RAPIDLY DECAYING WIGNER FUNCTIONS ARE SCHWARTZ
FUNCTIONS

FELIPE HERNANDEZ! AND C. JESS RIEDEL?

ABSTRACT. We show that if the Wigner function of a (possibly mixed) quantum state
decays toward infinity faster than any polynomial in the phase space variables x and p,
then so do all of its derivatives, i.e., it is a Schwartz function on phase space. This is
equivalent to the condition that the Husimi function is a Schwartz function, that the
quantum state is a Schwartz operator in the sense of Keyl et al., and, in the case of a pure
state, that the wavefunction is a Schwartz function on configuration space. We discuss
the interpretation of this constraint on Wigner functions and provide explicit bounds on

Schwartz seminorms.

1. INTRODUCTION

In quantum mechanics, quantum states of n degrees of freedom can be represented by
positive semidefinite trace-class operators on L?(R"). Each quantum state p is associated
with a kernel K, through (p@)(z) = [ K,(z,y)¢(z) dz, ¢ € L>(R™), and the corresponding
Wigner function W, is

Wy (z,p) == /eip'lep(x —y/2,z+y/2)dy.

1
(2m)"
We denote the set of all such Wigner function as V(R?"). Our main result is a relationship

between the decay of such Wigner functions and their smoothness.

To quantify this we use the Schwartz-type seminorms |F|,; := sup,,, |:E“Xpap8£X8£XF (z,p)]
of a function F': R?*" — C on phase space, with multi-indices a = (ax,ap),b = (bx,bp) €
(N U {0})*?". With shorthand notation |F|, := |F|,0 for the seminorms that only measure
the decay of F, we say a function is rapidly decaying when |F|, < oo and is a Schwartz
function when |F'|,; < oo for all a,b. We denote the sets of rapidly decaying and Schwartz
function by D(R*") and S(R?"), respectively. Our main result:
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2 RAPIDLY DECAYING WIGNER FUNCTIONS

Theorem 1.1. If p is a positive semidefinite operator whose Wigner function W, exists

and is rapidly decaying, then W, is a Schwartz function.

The assumed rapid decay of W, implies co > [W,(a)da = tr[p] and hence that p is
trace-class and so a quantum state. Thus the theorem can be rephrased as the set relation
V(R*™) N D(R™) c S(R*™).

In this paper we prove Theorem [Tl in two different ways. The first proof is a bit more
abstract, making use of the twisted convolution. The second proof is a bit more direct,
using only basic objects, but requiring more computation. The second proof also results in
an explicit bound on the Schwartz seminorms [W,|,; of a Wigner function in terms of only

its decay seminorms |W,|, (Theorem [3.9).
In the rest of this introduction, we informally sketch the direct (second) proof of Theorem [l

in order to give the reader intuition, but we stop short of completing the computation. In
the Sec.[2, we recall some notation and basic properties around quantum mechanics in phase
space, which can be skipped by experienced readers. In Sec. 3l we present our two proofs of
our main result and exhibit explicit bounds on the Schwartz seminorms of a Wigner function
in terms of its decay seminorms. In Section[dlwe connect our results to the notion of Schwartz
operators in the sense of Keyl et al. [§], and in particular prove the equivalence of a large
set of equivalent decay and regularity conditions for various representations of the quantum
state. In Sec. B we make some concluding remarks about the “overparameterization” of a

quantum state by the Wigner function.

1.1. Motivation. Why might one think the decay of a Wigner function constrains its
derivatives? Consider a pure state p = [1)1| with |¢) € L?(R"). We can see from the
identity

[$(p)|* = /Wp(x,p) da (1.1)
that rapid decay (in both x and p) of the Wigner function implies decay (in p) of the

Fourier transform 12 of the wavefunction. This implies that the wavefunction 1 is smooth:
[¥]op < oo for all b € (NU{0})*". Unfortunately, a bit of trial and error suggests that it
is not easy to generalize (1)) and obtain a bound on the mixed Schwartz seminorms |¢)|q
(that is, to show that all the derivatives of ¢ are not merely bounded but are also rapidly

decaying).

A better way to approach Theorem [Tl avoids privileging either the position or momentum
variables by performing a wavepacket decomposition of the quantum state p. Using Gaussian
wavepackets (coherent states), Zurek argued [12] that if the Wigner function W, of any
quantum state is largely confined to a phase space region of volume S ~ fy x £, then
the smallest structure it will develop is on scales of volume As ~ (h/lx) x (h/€,) ~ h?/S.



RAPIDLY DECAYING WIGNER FUNCTIONS 3

This argument was further supported by numerical studies of “typical” states generated by
chaotic quantum dynamics [12].

