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From the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a
molecular vibration can be ultra-strongly coupled to multiple IR cavity modes, with Rabi splittings
reaching 24% of the vibration frequencies. As a proof of the ultra-strong coupling regime, our
experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from
the anti-resonant terms in the interaction energy and from the dipolar self-energy of the molecular
vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic
bandgap of ca. 60 meV. We also demonstrate that the multimode splitting effect defines a whole
vibrational ladder of heavy polaritonic states perfectly resolved. These findings reveal the broad
possibilities in the vibrational ultra-strong coupling regime which impact both the optical and
the molecular properties of such coupled systems, in particular in the context of mode-selective
chemistry.

Light-matter interactions in the strong coupling regime
offer exciting possibilities for exploring quantum coher-
ent effects both from a physical and chemical perspec-
tives. This regime can be reached when a confined elec-
tromagnetic field interacts coherently with an electronic
transition of an embedded material, leading to the for-
mation of polaritonic states [1]. Many realizations of
this effect have been demonstrated, ranging from single
atoms [2], quantum wells [3, 4], superconducting q-bits
[5] to molecular systems [6–13]. Recently, we demon-
strated that molecular vibrations can be strongly cou-
pled to an optical mode of a Fabry-Pérot (FP) cavity
in the infrared (IR) region [14, 15]. Such coupling is
attracting more and more attention [16–18] since molec-
ular vibrations play a key role in chemistry. Therefore,
vibrational strong coupling could potentially be used to
control chemical reactions in the same way as it has been
demonstrated for electronic strong coupling [19]. Lately,
a whole field of research has been opened with the pre-
diction and demonstration of an ultra-strong coupling
(USC) regime [20]. The USC regime indeed leads to the
possibility of probing fascinating properties of the cou-
pled states such as non-classical ground state behavior,
squeezed vacuum and polaritonic bandgaps [21–25].

In this Letter, we demonstrate that USC can also be
reached, at room temperature, with ground state molec-
ular vibrations coupled to an optical mode. Inherent fea-
tures of the USC regime, anti-resonant and self-energy
contributions to the coupling, are measured on vibra-
tional polaritonic states. These results reveal totally dif-
ferent dynamics than the one we previously reported for
vibrational strong coupling [14]. To reach this vibrational
USC regime, we exploit unique features of molecular liq-
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uids with high vibrational dipolar strength. Such liq-
uids ressemble assemblies of individual ground-state me-
chanical oscillators where one is able to reach dipolar
strength densities far beyond the quenching densities in
the solid phase. These combined features naturally set
the conditions for collective coupling strengths up to the
USC regime. Remarkably, with Rabi splitting practically
matching the free spectral range (FSR) of the IR cavity,
the coupling process involves multiple orders of the FP
cavity modes and leads to a genuine ladder of polari-
tonic states. We show multimode splitting with up to 10
polaritonic peaks. The new vibrational spectrum asso-
ciated with this polaritonic ladder differs radically from
the vibrational spectrum of the bare molecules. While
USC has been recognized as a new playground for elec-
tronic polaritonic physics, the USC features that we now
observe on vibrations are expected to also have a strong
impact on the chemistry of vibrational polaritonic states
that remains so far unexplored.

Our system consists of a micro-fluidic FP flow cell
which can be filled with any given molecular liquid (see
Appendix A). It is made of two ZnSe windows coated
with 13 nm thick Au films to form the FP mirrors and
closing them with a Mylar spacer of the appropriate
thickness produces a microcavity with IR modes of qual-
ity factors Q ∼50 [15]. By varying the spacer thickness,
one of the optical modes is brought into resonance with
the targeted molecular vibration. Different concentra-
tions of molecules are injected in the cell and the sys-
tem is spectroscopically characterized using a commercial
Fourier Transform IR spectrophotometer (FTIR, Nicolet-
6700). The two molecules chosen for this study are
the iron pentacarbonyl Fe(CO)5 (see Fig. 1) and carbon
disulphide CS2. Fe(CO)5 liquid has a very strong oscilla-
tor strength with 3 equitorial and 2 axial CO-stretching
degenerate modes having a fundamental frequency ων
corresponding to a wave number of ∼ 2000 cm−1 [26].
The IR absorption band of a dilute Fe(CO)5 solution
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(10 wt % in toluene) is shown in Fig. 1. We inject the
same solution into a FP cavity tuned to have its 4th-
order longitudinal mode resonant with the CO-stretching
band. This resonant coupling splits the fundamental vi-
brational mode into an upper and lower mode separated
by h̄Ω10% ∼ 135 cm−1 (Fig. 1, second column). Impor-
tantly, this mode splitting is larger than both the width
of the cavity mode and of the vibrational peak, i.e. it
corresponds to a genuine Rabi splitting.

