cation bounded by No(1)poly(λ), and amortized update time bounded by No(1)poly(λ).

Proof. The correctness proof is the same as in the proof of Theorem 5.5, but now we rely on the
correctness of the RAM-FHE evaluation of the programs BinSearchN,ℓ(i,DBℓ). Security follows
directly from that of the RAM-FHE via a standard hybrid argument, since the DEPIR query ci-
phertext ct consists of L RAM-FHE ciphertexts. Lastly, the efficiency analysis is the same as in
Theorem 5.5.

Note that our RAM-FHE construction generally relies on an additional circular security as-
sumption. However, in the above we only need RAM-FHE for programs with run-time T =
poly logN . Following Theorem 8.3, we can use leveled RAM-FHE and avoid circular security in
this case.

Remark 5.2 (Deamortization). We can deamortize the scheme and get the same parameters as
above with worst-case efficiency, same as in Remark 5.1.

Remark: Alternative Construction of Round-Optimal Updatable DEPIR. We briefly mention
an alternative method for constructing round-optimal updatable DEPIR from a basic non-updatable
DEPIR. This method avoids the need for RAM-FHE, but has other deficiencies discussed below.
The main idea is to use hash-based sorting to replace binary search by a single non-adaptive lookup
(which also closely follows the approach in [HOWW19, HHWW19]). In other words, the data in
each level DBℓ now consists of 2ℓ buckets, and each bucket contains λ pairs (i, b) with i ∈ JNK∪{∞}
and b ∈ {0, 1}. The pairs (i, b) in each level ℓ are now assigned to buckets via a hash function
hℓ : JNK → J2ℓK, and the buckets are padded with additional dummy pairs (∞, 0) to make each
bucket of size λ. Otherwise the data structure and the update procedure are analogous. Now,
to query some location i, the client needs to retrieve the buckets hℓ(i) at every level ℓ, which it
can do by making poly(λ, logN) DEPIR queries of the basic scheme. The main advantage of this
approach over the prior approach using binary search, is that the client can make all these queries
non-adaptively in parallel, and therefore the protocol still runs in the optimal 2 rounds. By choos-
ing the hash function hℓ to be λ-wise independent, we can ensure a negligible probability of a
bucket overflow if the updates are independent of the hash functions.

The main issues with the above approach stem from the reliance on hash functions hℓ. Firstly,
if the server chooses them, it will need to communicate them somehow to the client, which would
add an extra round of communication leading to a 3 round protocol instead of a 2 round one.
Alternatively, we can think of them as part of some common random string (CRS) chosen externally,
but now we need to rely on the CRS model. Secondly, in either case, the use of hash functions
adds a correctness error. This error is negligible only if the updates are chosen non-adaptively and
independently of the hash functions. However, since these hash functions are public, an adversary
who can adaptively influence the updates after seeing the hash functions can cause an error with

31

non-negligible probability. For these reasons, we prefer our default approach using RAM-FHE,
which does not suffer from these deficiencies.

6 ASHE-FHE

In this section, we define and construct ASHE-FHE encryption, which is a hybrid of an ASHE (see
Definition 3.1) and fully homomorphic encryption (FHE), providing the best of both worlds. We
will use ASHE-FHE as a building block to construct RAM-FHE.

In more detail, an ASHE-FHE is a public-key encryption scheme where we can set the plaintext
space to Zd for d of our choice, and the ciphertexts are elements of some corresponding ring R.
The scheme is an FHE and allows us to evaluate arbitrary (arithmetic) circuits C over encrypted
data. This FHE evaluation procedure can work arbitrarily, and we do not impose any algebraic
structure on it. The output of FHE evaluation is a “good” ciphertext, which decrypts correctly
and can also be used as a input to future FHE evaluations (i.e., the scheme is multi-hop). The
scheme is also an ASHE that allows us to evaluate low-degree multivariate polynomials f over
the encrypted data just by evaluating a lifted version of the same polynomial over the ciphertexts.
The input to an ASHE evaluation can be any “good” ciphertext – either a fresh encryption or the
output of an FHE evaluation. The output of an ASHE evaluation is no longer directly a “good”
ciphertext (i.e., it cannot be used direclty as an input to future FHE or ASHE evaluations), but there
is some “refresh” procedure that converts it into a good ciphertext. We show how to construct
such a ASHE-FHE scheme using a modified version of the FHE scheme of Brakerski, Gentry and
Vaikuntanathan [BGV12] based on RingLWE.

Definition 6.1 (ASHE-FHE). An ASHE-FHE scheme is a tuple of PPT algorithms (Setup,Gen,Enc,
Eval, Dec,Refresh, Lift) with the following syntax:

• params := Setup(1λ, 1d, 1D, N): On input a security parameter λ, total degree D, number of terms
N , plaintext space d, it outputs public parameters params that implicitly define a ring R of the form
R = Zq[Y,Z]/(E1(Y), E2(Z)) for some E1, E2.18 All other algorithms implicitly take params as
input even when not explicitly stated.

• (pk, sk)← Gen(params): Outputs a public key pk, a secret key sk.

• ct← Enc(pk, µ): Given a public key pk and a message µ ∈ Zd, outputs a ciphertext ct ∈ R.

• (ct′1, . . . , ct
′
m) := Eval(pk, C, ct1, . . . , ctℓ): Given pk, an arithmetic circuit C : Zℓ

d → Zm
d , and

ciphertexts (ct1, . . . , ctℓ), deterministically outputs ciphertexts (ct′1, . . . , ct
′
m).

• µ := Dec(sk, ct): Given a secret key sk and a ciphertext ct ∈ R, outputs a message µ ∈ Zd.

• ct′ := Refresh(pk, ct): Given a public key and a ciphertext ct ∈ R, deterministically outputs a new
ciphertext ct′ ∈ R.

• µ̄ := Lift(µ): Lifts µ ∈ Zd to µ̄ ∈ R. For any polynomial f over Zd, we let f̄ := Lift(f) denote the
analogous polynomial over R derived by applying Lift to every coefficient of f .

18We restrict to these rings to match the rings for which we have have fast polynomial evaluation with preprocessing
(Theorem 2.1). As noted, this can be generalized further.

32

We require that the scheme satisfies the following properties.

Correctness: For all params in the support of Setup and all (pk, sk) in the support of Gen(params), there
is a well-defined class of ciphertexts GOODsk ⊆ R depending on sk (and params), such that that

1. For any plaintext µ ∈ Zd,

Pr

[
ct ∈ GOODsk ∧
Dec(sk, ct) = µ

: ct← Enc(pk, µ)

]
= 1.

2. For all ciphertexts ct1, . . . , ctm ∈ GOODsk with µi := Dec(sk, cti) for i ∈ [m], and for any
polynomial f(X1, . . . , Xm) over Zd consisting of at most N terms and total degree < D,

Pr

 ct∗ ∈ GOODsk ∧
Dec(sk, ct∗) = f(µ1, . . . , µm)

:
f̄ := Lift(f)

ct′ := f̄(ct1, . . . , ctm)
ct∗ := Refresh(pk, ct′)

 = 1.

3. For all ciphertexts ct1, . . . , ctℓ ∈ GOODsk such that µi := Dec(sk, cti) for i ∈ [ℓ], for any
arithmetic circuit C : Zℓ

d → Zm
d , if we compute

(ct′1, . . . , ct
′
m) := Eval(pk, C, ct1, . . . , ctℓ) and νi := Dec(sk, ct′i) for i ∈ [m]

then it holds that ct′i ∈ GOODsk for all i ∈ [m] and (ν1, . . . , νm) = C(µ1, . . . , µℓ).

Security: We require the standard public-key IND-CPA security for the encryption scheme (Gen,Enc,Dec)
when params← Setup(1λ, 1d, 1D, N) for any N = poly(λ), d = poly(λ), D = poly(λ).

We also define weaker notions of ASHE-FHE for polylogarithmic degree where we only require
the above to hold for d = poly log(λ), D = poly log(λ). Analogously, we define ASHE-FHE for
sub-polynomial degree with d = λo(1), D = λo(1).

Efficiency: We require that the description length of ring elements, the run-time of the ring operations and
the run-time of Gen, Enc, Dec, Refresh, Lift are all bounded by poly(λ,D, d, logN). Additionally
we require that the run-time of Eval is bounded by |C| · poly(λ,D, d, logN) where C is the circuit
being evaluated.

Construction Overview. We start with the leveled FHE from RingLWE of Brakerski, Gentry and
Vaikuntanathan (BGV) [BGV12] and leverage the fact that the ciphertexts in their scheme have the
same format as the ciphertexts of the ASHE described in Section 3.1, which is in turn based on
[BV11b]. We only make two light modifications to the BGV scheme: (1) we set the plaintext space
to be Zd; as remarked by BGV, all their techniques generalize to this setting, (2) we slightly modify
the parameters of the scheme to make sure the evaluated ciphertexts have a larger modulus-to-
error ratio to leave room for us to perform an additional ASHE evaluation over them after an FHE
evaluation. The resulting scheme is described in Section 6.1. We then convert this leveled FHE
scheme into an ASHE-FHE via bootstrapping, where we include a key cycle (i.e., an encryption of
the secret key under the public key) as part of the public key and set the parameters such that the
leveled scheme is capable of evaluating its own decryption function plus one additional arithmetic
operation. Security now relies on an additional circular security assumption. This gives us a true
(unleveled) FHE where we perform bootstrapping to refresh the ciphertext after each operation.

33

The ciphertexts maintain the same structure as in our ASHE, and therefore we can also perform
ASHE evaluation on them. After an ASHE evaluation, the structure of the ciphertext changes (i.e.,
it is a higher degree polynomial, the noise level is higher), but there is still a way to decrypt it with
the secret key. Therefore, we can refresh the output of an ASHE evaluation back into a good FHE
ciphertext via bootstrapping, by using the key cycle to decrypt the ASHE ciphertext under FHE.
This is described in detail in Section 6.2.

6.1 Leveled FHE from RingLWE

We start by summarizing the result of Brakerski, Gentry and Vaikuntanathan [BGV12], which con-
structs a leveled FHE from RingLWE. We rely on a light adaptation of their scheme with flexible
plaintext space Zd, and an extra gap in the modulus-to-noise ratio of the evaluated ciphertext, as
parameterized by t. The adaptation of their result shows the following.

Claim 6.1.1 (Leveled Ring FHE [BGV12]). There is a leveled FHE scheme (Setup,Gen,Enc,Eval,Dec)
with the following syntax:

• params := Setup(1λ, 1L, 1d, 1t): Given a max depth bound L, plaintext space d, and a gap parameter
t that allows us to control the modulus-to-noise ratio of the evaluated ciphertext, generates parameters
params that define some ring Q = Zq[Z]/(Zn + 1).

• Gen,Enc,Eval,Dec have the same syntax as in ASHE-FHE 6.1. Furthermore, the secret key sk = s
is an element of the ring Q.

• Dec(sk = s, ct): For ct = (a, b) ∈ Q2, compute b − a · s, interpret it as a polynomial over a formal
variable Z, and output the constant term of the polynomial taken modulo d.

The scheme satisfies the following correctness, security and efficiency properties:

Correctness: For any params := Setup(1λ, 1L, 1d, 1t) defining the ring Q = Zq[Z]/(Zn + 1), any
µ1, . . . , µℓ ∈ Zm

d , any arithmetic circuit C : Zℓ
d → Zd of depth ≤ L: if we choose (pk, sk = s) ←

Gen(params), (cti ← Enc(pk, µi))i∈[m] and ct′ := Eval(pk, C, ct1, . . . , ctℓ) then, with probability 1:

• ct′ = (a, b) ∈ Q2 such that b = a · s+d · e+C(µ1, . . . , µℓ) for some e such that (2n∥e∥)t ≤ q.
For a sufficiently large t = Ω(1) this implies that Dec(sk, ct′) = C(µ1, . . . , µℓ).

Security: The scheme satisfies standard public-key IND-CPA security when params← Setup(1λ, 1L, 1d, 1t)
for any d = poly(λ), L = poly(λ), t = poly(λ) under RingLWE with sub-exponential approxima-
tion factors. If we restrict to L = λo(1), t = λo(1) then the security holds under RingLWE with
sub-sub-exponential approximation factors. If we restrict to L = poly log λ, t = poly log λ then the
security holds under RingLWE with quasi-polynomial approximation factors.

Efficiency: The run-time of Setup,Gen,Enc as well as the description size of ring elements in Q and
the cost of ring-operations over Q is bounded by poly(λ, L, t, log d). The run-time of Eval is |C| ·
poly(λ, L, t, log d). For any ct ∈ Q2 the decryption circuit Cct(s) = Dec(s, ct), represented as an
arithmetic circuit with the input s given in bits, has depth poly(log λ+ logL+ log t+ log log d).

Proof overview of [BGV12]. We use the BGV leveled FHE scheme described in [BGV12, Section 3.4]
with two light modifications:

34

• Plaintext space Zd: The BGV scheme is formally described with plaintext space Z2 (or more
generally Z2[Z]/(Zn+1)), while we need plaintext space Zd. To implement this, we just need
to set all the RingLWE noise to de instead of 2e for e← χ and all the RingLWE moduli qi are
chosen to satisfy qi = 1 mod d.

• Extra Modulus-to-Noise Gap: The BGV scheme chooses a “ladder” of L+ 1 moduli qL, . . . , q0
of decreasing size, where q0 = q is the modulus of the evaluated ciphertext. In BGV, the
moduli are carefully chosen so that q0 = poly(λ, L, d) and qi = poly(λ, L, d) · qi−1. The only
difference in our case is that we will start with a larger initial modulus q0 = poly(λ, L, d, t)t

and also modestly up the increments to qi = poly(λ, L, d, t) · qi−1. This will give us extra
“gap” in the modulus-to-noise ratio of the evaluated ciphertext, as set by the parameter t.

Let us now recall the high-level structure of the BGV scheme, with the above adaptations. The pa-
rameters define a ladder of moduli qL, . . . , q0 as described above with qL = poly(λ, L, d, t)L+t and
corresponding rings Qℓ = Zqℓ [Z]/(Zn + 1). We also have a ladder of RingLWE secrets sL, . . . , s0
with sℓ ∈ Qℓ. A ciphertext ct encrypting a message µ is associated with a level ℓ and a noise-
amount β; such a ciphertext is a tuple ct = (a, b) ∈ Qℓ such that b = a · sℓ+ d · e+µ where ∥e∥ ≤ β.
A fresh encryption of µ is a ciphertext at level L and noise β = poly(λ, L, d, t). To evaluate a leveled
arithmetic circuit C of depth≤ L over encrypted data, the BGV scheme performs the computation
level-by-level and gate-by-gate via a sequence of 3 steps:

• Multiplication/Addition: Interpret level-ℓ ciphertexts ct = (a, b) ∈ Q2
ℓ as formal polynomi-

als ct(Y) = −a·Y +b. To add/multiply the messages we add/multiply the polynomials. This
results in a polynomial ct∗0(Y) such that ct∗0(sℓ) = de∗ + µ∗ where µ∗ is the correct output of
the gate and e∗ is small. After multiplication, the ciphertext ct∗0(Y) is a degree-2 polynomial
in Y .

• Relinearization: Perform a key-switching/relinearization step ([BGV12, Section 3.2]) on ct∗0
to get a degree-1 polynomial ct∗1(Y) such that ct∗1(sℓ−1) = de∗1 + µ∗ ∈ Qℓ (where sℓ−1 is
interpreted as an element in Qℓ). This switches the RingLWE secret from sℓ to sℓ−1 but
preserves the ring as Qℓ.

• Modulus Reduction: Perform a modulus reduction step ([BGV12, Section 3.3]) on ct∗1 ∈
Qℓ[Y] to get ct∗2 ∈ Qℓ−1[Y] such that ct∗2(sℓ−1) = de∗2 + µ∗ ∈ Qℓ−1. This changed the modulus
from qℓ to qℓ−1 and also reduces the noise from e∗1 to e∗2.

The choice of parameters is such that the resulting ciphertext ct∗2 is an encryption of the the gate’s
output µ∗ at level ℓ−1 with the same noise level β = poly(λ, L, d, t). By continuing this process for
L levels (if the circuit has depth ≤ L we pad it to make it exactly L) the output is a ciphertext ct∗

that encrypts the output of the circuit C(µ1, . . . , µℓ) at level 0 with noise level β = poly(λ, L, d, t).
We can choose q0 = poly(λ, L, d, t)t sufficiently large that (2nβ)t ≤ q0 as needed for correctness.
With that, Setup chooses Q = Q0, and Gen outputs secret key s = s0 at level 0.

We will also rely on the following circular security assumption, which is the same assumption
as needed to get unleveled FHE from (Ring)LWE in [BGV12].

Assumption 6.2 (Circular Security Assumption). The circular security assumption says that the lev-
eled FHE encryption scheme from the above Claim 6.1.1 remains secure, even if we give out the encryptions
(Enc(pk, ski)i∈|sk| of each of the bits ski of the secret key sk under the public key pk.

35

6.2 ASHE-FHE Construction

We now show how to leverage the leveled Ring FHE from Claim 6.1.1 to construct an ASHE-FHE.
The main ideas are: (1) use an encrypted key cycle and bootstrapping to go from leveled FHE to
non-leveled FHE, (2) use the fact that the FHE-evaluated ciphertexts have the same structure as the
ciphertexts of the ASHE scheme in Section 3.1 to make the scheme an ASHE, (3) after performing
an ASHE-evaluation of a low degree polynomial, we get some ASHE ciphertext ctASHE that is
decryptable using the secret key sk; refresh it into a good FHE ciphertext by homomorphically
decrypting ctASHE under FHE, using the FHE encryption of the secret key sk.

Let (Setup,Gen,Enc,Eval,Dec) be the (lightly modified) BGV leveled Ring FHE from Claim
6.1.1. We construct an ASHE-FHE (Setup′,Gen′,Enc′, Eval′, Dec,Refresh, Lift) as follows:

Algorithm 6.3: ASHE-FHE

params := Setup′(1λ, 1d, 1D, N): Set t := D log d+logN+log d+1. Choose L∗(λ, d, t) = poly(log λ+
log t+ log log d) such that, for params := Setup(1λ, 1L

∗
, 1d, 1t), the decryption circuit Cct(s) =

Dec(s, ct) has depth ≤ L∗ − 1, which is always possible since the depth is bounded by
poly(log λ + logL∗ + log t + log log d). Output params := Setup(1λ, 1L

∗
, 1d, 1t). This ensures

the BGV scheme can evaluate its own decryption.