1.2. Sketch of direct proof. Consider a family of wavepackets x, of the form

X(ae,op) (T) = €070/ (3 — ), (1.2)

for fixed smooth envelope function x concentrated near the origin. (For example, x can be

chosen to be a Gaussian.) Given the spectral decomposition of a quantum state

p=3 Nl (1.3

we can use the decomposition 9; = (2m)™" [ (xalt;) Xa da for each eigenfunction as an
integral over phase space, which is a standard calculation proven in Lemma 291 We can

then express p as

1
P~ amn ZAJ’/|Xa><X6| (Xalth;) (jlxs) dadp, (1.4)
J
Applying the Wigner transform to both sides, this yields a decomposition
1
Wo = (2r)n / Wixa)xs| (Xalplxs) dardB. (1.5)

in terms of the Wigner transform W,y | of the “off-diagonal” operator IXa)(Xxs|. Although
Wixa)xs| 18 not a Wigner function (because |xa)(xs| is not positive semidefinite for a # 3),
it is known [I11[12] to be localized near the phase space point (a+)/2 and has an oscillation
with frequency roughly |« — 3.

Since (Xa|p|Xa) is just a convolution of the Wigner function W,, the rapid decay of W,
implies the rapid decay of (xa|p|Xa), and then in turn one can show the rapid decay of
(Xalplxs) using the Cauchy-Schwartz inequality:
2
(Xalplxs)” < (Xalplxa) (xalolx8) (1.6)

which holds because p is positive semidefinite. The assumed decay and smoothness proper-
ties of x additionally give an estimate of the form

|W\XQ)(Xﬁ\|a,b < C((I, b)(l + |Oé| + |5|)D(a,b)‘ (17)

When combined with decomposition (I.5]) of W,, this is enough to show that all the Schwartz
seminorms |W,|,, are finite.

Our other proof requires additional machinery but still rests heavily on wavepacket decom-
positions of the quantum state and on the Cauchy-Schwartz inequality (L.0]).
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2. PRELIMINARIES

This section establishes our notation and reviews standard features of phase-space represen-
tations of quantum mechanics. (To keep this paper self-contained, we provide proofs of the
lemmas in this section in the Appendix.) Throughout this paper, we take xy € S(R™) to be
a fixed Schwartz function that is normalized, ||x|[;2®») = [ Ix(y)[* dy = 1, but otherwise
arbitraryﬂ

Experienced readers may prefer to skip directly to Sec. [3] for the proof of our main result

and only refer back to this section as necessary.

2.1. Notation. In what follows, a wavefunction of n continuous quantum degrees of free-
dom is represented by a member of L?(R") and denoted by v, ¢, or x. A quantum state
is the possibly mixed generalization, represented by a positive semidefinite (and hence
self-adjoint) trace-class operator on L*(R™) and denoted by p or 1. Vectors on phase
space are a, 3,7,¢ € R?" with position and momentum components denoted by (for ex-
ample) ax, &, € R™. Multi-indices are a,b,c,d € (NU{0})**" (or (NU {0})*" in Sec. H)
with ab = abal? = [[2, %, b = |be| + |bp] = S22% bs, b = bylby! = [[2%, bi!, and
() = a!/((a— b)!b!). We use b < ¢ to mean b; < ¢; for all i = 1,2,...2n.

The symplectic form is aAfB = a-Q-8 = ax-fp —ap - Py, with Q = (_OI 6) an antisymmetric
matrix on R?”?, I the identity matrix on R, and “” the dot product on R and R?”. The
position and momentum operators are X = (X3,...,X,) and P = (Py,...,P,), which are
combined into the phase-space operator R = (X, P). For a given quantum state p and
reference wavefunction x € S(R™), some associated functions over phase space, doubled
phase space, and doubled configuration space are Wp, ox, My, F,, and K, (defined below).
We use “+” to denote the convolution, (fxg)(a) = [ f(a—8)g(8)dS. Given a matrix form
Q' we also define the twisted convolution

(f ®ar g)(a) = / )2 (0 B)g(B) dB. (2.1)

For any wavefunction ¢ € L2(R") we denote the linear functional associated with it using
bra notation, (¢| = ¢ — [ d:z:) € S'(R"™), and denote the scalar result with
a bra-ket, (¢[¢) = f qﬁ x)dxz. More generally, with an operator E we write
(9|E|Y) = (] (E¢) = <ET¢| (¥). For any two wavefunction ¢1, g2 € L2(R™), we use |¢p1 ) o
for the rank-1 operator 1 — (pa|1)) ¢;.

LA standard choice is to specialize to a Gaussian coherent state x(y) = exp(—x2/2)/+/(27)" (especially
when used as in Subsection as the reference wavefunction with respect to which Husnm function is
defined). However, this specialization is not necessary and one could instead take x to be, e.g., a smooth
and compactly supported wavefunction.
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2.2. The displacement operator and phase-space functions. In this subsection we
recall standard results about quantum mechanics in phase space (see, e.g., Chapter 1 of
Ref. [6]).