Using pure Fe(CO)5 liquid under the same resonant
conditions expectedly leads to an increase in the mode
splitting up to h̄Ω100% ∼ 480 cm−1, as shown in Fig. 1
(fourth column). In these conditions, the vibrational
spectrum of the coupled Fe(CO)5 liquid also displays a
series of sharp resonances that stem from the coupling
of the CO-stretching band with successive longitudinal
modes of the FP cavity. We report in Appendix B sim-
ilar spectral evolutions for CS2. This multimode split-
ting theoretically predicted by Meiser and Meystre [27]
is similar to that reported in the case of electronic strong
coupling [28, 29].

In order to understand the multi-peaked structure of
the spectrum, we perform a transfer matrix simulation
on a cavity filled with pure Fe(CO)5 liquid. Solving the
multilayered structure consisting of the ZnSe flow cell
windows, the Au cavity mirrors and the embedded ab-
sorbing medium, the calculated cavity transmission spec-
trum is shown together with the measured spectrum in
Fig. 2(a). A detailed description of the modeling of our
system is given in Appendix A. The electric field distri-
bution inside the cavity was computed using the same
parameters and is shown in Fig. 2(b). As can be seen
from the field distributions, the CO-stretching mode of
Fe(CO)5, when resonantly coupled to the 4th-order mode
of the FP cavity, gives rise to an upper and a lower mode,
at 2245 cm−1 and 1756 cm−1 respectively. The other four
new resonances on either sides of the fundamental CO-
stretching mode are at 2110, 2071, 1938, 1898 cm−1 (the
other peaks outside this spectral window can be seen in
Fig. 1). The field distributions enable us to identify the
modes at higher energy as originating from the coupling
between the vibrational band and lower optical modes of
the cavity and vice versa for the modes at lower energy.

The positions of these modes is directly given by com-
puting the round trip phase accumulation δφ = 2Lωn/c+
2φr for the electromagnetic field in the cavity, where L is
the cavity length, ω is the vacuum frequency of light, c
is the speed of light, n is real part of the refractive index
and φr is the reflection phase due to the finite metal skin
depth [30]. As shown in Fig. 2(c), the dispersive charac-
ter of the pure molecular liquid is so strong that optical
modes of different mth-orders can satisfy simultaneously
the resonant phase condition δφ = 2πm, with two solu-
tions P+

m , P
−
m for each mode m. The observed vibrational

ladder is characterized by very large multi-mode split-
tings, with Ω100% reaching ca. 24% of the vibrational
mode energy. Such a high ratio is often encountered
in ultra-strongly coupled systems, and in order to con-

firm that our molecular liquid has entered into the USC
regime, we now show that the spectral structure of the
coupled vibrational ladder cannot be described outside
the framework of ultra-strong light-matter interaction.

The involvement of specific features of the USC regime
can be revealed most directly at the level of polaritonic
dispersion diagrams. We have measured the dispersions
of our coupled vibrational modes as a function of the
cavity thickness (i.e. as a function of the detuning).
This is done by varying the cavity thickness around a
fixed value determined by the spacer inserted in our flow
cell. The results are gathered in Fig. 3. Using a thicker
spacer, we obtain the asymptotic positions of the cou-
pled modes. These experimental data are compared to
polaritonic dispersions that are calculated from a cou-
pled oscillator model that takes explicitly into account
the contributions of the vibrational dipolar self-energy in
the molecular liquid and the anti-resonant coupling terms
which are specific to the USC regime (see Appendix C
for a detailed presentation of the model). We emphasize
that in our model, there is only one free parameter which
corresponds to the Rabi splitting h̄ΩR.