The params define the ring Q = Zq[Z]/(Zn + 1). Let

R = Q[Y]/(Y D + 1) ∼= Zq[Y,Z]/(Y D + 1, Zn + 1)

be the ring of the ASHE-FHE.

(pk′, sk)← Gen′(params): Sample (pk, sk)← Gen(params). For i = 1, . . . , |sk|, let sk[i] be the i’th bit
of sk and sample ctsk[i] ← Enc(pk, sk[i]). Let ctsk = (ctsk[i])i∈|sk|. Output (pk′ = (pk, ctsk), sk).

ct′ ← Enc′(pk, µ): Run the leveled FHE encryption ct ← Enc(pk, µ). Evaluate the “dummy” iden-
tity circuit IL∗(µ) = µ, which is padded to depth L∗, and output ct′ := Eval(pk, IL∗ , ct). 19

Dec: This is the same as in the BGV leveled Ring FHE.

(ct′1, . . . , ct
′
m) := Eval′(pk′, C, ct1, . . . , ctℓ): Given an arithmetic circuit C : Fℓ

d → Fm
d , evaluate it

gate-by-gate starting from the input level by computing a ciphertext for each wire in the
circuit. The ciphertexts for the input wires are ct1, . . . , ctℓ. For any arithmetic gate g with
input wires a, b and output wire c, assume we have ciphertexts cta, ctb for the input wires. Let
Cg,cta,ctb(sk) be the arithmetic circuit of depth L∗ that takes the bits of sk as an input, evaluates
µa := Dec(sk, cta), µb := Dec(sk, ctb) and outputs g(µa, µb). Let ctc = Eval(pk, Cg,cta,ctb , ctsk).

ct′ := Refresh(pk′, ct): Parse ct ∈ R = Q[Y]/(Y D + 1) as a polynomial ct(Y) of degree < D. Let
Cct(sk) be the arithmetic circuit that performs ASHE decryption: it takes as input the bits of
sk = s ∈ Q, computes g = ct(s) ∈ Q = Zq[Z]/(Zn + 1) and outputs the constant term of g
modulo d. Output ct′ := Eval′(pk′, Cct, ctsk).20

19We perform the evaluation of the identity circuit as a technicality to ensure that the outputs of Enc′ have the same
format as the outputs of Eval.

20 Note that here we are using Eval′ rather than Eval, so we do not need to worry the depth of the circuit Cct, which
may be (slightly) larger than L∗. Alternately, we could have chosen L∗ slightly larger so that it is bigger than the depth
of Cct, which is still poly(log λ+ logL+ log t+ log log d), in which case we could have just used Eval instead of Eval′ to
avoid many bootstrapping operations.

36

Lift: Interpret µ ∈ Zd as an element of R.

Theorem 6.4. The above is an ASHE-FHE assuming RingLWE with sub-exponential approximation fac-
tors and the circular-security assumption (6.2). Alternately, it is an ASHE-FHE for poly-logarithmic (resp.
sub-polynomial) degree under RingLWE with quasi-polynomial (resp. sub-sub-exponential) approximation
factors and the circular-security assumption (6.2).

Proof. We analyze correctness, security and efficiency in turn.
For correctness, we define the set GOODsk for sk = s to consist of ciphertexts ct = (a, b) ∈ Q2

such that b = a · s + d · e + µ for some e such that (2n∥e∥)t ≤ q and some µ ∈ Zd. With this
definition, it is easy to see that correctness properties (1) and (3) hold by the correctness prop-
erty of the leveled FHE. Correctness property (2) holds by first applying the exact same anal-
ysis as in our ASHE from Theorem 3.2 to argue that if ct′ = f̄(ct1, . . . , ctℓ) is the output of
the ASHE computation over ciphertexts cti ∈ GOODsk encrypting plaintexts µi, then we have
Cct′(sk) = f(µ1, . . . , µℓ), where C is the arithmetic circuit defined in our Refresh procedure, which
corresponds to the ASHE decryption defined there. Then we rely on correctness property (3) to ar-
gue that ct∗ = Eval′(pk′, Cct′ , ctsk) ∈ GOODsk and that it decrypts to the correct value f(µ1, . . . , µℓ).

Security follows directly from that of the BGV leveled Ring FHE from Claim 6.1.1, modulo
the fact that the adversary also gets a key cycle, which preserves security via the circular security
assumption.

The efficiency of the ASHE-FHE follows directly from the efficiency properties of the BGV
levled Ring FHE from Claim 6.1.1.

Remark 6.1 (ASHE-FHE with Key Cycle). In the above scheme, the public key of the ASHE-FHE
contains an encrypted key cycle ctsk, which is a vector of ciphertexts, each of which is in GOODsk,
that decrypt to sk. We refer to an ASHE-FHE with this property as an ASHE-FHE with a key cycle,
and will rely on it later.

Remark 6.2 (Leveled ASHE-FHE). Note that an ASHE-FHE scheme can generically be used as
an unleveled FHE, allowing for the evaluation of arbitrary boolean circuits of unbounded depth.
Currently, all known constructions of such unleveled FHE schemes rely on a “circular security”
assumption, and we do as well. However, we can also define a leveled ASHE-FHE and construct it
using the same template as above.

For the definition of leveled ASHE-FHE, the Setup algorithm is the same, but Gen takes in
an additional parameter 1L denoting the maximal number of levels the scheme supports. Each
ASHE-FHE ciphertext is now also associated with a level i and the sets GOODi

sk now denote the
set of good ciphertexts at level i. Correctness property 1 is now modified to ensure that a fresh
encryption is a good ciphertext at level 1 with ct ∈ GOOD1

sk . Correctness property 2 is modified
so that, if ct1, . . . , ctm ∈ GOODi

sk are good level-i ciphertexts then the results of ASHE evaluation
followed by a refresh satisfies ct∗ ∈ GOODi+1

sk is a good ciphertext at level i + 1. Correctness
property 3 is modified so that, if ct1, . . . , ctℓ ∈ GOODi

sk are good level-i ciphertexts then the results
of FHE evaluation for an arithmetic circuit C of depth ρ results in a ciphertext ct′ ∈ GOODi+ρ

sk ,
which is a good ciphertext at level i+ ρ.

For the construction of leveled ASHE-FHE, instead of an encrypted key-cycle, we choose L + 1
public/secret keys (pki, ski) of the BGV scheme and add an encrypted key ladder Enc(pki+1, ski) for
i ∈ [L] to the public key. The secret key consists of skL. The scheme is otherwise the same, but

37

each time we perform bootsrapping during Eval′,Refresh we use the next secret key in the ladder,
which results in a ciphertext under pki+1.21 The efficiency of the leveled ASHE-FHE is the same
as the unleveled scheme except that the run-time of Gen and the size of the public key pk are now
also linear in L, and bounded by L · poly(λ,D, d, logN).

7 RAM-FHE

We define and construct fully homomorphic encryption for RAMs (RAM-FHE) in this section. A
RAM-FHE is a public-key encryption scheme, where a client can encrypt some input x to derive
a ciphertext c̃tx. The server can independently preprocess some plaintext input y into a static
data structure ỹ. The server can then homomorphically evaluate an arbitrary RAM program
P (x, y) by operating over c̃tx, ỹ to derive an encryption of the output. Our notion generalizes
that of [HHWW19] by allowing the server to incorporate a preprocessed plaintext input y into the
computation. We give a formal definition in Section 7.1.

We present our construction via a sequence of three schemes in Sections 7.2, 7.3, and 7.4, with
each latter scheme building on the previous to improves efficiency. The first scheme only allows
read-only random-access to the plaintext input y, but not to the encrypted input x, or to any
additional read/write memory. The second scheme also allows read-only random-access to x.
Our final third scheme also allows additional random-access read/write memory z.

7.1 Definition of the RAM Model and RAM-FHE

In this subsection, we define the abstraction of RAM-FHE. We will start by defining a random-
access machine (RAM) model that captures the efficiency requirements of RAM-FHE.

7.1.1 The RAM model

In our RAM model, we consider programs P that take two inputs x, y, and we denote the output
of the evaluation by P (x, y). We think of x, y as stored in read-only random access memory. The
program also has random access to additional read-write enabled memory z. The evaluation of
a RAM program consists of a series of steps where, in each step, the program may write one bit
to an arbitrary position in z and then may read one bit each from arbitrary positions in x, y and
z. The specification of what a step does is given by some step circuit C, which we can think of as
implementing some simple “CPU”.

Definition 7.1. A RAM program P with some fixed input size is defined by a tuple (C, T, S,M), where
C is a binary circuit called the step circuit and T, S,M ∈ N are the worst-case time complexity, space
complexity and output length of P respectively. The execution of P (x, y) is performed iteratively. We first
initialize state0 to be the all-zeros string, b0x := 0, b0y := 0, b0z := 0 and z := 0S . Then, for each step t ∈ [T]:

1. Call
(
statet, itx, i

t
y, i

t
z, i

t
w, b

t
w

)
:= C

(
statet−1, bt−1

x , bt−1
y , bt−1

z

)
.

21Note that the encrypted key ladder is separate from the ladder of moduli used in the construction of the BGV
scheme discussed in Section 6.1, which we still only choose large enough for the scheme to be able to evaluate its own
decryption. Instead, with the encrypted key ladder, the choice of L only affects the size of the public-key but not the
cost of each homomorphic operation. Also, we assume we are using the optimization discussed in footnote 20, so that
a refresh only increases the level by 1.

38

2. Write z[itw] := btw to memory.

3. Read btx := x[itx], bty := y[ity], and btz := z[itz].

The output of the evaluation P (x, y) is given by the first M bits of the final memory contents zT at the end
of the execution.

Remark on the Step Circuit and Universal RAM. The above gives us a lot of flexibility over
what information to put in the circuit C vs. encrypted input x vs. the plaintext input y vs. the
state vs. the memory z. Most naturally, we can implement a universal RAM computer, where C is
the circuit performing a single generic CPU step and state corresponds to some constant number
of registers in the CPU. In that case, we have |C| = poly log(|x| + |y| + S). We can then store the
“code” of the actual program that we want to execute as part of the inputs x or y, depending on
whether the client or the server chooses it.

Remark on Uniform vs. Non-Uniform Model. We also note that the above is a non-uniform
model of computation, where the program P is tailored to some particular input sizes |x|, |y| and
needs to specify a corresponding run-time T and space complexity S. This fits our setting where
the server knows the sizes |x|, |y| when homomorphically evaluating the program, and can there-
fore tailor the description of the program P to these particular sizes. Naturally, we expect that
there is some simple uniform computation that the server can perform to come up with the above
specification of P given |x|, |y|, but we leave this outside of our formalism.

7.1.2 RAM-FHE

Under the above model of RAM computation, we define fully homomorphic encryption for RAMs
(RAM-FHE). The definition is analogous to that of circuit FHE: any RAM program P can be evalu-
ated homomorphically on an encrypted input x and a preprocessed input y, and the running time
of this homomorphic evaluation is proportional to that of running P in the clear. In particular,
because P is a RAM program, this means that the evaluation may take time significantly less than
the length of the inputs.

Definition 7.2 (RAM-FHE). A RAM-FHE scheme is a tuple of algorithms (Setup,Gen,Prep,Enc,Eval,Dec)
with the following syntax:

• params := Setup(1λ, Nx, Ny, NS): On input security parameter λ and space bounds bounds Nx, Ny

and NS , it deterministically outputs public parameters params.

• (pk, sk) ← Gen(params): Given public parameters params, it samples and outputs a public key pk
and a secret key sk.

• ỹ := Prep(params, y): Given public parameters params and a database y, it outputs a preprocessed
database ỹ.

• c̃tx ← Enc(pk, x) Given a public key pk and a database x, it outputs a preprocessed ciphertext c̃tx.

• ctout := Eval(pk, P, c̃tx, ỹ): Given a public key pk, RAM program P , preprocessed ciphertext c̃tx,
and preprocessed database ỹ, it outputs an output ciphertext ctout.

• µ := Dec(sk, ct): Given a secret key sk and a ciphertext ct, it outputs a plaintext µ.

39

Correctness. For any λ,Nx, Ny, NS ∈ N, any RAM program P = (C, T, S,M) and any input pair
(x, y) such that |x| ≤ Nx, |y| ≤ Ny, and S ≤ NS , it must hold that

Pr

Dec(sk, ctout) = P (x, y) :

params := Setup(1λ, Nx, Ny, NS)
(pk, sk) ← Gen(params)

ỹ := Prep(params, y)
c̃tx ← Enc(pk, x)

ctout := Eval(pk, P, c̃tx, ỹ)

 = 1.

Security. We require that standard public-key IND-CPA security holds for all λ ∈ N and all space bounds
Nx, Ny, NS = poly(λ). Namely, we define the following game between a challenger and a stateful adversary
A:

1. The adversary A(1λ) selects sizes 1Nx , 1Ny , 1NS .

2. The challenger computes params := Setup(1λ, Nx, Ny, NS) and samples (pk, sk)← Gen(params).

3. A gets pk and selects a challenge pair x0, x1 ∈ {0, 1}∗ with |x0| = |x1|.

4. The challenger samples a random bit b← {0, 1}, and runs c̃tx ← Enc(pk, xb).

5. A gets c̃tx outputs a guess b′.

The advantage of A is defined to be |Pr[b′ = b]− 1/2|, over the randomness of the challenger and A. We
require that for every stateful PPT adversary A, there exists a negligible function negl such that the distin-
guishing advantage of A is bounded by negl(λ):

Remark on Efficiency. Note that we did not specify a formal efficiency requirement for RAM-
FHE, but will clearly state the run-times of the procedures (Setup,Gen,Prep,Enc,Eval,Dec) in our
construction(s). We measure efficiency of these procedures in the context of the correctness exper-
iment in the above definition, where λ,Nx, Ny, NS ∈ N, P = (C, T, S,M) is some RAM program,
and (x, y) are some inputs such that |x| < Nx, |y| < Ny, and S < NS . Let N := max{Nx, Ny, NS}.
Ideally, we want the run-time of Setup,Gen to just be poly(λ, logN), the run-time of Enc should be
nearly linear in |x|, the run-time of Prep should be nearly linear in |y|, the run-time of Dec should
be nearly linear in |P (x, y)| = M and the run-time of Eval should be nearly linear in T .

Remark on Reusable Plaintext Input. Notice that the preprocessing of plaintext y in our defini-
tion is unkeyed, and does not depend on the public-key pk. This means that the server can reuse the
same preprocessed data structure ỹ in many different homomorphic computations with different
clients that encrypt their inputs x under different keys.

Remark on the Bounds Nx, Ny, NS . Our schemes require setting some upper bounds on the
inputs sizes Nx, Ny and the space-complexity NS already during Setup and the efficiency of our
schemes can depend on these bounds, even if the actual values of |x|, |y|, S used later are smaller.
However, the complexity of our eventual schemes will only either scale with poly log(N), or with
No(1) where N := max{Nx, Ny, NS}. Therefore, we can even set these bounds to some slightly
super-polynomial value λω(1) while only incurring some fixed poly(λ) overhead. This means that
the requirement that we know these upper bounds ahead of time does not impose much of a
restriction.

40

Remark on DEPIR as a Special Case of RAM-FHE. Note that RAM-FHE gives a DEPIR as a
special case. In particular, let P = (C, T, S,M) be the RAM program that takes as input x ∈ JNK
and y = DB ∈ {0, 1}N and outputs DB[x]. This program has |C| = O(logN), S = O(logN),
T = O(logN) and M = 1. The Prep algorithm of the DEPIR is the same as that of the RAM-
FHE. The Query(1λ, N, i) algorithm of DEPIR runs the (pk, sk) ← Gen(params), c̃tx ← Enc(pk, x)
algorithms of RAM-FHE and sets the DEPIR ciphertext ct = (pk, c̃tx) and the key as s = sk. The
Resp(D̃B, ct) algorithm of the DEPIR runs ctout := Eval(pk, P, c̃tx, D̃B), and the Dec algorithm of
the DEPIR is the same as that of the RAM-FHE.

Remark on Leveled RAM-FHE. We can also define a relaxed variant of RAM-FHE that can only
evaluate RAM programs P with some a-priori bounded run-time T ≤ Tmax, where Tmax is chosen
during key generation, and the efficiency of key generation and the size of the public-key can
grow linearly with Tmax. We discuss this variant in Section 8.2 and show that we can instantiate it
without circular security.

7.2 RAM-FHE with Random Access to y

We start with a construction of RAM-FHE for programs P (x, y) that only have random-access to
the plaintext input y, but not the encrypted input x nor the additional read/write memory z. We
will then upgrade it in future sections to get our full construction.

Instead of modifying the definition of the RAM model or the notion of RAM-FHE to capture
this setting, we leave the definitions as is, but settle for poor efficiency in terms of the dependence
on the size of the encrypted input |x| and on the space complexity S = |z|. In particular, our
homomorphic evaluation procedure will simply read the entire encrypted input and the entire
encrypted memory in each step of the program execution. However, it will still only access a
small number of locations in the preprocessed plaintext input ỹ in each step. Note that this is
already useful in many applications where the program has small (e.g., poly-logarithmic) space
complexity and a small encrypted input. For example, this already suffices for binary search with
a small encrypted search term over a large preprocessed plaintext database, as was needed to
achieve round-optimal updatable DEPIR in Section 5.2.