Definition 2.1. For ¢ € R*", define the (Weyl generator) displacement operator
Dy = c€NR _ ilexP6yX), (2.2)

The following lemma describes the action of D¢ on an arbitrary wavefunction.
Lemma 2.2. For any ¢ € L*(R"),

Deg(y) = V=P (y — &). (2.3)
It’s easy to check these basic properties: D,Dg = ethPhe/ 2Da+5 and D,Tl =D_,.
Now we introduce the quasicharacteristic function, the Wigner function, and the Kernel.
Definition 2.3. For a given quantum state p, the quasicharacteristic function is

Fol€) = te[oDe]. (2.4)

where the trace is well defined because p is trace-class and D¢ is a bounded operator on

L2(R"). Because a quantum state p is necessarily compact, it has a spectral decomposition

M
(pd)(z) = > i(x) (il 6) (2.5)
=1

with unnormalized eigenvectors 1; € L*>(R™) and associated kernel IC, satisfying (po)(x) =
[ Kp(z,y)p(z)dz and

Kplry) = 3 wi(x)i(y) (2.6)
i=1
almost everywhere. Finally, we define the Wigner function of p as
1 .
Wile) i= gz [ €0l = u/2 0 /2, 2.)

where W, € L*(R®") because it is a Fourier transform of K, € L*(R*") in one variable.

More generally, we call Wg(a) := (2m)™" [ €YK g(ax — y/2, ax + y/2) dy and Fg(&) =
tr[ED¢| the Wigner transform and quasicharacteristic transform of any kernel operator E,
which in particular exists for any rank-1 operator E = |¢)(¢| since K4y € L*(R*").

Lemma 2.4. For any trace-class kernel operator E, the corresponding Wigner transform
and quasicharacteristic transform are symplectic Fourier duals:

1

We(a) = EISen / e TN Frp(€) deE. (2.8)
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The preceding expression is sometimes used as the definition of the Wigner transform, and
it is notable for manifestly respecting the symplectic structure of phase space. The perhaps
more traditional definition (2.7) relies on the kernel, and hence privileges position over
momentum, but has the advantage of being more obviously well-defined.

Lemma 2.5. The Wigner function W, is a Schwartz function if and only if the kernel K,
1s a Schwartz function.

Roughly speaking, this is because W, and K, are Fourier transforms of each other in one of
their two variables (after the linear change of variables (z,y) — (Z = (z+y)/2, Az = x—vy)).

Lemma 2.6. The twisted convolution of a rapidly decaying function with a Schwartz func-
tion is itself a Schwartz function.

The proof is essentially the same as for the similar statement with the normal convolution.

Lemma 2.7. For any two quantum states p and 1,
tepn] = (2n)" [ Wyla)Wy(a) do. (2.9

Now we introduce the Husimi function and the so-called matrix element; these are most
often defined with respect to a preferred Gaussian reference wavefunction, but we will allow
more generality (see, e.g., Ref. [9]).

Definition 2.8. Fizing a reference wavefunction x € S(R") that is normalized (||x||2®n) =

i Ix(¥)|?>dy = 1), and Schwartz-class but otherwise arbitrary, we define the matrix element
My (e, B) == (Xalplxs) » (2.10)
and the Husimi function
Qx (@) == (Xalplxa) = M} (a, a). (2.11)
using the shorthand |xq) := Da |X)-

Lemma 2.9. For any trace-class operator E and any x € L*>(R™) satisfying Ixll2mny = 1,

(] = s [ el Elxa) do (2.12)
In particular, for any ¢,v € L*(R™)
(610) = G5z [ (0l) (xal) da (213)

Lemma 2.10. For any quantum state p and reference wavefunction x € S(R™),
Qx(a) = (r)" W, W)(@) = 2" [ WM B - a5 (211)

where W, (a) := Wy(—a) is a Schwartz function.
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3. PROOF THAT RAPIDLY DECAYING WIGNER FUNCTIONS ARE SCHWARTZ FUNCTION

The first (more abstract) proof of our main result is given in subsection B.I] below. The
second (more direct) proof follows in subsection These two subsections are independent

of each other and can be read in either order.

Both proofs will make crucial use of the Cauchy-Schwartz inequality in the following form:

Lemma 3.1. For any quantum state p, the Husimi function bounds the matriz element:

IMX (e, B)]* < QX() QX(B) (3.1)

Proof. We have
IMX(, B) = | (xalplxs) 7 < (Xalolxa) (xslolxs) = O} (a)QX(B) (32)
where the inequality is just the Cauchy-Schwartz inequality applied to the inner product
(D1, B2)p = (d1]p|d2). [

Corollary 3.2. If the Wigner function W, of a quantum state p is rapidly decaying, then
the Husimi function Qp and the matriz element M} are also rapidly decaying.

Proof. By Lemma 210, the Husimi function Q} is a convolution of the rapidly decaying
W, by the Schwartz function W (a) = Wy (—a), so QX must also be rapidly decaying. We
then get rapid decay of M} using Lemma 311 O

We now turn to the first strategy.

3.1. Abstract proof. Here is a sketch of our strategy: We obtain a reproducing formula
expressing M} as a twisted convolution of itself with a Schwartz function constructed from
X, showing that M} must itself be a Schwartz function. Then we find an integral expression
for the Wigner function W, in terms of the matrix element M3}, from which it follows that

W, is a Schwartz function.