As discussed in Appendix D, a coupled oscillator model
keeping only the resonant interaction terms at O(ΩR/ων)
order, and therefore neglecting the dipolar self-energy
of the vibration (Jaynes-Cumming-type Hamiltonian), is
unable to fit accurately the experiment close to the bare
vibrational mode energy, as shown in Fig. 3 (blow up)
and in full scale in the SM. This mismatch proves that
our system is truly in the USC regime. Remarkably, the
asymptotic values of the model yield a vibrational polari-
tonic bandgap of ∼ 60 cm−1, as shown in Fig. 3. The
opening of such a bandgap is an indisputable signature
of the USC regime, as pointed out in the context of in-
tersubband electronic transition systems [23, 24]. Here,
we emphasize again that such a signature is observed for
molecular vibrational transitions. More interestingly, the
USC regime also implies that the vibrational ground state
must shift to lower energies while acquiring a photonic
admixture. Such modifications are analogous to those de-
scribed at the level of electronic transitions, except that
in our case, they imply a deep modification of the whole
vibronic landscape of the dressed molecules.

The second remarkable feature of the vibrational
dressed states under USC is related to the presence of
a genuine ladder of vibrational polaritonic states. To get
further insight into the nature of these multiple polari-
tonic states, we perform angle-dependent experiments.
The dispersion diagram shown in Fig. 4(a) clearly demon-
strates the dispersive behavior of the different polari-
tonic states. This behavior is inherited from the pho-
tonic component of the polaritonic states, and is the
signature of their hybrid light-matter nature. Taking
the Rabi frequency parameter extracted from the best
fit of the polaritonic thickness-dependent dispersions of
Fig. 3, our USC oscillator model perfectly matches these
experimental angular dispersion data. Again, the polari-
tonic bandgap is clearly seen, demonstrating that this
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FIG. 1. Fe(CO)5 data are shown in columns for clarity, starting with the IR spectrum of 10 wt % Fe(CO)5 in toluene, the
transmission spectrum of the FP cavity filled with the same solution (blue curve) with a Rabi splitting Ω10% ∼ 135 cm−1,
followed by the mode diagram of the system under the corresponding coupling. The middle column shows the empty cavity
modes with, on the right-hand side, the coupled diagram of the multiple polaritonic states when the cavity is filled with 100
wt % Fe(CO)5. The last column to the right shows the corresponding experimental IR spectrum of the filled cavity with a
resonant Rabi splitting Ω100% ∼480 cm−1.

.

forbidden energy band exists for any cavity thickness
and at any angle. We stress that our model assumes
no interaction between the polaritonic branches associ-
ated with different (orthogonal) cavity modes. However,
non-trivial cross-talk between the different polaritonic
branches should be expected when accounting for the
non-Markovian behavior of our system (Ω100% = 2kBT
[31]). This analysis however goes beyond the scope of
this work. The results of our fit are shown in Fig. 4(a),
and the extracted Hopfield coefficients for the polaritonic
states P−4 and P−6 are shown in Fig. 4(b) [32]. As ex-
pected, the vibrational content of the states increases as
they approach the energy of the bare vibrational mode.
It is interesting to note the non-trivial evolution of the
Hopfield coefficients calculated for the lower P−4 polari-
tonic states which becomes more photon-like at reso-
nance. This unbalanced matter- vs. photon-like mixing
fraction is another remarkable feature of the USC regime
that comes in clear contrast with the usual regime of
strong coupling. Between P+