Construction Overview. We rely on an ASHE-FHE scheme. The server preprocesses the long
input y into a data structure ỹ the same way as in our DEPIR. The client encrypts the input x using
the ASHE-FHE. To valuate the program P , the server proceeds in a sequence of steps, where in
each step it evaluates the circuit C under encryption using the fully homomorphic evaluation
of the ASHE-FHE. Initially, it starts with an encryption of the all-0’s state state0 and an all-0s
memory z. After performing the FHE evaluation of C in step t, it gets an encryption of the updated
state statet as well as encryptions of the values itx, i

t
y, i

t
z, i

t
w, b

t
w denoting the indices to read from

x, y, z and the index/bit to write to z. The server can perform simple FHE evaluations to derive
encryptions of x[itx] and z[itz], as well as to update the encryption of z by setting z[itw] = btw, all
in time linear in |x| + |z| (without relying on random access). To read from y, the server can first
convert the FHE encryption of the bits of ity into encryptions of the base-d digits of ity (relying
on the fact that the fully homomorphic evaluation of the ASHE-FHE supports algebraic circuits
over Zd), which is exactly the same as a DEPIR query for the index ity in our DEPIR scheme. The
server can then use the DEPIR to compute the answer for this query using random access to ỹ,

41

which results in some cihertext ct′ encrypting y[ity]. The server refreshes the ciphertect ct′ so it
can be used in future evaluations. It then uses the encryptions of statet, x[itx], y[ity], z[itz] and the
encrypted memory contents zt to evaluate the next step of the computation, and so on.

Construction. The construction of this RAM-FHE (Setup,Gen,Prep,Encp,Evalp,Dec) is given be-
low. We denote the encryption and evaluation of this scheme using subscripts Encp and Evalp re-
spectively, and will eventually replace them in subsequent sections to improve efficiency for our fi-
nal construction. As a building block, we rely on a generic ASHE-FHE scheme (Setup∗, Gen∗, Enc∗,
Eval∗, Dec∗, Refresh∗, Lift∗). We also rely on our construction of DEPIR (Prep′,Query′,Resp′,Dec′)
from ASHE from Algorithm 4.3, where we plug in the ASHE-FHE scheme in the place of the
ASHE. We abuse notation and, for a vector for messages x = (x1, . . . , xℓ) we define Enc∗(pk, x) :=
(Enc∗(pk, xi))i to work component-wise. Similarly, for a vector of ciphertexts ct = (ct1, . . . , ctℓ) we
define Dec∗(sk, ct) := (Dec∗(sk, cti))i component-wise.

Algorithm 7.3: RAM-FHE scheme with random access to y.

Building blocks: We use a generic ASHE-FHE scheme (Setup∗,Gen∗,Enc∗,Eval∗,Dec∗,Refresh∗, Lift∗),
and the specific construction of DEPIR (Prep′,Query′,Resp′,Dec′) from ASHE in Algorithm 4.3,
where we plug in the ASHE-FHE scheme in place of the ASHE.

Algorithms:

Setup(1λ, Nx, Ny, NS): Let N := max{Nx, Ny, NS}. Choose a prime d as specified later. Let
m := ⌈logdN⌉ and let D := d · m. Set parameters for ASHE-FHE scheme as params∗ :=
Setup∗(1λ, 1d, 1D, dm) and output params := (params∗, d). Let R be the ASHE-FHE ring.

Gen(params): Output (pk, sk)← Gen∗(params∗).

Dec(sk, ct): Output Dec∗(sk, ct).

Encp(pk, x): Output c̃tx ← Enc∗(pk, x), where we interpret x as a vector of bits.

Prep(params, y): Perform DEPIR preprocessing ỹ := Prep′(1λ, y), with the modification that the
polynomial fy := ToPolyd,my

(y) in step 1 is computed using my := ⌈logd |y|⌉ instead of m for
the number of variables. Output ỹ.22

Evalp(pk, P, c̃tx, ỹ): Let P = (C, T, S,M) consists of the step circuit C, the running time T , the
space S, and the output size M . The homomorphic evaluation of P proceeds as follows:

1. Initialize state0, b0x, b
0
y, b

0
z, z

0 to all 0’s strings of appropriate size. Let ct0state, b̂0x, b̂0y, b̂0z, ẑ0 be
public-key encryptions of the corresponding values under the ASHE-FHE, with random
coins set to all 0’s.

2. For each step t from 1 to T :

22Without loss of generality, we will assume that we can recover |y| from ỹ, which also lets us compute the value my .
Note that in DEPIR, we knew the size of DB already when we chose the parameters of the ASHE, while here we only
know an upper bound Ny on the size of y when we choose ASHE-FHE parameters. Therefore, the values d,m chosen
at setup corresponds to the maximal size of y. However, when we actually preprocess y, the number of variables in the
polynomial fy can be set to my ≤ m.

42

(a) Using ASHE-FHE, homomorphically evaluate the step circuit C on the encrypted state
and values at the t’th step. That is,

(cttstate, î
t
x, î

t
y, î

t
z, î

t
w, b̂

t
w) := Eval∗(pk, C, ctt−1

state, b̂
t−1
x , b̂t−1

y , b̂t−1
z), (1)

where we interpret the boolean circuit C as an arithmetic circuit over Fd that works
correctly with inputs/outputs in binary.

(b) Read from c̃tx by setting
b̂tx := Eval∗(pk, Cread, c̃tx, î

t
x),

where Cread is a boolean circuit such that Cread(x, i) = x[i], and we naturally reinterpret
it as an arithmetic circuit over Fd.

(c) Convert the encrypted index îty to base-d, and then read from ỹ using DEPIR, and finally
refresh the resulting ciphertext to allow for future use in FHE evaluation:

î′ := Eval∗(pk, based,my , î
t
y), ct′ := Resp′(ỹ, î′), b̂ty := Refresh∗(pk, ct′)

where based,my : J|y|K → Fmy

d is an arithmetic circuit of size poly log(N) that takes an
index i ∈ J|y|K written in binary and outputs the base-d representation of i.23 Note that
î′ ∈ Rmy and ct′ = f̄y (̂i

′), where f̄y is the lifted version of the polynomial fy(i) = y[i].

(d) Write to and then read from the memory ẑ:

ẑt := Eval∗(pk, Cwrite, ẑ
t−1, îtw, b̂

t
w), b̂tz := Eval∗(pk, Cread, ẑ

t, îtz),

where z′ := Cwrite(z, i
∗, b∗) is the circuit that updates the array z by setting z[i∗] := b∗

and then outputs the updated array z′, and Cread is defined as in 2a.

3. Let ctout be the first M ciphertext ring elements in the final encrypted memory ẑT . Output
ctout.

Analysis. The security directly follows by the IND-CPA security of the ASHE-FHE encryption.
The correctness follows by induction on t. We say that the t’th encrypted configuration consisting

of the ciphertexts
(cttstate, b̂

t
x, b̂

t
y, b̂

t
z, ẑ

t)

is correct if all the ciphertexts are in GOODsk and if they decrypt to the correct values matching
the t’th configuration of the the computation P (x, y). In the base case, correctness holds for t = 0
since outputs of Enc∗(pk, ·) are in GOODsk with probability 1 over the encryption randomness,
and therefore even if we use the all 0’s randomness. Suppose by induction that correctness holds
for t. Then it also holds for t + 1. In particular, steps 2a, 2b, 2d produce the correct values by
the correctness of ASHE-FHE Eval∗. In step 2c, the ciphertext î′ = (̂i′1, . . . , î

′
my

) consists of good
ASHE-FHE encryptions of the base-d digits of ity, by the correctness of Eval∗. Then, going under

23In more detail, we can implement the circuit for the function based,my (i) = (i1, . . . , imy) by first applying a boolean
circuit that computes the binary representation ij = (ij,0, . . . , ij,⌈log d⌉−1) of each digit ij and then applying arithmetic
gates to compute ij =

∑⌈log d⌉−1
k=0 ij,k · 2k.

43

the hood of the DEPIR from ASHE construction, we have ct′ = f̄y (̂i
′
1, . . . , î

′
my

), and by ASHE-
FHE correctness property (2), we then have that Refresh(ct′) is a good ASHE-FHE encryption of
fy(i1, . . . , imy) = y[ity]. To use the ASHE-FHE correctness property (2), we rely on the fact that the
polynomial fy has total degree < d · my ≤ d · m = D and the number of terms is < dmy ≤ dm.
Therefore, by induction the final encrypted configuration T is correct, meaning that ẑT is a good
encryption of the final memory contents zT . This implies that ctout, consisting of the first M
components of ẑT , correctly decrypts to P (x, y).

To analyze efficiency, we now set the parameter d. For any constant ε > 0, we choose d to be
the first prime d > log2/εN , which we can find efficiently. This matches parameter option A from
our DEPIR construction in Section 4.2. By the efficiency of ASHE-FHE, the bit-length of elements
in the ring R, the run-time of ring operations and the run-time of Setup∗,Gen∗,Enc∗,Dec∗ (for a
single message in Fd) are bounded by poly(λ,D, log d, logN) = poly(λ, logN). Therefore, the run-
time of Gen is poly(λ, logN) and the run-time of Encp is |x| · poly(λ, logN) and the run-time of Dec
is M · poly(λ, logN). The run-time of Prep is

dmy ·mmy
y · poly(my, d, log |R|) ·O(logmy + log d+ log log |R|)my

= |y|1+εpoly(λ, logN),

where we plug in log |R| = poly(λ, logN), my = ⌈logd |y|⌉ = log |y|/ log d + O(1) and follow the
calculation of Theorem 4.4, option A. Finally, to analyze the run-time of Evalp, note that in each
step t, all the calls to Eval∗ take time poly(λ, logN) · (|C|+ |x|+ S), and the call to the DEPIR
procedure Resp′ and to Refresh∗ take time poly(λ, logN).

Claim 7.3.1. Assume there exists a secure ASHE-FHE encryption scheme for poly-logarithmic degree. In
particular, this holds assuming RingLWE with quasi-polynomial approximation factors and the circular-
security assumption (6.2). Then, for any constant ε > 0, Algorithm 7.3 is a secure RAM-FHE scheme.
For security parameter λ, any bounds Nx, Ny, NS with N := max{Nx, Ny, NS}, any program P =
(C, T, S,M) and any inputs x, y such that S ≤ NS , |x| ≤ Nx, |y| ≤ Ny, the achieved efficiency is:

• Setup and Gen take time poly(λ, logN).

• Encp takes time |x| · poly(λ, logN).

• Prep takes time |y|1+ε · poly(λ, logN).

• Evalp takes time T · poly(λ, logN) · (|C|+ |x|+ S).

• Dec takes time M · poly(λ, logN).

7.3 RAM-FHE with Random Access to x

We now augment the RAM-FHE scheme from the previous section to also handle random access
to the encrypted input x. We will modify the algorithms Encp and Evalp while keeping the other
algorithms the same.

44

Construction Overview. Instead of directly encrypting x via the ASHE-FHE, the client first
chooses a s for a pseudorandom function PRFs and one-time pads x with the PRF outputs to
get ctx = (x[i]⊕ PRFs(i))i. It then applies the DEPIR preprocessing on ctx to get a DEPIR prepro-
cessed data structure c̃t

′
x. Finally it encrypts s under the ASHE-FHE scheme to get cts and sends

c̃tx = (c̃t
′
x, cts) to the server as an encryption of x. The server evaluates the program P under

AHSE-FHE the same way as before. The only difference is that now, when it gets an encryption
of an index itx, it uses the DEPIR (the same way it previously did for y) to get an encryption of
(x[itx] ⊕ PRFs(i

t
x)) using random-access to c̃t

′
x. It then performs an FHE evaluation using cts to

convert that to an encryption of just x[itx]. It then continues the computation as before.

Construction. Let PRF be a standard pseudorandom function (PRF) that takes a key ∈ {0, 1}λ and
an input i ∈ {0, 1}∗ and outputs one bit b = PRFkey(i) ∈ {0, 1}.

Algorithm 7.4: RAM-FHE with random-access to x.

Setup,Gen,Dec,Prep: These are identical to the RAM-FHE construction from the previous section
(Algorithm 7.3).

Modifications: We replace Encp and Evalp with Enc and Evale given below.

Enc(pk, x): Sample a PRF key: key ← {0, 1}λ. Set ctx[i] := PRFkey(i) ⊕ x[i] for each i ∈ J|x|K.
Compute:

c̃t
′
x := Prep(params, ctx), ctkey := Enc∗(pk, key),

where Enc∗ is the encryption algorithm of ASHE-FHE. Output c̃tx := (ctkey, c̃t
′
x).

Evale(pk, P, c̃tx, ỹ): This algorithm is modified from Evalp (Algorithm 7.3) in the previous section,
by replacing Step 2b with the following subroutine:

• Convert the encrypted index îtx to base-d, and then use it to read from c̃t
′
x via DEPIR.

Refresh the resulting DEPIR output, then remove the one-time pad under FHE:

î′ := Eval∗(pk, based,mx , î
t
x), ct′ := Resp′(c̃t

′
x, î

′),

b̂′ := Refresh∗(pk, ct′), b̂tx := Eval∗(pk,OTPDec, îtx, b̂
′, ctkey)

where mx := ⌈logd x⌉, based,mx is the circuit describe in Step 2c of Algorithm 7.3, and
OTPDec is the circuit defined via OTPDec(i, b, key) = PRFkey(i)⊕ b.

Analysis. The analysis is similar to that of Algorithm 7.3 from the previous section.
Security follows by a standard hybrid argument that first uses the IND-CPA security of ASHE-

FHE to replace ctkey by an encryption of an all 0’s string, and then uses the pseudorandomness of
PRF to replace ctx by a uniformly random string.

Correctness requires us to show that b̂tx computed by the modified version of Step 2b is a
good ASHE-FHE encryption of btx = x[itx]. The analysis is similar to the previous analysis of
Step 2c. In particular, the same analysis tells us that b̂′ is a good ASHE-FHE encryption of b′ =

45

x[itx]⊕PRFkey(i
t
x). Then, by the correctness of the ASHE-FHE Eval∗ procedure, b̂tx is a good ASHE-

FHE encryption of PRFkey(itx)⊕ b′ = x[itx] as desired.
The run-time of Enc is bounded by |x|1+εpoly(λ, logN) because it invokes Prep, which dom-

inates PRF evaluation. The run-time of the modified Step 2b is poly(λ, logN) · poly(λ + log |x|).
Hence, the per-step run-time of Evale is bounded by poly(λ, logN) · (|C|+poly(log(|x|+ |y|))+S).

Claim 7.4.1. Assume there exists a secure ASHE-FHE encryption scheme for poly-logarithmic degree. In
particular, this holds assuming RingLWE with quasi-polynomial approximation factors and the circular-
security assumption (6.2). Then, for any constant ε > 0, Algorithm 7.4 is a secure RAM-FHE scheme.
For security parameter λ, any bounds Nx, Ny, NS with N := max{Nx, Ny, NS}, any program P =
(C, T, S,M) and any inputs x, y such that S ≤ NS , |x| ≤ Nx, |y| ≤ Ny, the achieved efficiency is:

• The run-time of Setup, Gen, Prep, and Dec are identical to those given in Claim 7.3.1.

• Enc takes time |x|1+ε · poly(λ, logN).

• Evale takes time T · poly(λ, logN) · (|C|+ S) for any (P = (C, T, S,M), x, y).

7.4 RAM-FHE with Random Access to z

In the previous two sections, we constructed RAM-FHE schemes with read-only random-access
to x, y. However, the schemes only had sequential access to the read/write memory z, and the
homomorphic evaluation operated over the entire content z in every step of the computation,
incurring a multiplicative factor of S in the run time. We now show how to remove this. We
first construct an efficient read-writable data structure called homomorphic memory that allows us
to homomorphically perform encrypted read/write operations to an encrypted memory. Then
we plug the homomorphic memory into our construction of RAM-FHE to achieve the desired
efficiency.

7.4.1 Homomorphic Memory

A homomorphic memory is a data structure that is parameterized by its maximal space S bits. It
provides two algorithms, (ReadMem,WriteMem), and its functionality is to maintain and access an
encrypted version of an array z ∈ {0, 1}S , which is initially zeroed-out. The ReadMem algorithm
takes as input an encryption of an index i and outputs an encryption of z[i], and WriteMem takes
as input an encryption of a pair (i∗, b∗) and updates z[i∗] := b∗. Both of these algorithms needs to
be efficient and run time sublinear in S. Roughly speaking, our implementation of homomorphic
memory resembles the updatable DEPIR in both abstraction and construction (see Section 5), with
the main difference being that the data itself is encrypted. When we perform a DEPIR access to
this data, we get a a “double encryption” under the ASHE-FHE. We will rely on an ASHE-FHE
with a key cycle (see Remark 6.1) to go from a double encryption to a single encryption.

Since homomorphic memory is a part of our RAM-FHE scheme, the construction depends on
the other algorithms of the scheme as well as the underlying ASHE-FHE scheme. Hence in the
following, we list the algorithms that will be invoked, then describe the data structure, and then
give the procedures of ReadMem and WriteMem.

Algorithm 7.5: Homomorphic memory, z̃.

46

Building blocks: We use the RAM-FHE algorithms Prep, Evalp, and Dec from Algorithm 7.3 as
well as the circuit evaluation algorithm Enc∗,Eval∗ from the underlying ASHE-FHE scheme.
We rely on an ASHE-FHE scheme with a key cycle, and denote the ciphertext containing the
encrypted secret key by ctsk, which is part of pk. We will specify how to pick parameters for
Setup in Algorithm 7.6.

Data structure: The data structure is parameterized by a space bound S, and it consists of:

z̃ = (DB0,DB1, . . . ,DBL, D̃B0, D̃B1, . . . , D̃BL, count),

where L := ⌈logS⌉, each DBℓ is either empty, or a sorted list consisting of 2ℓ encrypted index-
value pairs (i, b), and D̃Bℓ is the DEPIR preprocessed copy of DBℓ. When DBℓ is empty, we
set (DBℓ, D̃Bℓ) to the symbol (⊥,⊥). Each pair (i, b) ∈ (JSK × {0, 1}) ∪ {(∞, 0)} stores the
entry z[i] = b for the virtual array z, where (∞, 0) denotes a “dummy” pair. The counter
count denotes the number of writes taken modulo 2L.

Init(S): Let L := ⌈logS⌉, set (DBℓ, D̃Bℓ) := (⊥,⊥) for all ℓ ≤ L, set count := 0, and then output
z̃ := (DB0, . . . ,DBL, D̃B0, . . . , D̃BL, count).

ReadMem(pk, z̃, î): Takes as input the public key pk, the data structure z̃, and an ASHE-FHE en-
cryption î of an index i ∈ JSK.