Lemma 3.3. Let Q' = (g _OQ) be a symplectic form on R*™. Then the matriz element My
satisfies the following reproducing formula

1 _
where Fy = Tr[|[x)Xx| De] = (x|Delx) = (X—¢/2lXe/2) is the quasicharacteristic function of
the pure quantum state |x)x| and where F\@F, : R*™ x R* — C is defined by

(Fx@F )€ w) = Fx (&) Fx(—w). (3-4)
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Proof. We have:
M3 (a, B) = (xalplxs)

1
- (Qﬂ)n/<XOl’Xa’> (Xo'|plx ) do
1
= g [ Coltr) (o) () o 0! .
= (273)211 /ez’a’/\a/2]_—x(a/ —Oé)./\/l;‘(a,,ﬁl)fx(ﬁ—ﬁ/)eiﬁ/\ﬁﬂ do/ dﬁ',
1 _
= W((ﬂ@fx) ®o MX)(a, B)

where to get the second line we use Eq. (ZI3) of Lemma for the inner product of
IXa)splxs) € L*(R") and to get the third line we use the lemma again for the inner
product of |x5) € L*(R"),p|xL) € L*(R"). The final line is just the definition of the
twisted convolution with respect to the form €)'. O

Corollary 3.4. If the matriz element M} is rapidly decaying, then it is a Schwartz function.

Proof. First note that x and therefore K, (z,y) = x(z)x(y) are Schwartz functions. By
Lemma [2:5] this means W, is a Schwartz function, so therefore F, is a Schwartz function by
Lemma 2.4 meaning that F, ®F, is a Schwartz function. Then by Lemma 3.3} M} is the
twisted convolution of a Schwartz function (F,®F,) against a rapidly decaying function
(M}, by assumption), and is therefore also Schwartz-class by Lemma O

We now deploy Lemma [2.4] to recover the Wigner function W, from the matrix element

MY,

Lemma 3.5. For any quantum state p,

Wola) = (2;)% / e OPNEMN(B — £/2, 8 + €/2) dE dB, (3.6)
Proof. We have:
— L —taNg
Wpla) = (2m)2n /e tr[De jopDe o] d§
1 )
~ (2n)n /e_mAS (X8| D¢/2pDe 2l xp) dE A3
B (273)% / €™ (X|D—pDgj2pDe 2 Dg|x) A€ dp (3.7)
1 .
= (27-(-)3n /6_1(06—5/2)/\5 <X’D§/2—BPD§/2+5’X> dgd/@
1 .
= (2)3n /e—Z(a—B/Z)/\ﬁMZ‘(ﬁ —&/2,8+&/2)dEdp,
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where for the first line we use Lemma [2.4], for the second line we use the trace formula from
Lemma [2.9] and for the fourth line we use the composition identity D,Dg = eibra/ 2Da+g
for the displacement operator. O

Corollary 3.6. For any quantum state p, if the matriz element M} is a Schwartz function,

then W, is a Schwartz function.

Proof. Lemma shows that W, can be obtained from Mj by (a) multiplying by the
phase function e”#"¢/2 (quadratic in the variables § and &), (b) applying a symplectic
Fourier transform (exchanging the variable ¢ for the variable ), and then (c) integrating
over the variable 5. All three of these operations preserve Schwartz-class functions, so W,

is a Schwartz function. O

With all the hard work done, our main result follows easily.

Theorem [I.1l If p is a positive semidefinite operator whose Wigner function W, ewxists
and is rapidly decaying, then W, is a Schwartz function.

Proof. The rapid decay of W, means co > [W,(a)da = tr[p], so p is trace-class and
hence a quantum state. We then conclude that M} is rapidly decaying by Corollary [3.2]
so M} is a Schwartz function by Corollary B4l Therefore, W, is a Schwartz function by
Corollary O

This proof is constructive and so can in principle be used to derive effective bounds for the
Schwartz seminorms for W, in terms of only the decay seminorms. However, computing
the bounds through this method would be very laborious, so instead we use a more direct
method in the next subsection.

3.2. Direct proof. The strategy rests on showing that the Schwartz seminorms of W,y 5l

depend only polynomially on « and . In this section, we will use for convenience the

1 Fllap := Z Z |F|ar (3.8)

a’'<a b'<b

Schwartz type norms

and the corresponding shorthand ||F'lla = [|Flla,0 = >4 [Fla0-

Lemma 3.7. For any quantum state p and any reference wavefunction x € S(R™),

1

W,0) = o / Wit (1) M (, 8) dar dB. (3.9)
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Proof. Given the spectral decomposition p = > i [ 1| we use Lemma [2.4] to get

Wp(v) = (273)% /e_i%s tr[pD¢] d§
1
= (gﬂ)zm/ “ (x| Delxa) (Xalplxs) dadBd€ (3.10)

O / ¢ Fains (M (e, ) dad dg

where to get the second line we apply Lemma to the trace-class operator pDg twice.
Using Lemma [2.4] yields (3.9]). O

Lemma 3.8. The Schwartz seminorms of the Wigner transform of the off-diagonal operator

[Xa)xs| obey

Winalos < S50 (2)(5) (6) ()2 00 lamaaela® 5071 3

c<b d<a e<c f<d
< 4RI 4 Jaf + 18D P 0,0, (3.12)
where we use a hat to swap the position and momentum components of a multi-indezx: a =

(s @) = (aps ).