4 and P−4 , the ladder con-
sists of heavy (i.e. large vibrational content) polaritonic
states. Surprisingly, those heavy polaritonic states dis-
play linewidths up to 5 times narrower than the width
of the bare cavity mode, and up to 6 times smaller than
the linewidth of the bare (inhomogeneoulsy broadened)
molecular vibration. Because of the opening of the vi-
brational polaritonic bandgap, these heavy polaritonic
states are pushed away from the dissipative region of

the bare vibration, therefore remaining perfectly resolved
with their narrow linewidths. The concomitance of multi-
mode and ultra-strong coupling of vibrational modes can
hence be seen as an interesting way to overcome a ma-
jor hurdle encountered in the physics of electronic strong
coupling [33].

In summary, we have demonstrated that it is possi-
ble to reach the regime of USC in the vibrational realm.
This is done using high oscillator strength molecular liq-
uids. We have revealed indisputable signatures of the
USC regime, showing how the features inherent to the
USC regime can be also found at the level of molecular vi-
brational modes. Remarkably, the molecular polaritonic
multi-mode folding shown here is a practical way for gen-
erating heavy polaritonic states with smaller linewidths
than both the optical transition and the molecular vibra-
tion, leading to enhanced coherence time. Perhaps more
importantly, these results point to the potential impact
of the USC regime in the context of bond-selective chem-
istry. As we already proposed [14, 19], the dynamics of
bond breaking in the ground state could be significantly
modified by vibrational strong coupling and even more
under the USC regime where the whole vibrational lad-
der dressed by the IR cavity field is redefined. All these
features will no doubt impact both the optical, the molec-
ular and the material properties of these ultra-strongly
coupled systems [34], enriching the possibilities offered
by such light-matter interactions.
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FIG. 2. (a) Experimental (red line) and transfer matrix sim-
ulated (black line) IR transmission spectra of pure Fe(CO)5
coupled to the 4th-order mode of a flow cell FP cavity; black
dashed line is the simulated absorbance of CO stretching
mode of pure Fe(CO)5. (b) T-matrix simulation of the elec-
tric field distribution inside the FP cavity. Asymmetric field
distribution on either side of the vibrational band is an indi-
cation of higher and lower mode folding effects due to strongly
dispersive refractive index. (c) Round trip phase accumula-
tion of the electromagnetic field in the cavity with (red line)
and without (red dashed line) absorber. Optical resonances
occur for phase accumulation equal to integer multiples of 2π
(horizontal black lines). The dispersion of the refractive in-
dex of the intra-cavity medium allows multiple solutions for
various mode indices (vertical dashed lines, same color code
as in Fig. 1). The fitted absorption line shape of Fe(CO)5 is
also shown in black dashed line. The resonances lying in the
strong absorption region are over damped solutions and do
not appear in the transmission spectra.
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FIG. 3. Polaritonic dispersion diagram as a function of the
cavity thickness. Experimental transmission peaks positions
are reported as blue dots. The exact cavity thickness is deter-
mined from the free spectral range of the cavity -see Appendix
A. The solid lines are the best fit to the data using the full
Hamiltonian model that accounts for the dipolar self-energy
and the contributions beyond the rotating wave approxima-
tion (RWA), while the dashed lines are solutions of the simple
RWA model -see Appendix D for the fitting procedure. The
color code is the same as in Fig. 1. The vibrational polaritonic
bandgap ∆Eg only appears in the full Hamiltonian model.
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Appendix A: Transfer matrix simulations

Transfer matrix simulations amounts to solving the
classical problem of a multi-layered stack of dispersive
media in terms of forward and backward propagating
electric field amplitudes. Thus for a given system to sim-
ulate, one needs to know the (complex) refractive indices
and the thicknesses of each of the layers.