Let Psearch be a RAM program implementing binary search, such that

Psearch(x = (sk, i∗) , y = DBℓ)

has read-only random-access to a list DBℓ consisting of 2ℓ encrypted tuples (i, b) sorted by i.
The program Psearch performs a binary search and check if the list contains some encryption
of a tuple of the form (i∗, b): if so Psearch outputs b in the first such tuple, else it outputs ⊥.
The program uses sk to decrypt any encrypted tuples that it touches. The program is padded
to always run in worst-case time T = poly(λ, logN).

ReadMem performs the following procedure.

1. For ℓ = 0, . . . , L:

If D̃Bℓ = ⊥, set b̂ℓ := Enc∗(pk,⊥; 0∗) to be an encryption of the special symbol ⊥
using all 0’s randomness. Else, perform

b̂ℓ := Evalp(pk, Psearch, (ctsk, î), D̃Bℓ).

where Evalp is the homomorphic evaluation from Algorithm 7.3 in Section 7.2, that
only relies on random-access to the second input y = DBℓ.

Eventually each of b̂ℓ is an encryption of 0, 1 or ⊥.

2. Output b̂ := Eval∗(pk, Cfirst, b̂0, b̂1, . . . , b̂L), where Cfirst is the following circuit:

• Cfirst(b0, . . . , bL) finds the minimal ℓ∗ ∈ {0, . . . , L} such that bℓ∗ ̸= ⊥, and then it
outputs bℓ∗ ; it outputs 0 if all inputs are ⊥.

WriteMem(pk, z̃, î∗, b̂∗): Takes as input the public key pk, the data structure z̃, and ASHE-FHE
encryptions î∗ of an index i∗ ∈ JSK and b̂∗ of a bit b∗ to write into location i∗.

47

1. Update count := count+ 1 (mod 2L).
Let ℓ∗ be the max of ℓ ∈ {0, . . . , L} such that 2ℓ divides count.

2. Construct an updated list DB′
ℓ∗ as follows:

(a) Define DB−1 := {(̂i∗, b̂∗)} to be a list containing a single encrypted tuple.
(b) Perform DB′

ℓ∗ := Eval∗(pk, Cmerge, (DB−1,DB0, . . . ,DBℓ∗)), where Eval∗ is the eval-
uation algorithm of ASHE-FHE, Cmerge is a circuit defined as follows:
Cmerge(D−1, D0, . . . , Dℓ∗):

i. Take input the lists D−1, D0, . . . , Dℓ∗ , where Dℓ is a list of 2ℓ pairs of (i, b) for
ℓ ≥ 0, and D−1 is single-element.

ii. Take all the non-dummy pairs (i, b) contained in the lists D−1, D0, . . . , Dℓ∗ and
sort them by index i. If there are multiple pairs with the same index i, take only
the one from Dℓ with the smallest ℓ and discard the rest. Here, we instantiate a
sorting circuit with circuit size npoly log n for input size n, e.g., [Bat68, AKS83,
Goo14].

iii. Append additional dummy pairs (∞,⊥) until the final list is of size 2ℓ
∗

and
output it.

Remark: In the above, if ℓ∗ < L, then DBℓ∗ is empty, and we omit the input DBℓ∗

from the computation and reduce the input size of Cmerge accordingly.

3. Set DBℓ∗ := DB′
ℓ∗ , D̃Bℓ∗ := Prep(params,DB′

ℓ∗).

4. For ℓ ∈ {0, . . . , ℓ∗ − 1}: Set DBℓ := ⊥, D̃Bℓ := ⊥.

5. Output z̃′ := (DB0, . . . ,DBL, D̃B0, . . . , D̃BL, count).

Claim 7.5.1 (Correctness). There is a predicate GoodMemsk(z̃, z) that corresponds to z̃ being a “good”
homomorphic memory representation of z with respect to the secret key sk, such that the following holds:

1. For any S ≤ NS , z̃ := Init(S) satisfies GoodMemsk(z̃, 0
S) = 1.

2. Let z ∈ {0, 1}S , i∗ ∈ JSK, and b∗ ∈ {0, 1}, and let z′ be the same as z except with z′[i] := b. For any
z̃ satisfying GoodMemsk(z̃, z) = 1, for any good ASHE ciphertexts (̂i∗, b̂∗) ∈ GOODsk such that
Dec(sk, (̂i∗, b̂∗)) = (i∗, b∗), if z̃′ := WriteMem(pk, z̃, î∗, b̂∗) then GoodMemsk(z̃

′, z′) = 1.24

3. Let z ∈ {0, 1}S and z̃ satisfy GoodMemsk(z̃, z), and let i ∈ JSK. For any ciphertext î ∈ GOODsk

such that Dec(sk, î) = i, if b̂ := ReadMem(pk, z̃, î) then b̂ ∈ GOODsk and Dec(sk, b̂) = z[i].

Proof. The proof closely follows the correctness of updatable DEPIR in Theorem 5.5, but now
everything is under ASHE-FHE encryption. We define the predicate GoodMemsk(z̃, z) to hold if
z̃ = (DB0, . . . ,DBL, D̃B0, . . . D̃BL, count) such that:

i. For all ℓ ∈ {0, . . . , L}, D̃Bℓ = Prep(params,DBℓ).

ii. For all ℓ ∈ {0, . . . , L}, either DBℓ = ⊥ or DBℓ consists of a list of 2ℓ encrypted pairs î, b̂ ∈
GOODsk such that Dec(sk, (̂i, b̂)) = (i, b) for some i ∈ JSK ∪ {∞} and b ∈ {0, 1}. The encrypted
pairs are sorted by the index i. Furthermore, for any i ∈ JSK, there is at most one encrypted
tuple in DBℓ that decrypts to a pair of the form (i, b).

24We abuse notation and extend the definition of GOODsk from ASHE-FHE to contain vectors of ASHE-FHE cipher-
texts where each components is in GOODsk.

48

iii. For each i ∈ JSK, let ℓ ∈ {0, . . . , L} be the minimal value such that DBℓ contains an encrypted
tuple that decrypts to a pair of the form (i, b), or if no such ℓ exists let ℓ = ⊥. If ℓ ̸= ⊥, then
z[i] = b, otherwise z[i] = 0.

iv. Let count = (count0, . . . , countL−1) be the binary representation of count ∈ J2LK. For each ℓ
such that countℓ = 0 we have DBℓ = ⊥.

The fact that this predicate satisfies the three properties of the claim follows by essentially the
same argument as in the proof of Theorem 5.5, with the main difference that we additionally rely
on the correctness of the RAM-FHE evaluation Evalp from Algorithm 7.3 with the RAM program
Psearch, as well as the ASHE-FHE evaluation Eval∗ with the circuits Cmerge and Cfirst.

Claim 7.5.2 (Efficiency). The run-time of ReadMem is bounded by poly(λ, logN). Moreover, for any
sequence of T calls z̃t := WriteMem(pk, z̃t−1, ⋆, ⋆) for t ∈ [T], the total run-time is bounded by T ·
(min{T, S})ε · poly(λ, logN).

Proof. The run-time of ReadMem is dominated by L calls to Evalp on the program Psearch. Since
Psearch runs in time poly(λ, logN), the efficiency of Evalp (Claim 7.3.1) implies the total run time of
ReadMem is bounded by poly(λ, logN).25

To argue the total run-time of WriteMem, observe that each level ℓ ∈ {0, . . . , L} is only chosen
to be merged into once out of every 2ℓ calls to WriteMem (i.e., when ℓ∗ = ℓ). The run time of
WriteMem when merging into DBℓ is dominated by the call to Prep in Step 3 which takes time
S1+ε
ℓ · poly(λ, logN) by Claim 7.3.1, where Sℓ = 2ℓ · poly(λ, logN) is the size of DBℓ in bits. Thus

the total run time of any sequence of T calls to WriteMem is at most

L∑
ℓ=0

⌊
T/2ℓ

⌋
· S1+ε

ℓ · poly(λ, logN) ≤
⌊log(min{T,S})⌋∑

ℓ=0

(T/2ℓ) · (2ℓ)1+ε · poly(λ, logN)

≤ T · (min{T, S})ε · poly(λ, logN),

where the first inequality follows from the fact that the terms for which 2ℓ > T become zero after
taking the floor of T/2ℓ.

7.4.2 Full-fledged RAM-FHE Scheme

Now we plug the homomorphic memory data structure into our earlier RAM-FHE scheme from
the previous section, which already leverages random access to x, y, but not z. We simply modify
the steps of the homomorphic evaluation procedure that reads/writes to z. At the beginning of
the homomorphic evaluation, we initialize the homomorphic memory z̃. In each step, to read and
write to z we now perform the homomorphic ReadMem,WriteMem operations on z̃.

Algorithm 7.6: Final RAM-FHE Scheme (Setup,Gen,Enc,Prep,Eval,Dec)

Setup(1λ, Nx, Ny, NS): Let N := max{Nx, Ny, NS} and let N ′ := N · η(λ, logN) for some suffi-
ciently large polynomial η to be specified later. Choose a prime d as specified later. Let
m := ⌈logdN ′⌉ and let D := d · m. Set parameters for ASHE-FHE scheme as params∗ :=
Setup∗(1λ, 1d, 1D, dm) and output params := (params∗, d). Let R be the ASHE-FHE ring.

25The run-time of Evalp (and also Prep) is actually derived from the parameters picked by Setup that we deferred to
Algorithm 7.6, but the time will be identical to what we claimed here.

49

Gen,Dec,Prep,Enc: These are identical to the previous scheme (Algorithm 7.4).

Eval(pk, P, x̃, ỹ): This algorithm is modified from Evale (Algorithm 7.4), which in turn is a modifi-
cation of Evalp (Algorithm 7.3) by replacing Step 2b. We retain this modification and further
modify Evalp as follows:

1. In Step 1, instead of setting z0 := 0S and ẑ0 to be an encryption of z0, we now initialize the
homomorphic memory data structure z̃0 := Init(S).

2. Replace Step 2d with the following subroutine. Recall that at the beginning of that step we
already derived ciphertexts (̂itw, b̂tw, îtz) that encrypt the index itw ∈ JSK and bit btw to write, as
well as the index itz to read from in the memory z.

• Perform z̃t := WriteMem(pk, z̃t−1, îtw, b̂
t
w). This step uses read/write random-access to

the data structure z̃t−1 and updates it to z̃t.

• Perform b̂tz := ReadMem(pk, z̃t, îtz). This step uses read-only random-access to the data
structure z̃t.

3. Replace Step 3 with the following: For each j ∈ JMK, let ctout,j := ReadMem(pk, z̃T , ĵ), where
ĵ := Enc∗(pk, j; 0∗) is an ASHE-FHE encryption of j under all 0’s randomness, and M is the
output length of P . Output ctout := (ctout,j)j∈JMK.

Analysis. We begin by setting the parameters. As before, for any constant ε > 0, we choose
d to be the first prime d > log2/εN , which we can find efficiently. We choose a sufficiently
large η(λ,N) = poly(λ, logN) so that the size of DBL in the homomorphic memory is ≤ N ′ =
N · η(λ,N) bits. Recall that DBL consists of 2L ≤ 2NS ≤ 2N ASHE-FHE ciphertexts encrypt-
ing values (i, b) with i ∈ JSK and b ∈ {0, 1}. Each such ASHE-FHE ciphertext is of some size
poly(λ,D, log d, logN ′) = p(λ, logN ′) for some polynomial p. This means that we can choose a
sufficiently large η(λ,N) = poly(λ, logN) to ensure that 2Np(λ, log(N · η(λ,N))) ≤ Nη(λ,N).

The security of the scheme is the same as Claim 7.4.1 since the same key generation and en-
cryption procedures were unchanged.

The correctness of the scheme follows via the same arguments as in the previous schemes (Al-
gorithm 7.3, Algorithm 7.4), but now we also rely on the correctness of the homomorphic memory
(Claim 7.5.1). Recall that in the previous scheme, the correctness of evaluation is argued by an
induction on t. Here we proceed by a similar argument, with the difference that in the step-circuit
evaluation (Equation (1)), the ciphertext b̂tz is obtained from the output of ReadMem. The inductive
hypothesis is identical, we assume by induction that the overall state (cttstate, b̂

t
x, b̂

t
y, b̂

t
z, z̃

t) is correct
at step t, and we want to prove the hypothesis holds for t+ 1. Particularly, we want to prove that
both b̂t+1

z and z̃t+1 are correct, where we use Properties 1, 2, 3 of Claim 7.5.1 as follows. Let zt

denote the memory when the given program is performed in plaintext for t steps, where z0 = 0S .
In the base case t = 0, b̂0z is correct, and b̂0z is correct by Property 1 (GoodMemsk(z̃

0, z0) = 1), Then,
suppose the induction hypothesis holds for step t ≥ 0. By the correctness of circuit evaluation,
Eval∗ outputs correct ciphers ît+1

z , ît+1
w , and b̂t+1

w . Then by Property 2, WriteMem outputs correct
z̃t+1 (GoodMemsk(z̃

t+1, zt+1) = 1). Next, by Property 3, ReadMem outputs correct b̂t+1
z , that is, b̂t+1

z

decrypts to zt+1[it+1
z]. This concludes the induction.

50

The efficiency is the same as in Claim 7.4.1, except for Eval. By Claim 7.5.2, the run-time of
Eval is dominated by WriteMem, that is, T · poly(λ, logN) · ((min{T, S})ε + |C|).

Thus we have completed the proof of the following theorem.

Theorem 7.7 (RAM-FHE). Assume there exists a secure ASHE-FHE encryption scheme with a key cy-
cle (Remark 6.1) for poly-logarithmic degree. In particular, this holds assuming RingLWE with quasi-
polynomial approximation factors and the circular-security assumption (6.2). Then, for any constant ε > 0,
Algorithm 7.6 is a secure RAM-FHE scheme. For security parameter λ, any bounds Nx, Ny, NS with
N := max{Nx, Ny, NS}, any program P = (C, T, S,M) and any inputs x, y such that S ≤ NS , |x| ≤
Nx, |y| ≤ Ny, the achieved efficiency is:

• Setup and Gen run in time poly(λ, logN),

• Enc and Prep run in time |x|1+ε · poly(λ, logN) and |y|1+ε · poly(λ, logN) respectively,

• Eval runs in time T · ((min{T, S})ε + |C|) · poly(λ, logN), and

• Dec runs in time M · poly(λ, logN).

Recall that, in the most natural case where P is the universal RAM, we have |C| = poly log(N)
and therefore the evaluation time becomes T · (min{T, S})ε · poly(λ, logN).

8 Extensions and Variants of RAM-FHE

We now discuss several potential extensions and variants of the RAM-FHE scheme above. In
Section 8.1, we consider aalternative parameters settings resulting in different efficiency tradeoffs.
In Section 8.2, we discuss how to avoid circular security at the cost of worse efficiency, where the
client’s run-time scales linearly with the RAM run-time T . In Section 8.3, we discuss how to
update the preprocessed input ỹ in sublinear time. Finally in Section 8.4, we discuss how to allow
for multi-hop and multi-input RAM-FHE, where we can perform homomorphic computations over
many individually preprocessed plaintext inputs and many individually encrypted inputs (under
the same key), and also use the outputs of previous homomorphic evaluations as inputs to future
homomorphic evaluations.

8.1 Alternative Efficiency Tradeoffs

Similar to DEPIR (Theorem 4.4), our RAM-FHE is tunable with different parameters to achieve
different efficiency tradeoffs. We refer to the default choice from Theorem 7.7 as Option A.

Our second option reduces the run-time of Enc,Prep,Eval by replacing the constant ε in the
exponent by o(1), at the cost of increasing the run-time of Setup,Gen,Dec by replacing poly logN
factors by No(1) factors. This is essentially the same as the alternative parameterization of DE-
PIR in Theorem 4.4 (Option B) that “balances” the overhead of preprocessing and evaluating. In
the context of RAM-FHE, this choice balances between reads/writes to memory to achieve No(1)

overhead in both cases.

Theorem 8.1 (RAM-FHE, Option B). Assume there exists a secure ASHE-FHE encryption scheme
with a key cycle (Remark 6.1) for sub-polynomial degree. In particular, this holds assuming RingLWE
with sub-sub-exponential approximation factors and the circular-security assumption (6.2). Then there

51

is a secure RAM-FHE such that, for any security parameter λ, any bounds Nx, Ny, NS , any program
P = (C, T, S,M) and any inputs x, y such that S ≤ NS , |x| ≤ Nx, |y| ≤ Ny, the scheme achieves the
following efficiency, where N := max{Nx, Ny, NS}:

• Setup and Gen run in time No(1)poly(λ),

• Enc and Prep run in time |x| ·No(1)poly(λ) and |y| ·No(1)poly(λ) respectively,

• Eval runs in time T ·No(1) · |C| · poly(λ), and

• Dec runs in time M ·No(1)poly(λ).

All the No(1) factors above can be more precisely replaced with 2Õ(
√
logN).

Proof. We now choose d to be the first prime such that d ≥ 2
√
logN ′ , just as in parameter Option

B of DEPIR. We choose N ′ = N1+o(1)poly(λ) sufficiently large to ensure that the size of DBL

consisting of O(Ns) ciphertexts, each of size poly(λ)(N ′)o(1), is bounded by |DBL| ≤ N ′. The other
parameters are chosen as before, as functions of N ′, d. Correctness is unaffected and security
now relies on ASHE-FHE with sub-polynomial degree, but is otherwise the same. The efficiency
analysis is analogous to the previous one, but plugging in the “alternative parameters” of DEPIR
(Theorem 4.4), and noting that each ASHE-FHE ciphertext is of size poly(λ)No(1).

Our third option is somewhere in between A and B. It optimizes for the case when |x|, |y| is
much larger than S, T . In that case, we may want to avoid paying the No(1) ≥ max{Nx, Ny}o(1)
overhead during setup, decryption, key generation and evaluation (as we need to pay in option
B) and would prefer to just pay poly log(Nx, Ny) (as was the case in option A). But we also want
to avoid paying the min{T, S})ε overhead during evaluation (as we paid in Option A) and would
prefer to just pay min{T, S}o(1) (as we did in option B). This is also possible.