Proof. First note that

Fixadxs (€)= trlIxa)xsl Del = (x| D-pDeDalx)

. . o (3.13)
_ ez(oe+5)/\£/2+zﬁ/\o¢/2 <X|D£+a—B|X> _ ezoe/\£+za/\Aa/2]:X(£ + AO[)

where in the last line we introduced the shorthand @ = (a + )/2 and Aa = a — 5. Then
Wixa)xs| 18 related to Wy by

Wixadxs! (V) = / T P! (€) A€

— /ei(d—“/)/\§+id/\Aa/2fX(€+Aa) d€

(3.14)
_ /ei(a—'y)/\({—Aa)-‘ria/\AaﬂfX(g) de
— ei('y—&/2)/\AaWX(,y - d),
SO
VI Wiarixs (1) = 1105 0 DNBW), (4 — @)
(3.15)

=3 (D)ot a0 - @) + a) ek Wy —a)

c<b

where in the second line we used

ab IYNE abxabp iYx-Ep—ip-€x — (Z‘é‘p)bx(_ié‘x)bpei%(fp_iﬁfpfx = (ZQ . é‘)beiﬁ//\s (316)
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Then, using |(iQ2 - £)°| = ]fgxfip\ = ]fi’\, it follows that

b\ [a o
|W\xa><x6\|a,b < Z Z <c> <d> Wyla—dp—clDax ad|

c<b d<a
b\ [a\ (c\ [d R A
—ld +f pe—étd—f  (3.17)
<SS () () () ()2 ka1
c<b d<a e<c f<d
< 41FRI  Jad + 8D W lag.
To get the third line, we bound the terms in the sum on the second line using 214 < 1,

Wyla—dp—c < [Wyllap, and [afHFge=etd=f| < (|1 + |a| + |B])!**] and then sum the
binomial coefficients. U

Theorem 3.9. For any quantum state p and reference state x € S(R"™), the following
inequality holds:

Wolas < @) 240D o 4 IWillgiary o6 Wollagas s (3.18)

Note that the right-hand side contains only the decay norms of W,, and the left-hand side
contains an arbitrary Schwartz seminorm, so this implies Theorem [LI We also observe
that, on the right-hand side, the position and momentum indices are flipped in the derivative
multi-index b = (b/x,b\p) = (bp, bx) when it contributes to a coordinate power (rather than a

derivative power).

Proof. We start with Eq. (3.9) of Lemma 3.7 and apply Lemma B3] followed by Eq. (311])
from Lemma 3.8 to get

1
WO < gz [ W (IS @) 21QY(8)2 dadd

e EEEEOO0G) e

/ " lz_nI , " (3.19)
] 1+ oy )| QX (@) 2 da
II 1'+’ ]’) j=1 P
o 2n
I T+ 1851 1Q5(8)2 B,
/H (1+(8;1%) ]1;[1 ’ g
To compute the integral over «, we use
5 =i 1/2 1/2
0 TL0+ 102DIQS (@) < QNI ey < MIQSIN2, L (3:20)

J=1
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and likewise for the integral over 8. Integrating over a with [(1 + |a;|?)"'da; = m and
likewise for (3, we obtain

Wlas = (5) " 198t D255 (0) () (0) ()2 0

c<b d<a e<c f<d
T\ 2n
<(3) 220 Wb 9 gty (3.21)

using 2719 < 1 and Wy |4—ap—c < [Wyllap. We then bound the decay seminorms of QX
using Lemma 210

aQ(a) = (2n)" [ Wyla = B)((a~ 8) + B Wy (3)d5 (3.22)
0
a 1
oyl <Y (}) [ (0 5 Wyla— 5)
’ Z b)) I+ 130 ’
2m
a— — 3.23
g [T+ sy @las %)
j=1
< (2m)" 27 W ol Walla+2
using || Wyllat2 = [[Wy lla+2. Summing over the seminorms in the norm,
1QXlla =Y 1Qxs < 277" Y~ 2 W, Iy Wil (3.24)
b<a b<a
< 27T W, o [ Wy llas2 (3.25)
and then inserting into (3:21) yields (B.I8)). O

4. SCHWARTZ STATES

In this section, we extend our main result by establishing an equivalence between the
Schwartz-class and rapid-decay properties of many different representations of the quan-
tum state. First, we will give a notion of Schwartz class to a set of orthogonal wavefunction
{¢;} appearing in a spectral decomposition K,(z,y) = >, ¢:(x)¥;(y). Then, we recall the
definition of a Schwartz operator as identified by Keyl et al. [§]. Finally, we will prove our
large equivalence theorem.

To guarantee that K, is a Schwartz function, it is, of course, not sufficient for each ; to be a

Schwartz function. For example, if each 1); is a Gaussian wavepacket with increasing variance
2
i

S [ 22 |gi(x)Pde = Y, pio? can diverge if the norms p; = (¥;]1);) are decreasing slowly,

0? o i centered on the origin, then the overall variance (X?) = Tr[X?p] = [ 22K, (z,z)dz =
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so that K, is not a_Schwartz function even though each 1); is. Instead, we consider the
following deﬁnitionE

Definition 4.1. A set {{;} of unnormalized wavefunctions (1; € L>(R™) for all i) is jointly
Schwartz when [{1);}|ap < 00 for all a,b € (NU{0})*", where the Schwartz seminorms of
such a set are defined by

‘2

x“@izbi(x)

{2y = sup Y (4.)