Theorem 8.2 (RAM-FHE, Option C). Under the same conditions as in Theorem 8.1, for any ε > 0, there
is a secure RAM-FHE scheme with the following efficiency:

• Setup and Gen run in time poly(λ, d),

• Enc and Prep run in time |x|1+εpoly(λ, d) and |y|1+εpoly(λ, d) respectively,

• Eval runs in time T · poly(λ, d) · |C|, and

• Dec runs in time M · poly(λ, d),

where d = poly(2
√
logNS , logNx, logNy) = N

o(1)
S poly(logNx, logNy).

Proof. We use different DEPIR parameters when encrypting/preprocessing x, y vs when prepro-
cessing the homomorphic memory. For x, y we use degree dx = logcNx, dy = logcNy respectively,
for a sufficiently large constant c depending on ε, as in Option A of DEPIR. For the memory, we
use degree dS = 2

√
logN ′

S as in option B of DEPIR, where N ′
S = N

1+o(1)
S · poly(λ, logN) is a bound

on the bit-size of DBL. To make this work, we need to choose the overall ASHE-FHE parameters
to accommodate the largest of these degrees, and therefore we set d = max{dx, dy, dS}.

52

8.2 Leveled RAM-FHE without Circular Security

We now discuss how to construct leveled RAM-FHE from RingLWE without relying on a circular
security assumption. This comes at a cost of needing to bound the maximal run-time T of the com-
putation already during key-generation and having the run-time of key generation and the size
of the public key pk scale linearly with this bound. The run-time of the preprocessing, encryption,
decryption and evaluation otherwise stays the same. Note that the client needs to generate pk
and send it to the server in order for the server to perform homomorphic evaluation; therefore,
leveled RAM-FHE effectively makes the client’s run-time and communication complexity linear
in the run-time T of the program.26

Comparison of Leveled RAM-FHE and DEPIR. We compare leveled RAM-FHE to the alter-
native where the client simply runs the program P locally over her input x, and uses DEPIR to
access the plaintext input y stored on the server. In both cases, the client’s run-time and the com-
munication complexity are linear in T . The main advantage of leveled RAM-FHE are: (1) Using
RAM-FHE the entire compuptation only needs 2 rounds of interaction between the client/server
whereas using DEPIR the number of rounds would be linear in T , (2) if the same client wants to
outsource many different RAM computations then it only needs to pay the linear cost in T once
to generate pk, but can reuse it to encrypt different inputs. In contrast, if we use full (non-leveled)
RAM-FHE then the client’s run-time is sub-linear in T .

Definition of Leveled RAM-FHE. To define leveled RAM-FHE, we lightly modify the syntax
of RAM-FHE (Definition 7.2), by letting the Gen algorithm take an additional input Tmax. We
then modify the correctness requirement to only hold for programs P = (C, T, S,M) for which
T · depth(C) ≤ Tmax, where depth(C) denotes the circuit depth of C. For efficiency, the run-time of
key generation and the size of the public-key can grow linearly with Tmax; we assume that all the
procedures have random-access to pk and therefore their efficiency can be sub-linear in Tmax.

Construction of Leveled RAM-FHE. Our construction of leveled RAM-FHE without a circular
security assumption is similar to our construction of RAM-FHE from ASHE-FHE with light mod-
ifications. Most importantly, we rely on Remark 6.2, which discusses how to construct leveled
ASHE-FHE without circular security, using a ladder of public/secret keys pki, ski, where we have
an encryption of ski under pki+1, and using this ladder instead of a key cycle to perform boot-
strapping. Each ASHE-FHE ciphertext is associated with a level i and the level increases when
performing FHE/ASHE operations.

Random-Access to y. We can plug such a leveled ASHE-FHE directly into our most basic con-
structions of RAM-FHE with random-access to y (Algorithms 7.3). We set the number of levels

26Just like in leveled FHE for circuits, the efficiency scales with the depth of the computation. Our RAM model is
naturally defined to sequentially execute T steps of some step circuit C, and therefore the depth of the computation is
linear in the run-time T . We could define a more flexible model of RAM computation as a “leveled RAM circuit” that
has special gates for reading from x, y and reading/writing to memory z. For example, a gate for reading from x would
have input wires corresponding to the bits of some location i and the output wire would contain x[i]. Each level can
have at most one “write to z” gate, ensuring that these are executed sequentially. Such a circuit naturally allows for
some parallelism and its depth can be much smaller than its overall size. In this more flexible model, we would have
the size of pk scale linearly with the number of levels in such leveled RAM circuit, rather than the overall run-time of
the computation.

53

L∗ := Tmax · poly logN for some appropriate poly logN terms defined later. The initial encryption
of x is under pk0 and therefore at level 0. Recall that the homomorphic evaluation proceeds in
steps, where each step computes an updated ASHE-FHE encrypted configuration

(cttstate, b̂
t
x, b̂

t
y, b̂

t
z, ẑ

t).

For t = 0, the configuration is an ASHE-FHE encryption at level 0. In each subsequent step the
level grows by some amount depth(C) + poly logN that depends on the depth of the circuit C
and also the auxiliary circuits Cread, Cwrite, based,m of depth poly log(N). The level also increases
by 1 when we apply Refresh on the DEPIR response. We set L∗ appropriately so that this is the
maximal number of levels needed. Note that we can always increase the level of a ciphertext as
needed throughout the computation, by evaluating an identity circuit of appropriate depth.

Random-access to x. We can also plug such a leveled ASHE-FHE scheme into the construction of
RAM-FHE with random-access to x (Algorithm 7.4) analogously, where now the initial encryption
ctkey of the PRF key is at level 0 and we update it accordingly in each step. This time, we need to
also evaluate the circuit OTPDec of depth up to poly(λ, logN) in each step and therefore we set
L∗ := Tmax · poly(λ, logN).

Random-access to z. To handle random-access to read/write memory z, we need a little more
work. Recall that in our homomorphic memory, we relied on the encrypted key cycle ctsk to strip
a layer from the doubly encrypted result when we use DEPIR to read from memory. However,
we can solve the same issue with the key ladder instead of the key cycle. When we read from
memory in some step t, the ASHE-FHE encryption of the index itz is at some corresponding level
t′ = t · poly(λ, logN). When we run ReadMem we need to homomorphically evaluate the program
Psearch(x = (skj , i

t
z) , y = DBℓ), where the secret key skj needs to be the secret key for some

level j ≪ t′ that matches the level of the ASHE-FHE ciphertexts contained in DBℓ, which in turn
depends on the time when the data was last reshuffled into DBℓ. To homomorphically evaluate
Psearch we therefore need to have an encryption of skj at level t′. We can derive this using the key
ladder by upgrading the level of the encryption of skj from j + 1 to t′, but naively this would
take O(t′ − j) = O(T) work. Doing this at every step would result in run-time O(T 2) for the
homomorphic evaluation. We can do better! During key generation, the client augments the key
ladder by adding exponentially increasing “shortcut jumps” consisting of encryptions of ski under
pki+2k for k ∈ ⌈logL∗⌉. This does not hurt security since the graph is acyclic. But now, using such
shortcut jumps, we can efficiently derive a level t′ encryption of skj under pkt′ , for any j, t′, in
poly log(T) steps. Overall, we get the following result.

Theorem 8.3 (Leveled RAM-FHE). Assuming RingLWE with quasi-polynomial approximation factors,
there is a leveled RAM-FHE scheme. For any security parameter λ, any bounds Nx, Ny, NS and Tmax, any
program P = (C, T, S,M) and any inputs x, y such that S ≤ NS , |x| ≤ Nx, |y| ≤ Ny and T ·depth(C) ≤
Tmax, the scheme achieves the following efficiency, where N := max{Nx, Ny, NS}:

• Setup runs in time poly(λ, logN),

• Gen runs in time Tmax · poly(λ, logN, log Tmax), which also bounds the size of pk. The size of sk is
bounded by poly(λ, logN).

• Enc and Prep run in time |x|1+ε · poly(λ, logN) and |y|1+ε · poly(λ, logN) respectively,

• Eval runs in time T · ((min{T, S})ε + |C|) · poly(λ, logN, log Tmax), and

54

• Dec runs in time M · poly(λ, logN).

We can also achieve alternate parametrizations of leveled RAM-FHE analogous to parameter
options B and C in Section 8.1.

8.3 Updatable RAM-FHE

In Section 5, we showed how to construct updatable DEPIR that allows us to update individual
bits of the database DB and correspondingly update the preprocessed data structure D̃B in sub-
linear time. We can use the same ideas to construct an updatable RAM-FHE scheme, where the
server can update individual bits of the plaintext input y and correspondingly update the prepro-
cessed data structure ỹ in sublinear time via some procedure ỹ′ := Update(ỹ, i, b). Indeed, in our
current construction of RAM-FHE, the data structure ỹ is the same as in DEPIR, and we can simply
replace it by the updatable DEPIR from Section 5. The new data structure for ỹ now consists of
log |y| levels, each of which constains a preprocessed data-structure D̃Bℓ for a database DBℓ under
the basic (non-updatable) DEPIR. To perform reads, we now need to homomorphically evaluate
the binary search program over the the data structure D̃Bℓ in each level, which we already know
how to do using non-updatable RAM-FHE. Overall, we achieve an updatable RAM-FHE with the
same security and efficiency as in Theorem 7.7 and the run-time of Update is |y|ε · poly(λ, logN).

8.4 Multi-Hop / Multi-Input RAM-FHE

In this section, we discuss how to extend our RAM-FHE to handle multi-hop and multi-input
evaluation. In a multi-hop evaluation, we can homomorphically evaluate many RAM programs
with some persistent memory z between executions; the final contents of the memory z at the end
of one program execution become the initial memory contents for the next program execution. In a
multi-input homomorphic evaluation, each program can operate over many separately encrypted
inputs xi under the same key, many separately preprocessed plaintext inputs yi, and even many
read/write memories zi that may have been filled by other prior program executions.

8.4.1 Multi-Hop

Definition. As in Section 7.1, we consider a RAM program P = (C, T, S,M) with step circuit
C, run-time T , space S, and output length M . The only difference is that now we do not nec-
essarily assume that the memory z ∈ {0, 1}S starts zeroed out, but instead directly allow for
an arbitrary initial memory z that is explicitly provided as an input. In other words, we write
(out, zT) := P (x, y, z) to denote the execution of P with initial memory content z ∈ {0, 1}S , fi-
nal memory content zT ∈ {0, 1}S and output out. We define multi-hop RAM-FHE where the
homomorphic evaluation algorithm takes as input a homomorphic memory data-structure z̃ and
updates it during the execution. The updated data structure z̃ can then be used as the initial
homomorphic memory of a future homomorphic computations.

Definition 8.4. A multi-hop RAM-FHE scheme is a tuple of algorithms (Setup,Gen, Prep,Enc, Init,
Eval,Dec). The syntax of Init and Eval is given below, while the syntax of the remaining algorithms are the
same as the standard single-hop RAM-FHE (see Definition 7.2):

• z̃ := Init(S): Initializes a homomorphic memory data structure z̃ for the empty memory z = 0S .

55

•
(
ctout, z̃

T
)
:= Eval

(
pk, P, c̃tx, ỹ, z̃

)
: We augment the syntax of Eval from Definition 7.2 to allow

us to explicitly provide some initial homomorphic memory data structure z̃ and to denote the final
contents of the data structure at the end of the evaluation by z̃T .

We augment the correctness requirement from Definition 7.2 as follows.

Correctness: There is a predicate GoodMemsk(z̃, z) that corresponds to z̃ being a “good” homomorphic
memory of z with respect to the given secret key sk such that the following requirements hold. For any
λ,Nx, Ny, NS ∈ N, for params := Setup(1λ, Nx, Ny, NS) and for any (pk, sk)← Gen(params):

• For any S < NS , z̃ := Init(S) satisfies GoodMemsk(z̃, 0
S) = 1.

• Let P = (C, T, S,M) be a RAM program and (x, y) be any input pair such that |x| < Nx,
|y| < Ny, and S < NS . For any z ∈ {0, 1}S and any z̃ such that GoodMemsk(z̃, z) = 1:

Pr

 Dec(sk, ctout) = out
∧ GoodMemsk(z̃

T , zT) = 1
:

ỹ := Prep(params, y)
c̃tx ← Enc(pk, x)

(ctout, z̃
T) := Eval(pk, P, c̃tx, ỹ, z̃)

(out, zT) := P (x, y, z)

 = 1.

Security: The security requirement is the same as in Definition 7.2.

Construction and Results. Our construction from Section 7 essentially achieves the above notion
of multi-hop RAM-FHE as is. In particular, we already explicitly define a homomorphic memory
data structure z̃ in Algorithm 7.5, which also gives us the Init algorithm. Our Eval procedure
in Algorithm 7.6 already explicitly operates over a homomorphic memory z̃, and we can simply
provide some initial z̃ as an input. Our correctness analysis already explicitly defined the predicate
GoodMem and directly shows the correctness property needed for multi-hop RAM-FHE.

For efficiency, there is a slight subtlety in that our homomorphic memory data structure, as
presented, only achieves good amortized update time, but the worst-case update time may be poor.
This already suffices to get a good bound on the total run-time of a sequence of homomorphic
multi-hop program executions. In particular, we can bound the total run-time of a sequence of
operations:

z̃0 := Init(S), (ctout, z̃i+1) := Eval(pk, Pi, c̃txi , ỹi, z̃i)

with different programs Pi = (Ci, Ti, S,Mi) and encrypted/preprocessed inputs c̃txi , ỹi, by:

T · (Sε +max{|Ci|}) · poly(λ, logN)

where T =
∑

i Ti. However, the worst-case run-time of the i-th execution Eval(pk, Pi, c̃txi , ỹi, z̃i)
may be significantly larger than just Ti · (Sε + |Ci|) · poly(λ, logN).

To fix this, we can deamortize the homomorphic memory to get essentially the same perfor-
mance in the worst-casse rather than just amortized. The technique for deamortization is identical
to that of updatable DEPIR (see Remark 5.1, based on [OS97]). Namely, whenever WriteMem
would merge the databases (DB0,DB1, . . . ,DBℓ∗) for some ℓ∗, we spread the work to the subse-
quent O(2ℓ

∗
) updates; meanwhile, we keep old copies of the D̃Bℓ’s to correctly answer ReadMem

queries. The asymptotic worst-case run-time is then the same as the previous amortized run-time.
We omit the details of deamortization and we conclude with the corollary below. Therefore, we
can get the same efficiency of multi-hop RAM-FHE as standard RAM-FHE.

56

Corollary 8.5. Theorem 7.7 also holds for multi-hop RAM-FHE under the same assumptions and with
the same efficiency, except that:

• The run-time of Init(S) is O(logS).

• The run-time of Eval for a program P = (C, T, S,M) is bounded by T · (Sε + |C|) · poly(λ, logN).

We can achieve the alternative parameters of Theorems 8.1 and 8.2 for multi-hop RAM-FHE
analogously. When we bound the run-time of Eval, we need to replace the min{S, T} term in the
original statements by S, since now the total size of memory used may be S even if the program’s
run-time is T < S.

8.4.2 Multi-Input

We can also extend homomorphic evaluation to operate over many separately encrypted inputs
c̃txi (all under the same key), separately preprocessed plaintext inputs ỹj , and separate homomor-
phic memory data structures z̃k (also all under the same key). In this case, the syntax of the RAM
program P = (C, T, {Sk}k∈[ℓz],M) is:

(out, {zTk }k∈[ℓz]) := P ({xi}i∈[ℓx], {yj}j∈[ℓy], {zk}k∈[ℓz])

where each step reads bit from each xi, yj , zk writes one bit to each memory zk. The memories zk
can be of different sizes Sk. The homomorphic evaluation is now defined by

(ctout, {z̃Tk }k∈[ℓz]) := Eval(pk, P, {c̃txi}i∈[ℓx], {ỹj}j∈[ℓy], {z̃k}k∈[ℓz]).

We assume that each c̃txi ← Enc(pk, xi) is a separately encrypted input under the same key pk,
and each ỹj := Prep(yj) is a separately preprocessed input, and each z̃k is a good homomorphic
memory data structure for some corresponding memory zk of size Sk under the same key sk,
satisfying GoodMemsk(z̃k, zk) = 1. Correctness is defined in the natural way as ensuring that
Dec(sk, ctout) = out and GoodMem(z̃Tk , z

T
k) = 1.

The construction is the same as before, and we use the respective methods for reading from an
encrypted input c̃tx, a preprocessed plaintext input ỹ, and reading/writing to the homomorphic
memory z̃ on each component separately. The run-time of Eval for a program P = (C, T, {Sk}k∈ℓz ,M)
is now bounded by

T ·

 ∑
k∈[ℓz]

Sε
k + |C|

 · poly(λ, logN).

Note that |C| ≥ ℓx + ℓy + ℓz since the step circuit C must output ℓx + ℓy + ℓz indices.

Remark on Memory as Output. Note that the output ciphertext ctout does not allow for future
homomorphic evaluations with random-access to its contents. However, using multi-hop/multi-
input RAM-FHE, we can instead use one of the homomorphic memory data structures z̃k as the
encrypted output and ignore ctout entirely. In particular, if we want to evaluate some RAM pro-
gram P with S-bit read/write memory and M bit output, we can think of it as a program with
two memories: an “internal memory” z1 of size S and an “output memory” z2 of size M , where
the final output will be written. The homomorphic evaluation will then have two homomorphic
memory data structures z̃1, z̃2 corresponding to z1, z2, and we can think of z̃2 as the encrypted out-
put of the computation, which can then be used as an input to future homomorphic evaluations.

57

8.4.3 Additional Extensions

Parallel/Distributed RAM computation. Using multi-hop and multi-input RAM-FHE, we can
perform a homomorphic computation in a parallelized/distributed setting. Suppose we have n
processors, each of which starts out holding a pair of inputs xi, yi. We have some distributed pro-
tocol that the processors can execute over the plaintexts, where the protocol runs in many rounds,
and each round the processors perform some local RAM computations over their current states
in parallel, and then exchange messages with each other. Further, assume that the communica-
tion pattern (which processor talks with which other in each round), the sizes of the exchanged
messages, the run-time of each processor in each step, and the memory size of each processor are
fixed non-adaptively. Then we can execute this distributed protocol homomorphically over en-
crypted data under RAM-FHE, when each processor starts off with a ciphertext ctxi encrypting xi
(all under the same key) and a preproceeded version ỹi of yi. The processors don’t know the secret
key, which may be held by an external party. The processors simply run the local computation of
each round homomorphically using RAM-FHE and exchange the encrypted outputs at the end of
each round. Here we are using the “memory as output” trick discussed previously to be able to
perform future computations with random-access to the outputs of previous computations.