This is denoted {1;} € S;(R™).

Note that this seminorm (@.I) is not simply a function of the seminorm [Kp|(4,c),b,a) of the
kernel, nor is it simply a function of the individual seminorms [t;]4 5 := sup, [299%;(z)| of
the wavefunctions v;. However, one can check that when the set {¢;} is finite, the jointly
Schwartz property is equivalent to the condition that all the wavefunctions are Schwartz
functions individually, {¢;} C S(R").

Lemma 4.2. For any quantum state p, the set of unnormalized wavefunctions {1;} of the
spectral decomposition is jointly Schwartz if and only if the kernel KC, is a Schwartz function.

Proof. First assume that {1;} € S;(R"™). Then

Koliae) 0.0 = sup [y 0L (2, )

= s;g) Z (xaagqbz(a:)) <ycag¢z(y)>'
i ) 1/2 ) 1/2
§3?<Zjﬂ%mww) (ij%m@w) (42)
Z ) 1/2 Z ) 1/2
= <sl;pz :Eaaz?ﬁz(!ﬂ)‘ ) <Sly1pz ycajm(y)‘ )
= {¥i}Hapl{i}e,as

where the third line is the Cauchy-Schwartz inequality. Therefore, {1;} € S;(R") = I, €
S(R?™). To see the inverse, note that

KColia o) = sup [y L0 K (2, )

.,y
> Sl;p ‘ (m“y“@i@ZK) (:E,:E)‘ (4.3)

= sup » _ |20
x =
i

2Note that the multi-indices a,b, c,d in this section are n-dimensional rather than 2n-dimensional because
the wavefunction ¢ and the kernel K, take arguments in position space rather than phase space.
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where the inequality holds because K, is a Schwartz function. This quantity diverges by
definition if {¢;} ¢ S;(R"), implying K, ¢ S(R*"). O

The natural way to characterize the Schwartz class of quantum states was suggested by
Keyl et al. [8] as those quantum states p with bounded expectation value for all symmetric
polynomials in X and P (i.e., trf[X*P’pP’X? < oo for all a,b € (N U {0})*"). More
generally, for arbitrary operators (i.e., not necessarily positive semidefinite, self-adjoint, or

trace-class), they define:

Definition 4.3. An operator E is a Schwartz operator, denoted E € S(L*(R™)), when
|Elgped < oo forall a,b,c,d € (NU{0})*"™, where the Schwartz operator seminorms are

|Elapodi= sup ‘<¢ ‘X“PbEPch‘ ¢>‘ . (4.4)
[l lol=1

Here, the supremum is taken over all normalized wavefunctions 1, ¢ € L*(R™).

Equipped with Definitions 1] and [£3] we can state a theorem that subsumes the results
of Sec. Bl

Theorem 4.4. For any Schwartz-class reference wavefunction x € S(R™) and for any
quantum state (i.e., positive semidefinite trace-class operator on L*(R™)) p, with spectral de-
composition {1;}, quasicharacteristic function F,, Wigner function W,, kernel K,, Husimi

function QF, and matriz element MY, the following conditions are equivalent:

e W, € S(R™)
e W, € D(R*™)
0} € S(R™)
0} € D(R™)
My € S(RA)
e MY € D(R*)
o 7, € S(R*™)
e K, € S(R™)
o {3} € S(RY)
 p€ S(L*(R"))

Furthermore, if the set {1);} is finite (e.g., if the state is pure, p = [)v)|), then the condition
{¢;} € S(R™) is also equivalent to the above.

Proof. We have:

W, € S(R*") = W, € D(R*") because S(R**) C D(R*").

W, € D(R*") = O), MX € D(R*") by Corollary .21

M% € D(R*™) = M} € S(R?*") by Corollary B.41
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MY € S(R?) = W, € S(R?™) by Corollary

Q) € S(R™) = Q} € D(R?) because S(R*") C D(R®™™).

M € S(R*™) = M} € D(R?") because S(R*") C D(R*™™).

W, € S(R*") & F, € S(R*) by Lemma 2.4

W, € S(R2") & K, € S(R?") by Lemma

K, € S(R*) < {¢;} € S;(R*") by Lemma 1.2

p € S(L*(R")) & W, € S(R?") by Proposition 3.18 in Ref. [3]. O

We say a quantum state satisfying the above equivalent conditions is a Schwartz state.

Note that K, € D(R?") is not an equivalent condition, being strictly weaker than the other
conditions aboveE This is essentially because K, is a spatial representation, so momentum
information is encoded only in its derivatives, whereas W,, QF, and M} are phase-space
representations whose decay constrains both space and momentum features. Similarly, F, €
D(R?") is not an equivalent condition because rapid decay of the derivatives of W, does
not assure that ¥V, has rapid decayH

5. DISCUSSION

Although the Wigner formalism provides a complete representation of quantum states and
dynamics, it is often regarded as less fundamental. (It only really becomes uniquely pre-
ferred in the classical limit, and under, e.g., certain symmetry demands to distinguish it
from other deformations of classical mechanics; see for instance the introduction of Ref. [5].