In terms of efficiency, the round complexity of the homomorphic protocol execution is the
same as that of the plaintext execution. The communication complexity of the homomorphic exe-
cution is bounded by C1+εpoly(λ, logN) where C is the communication complexity of the original
protocol. This comes from the fact that the encrypted communication between the processors in
each round is represented as a homomorphic memory data structure which blows up the message
size from S to S1+εpoly(λ, logN). The run-time of each processor i in the homomorphic protocol
execution is Ti ·S1+ε

i ·poly(λ, logN) where Ti is the processor’s run-time in the plaintext execution
and Si is its space complexity in the plaintext execution.

Scaling the size of homomorphic memory. In a multi-hop homomorphic evaluation, where we
execute multiple programs that operate over some persistent memory z, we assumed the memory
size stays fixed throughout. However, this is not necessary. We can easily take some homomorphic
memory data structure z̃ corresponding to a memory z of size S and resize it: we can either scale
it up to S′ > S or down to S′ < S by taking the first S′ locations. An easy way to do this is
to initialize a fresh homomorphic memory data structure z̃′ for a memory z′ of size S′. We then
homomorphically execute a multi-input RAM program P that operates over the original memory
z of size S as well as a new memory z′ of size S′ and simply copies the first min{S, S′} bits of z
to z′; the result of the homomorphic execution will be a correctly filled homomorphic memory z̃′.
The run-time of this process will be min{S, S′} · (max{S, S′}ε) · poly(λ, logN)

Large Output / Small-space Programs. So far, we assumed that the output size M of the program
is bounded by the space S, i.e., M ≤ S. In particular, our RAM model defined the output to be
written in the first M memory locations at the end of the execution. However, it also makes sense
to define a RAM model where programs can have larger output size than space, i.e., M > S. The
program is given access to an append-only output tape, and for each step t ∈ [T], the program
writes at most one bit to the output tape. We further assume that the steps t in which the program
writes to the output tape are fixed a-priori and non-adaptively. We can homomorphically evaluate
such programs by simply taking the encrypted output bits produced during the homomorphic

58

evaluation of the circuit C (see Step 2a of Algorithm 7.3) in the special steps t and appending them
together to form the output ciphertext. The run-time of homomorphic evaluation is the same as
that claimed in our single-hop RAM-FHE, that is, Theorems 7.7, 8.1, 8.2, but without the restriction
of M ≤ S. In particular, the overhead of the homomorphic evaluation depends on Sε rather than
the potentially much larger M ε.

Circuit Privacy. The output ciphertext ctout of a RAM-FHE computation may reveal something
about the program P and the server’s input y beyond the output f(x, y), especially to a client who
knows c̃tx and sk. Indeed, if the homomorphic evaluation is deterministic than this is inherently
so. However, we can achieve circuit privacy and ensure that ctout does not reveal anything beyond
the output in the same way as in standard FHE. See [OPP14, DS16, BdMW16, DD22].

References

[ACFQ22] Prabhanjan Ananth, Kai-Min Chung, Xiong Fan, and Luowen Qian. Collusion-
resistant functional encryption for rams. Cryptology ePrint Archive, Paper
2022/1269, 2022. https://eprint.iacr.org/2022/1269, to appear in Asi-
acrypt 2022. 12

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic
primitives and circular-secure encryption based on hard learning problems. In Shai
Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 595–618. Springer, Heidelberg, August 2009. 15

[AKL+20] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and
Elaine Shi. OptORAMa: Optimal oblivious RAM. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture
Notes in Computer Science, pages 403–432. Springer, Heidelberg, May 2020. 11

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network.
In 15th Annual ACM Symposium on Theory of Computing, pages 1–9. ACM Press, April
1983. 48

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page 307–314.
Association for Computing Machinery, 1968. 48

[BdMW16] Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit pri-
vacy almost for free. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part II, volume 9815 of Lecture Notes in Computer Science,
pages 62–89. Springer, Heidelberg, August 2016. 59

[BGG+22] Vishwas Bhargava, Sumanta Ghosh, Zeyu Guo, Mrinal Kumar, and Chris Umans.
Fast multivariate multipoint evaluation over all finite fields, 2022. https://arxiv.
org/abs/2205.00342, to appear in FOCS 2022. 6

59

https://eprint.iacr.org/2022/1269
https://arxiv.org/abs/2205.00342
https://arxiv.org/abs/2205.00342

[BGKM22] Vishwas Bhargava, Sumanta Ghosh, Mrinal Kumar, and Chandra Kanta Mohapa-
tra. Fast, algebraic multivariate multipoint evaluation in small characteristic and
applications. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2022, page 403–415. Association for Computing Machinery, 2022.
6

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct
randomized encodings and their applications. In Rocco A. Servedio and Ronitt Ru-
binfeld, editors, 47th Annual ACM Symposium on Theory of Computing, pages 439–448.
ACM Press, June 2015. 12

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, ITCS 2012:
3rd Innovations in Theoretical Computer Science, pages 309–325. Association for Com-
puting Machinery, January 2012. 4, 5, 8, 9, 10, 32, 33, 34, 35, 75, 77

[BHMW21] Elette Boyle, Justin Holmgren, Fermi Ma, and Mor Weiss. On the security of dou-
bly efficient PIR. Cryptology ePrint Archive, Report 2021/1113, 2021. https:
//eprint.iacr.org/2021/1113. 2

[BHW19] Elette Boyle, Justin Holmgren, and Mor Weiss. Permuted puzzles and cryptographic
hardness. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of
Cryptography Conference, Part II, volume 11892 of Lecture Notes in Computer Science,
pages 465–493. Springer, Heidelberg, December 2019. 2

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in pri-
vate information retrieval: PIR with preprocessing. In Mihir Bellare, editor, Advances
in Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science, pages
55–73. Springer, Heidelberg, August 2000. 1, 2, 12

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database
both locally and privately? In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th
Theory of Cryptography Conference, Part II, volume 10678 of Lecture Notes in Computer
Science, pages 662–693. Springer, Heidelberg, November 2017. 1, 2, 4, 5, 18, 19

[BJRW20] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.
Towards classical hardness of module-LWE: The linear rank case. In Shiho Moriai
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020, Part II, vol-
ume 12492 of Lecture Notes in Computer Science, pages 289–317. Springer, Heidelberg,
December 2020. 75

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory of Computing,
pages 575–584. ACM Press, June 2013. 14

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, 52nd Annual Symposium on Founda-
tions of Computer Science, pages 97–106. IEEE Computer Society Press, October 2011.
2

60

https://eprint.iacr.org/2021/1113
https://eprint.iacr.org/2021/1113

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In Phillip Rogaway, editor, Ad-
vances in Cryptology – CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 505–524. Springer, Heidelberg, August 2011. 2, 5, 6, 8, 9, 10, 15, 16, 33

[CCHR16] Ran Canetti, Yilei Chen, Justin Holmgren, and Mariana Raykova. Adaptive succinct
garbled RAM or: How to delegate your database. In Martin Hirt and Adam D.
Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part II, volume
9986 of Lecture Notes in Computer Science, pages 61–90. Springer, Heidelberg, Octo-
ber / November 2016. 12

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private informa-
tion retrieval. In 36th Annual Symposium on Foundations of Computer Science, pages
41–50. IEEE Computer Society Press, October 1995. 1

[CH16] Ran Canetti and Justin Holmgren. Fully succinct garbled RAM. In Madhu Sudan,
editor, ITCS 2016: 7th Conference on Innovations in Theoretical Computer Science, pages
169–178. Association for Computing Machinery, January 2016. 12

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct
garbling and indistinguishability obfuscation for RAM programs. In Rocco A. Serve-
dio and Ronitt Rubinfeld, editors, 47th Annual ACM Symposium on Theory of Comput-
ing, pages 429–437. ACM Press, June 2015. 12

[CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server pri-
vate information retrieval with sublinear amortized time. In Orr Dunkelman and
Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022, Part II,
volume 13276 of Lecture Notes in Computer Science, pages 3–33. Springer, Heidelberg,
May / June 2022. 11

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private
information retrieval. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory
of Cryptography Conference, Part II, volume 10678 of Lecture Notes in Computer Science,
pages 694–726. Springer, Heidelberg, November 2017. 1, 2, 4, 5, 18

[CK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sub-
linear online time. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology
– EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Science, pages
44–75. Springer, Heidelberg, May 2020. 11

[CR72] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines.
In Patrick C. Fischer, H. Paul Zeiger, Jeffrey D. Ullman, and Arnold L. Rosenberg,
editors, Proceedings of the 4th Annual ACM Symposium on Theory of Computing, May
1-3, 1972, Denver, Colorado, USA, pages 73–80. ACM, 1972. 3

[CS15] Jung Hee Cheon and Damien Stehlé. Fully homomophic encryption over the integers
revisited. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science, pages
513–536. Springer, Heidelberg, April 2015. 75

61

[DD22] Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE from
information-theoretic principles. In Dana Dachman-Soled, editor, 3rd Conference on
Information-Theoretic Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, vol-
ume 230 of LIPIcs, pages 4:1–4:21. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2022. 59

[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and
Jean-Sébastien Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, vol-
ume 9665 of Lecture Notes in Computer Science, pages 294–310. Springer, Heidelberg,
May 2016. 59

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzen-
macher, editor, 41st Annual ACM Symposium on Theory of Computing, pages 169–178.
ACM Press, May / June 2009. 2

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
University Press, Cambridge, England, 3rd edition, 2013. 73

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 405–422. Springer, Heidelberg, May 2014. 12

[GHRW14] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Outsourcing private
RAM computation. In 55th Annual Symposium on Foundations of Computer Science,
pages 404–413. IEEE Computer Society Press, October 2014. 12

[GLO15] Sanjam Garg, Steve Lu, and Rafail Ostrovsky. Black-box garbled RAM. In Venkatesan
Guruswami, editor, 56th Annual Symposium on Foundations of Computer Science, pages
210–229. IEEE Computer Society Press, October 2015. 12

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious rams. J. ACM, 43(3):431–473, may 1996. 8, 11, 25

[Goo14] Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting
algorithm running in O(n log n) time. In David B. Shmoys, editor, 46th Annual ACM
Symposium on Theory of Computing, pages 684–693. ACM Press, May / June 2014. 48

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92. Springer, Heidelberg,
August 2013. 8

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausibility
of fully homomorphic encryption for RAMs. In Alexandra Boldyreva and Daniele
Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part I, volume 11692 of
Lecture Notes in Computer Science, pages 589–619. Springer, Heidelberg, August 2019.
3, 4, 8, 25, 31, 38

62

[HOWW19] Ariel Hamlin, Rafail Ostrovsky, Mor Weiss, and Daniel Wichs. Private anonymous
data access. In Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2019, Part II, volume 11477 of Lecture Notes in Computer Science, pages
244–273. Springer, Heidelberg, May 2019. 8, 12, 25, 31

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: A ring-based public
key cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, Third International
Symposium, ANTS-III, Portland, Oregon, USA, June 21-25, 1998, Proceedings, volume
1423 of Lecture Notes in Computer Science, pages 267–288. Springer, 1998. 4, 14

[JLL22] Aayush Jain, Huijia Lin, and Ji Luo. On the optimal succinctness and efficiency of
functional encryption and attribute-based encryption. Cryptology ePrint Archive,
Paper 2022/1317, 2022. https://eprint.iacr.org/2022/1317. 12

[KL21] Ilan Komargodski and Wei-Kai Lin. A logarithmic lower bound for oblivious RAM
(for all parameters). In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
– CRYPTO 2021, Part IV, volume 12828 of Lecture Notes in Computer Science, pages
579–609, Virtual Event, August 2021. Springer, Heidelberg. 11

[KO00] Eyal Kushilevitz and Rafail Ostrovsky. One-way trapdoor permutations are suffi-
cient for non-trivial single-server private information retrieval. In Bart Preneel, edi-
tor, Advances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-
puter Science, pages 104–121. Springer, Heidelberg, May 2000. 1

[KU08] Kiran S. Kedlaya and Christopher Umans. Fast modular composition in any charac-
teristic. In 49th Annual Symposium on Foundations of Computer Science, pages 146–155.
IEEE Computer Society Press, October 2008. 5

[KU11] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modu-
lar composition. SIAM Journal on Computing, 40(6):1767–1802, 2011. 5, 6, 7, 13, 65, 68,
71

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact Knapsacks are
collision resistant. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo
Wegener, editors, ICALP 2006: 33rd International Colloquium on Automata, Languages
and Programming, Part II, volume 4052 of Lecture Notes in Computer Science, pages
144–155. Springer, Heidelberg, July 2006. 14

[LN18] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious RAM lower
bound! In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology
– CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages 523–
542. Springer, Heidelberg, August 2018. 11

[LO13] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson
and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume
7881 of Lecture Notes in Computer Science, pages 719–734. Springer, Heidelberg, May
2013. 12

63

https://eprint.iacr.org/2022/1317

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 1–23. Springer,
Heidelberg, May / June 2010. 4, 14, 15

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for mod-
ule lattices. Des. Codes Cryptography, 75(3):565–599, jun 2015. 4, 75

[LTV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In Howard J.
Karloff and Toniann Pitassi, editors, 44th Annual ACM Symposium on Theory of Com-
puting, pages 1219–1234. ACM Press, May 2012. 4, 8

[Mic02] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient
one-way functions from worst-case complexity assumptions. In 43rd Annual Sym-
posium on Foundations of Computer Science, pages 356–365. IEEE Computer Society
Press, November 2002. 14

[NIS] Post-quantum cryptography: Selected algorithms 2022. https:
//csrc.nist.gov/projects/post-quantum-cryptography/
selected-algorithms-2022. Accessed: 2022-10-28. 4

[OPP14] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Mali-
ciously circuit-private FHE. In Juan A. Garay and Rosario Gennaro, editors, Advances
in Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science,
pages 536–553. Springer, Heidelberg, August 2014. 59

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract).
In 29th Annual ACM Symposium on Theory of Computing, pages 294–303. ACM Press,
May 1997. 9, 29, 56

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.
J. ACM, 26(2):361–381, 1979. 3

[PPRY18] Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo. PanORAMa:
Oblivious RAM with logarithmic overhead. In Mikkel Thorup, editor, 59th Annual
Symposium on Foundations of Computer Science, pages 871–882. IEEE Computer Society
Press, October 2018. 11

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case
assumptions on cyclic lattices. In Shai Halevi and Tal Rabin, editors, TCC 2006: 3rd
Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Science,
pages 145–166. Springer, Heidelberg, March 2006. 14

[PRS17] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness
of ring-LWE for any ring and modulus. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, 49th Annual ACM Symposium on Theory of Computing, pages
461–473. ACM Press, June 2017. 14

64

https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/projects/post-quantum-cryptography/selected-algorithms-2022

[RAD78] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, Academia Press, 1978. 2

[vGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homo-
morphic encryption over the integers. In Henri Gilbert, editor, Advances in Cryptology
– EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 24–43.
Springer, Heidelberg, May / June 2010. 4, 8, 74, 75

[ZLTS22] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. Optimal single-
server private information retrieval. Cryptology ePrint Archive, Report 2022/609,
2022. https://eprint.iacr.org/2022/609. 11

A Fast Polynomial Evaluation with Preprocessing

We prove Theorem 2.1, restated below.

Theorem 2.1 (Preprocessing Polynomials [KU11]). Let R = Zq[Y,Z]/(E1(Y), E2(Z)) for some q ∈ N
and arbitrary monic polynomials E1 over Y and E2 over Z with degrees e1, e2 > 0 respectively. Let
f ∈ R[X1, X2, . . . , Xm] be a polynomial of individual degree < d in every variable. Then, there is some
preprocessing algorithm that takes the coefficients of f as an input, runs in time

S = dm · poly(m, d, log |R|) ·O (m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Rm and computes f(α) in time

poly(d,m, log |R|).

We now give a full proof of the theorem, using the techniques extracted from Kedlaya and
Umans [KU11, Section 4]. The proof relies on the following two auxiliary lemmas.

Lemma A.1 (Product of small primes [KU11, Lemma 2.4]). For all integers M ≥ 2, the product of the
primes less than or equal to 16 logM is greater than M (where the log is base 2). That is,

M <
∏

p≤16 logM,
p prime

p.

Lemma A.2 (Multidimensional FFT [KU11, Theorem 4.1]). Let Fp be a field of prime order p ∈ N.
Given m-variate polynomial f(X1, . . . , Xm) ∈ Fp[X1, . . . , Xm] of individual degree < d in each variable,
there exists a deterministic algorithm that outputs f(α) for all α ∈ Fm

p in time O(m(dm+pm)·poly(log p)).

We prove Theorem 2.1 in stages. First we prove it for the special case where the ring is R = Zq.
Then we prove it for R = Zq[Y]/(E(Y)) by reducing this problem to the case where the ring is Zq′

for some q′. Finally, we prove it for R = Zq[Y,Z]/(E1(Y), E2(Z)) by reducing this problem to the
case where the ring is Zq′ [Y]/(E′(Y)) for some q′, E′.

65

https://eprint.iacr.org/2022/609

A.1 Polynomials Over Zq

We begin by proving a special case of Theorem 2.1 for the ring R = Zq for any q ∈ N. There are
two parts of the construction: we first use the Chinese Remainder Theorem (CRT) and modular re-
duction to obtain a “large data structure” of size proportional to (log q)m, and then we recursively
use this construction to obtain a “small data structure” of size proportional to (log log q)m.

Note: Throughout this section we identify elements of Zq with their integer representatives in
the range {0, . . . , q − 1}. This allows us to “lift” elements of Zq to Z by taking the appropriate
representative.27

Theorem A.3 (Prepossessing with large data structure over Zq). Let q ∈ N and let f ∈ Zq[X1, X2, . . . , Xm]
be a polynomial of individual degree < d in every variable. Then, there is some preprocessing algorithm
that takes the coefficients of f as an input, runs in time

S = O (md log q)m · poly(m, d, log q)

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Zm

q and computes f(α) in time

poly(d,m, log q).

Proof. The following algorithm preprocesses the coefficients of a polynomial f into a data struc-
ture:

1. Let M := dmqm(d−1)+1, and let p1, . . . , ph be the distinct primes less than or equal to 16 logM
for some h ∈ N.

2. Lift f ∈ Zq[X1, . . . , Xm] to f̄ ∈ Z[X1, . . . , Xm], i.e., the coefficients of f̄ are obtained by lifting
the corresponding coefficients of f from Zq to Z, where the coefficients are represented by
{0, 1, . . . , q − 1} in both Zq and Z.

3. For each i ∈ [h], let f̄i ∈ Zpi [X1, . . . , Xm] be the polynomial f̄i = f̄ modulo pi (i.e, take every
coefficient of f̄ modulo pi). Moreover, compute the following for each i:

(a) Using FFT on Zm
pi (Lemma A.2), evaluate f̄i(a) on all points a ∈ Zm

pi .

(b) Let Ti be the table of evaluations, that is, Ti :=
(
f̄i(a) : a ∈ Zm

pi

)
.

4. The data structure consists of p1, p2, . . . , ph, T1, T2, . . . , Th.

Given any point α ∈ Zm
q , the following algorithm computes the evaluation f(α) using the

above data structure:

1. Lift α to α ∈ Zm, i.e., each coordinate of α is obtained by lifting the corresponding coordinate
of α from Zq to Z.

2. For each i ∈ [h], let αi ∈ Zm
pi be the point obtained by α modulo pi coordinate-wise. More-

over, for each i, the evaluation f̄i(αi) ∈ Zpi is obtained by looking it up in table Ti.

27This is in contrast to Sections 3.1, 6.1 where it is more convenient to use the representatives in the range (−q/2, q/2].
These choices are internal to their respective domains and there is no need for consistency between them.

66

3. Use Chinese Remainder Theorem (CRT) to find the smallest z ∈ Z such that

z ≡ f̄i(αi) mod pi for all i ∈ [h].

4. Output z modulo q as the evaluation f(α).

The correctness of the above algorithm is argued as follows. Because the lifted polynomial f̄
and the lifted point α each have coefficients/component in {0, . . . , q − 1}, and f̄ has individual
degree < d, we can bound the lifted evaluation over Z by: 0 ≤ f̄(α) < M . By Lemma A.1, we then
have f̄(α) < M <

∏
i∈[h] pi. Notice that f̄(α) ≡ f̄i(αi) mod pi for all i ∈ [h]. Also, by CRT, there is

a unique solution for z <
∏

i∈[h] pi such that z ≡ f̄i(αi) mod pi for all i ∈ [h]. Recalling that f̄i(αi)

are correctly computed by the FFT evaluation (Lemma A.2), we have z = f̄(α) by the uniqueness.
Correctness follows since z = f̄(α) mod q = f(α).

We next calculate the computation time of the data structure. As h < 16 logM = O(md log q),
it takes time poly(m, d, log q) to compute M,p1, p2, . . . , ph. Also, it takes time dm · poly(m, d, log q)
to compute f̄i for all i ∈ [h] since f consists of dm coefficients. We then apply Lemma A.2 to obtain
Ti’s, which takes time (dm + (16 logM)m) · poly(m, d, log q). We thus have

S = O (md log q)m · poly(m, d, log q).

The evaluation time (given α) is straightforward. It takes time poly(m, d, log q) to perform the
modular reduction (from α to αi) as well as the looking up for f̄i(αi) for all i ∈ [h]. Performing the
CRT and taking the result modulo q also take time poly(m, d, log q).

We now apply the above algorithm recursively to replace the (log q)m factor in the preprocess-
ing run-time by a (log log q)m factor. This gives us the following theorem, which is a special case
of Theorem 2.1 for R = Zq.

Theorem A.4 (Theorem 2.1 restricted to R = Zq). Let q ∈ N. Let f ∈ Zq[X1, X2, . . . , Xm] be a
polynomial of individual degree < d in every variable. Then, there is some preprocessing algorithm that
takes the coefficients of f as an input, runs in time

S = dm · poly(m, d, log q) ·O (m(logm+ log d+ log log q))m

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Rm and computes f(α) in time

poly(d,m, log q).

Proof. The algorithm that computes the data structure from (the coefficients of) f is similar to that
of Theorem A.3 where the only difference (highlighted in blue below) is that we introduce a level
of recursion, applying Theorem A.3 instead of invoking FFT directly. Notice that this means CRT
is applied recursively in order to further reduce the problem size in q.

1. Let M := dmqm(d−1)+1, and let p1, . . . , ph be the distinct primes less than or equal to 16 logM
for some h ∈ N.

67

2. Lift f ∈ Zq[X1, . . . , Xm] to f̄ ∈ Z[X1, . . . , Xm], i.e., the coefficients of f̄ are obtained by lifting
the corresponding coefficients of f from Zq to Z, where the coefficients are represented by
{0, 1, . . . , q − 1} in both Zq and Z.

3. For each i ∈ [h], let f̄i ∈ Zpi [X1, . . . , Xm] be the polynomial obtained by f̄ modulo pi (i.e,
modulo pi on every coefficient of f̄). Moreover, compute the following for each i:

(a) Apply Theorem A.3 to compute the data structure for the polynomial f̄i over Zpi ; let Ti

be the resulting data structure.

4. The data structure consists of p1, p2, . . . , ph, T1, T2, . . . , Th.

Given any point α ∈ Zm
q , the evaluation algorithm of f(α) is almost identical to that of Theo-

rem A.3, where the only difference is that we use Theorem A.3 instead of looking up the table
directly (as highlighted in blue).

1. Lift α to α ∈ Zm, i.e., each coordinate of α is obtained by lifting the corresponding coordinate
of α from Zq to Z.

2. For each i ∈ [h], let αi ∈ Zm
pi be the point obtained by α modulo pi. Moreover, for each i,

the evaluation f̄i(αi) ∈ Zpi is obtained by invoking the evaluation algorithm of Theorem A.3
using the data structure Ti.

3. Use Chinese Remainder Theorem (CRT) to find the smallest z ∈ Z such that

z ≡ f̄i(αi) mod pi for all i ∈ [h].

4. Output z modulo q as the evaluation f(α).

The correctness of the recursion follows by the same argument as Theorem A.3 and the correctness
of the base case then follows from Theorem A.3 directly.

We next calculate the efficiency of the data structure. For each i ∈ [h], by Theorem A.3, the data
structure Ti can be computed in time Si = O (md log pi)

m · poly(m, d, log pi), and takes at most Si

space. Since pi ≤ 16 logM = O(md log q) for all i, the total space of all h data structures is

S = O (md log(md log q))m · poly(m, d, log q)

= dm · poly(m, d, log q) ·O (m(logm+ log d+ log log q))m .

Finally, given α ∈ Zm
q , the evaluation time is at most poly(logM)·poly(d,m, log logM) = poly(d,m, log q),

where poly(logM) comes from the CRT and h < 16 logM , and poly(d,m, log logM) comes from
each evaluation of f̄i(αi) using Theorem A.3.

Note that the recursion decreases the problem size in q but at the cost of extra factors in (logm+
log d)m, and that the two-level recursion suffices for our purpose; see [KU11, Theorem 4.2] for a
version that allows for more levels of recursion.

68

A.2 Polynomials Over Extension Rings

We now extend the results of the previous section to work over a class of extensions rings of Zq. We
first show how to construct a data structure for evaluating polynomials over univariate extension
rings of the form R = Zq[Y]/(E(Y)) where E is an arbitrary (non-constant) monic polynomial,
and then we show how the same techniques allow us to prove an almost identical statement for
evaluating polynomials over bivariate extension rings of the form R = Zq[Y,Z]/(E1(Y), E2(Z))
for arbitrary monic polynomials E1 over Y and E2 over Z.

Overview. The main idea for R = Zq[Y]/(E(Y)) is as follows. First, instead of evaluating f(α)
over R, let us “lift” the evaluation to Z[Y] without reducing modulo q or E(Y). In that case, we
can show that the output β = f(α) ∈ Z[Y] is a polynomial β =

∑D
i=0 βiY

i of degree ≤ D with
non-negative coefficients βi < M for some integer bounds D,M that we compute below. But
this means that we can recover the entire polynomial β given its evaluation β(M) ∈ Z on input
Y = M , since the D+1 coefficients of β are just the D+1 digits of β(M) when written in base-M .
Furthermore, β(M) < r for r := MD+1. Therefore, instead of evaluating f(α) over Z[Y] it suffices
to evaluate it over Zr by reducing modulo (Y −M) and modulo r; the reduction modulo r does
not have any affect and the the base-M digits of the output β(M) as an integer are the coefficients
of β as a polynomial over Z[Y]. We can now simply rely on the results of the previous section to
preprocess the reduced version of the polynomial f over Zr for fast evaluation.

The idea for R = Zq[Y,Z]/(E1(Y), E2(Z)) is similar. We first lift the evaluation to Z[Y,Z] and
then reduce it to an evaluation over Zr′ [Y]/(Y D′

+ 1) for an appropriate r′, D′, which we then
solve using the algorithm from the previous paragraph.

Theorem A.5 (Theorem 2.1 restricted to R = Zq[Y]/(E(Y))). Let R = Zq[Y]/(E(Y)) for some q ∈ N
and some arbitrary monic polynomial E with degree e > 0, and let f ∈ R[X1, X2, . . . , Xm] be a polynomial
of individual degree < d in every variable. Then, there is some preprocessing algorithm that takes the
coefficients of f as an input, runs in time

S = dm · poly(m, d, log |R|) ·O (m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Rm and computes f(α) in time

poly(d,m, log |R|).

Proof. We can naturally lift elements a ∈ R = Zq[Y]/(E(Y)) into elements ã ∈ Z[Y] where ã(Y) is
a polynomial of degree < e with coefficients in {0, . . . , q − 1}.

The following algorithm preprocesses the coefficients of a polynomial f into a data structure:

1. Let M := dm(e(q − 1))(d−1)m+1 + 1, D := (e− 1)((d− 1)m+ 1) and let r := MD+1.

2. Lift f ∈ R[X1, . . . , Xm] to f̃ ∈ Z[Y][X1, . . . , Xm] by lifting each coefficient of f from R to
Z[Y].

3. Compute f ∈ Zr[X1, . . . , Xm] by reducing f̃ modulo the ideal (r, Y −M).28

28The value of r is chosen to be large enough that no “wrapping” over the modulus occurs, so computationally
reducing modulo r does nothing; it is just formally necessary to apply Theorem A.4

69

4. Apply Theorem A.4 to compute the data structure T for f .

5. The data structure consists of M, r, T .

Given any α ∈ Rm, the algorithm to compute f(α) is as follows:

1. Lift α to α̃ ∈ (Z[Y])m by lifting each coordinate.

2. Compute α ∈ Zm
r from α̃ by reducing each coordinate modulo the ideal (r, Y −M).

3. Use the data structure T to compute β = f(α) ∈ Zr, and lift to β̃ ∈ Z.

4. Let β̃0, . . . , β̃D ∈ JMK be the digits of β̃ written in base M so that β̃ =
∑D

i=0 β̃iM
i.

5. Construct the polynomial Q(Y) =
∑D

i=0 β̃iY
i ∈ Z[Y], and output Q(Y) mod (q, E(Y)).

We begin by showing correctness. For f ∈ R[X1, . . . , Xm] and α ∈ Rm, let γ = f̃(α̃) ∈ Z[Y]

denote the evaluation of the lifted polynomial on the lifted input. Observe that γ(Y) =
∑D

i=0 γiY
i

is a polynomial in formal variable Y with non-negative coefficients γi ≥ 0 and degree ≤ D =
(e − 1)((d − 1)m + 1). This holds because each coordinate of α̃ and each coefficient of f̃ is itself a
polynomial in Y of degree ≤ (e − 1) with coefficients in JqK. Also observe that we can bound the
coefficients γi by

γi ≤
D∑
i=0

γi ≤ γ(1) < dm(e(q − 1))(d−1)m+1 + 1︸ ︷︷ ︸
=M

.

The last inequality follows by substituting Y = 1 in all coefficients of f̃ and coordinates of α̃, in
which case each of them becomes an integer ≤ e(q − 1); each monomial term then evaluates to an
integer ≤ (e(q − 1))(d−1)m+1, and we sum dm of them. Next note that reducing γ = f̃(α̃) modulo
Y −M is equivalent to evaluating γ(M). Also γ(M) < MD+1 = r so reducing γ(M) modulo r and
then lifting the answer to Z is the same as computing γ(M) in Z. Therefore, by the correctness of
Theorem A.4, the value β̃ = f̃(α̃) mod (r, Y −M) computed in step 3 of evaluation is just γ(M).
Furthermore, for the values β̃i computed in step 4, we have:

β̃ =
D∑
i=0

β̃iM
i = γ(M) =

D∑
i=0

γiM
i

with β̃i, γi ∈ JMK, which implies β̃i = γi. Therefore, for the polynomial Q computed in step 5, we
have Q = γ = f̃(α̃) ∈ Z[Y] and hence Q(Y) mod (q, E(Y)) = f(α).

The efficiency of the data structure and evaluation algorithm follow almost immediately from
the efficiency properties of Theorem A.4 applied to the ring Zr. This is because constructing and
using the data structure for f contributes the dominant term in the run time and data structure
space. Thus the claimed efficiency holds since log r = poly(m, d, log |R|) and hence log log r =
O(logm+ log d+ log log |R|).

Finally, we are ready to prove Theorem 2.1, restated again below.

70

Theorem 2.1 (Preprocessing Polynomials [KU11]). Let R = Zq[Y,Z]/(E1(Y), E2(Z)) for some q ∈ N
and arbitrary monic polynomials E1 over Y and E2 over Z with degrees e1, e2 > 0 respectively. Let
f ∈ R[X1, X2, . . . , Xm] be a polynomial of individual degree < d in every variable. Then, there is some
preprocessing algorithm that takes the coefficients of f as an input, runs in time

S = dm · poly(m, d, log |R|) ·O (m(logm+ log d+ log log |R|))m

and outputs a data structure of size at most S, and there is some evaluation algorithm with random access
to the data structure, that is given an evaluation point α ∈ Rm and computes f(α) in time

poly(d,m, log |R|).

Proof. The algorithms for computing the data structure and using it for evaluation are very similar
to those from Theorem A.5. We use the same technique of lifting the evaluation to Z[Y, Z] and then
reducing it to an evaluation over Zr[Y]/(Y D1+1 + 1) for an appropriate r and D1, which we solve
by applying Theorem A.5. We can naturally lift elements a ∈ R = Zq[Y,Z]/(E1(Y), E2(Z)) into
elements ã ∈ Z[Y,Z] where ã(Y,Z) is a polynomial of degree < e1 in Y and degree < e2 in Z with
coefficients in {0, . . . , q − 1}.

The following algorithm preprocesses the coefficients of a polynomial f into a data structure:

1. Let M := dm(e1e2(q−1))(d−1)m+1+1, D1 := (e1−1)((d−1)m+1), D2 := (e2−1)((d−1)m+1)
and let r := MD2+1. Also let R′ = Zr[Y]/(Y D1+1 + 1).

2. Lift f ∈ R[X1, . . . , Xm] to f̃ ∈ Z[Y, Z][X1, . . . , Xm] by lifting each coefficient of f from R to
Z[Y,Z].

3. Compute f ∈ R′[X1, . . . , Xm] by reducing f̃ modulo the ideal (r, Z −M,Y D1+1 + 1).29

4. Apply Theorem A.5 to compute the data structure T for f .

5. The data structure consists of M, r, T

Given any α ∈ Rm, the algorithm to compute f(α) is as follows:

1. Lift α to α̃ ∈ (Z[Y,Z])m by lifting each coordinate.

2. Compute α ∈ (R′)m from α̃ by reducing modulo the ideal (r, Z −M,Y D1+1 + 1).

3. Use the data structure T to compute β = f(α) ∈ R′, and lift to β̃ =
∑D1

i=0 ciY
i ∈ Z[Y].

4. For each i ∈ JD1K, let ci,0, . . . , ci,D2 ∈ JMK be the digits of ci written in base M so that
ci =

∑D2
j=0 ci,jM

j .

5. Construct the polynomial Q(Y,Z) =
∑i=D1

i=0

∑j=D2
j=0 ci,jY

iZj ∈ Z[Y,Z], and output Q(Y,Z) mod
(q, E1(Y), E2(Z)).

29The value of r,D1 are chosen to be large enough that no “wrapping” occurs and the reduction does not change
anything; it is just formally necessary to apply Theorem A.5.

71

We begin by showing correctness. For f ∈ R[X1, . . . , Xm] and α ∈ Rm, let γ = f̃(α̃) ∈
Z[Y,Z] denote the evaluation of the lifted polynomial on the lifted input. Observe that γ(Y, Z) =∑D1

i=0

∑D2
j=0 γi,jY

iZj is a polynomial in formal variables Y, Z with non-negative coefficients γi,j ≥
0, degree ≤ D1 = (e1 − 1)((d − 1)m + 1) in Y and degree ≤ D2 = (e2 − 1)((d − 1)m + 1) in Z.
This holds because each coordinate of α̃ and each coefficient of f̃ is itself a polynomial of degree
≤ (e1−1) in Y and degree≤ (e2−1) in Z with coefficients in JqK. Also observe that we can bound
the coefficients γi,j by

γi,j ≤
D1∑
i=0

D2∑
j=0

γi,j ≤ γ(1, 1) < dm(e1e2(q − 1))(d−1)m+1 + 1︸ ︷︷ ︸
=M

.