One practical reason is that computations are often more difficult using the Moyal productﬁ
the so-called “x-genvalue equations”, and so on [3]. Another reason is that the state space
is awkward to define.

Formally, the state space of valid Wigner functions can be delineated with the quantum
generalization [21[I0] of Bochner’s theorem [I]. (See also illuminating discussion and further
generalizations to some discrete spaces in Ref. [4].) This definition is sufficiently opaque
that most physicists simply think of the allowed pure-state Wigner functions as the image
of the Wigner transform of the space of allowed quantum states, L?(R"), if they think of it

3For instance, the plateau wavefunction ¥(y) = {1if0 < y < 1,0otherwise} is compactly supported in
position space but in momentum space decays to infinity only as a polynomial.

4Consider the n = 1 quantum state p = S0 o [k )Xtk | with i(y) = to(y — zk) = (6/7°)k ™% exp[—(y —
2)?/2]/v/27 with zx = k*. This is a mixture of Gaussians of equal variance, so the derivatives are all rapidly
decreasing and F, € D(R?"), but the mean tr[pX] diverges so W, is not a Schwartz function.

50f course, the peculiar features of the Moyal product are not just a matter of practicalities: Because the
Moyal bracket has phase-space derivatives of arbitrarily high order, the dynamics of the Wigner function
are non-local.
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at all. In particular, many simple (even positive-valued) functions on L'(R?") are not the

Wigner functions of any quantum states.

In contrast, the L?(R™) (pure) state space of the Schrodinger representation is relatively
simple to understand, and the “parameterization” of that space is natural in the sense
that all possible functions are allowed modulo only the single, easy-to-interpret constraint
of normalization. This becomes even clearer in the case of a finite-dimensional quantum
system, where there are no complications related to the continuum and where any complex-
valued function over configuration space suffices as a (not necessarily normalized) state.
Delineating the corresponding set of Wigner functions for finite-dimensional systems is

much more subtle [4].

In this sense, the Wigner representation is “overparameterized”. One can think of our The-
orem [[T] as better characterizing this overparameterization: the regularity of the interior
of the Wigner function in terms of its derivatives of any order is tightly controlled by the
Wigner function’s decay toward infinity, a feature that is obviously not shared by all normal-
ized functions over R?”. With the seminorm bound of Theorem [B.9] one can also recover a
version of the uncertainty principle. For example, because the supremum of the gradient of
W, is bounded by the decay seminorms of W,, it is impossible for W, to be supported in
a ball of too small a radius.
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APPENDIX A.
Here we here recall the proofs of some standard results referenced in the main body of this
paper.
Lemma For any ¢ € L*(R"),

Deg(y) = €'V 5/D gy — &), (A1)

Proof. First, let us prove the statement for some Schwartz function y € S(R™). Consider
the following differential equation:

O ft =iRNE S (A.2)

Solutions f; preserve the L? norm (because the operator on the right is anti-Hermitian),
so solutions are unique. Moreover, since Dy fy is a solution to (A.2), any solution to (A.2)
with initial condition fy = x satisfies f1 = D¢x.
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It remains to check that the function
fily) = Wty (y — ) (A-3)
solves ([A:2)). We check this by a direct computation,
0ufily) = il(y — t&) - &) fuly) — VTS URE (VX (y — 1)
= i& - yfily) — ités - Efily) — VTIEP D (Vx)(y - 16 (A4)
=i&p - X fi(y) —i& - Pfily)-

Having proven the claim for y € S(R™), we can extend it to any ¢ € L?(R™) by using the
density of the Schwartz function in L?(R™), i.e., by approximating D¢¢ to accuracy € with
some choice of Dg¢x(©) € S(R") and taking e — 0. O

Lemma 2.4l For any trace-class kernel operator E, the corresponding Wigner transform
and quasicharacteristic transform are symplectic Fourier duals:
1

We(@) = v / N Fp () de. (A5)

Proof. By linearity it suffices to check the case that E is a rank-1 state of the form E = [¢))(¢|.
Moreover, by the continuity of the Wigner transform in L?(R") x L?(R") and the density
of Schwartz functions in L?(R™), we may furthermore assume that 1, ¢ € S(R"). In this

case,

tr[EDe] = (¢|Delb) = (9| DgjaDej2ltb) = (D—_¢ 129, D¢ j2)
= /6i(z+§"/4)'§p/26i(z_5x/4)'5"/2¢_5(z +&/2)Y(2 — &4 /2) dz (A.6)

_ /eizvﬁp(b(z + &/2)0 (2 — &/2) dz

where to get the second line we use Lemma Applying this identity into the right-hand
side of (ALH), we get

| T8 = (i [ e 4 20z — 6/2) 0z el
1

= @ / €& B + Ex/2)t0 (0 — £/2) dEy,
(A7)

where the last line follows from the Fourier inversion formula [ e'G=%)% f(ay)dzdg, =

(2m)™ f(z). This is the definition of the Wigner transform Wg(«a) of E = |)4]. O

Lemma The Wigner function W, is a Schwartz function if and only if the kernel IC,

is a Schwartz function.
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Proof. First assume the kernel K,(z,y) is a Schwartz function. Then the function g(z, Az) =
Ko(z — Az/2,2 + Az/2) is a Schwartz function since it is related to /C, merely by a linear
change in variables (a 45° rotation). And of course we have W,(z,p) = (27) ™" [ e?"2*g(z, Az) dAz,
so W, must also be a Schwartz function since it is just the n-dimensional Fourier transform
of g (exchanging the variable Az for p but leaving the variable z). The argument works the
same in the opposite direction, so we conclude that K, is a Schwartz function if and only if

W, is a Schwartz function. O

Lemma The twisted convolution of a rapidly decaying function with a Schwartz func-

tion is itself a Schwartz function.