The last inequality follows by substituting Y = 1, Z = 1 in all coefficients of f̃ and coordinates
of α̃, in which case each of them becomes an integer ≤ e1e2(q − 1); each monomial term then
evaluates to an integer ≤ (e1e2(q − 1))(d−1)m+1, and we sum dm of them. Next note that reducing
γ = f̃(α̃) modulo Z −M is equivalent to computing γ(Z=M)(Y) =

∑D1
i=0(

∑D2
j=0 γi,jM

j)Y i ∈ Z[Y].
Also

∑D2
j=0 γi,jM

j < MD2+1 = r so reducing γ(Z=M)(Y) modulo (r, Y D1+1 + 1) and then lifting
the answer to Z[Y] is the same as computing γ(Z=M)(Y) in Z[Y]. Therefore, by the correctness of
Theorem A.5, the value β̃ = f̃(α̃) mod (r, Z −M,Y D1+1 + 1) computed in step 3 of evaluation is
just γ(Z=M)(Y). Furthermore, for the values ci,j computed in step 4, we have:

β̃ =

D1∑
i=0

(

D2∑
j=0

ci,jM
j)Y i = γ(Z=M)(Y) =

D1∑
i=0

(

D2∑
j=0

γi,jM
j)Y i

with ci,j , γi,j ∈ JMK, which implies ci,j = γi,j . Therefore, for the polynomial Q computed in step
5, we have Q = γ = f̃(α̃) ∈ Z[Y, Z] and hence Q mod (q, E1(Y), E2(Z)) = f(α).

Notice that the invocations of Theorem A.5 comprise the dominant terms in the run time and
space of the above algorithms and data structure. Thus the claimed efficiency properties fol-
low immediately from Theorem A.5 by observing that log |R′| = poly(d,m, log |R|) and hence
log log |R′| = O(logm+ log d+ log log |R|).

Remark A.1 (Extension rings over more variables). Following very similar techniques to those in
the proof of Theorem 2.1, we can actually extend the result to handle evaluating polynomials over
extension rings of t variables R = Zq[Y1, . . . , Yt]/(E1(Y1), . . . , Et(Yt)) for arbitrary q and arbitrary
non-constant monic polynomials Ei, as long as t = O(1). That is, given a ring R of the above form
and a polynomial f ∈ R[X1, . . . , Xm], we can reduce the problem of preprocessing/evaluating
the polynomial over R to the case of preprocessing/evaluating the polynomial over the ring R′ =
Zr′ [Y1, . . . , Yt−1]/(E

′
1(Y1), . . . , E

′
t(Yt−1)) for some r1 > q and polynomials E′

1, . . . , E
′
t−1 of greater

degree, as in the proof of Theorem 2.1. This is done by (partially) evaluating at Yt = Mt for some
large enough Mt ∈ N, and reducing modulo r′ and the polynomials E′

1, . . . , E
′
t−1 which are chosen

large enough to avoid any “wrapping” over the modulus. Repeating this process iteratively, we
ultimately reduce to invoking Theorem A.4 for the ring Zr∗ for some r∗ ≫ q. Because t is constant,
the size of the final ring satisfies log r∗ = poly(d,m, log |R|) so we achieve the same efficiency
properties as in Theorem 2.1.

72

B Multivariate Polynomial Interpolation

Lemma 2.2 is restated and proved below.

Lemma B.1 (Multi-variate polynomial interpolation). Let Fd be a field of prime order d, and let m ∈ N
an integer. Let {y(x1,...,xm) ∈ Fd}(x1,...,xm)∈Fm

d
be any set of dm values. Then there is an algorithm that runs

in quasi-linear time O(dm ·m · poly log d) and recovers the coefficients of a polynomial f(X1, . . . , Xm) ∈
Fd[X1, . . . , Xm] with individual degree < d in each variable such that f(x1, . . . , xm) = y(x1,...,xm) for all
(x1, . . . , xm) ∈ Fm

d .

Proof. We will use the fast interpolation algorithm for univariate polynomials over Fd.

Fact B.2 (Univariate polynomial interpolation [GG13, Corollary 10.12]). Let Fd be a prime field of
order d. Then, there is an interpolation algorithm such that takes as input any distinct a1, . . . , an ∈ Fd and
any b1, . . . , bn ∈ Fd for n ≤ d outputs the n coefficients of a univariate polynomial g of degree < n, such
that g(ai) = bi for all i ∈ [n] in time n · poly log(n, d).

We then use the following algorithm to interpolate f given values {y(x1,...,xm) ∈ Fd}(x1,...,xm)∈Fm
d

:

1. Base case: if m = 1, run the univariate polynomial interpolation (Fact B.2), to recover the
coefficients of the univariate polynomial f(X) of degree < d such that f(x1) = yx1 for all
x1 ∈ Fd.

2. Otherwise, if m > 1:

(a) For each (x1, . . . , xm−1) ∈ Fm−1
d :

Run the univariate polynomial interpolation (Fact B.2) to recover the coefficients of a
univariate polynomial gx1,...,xm−1(X) =

∑d−1
i=0 cx1,...,xm−1,iX

i of degree < d such that
gx1,...,xm−1(xm) = y(x1,...,xm) for all xm ∈ Fd

(b) For each i ∈ JdK:

Recursively call this algorithm with the input (cx1,...,xm−1,i)(x1,...,xm−1)∈Fm−1
d

to interpo-
late a polynomial fi(X1, . . . , Xm−1) of individual degree < d such that fi(x1, . . . , xm−1) =
cx1,...,xm−1,i for all (x1, . . . , xm−1) ∈ Fm−1

d .

(c) Output f as
f(X1, . . . , Xm) =

∑
i∈JdK

fi(X1, . . . , Xm−1) ·Xi
m.

This is just concatenating the coefficients of fi for all i.

Analysis. The correctness is argued by induction on the number of variables. For the base case
m = 1, the output is correct by Fact B.2. Suppose that correctness holds for (m − 1)-variate
polynomials. Then, for any (x1, . . . , xm) ∈ Fm

d , we have:

f(x1, . . . , xm) =
∑
i∈JdK

fi(x1, . . . , xm−1) · xim =
∑
i∈JdK

cx1,...,xm−1,i · xim = gx1,...,xm−1(xm) = yx1,...,xm

where the 1st equality follows by Step 2c, the 2nd equality follows by the induction hypothesis
for m− 1 variables in Step 2b, the 3rd and 4th equality’s follow by the definition of gx1,...,xm−1 and
then Fact B.2 in Step 2a. Therefore, correctness holds for m variables.

73

To see the efficiency, let T (m) be the running time for m-variate polynomials. We have T (1) =
dpoly log d by Fact B.2. For m ≥ 1, we have

T (m) =

{
d · poly log d m = 1

dm · poly log d+ d · T (m− 1) m > 1,

where Step 2a is repeated for dm−1 times for a cost of dm−1·T (1) = dm·poly log d, Step 2b is repeated
d times for a cost of d · T (m− 1), and Step 2c is just concatenation of coefficients, whose run-time
can certainly bounded by dmpoly log d. Solving the recursion, we get T (m) = dm ·m · poly log d as
claimed.

C Constructions from Other Assumptions

In this section we sketch out a very simple constructions of ASHE from the Approximate GCD
assumption. We also sketch out an extension of our main construction from RingLWE to the more
general Module LWE assumption with constant rank. In both cases, the resulting ASHE construc-
tions automatically yield DEPIR from these assumptions with the same asymptotic parameters as
our main construction from RingLWE. The constructions can also be adapted to achieve ASHE-
FHE and therefore also yield RAM-FHE schemes under these assumptions plus a corresponding
circular security assumption.

C.1 DEPIR from Approximate GCD

We can construct a very simple ASHE scheme (Definition 3.1) over the ring Zq for some q, using
the SHE/FHE of van Dijk, Gentry, Halevi and Vaikuntanathan [vGHV10], whose security relies
on the approximate GCD problem defined there. We can plug this ASHE to get a DEPIR scheme
using our construction in Section 4.2.

Construction. We lightly modify the most basic symmetric-key somewhat homomorphic en-
cryption scheme of [vGHV10] to handle a large plaintext space Fd instead of Z2. Throughout this
section, we represent values in Zd as integers in the range (−d/2, d/2] which allows us to lift values
from Zd to Zq and vice versa.

• params := Setup(1λ, 1d, 1D, N): Choose parameters η, γ, ρ, q as described below and let R =
Zq be the ring of the ASHE scheme.

• s ← Gen(params): Choose s ← [2η−1, 2η) ∩ (dZ + 1) to be a random η-bit integer which is 1
mod d and output s as the secret key.

• ct← Enc(s, µ): Choose random integers a← [0, 2γ/s) and e← (−2ρ, 2ρ). Output a·s+d·e+µ.

• µ := Dec(s, ct): To decrypt, output (ct mod s) mod d.

• µ̄ := Lift(µ): Interpret µ ∈ Zd as an element of Zq.

We choose the parameter η, γ, ρ, q so that 2η ≥ 42N · d · (d(2ρ + 1))D + 1 and the approximate
GCD assumption holds with (η, γ, ρ); See [vGHV10]. For example, we can set ρ = λ, η to be the
smallest value subject to the above, and γ = η2λ. Set q = 2 ·N · d · (2γ + d · (2ρ + 1))D + 1.

74

Analysis. To argue correctness, note that fresh ciphertexts outputted by the encryption algo-
rithm are integers of size c ≤ 2γ +d · (2ρ+1). Let f(X1, . . . , Xm) be any polynomial of total degree
< D with N terms over Zd. Then the output of lifting f to the integers and evaluating it over fresh
ciphertexts cti is an integer of norm at most |f(ct1, . . . , ctm)| ≤ N · d · cD < q/2. Therefore, there
is no difference between evaluating the polynomial over Zq versus the integers and so we can just
assume we do the latter. Correctness holds since, if cti = ai · s+ d · ei + µi then:

f(ct1, . . . , ctm) = f(de1 + µ1, . . . , dem + µm) mod s

Furthermore, since |dei + µi| ≤ d(2ρ + 1) we have |f(de1 + µ1, . . . , dem + µm)| ≤ N · d · (d(2ρ +
1))D ≤ s/2 and therefore f(de1 + µ1, . . . , dem + µm) is the same mods as over the integers. Finally
f(de1 + µ1, . . . , dem + µm) = f(µ1, . . . , µm) mod d.

For efficiency, note that log q = poly(λ,D, log d, logN).
Security follows directly from the approximate GCD assumption as defined in [vGHV10] with

parameter (η, γ, ρ).

Extension to ASHE-FHE and RAM-FHE. Using the ideas of [vGHV10,CS15], we can also extend
the above ASHE scheme to an ASHE-FHE. The first work does this via “decryption squashing” at
the cost of needing additional assumptions as discussed there, while the latter work shows how
to get rid of it. In both cases, we need circular security if we want to go beyond a leveled scheme.
We can plug this ASHE-FHE into our constructions to get a RAM-FHE from approximate GCD.30

C.2 DEPIR from Module LWE

Our DEPIR and RAM-FHE schemes can also be based on the module LWE assumption [BGV12,
LS15, BJRW20], which is a generalization of RingLWE, as long as the rank of the module is con-
stant. Below, we give a construction of ASHE from module LWE, which is very similar to the
construction from RingLWE. We can then directly plug this ASHE into our DEPIR construction to
get a DEPIR from module LWE.

Module LWE Assumption. The problem of module LWE generalizes RingLWE to a rank κ > 1.
Recall that the RingLWE problem is parameterized by n = n(λ) ∈ N, q = q(λ) ∈ N, and an
error distribution χ = χ(λ) over the ring Q = Zq[Z]/(Zn + 1), where λ is the security parameter
(Definition 2.3). The module LWE augments RingLWE with an additional parameter κ = κ(λ) ∈
N, also called the rank.

The (n, q, χ, κ)-module LWE assumption states that for any ℓ = poly(λ), it holds that

{(−→a i,
−→a i · −→s + ei}i∈[ℓ] ≈c {(−→a i, ui}i∈[ℓ] ,

where −→s ← Qκ, −→a i ← Qκ, ei ← χ, ui ← Q, and −→a i · −→s denotes the inner product (over vectors of
ring elements). Note that rank-1 module LWE is identical to RingLWE. Similar to RingLWE, it is
equivalent to the scaled error variant: instead of adding the errors ei ← χ, we add d · ei for some
integer d relatively prime to q.

30The work of [CS15] tantalizingly shows that approximate GCD with certain parameters that are good enough for
FHE follows from just the LWE assumption. Unfortunately, such parameters do not appear to be sufficient for ASHE.

75

Construction of ASHE based on Constant-Rank Module LWE. Recall that an ASHE is param-
eterized by the security parameter λ, the plaintext space Zd for prime d, the total degree < D, and
the number of terms N . The construction of ASHE from module LWE of constant rank κ is very
similar to the construction from RingLWE (Section 3.1). The main difference is that the ciphertexts
are now κ-variate polynomials over Q, where homomorphic addition/multiplication just corre-
sponds to adding/multiplying the ciphertext polynomials as before. Therefore, the ring for the
ASHE becomes R = Q[Y1, . . . , Yκ]/((Y

D
i + 1)i).

params := Setup(1λ, 1d, 1D, N): Set the gap parameter t := D log d + logN + log d + 1 and choose
n = poly(λ, t), q = λpoly(t) and a β-bounded error distribution χ as in Section 2.2 so that
q > (2βn)t > 2Nd(d(β + 1)n)D and q is relatively prime to d. Define the rings

Q := Zq[Z]/(Zn + 1)

R := Q[Y1, . . . , Yκ]/(Y
D
1 + 1, . . . , Y D

κ + 1) ∼= Zq[Y1, . . . , Yκ, Z]/(Zn + 1, Y D
1 + 1, . . . , Y D

κ + 1)

We let
−→
Y denote the vector of symbolic variables (Y1, . . . , Yκ).

s← Gen(1λ): Sample −→s ← Qκ uniformly at random.

ct← Enc(−→s , µ): Reinterpret µ ∈ Zd as an element of Q. Sample −→a ← Qκ, e← χ. Let

b = −→a · −→s + d · e+ µ ∈ Q.

Define ct ∈ R as the linear polynomial with formal variables
−→
Y = (Y1, . . . , Yκ) via:

ct(
−→
Y) = −−→a ·

−→
Y + b.

µ := Dec(−→s , ct): Interpret ct ∈ R as a formal polynomial ct(
−→
Y) ∈ R and compute g = ct(−→s) ∈ Q

to be its evaluation on−→s ∈ Qκ. Interpret g ∈ Q as a formal polynomial g(Z) ∈ Zq[Z]/(Zn+1)
and let h = g(0) ∈ Zq be its constant term. Reinterpret h as an element of Zd and output it.

µ := Lift(µ): Reinterpret µ ∈ Zd as an element of R.

Analysis. The analysis is very similar to the ASHE based on RingLWE (Theorem 3.2). We begin
with correctness. Notice that any freshly encrypted ciphertexts cti are κ-variate polynomials of
total degree 1 over Q. Thus, if f has total degree < D, then ct′ = f(ct1, . . . , ctm) results in a
ciphertext ct′ that is a κ-variate polynomial of total degree < D over Q, and therefore ciphertext
is in R. It remains to argue the noisiness of ciphertexts. Recall that at a high-level, we defined
the noisiness of any ciphertext, and then we argued that the homomorphic evaluation results in
ciphertexts that is < q/2 noisy. Here the argument is almost identical, and the only difference is
that the ciphertexts are now κ-variate polynomials ct(

−→
Y) (over Q). Hence, we say a ciphertext

ct(
−→
Y) is γ noisy if ∥ct(−→s)∥ ≤ γ. With such modification, the remaining correctness analysis is

identical to the RingLWE case.
Security follows directly from the scaled error variant of module LWE assumption.
Efficiency: We determine the parameters n, q, χ as per RingLWE, which gives q = λpoly(D,log d,logN),

n = poly(λ,D, log d, logN). The elements in the ring R has individual degree of each vari-
able Yj bounded by < D. Hence, the description length of a ring element is O(n · Dκ log q) =
poly(λ,Dκ, log d, logN). Plugging in any constant κ ∈ N, the efficiency is still bounded by poly(λ,
D, log d, logN).

76

Plugging the ASHE into DEPIR. The above gives us an ASHE with the ring

R = Zq[Z, Y1, . . . , Yκ]/(Z
n + 1, (Y D

i + 1)i=1,...,κ).

While the default definition of ASHE only considered more restricted rings, we mentioned in
Footnote 14, that we only need the choice of the ring in the ASHE to match the types of rings for
which we have fast polynomial evaluation with prerocessing with the parameters of Theorem 2.1.
As sketched in Remark A.1, this is the case of the ring R. Therefore, we can use this ASHE in the
construction of DEPIR and achieve the same parameters as Theorem 4.4.

RAM-FHE from Module LWE. We can also construct ASHE-FHE from module LWE with a
constant rank, by analogously adapting the construction in Claim 6.1.1 based on the BGV FHE
scheme [BGV12]. In fact, the BGV scheme is already presented based on module LWE, and there-
fore we only need to make the same analogous modifications as in the Claim. We can then plug in
this ASHE-FHE into our constructions of RAM-FHE to get RAM-FHE from constant-rank module
LWE with the same parameters as Theorem 7.7.

77

	Introduction
	Our Results
	Our Techniques: DEPIR
	Our Techniques: RAM-FHE
	Other Related Work

	Preliminaries
	Multi-variate Polynomial Evaluation and Interpolation
	Ring LWE

	Algebraic Somewhat Homomorphic Encryption (ASHE)
	ASHE from RingLWE

	DEPIR
	Definition
	Construction

	Updatable DEPIR
	Multi-Round Updatable DEPIR
	Round-Optimal Updatable DEPIR

	ASHE-FHE
	Leveled FHE from RingLWE
	ASHE-FHE Construction

	RAM-FHE
	Definition of the RAM Model and RAM-FHE
	RAM-FHE with Random Access to y
	RAM-FHE with Random Access to x
	RAM-FHE with Random Access to z

	Extensions and Variants of RAM-FHE
	Alternative Efficiency Tradeoffs
	Leveled RAM-FHE without Circular Security
	Updatable RAM-FHE
	Multi-Hop / Multi-Input RAM-FHE

	Fast Polynomial Evaluation with Preprocessing
	Polynomials Over Zq
	Polynomials Over Extension Rings

	Multivariate Polynomial Interpolation
	Constructions from Other Assumptions
	DEPIR from Approximate GCD
	DEPIR from Module LWE