Proof. Let F € S(R*) and G € D(R?"). Then recall the definition of the twisted convolu-
tion,
F ®q G(a) = /eio"ﬂl'o‘lﬂF(a - )G(d)dd/. (A.8)
We claim that for any multi-index a = (a1, ...,a2,) € (NU{0})*?", there exist constants
C(a,a’) such that
0“(F ®g G) (o) = Y C(a,a) / VA9 Y (o — o) (i - &)Y G()) do. (A.9)
a’'<a
Equation ([A.9) is easily checked by induction on |a|. Now applying the triangle inequality
we can estimate
W%F&wQWNS}:Cwﬂ@/m¢ﬂa—dm&“dfﬂﬁmwwﬁ (A.10)
a’'<a

which is the finite sum of convolutions of the rapidly decaying functions |8% F(a)| and
(- @)* ¥ G(a)|. Therefore d*(F ® G) is rapidly decaying. Since every partial derivative
of F ® G is rapidly decaying, it follows that F ® G € S(R?"). d

(Note that a similar statement for normal convolutions can be proven in almost exactly the

same way. )

Lemma 2.7l For any two quantum states p and n,

txlpn] = (27)" / W ()W, (@) da. (A11)

Proof. We first decompose p and 7 using the spectral theorem,
=2 Aluikesl, = njléiNo;l, (A.12)
J J
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with Aj,pi; > 0 and >0, A; = >, p; = 1. Then tr[pn] = >, M| (j]6k)|?. The result
then follows from

/ Wy (@)Ws(a) da = <2771>2n / eI (2 — /2,0 +y/2)

X Ky(x —2/2,2 4+ 2/2)dydzdzdp

o / V(@ = y/2)0(e +y/D0( +u/2d — /2 dyde (4 1

z)p(z-)dey do_
= el W1
along with W, =~ j AWy, and W, = > j pjWe,. The sums can be interchanged because
everything converges absolutely. O

Lemma 2.9. For any trace-class operator E and any x € L*(R™) satisfying Ixllz2mny = 1,

0l = e [ (ol ) do (A14)
In particular, for any ¢,v € L*(R™)
1
(010) = o [ (@) (ol do. (A15)

Proof. We start by proving (AIH). For ¢, ¢ € L2(R"),

[ @) (alg)da = [ [ ( oo - ay) dz)
< / P(2)X(2 — ax)e F /Do dz')] da

(A.16)
/(25 Z(Z 2 apx(z — ax))Z(Z/ — ay)dz dz’ day day
(2m)" /(;5 (2) </ Ix(z — ay)|? dozx> dz
= (2m)" (gl)

where to get from the second to the third line we use the Fourier inversion formula.

Then, if F is any trace-class operator, we can write using the singular value decomposition

(which one can obtain from the spectral theorem applied to the polar decomposition F =

UVEE)
E=Y 0;]6;)t] (A.17)
i
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for some orthonormal bases ¢;, ¥; on L?(R"). Here the singular values o are nonnegative

and satisfy Zj o;j = ||E|l1 < oo. In this case we can expand the trace using this sum and

apply (A.16)
=" 0; (1;l¢;)
j

=Z%@/(xfx!¢j> (thjlxa) da (A.18)
J

= (2i)n/<Xa‘E’Xa> dov

The last line is obtained by swapping the integral and the sum, which can be done because

the sum is absolutely convergent. O

Lemma For any quantum state p and reference wavefunction x € S(R™),
Q3 (a) = (20" (Wp + Wy)(e) = (20" [ Wo(AW(5—a)ds  (A19)

where Wy (a) := Wy(—a) is a Schwartz function.

Proof. We have

QX (@) = (XalplXa) = tr[p(IXa)Xal)] (A.20)
(2r)" / WalBWp_ o (8)d8 (A.21)
— (2m)" / W, (B)Wy (8 — o) dB (A.22)

where we get the second line from Lemma [2.7] and the third line from the fact that the map
n— DanDL on quantum states corresponds to a displacement of the Wigner function by

o
1 —i
W Dannl (B) = (27)2n /e BA&J:DMDL (§)d¢ (A.23)
= / ™M tr[DanD o D] € (A.24)
(271')2” [e —al/¢ .
1 )
— —i(B—a)AE
(2m)2n /e tr[nDﬁ] d§ (A.25)
=Wy(B = a) (A.26)
Furthermore, since x is a Schwartz function, so is Ky(z,y) = Xx(z)x(y), and hence by

Lemma [2.5] we have that W~ (a) = Wy (—«) is a Schwartz function. O
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