We first measure the IR transmission spectrum of a di-
lute Fe(CO)5 solution (10 wt % in toluene) injected in a
barium fluoride BaF2 flow cell. BaF2 windows were pre-
ferred to ZnSe for this experiment as their lower refractive
index minimizes Fabry-Pérot modulations of the trans-
mission spectrum. As shown in Fig. 5(a), the spectrum
consists of a strong inhomogeneously broadened absorp-
tion peak at 2000 cm−1. To fit this spectrum with the
transfer matrix method, we model the complex refrac-
tive index of Fe(CO)5 with a multi-Lorentzian function:

ñ(k) =

√√√√n2b −
N∑
j=1

L(fj , k0j ,Γj), (A1)

where nb is the background refractive index, and
L(fj , k0j ,Γj) = fj/(k

2 − k20j + ikΓj), with fj the os-
cillator strength, koj the resonance wave vector and Γj a



5

FIG. 4. (a) Polaritonic dispersion diagram measured by
angle dependent IR transmission spectroscopy (unpolarized,
0− 28◦). The solid lines are the solutions of the full Hamilto-
nian model, using the same parameters and color code as in
Fig. 3. The vibrational polaritonic bandgap is again clearly
observed (blue horizontal band). (b) Photonic and vibrational
fractions of the 4th polaritonic branch (blue and red curves
respectively) and of the 6th polaritonic branch (green and
yellow curves respectively). The photon-vibration energy de-
tuning for the 4th cavity mode is shown in black dashes (right
axis).

phenomenological damping constant. It should however
be noted that no specific meaning can be attributed to
these individual Lorentzians since the only criterion here
is to reproduce accurately the flow cell transmission spec-
trum. A good fit to this spectrum was obtained using 7
Lorentzians as shown in Fig. 5(a). In this fitting process,
the cell length was also left a free parameter. Moreover,
the calculations were performed assuming semi-infinite
BaF2 cell windows, their actual thickness being ∼ 3 mm
(see Fig. 5(b)). Corrections for the front air/BaF2 and
rear BaF2/air interfaces where done by using the bare
BaF2 window transmission spectrum. The resulting fit-
ted parameters are reported in Table I.

We now use the fitted refractive index of Fe(CO)5 to
model the transmission spectrum of the ZnSe cavity flow
cell, again using the transfer matrix method. This time
the only adjustable parameter is the exact cavity length l,
starting from a value of 6µm given by the manufacturer
of the Mylar spacer. Indeed, as shown in Fig. 6, it is the

FIG. 5. (a) Measured transmission spectrum of the BaF2

flow cell filled with FeCO5 (solide blue curve) compared to its
transfer matrix fit (dashed red curve). (b) Schematic repre-
sentation of the modeled flow cell of thickness lcell for transfer
matrix calculations. The gray rectangles represent the Mylar
spacer separating the cell windows. The incident field to the
left of the structure has an amplitude of 1. By definition,
the reflected field has an amplitude r while the field propa-
gating to the right of the structure has an amplitude t. The
transmitted field outside the flow cell has an amplitude C2t,
where C is the transmission coefficient of a bare BaF2 window
measured at the considered wave vector.

Mylar spacer thickness that defines the length of the cav-
ity. The best fit value is found to be l = 6.850µm. The
cavity Au mirrors are 13 nm thick as fixed by the sput-
tering parameters and their refractive indices are taken
from Rakić et al. [35] with thickness corrections [14]. As
before, the modeling is done assuming semi-infinite win-
dows, and then correcting for the ZnSe/air interfaces (see
Fig. 6). The results are shown in Fig. 2 of the main text.

The free spectral range (FSR) of the fitted cavity
transmission spectrum, as determined by the peak-to-
peak frequency spacing in a non-dispersive spectral re-
gion (5000−7000 cm−1), is ∆ν = 492cm−1. We note that
this FSR is not directly related to the cavity length by the
usual formula FSR = 1/2nbl because of the finite skin-
depth of the Au cavity mirrors. Indeed, using this expres-
sion and the value of the FSR, we would expect a cavity
thickness l̃ = 6.932µm. The over-estimation factor with
respect to the actual cavity thickness is α = l̃/l = 1.012.
This factor only depends on the refractive indices of the
Au/Fe(CO)5 and Au/ZnSe interfaces and on the Au mir-
ror thickness. Thus, we will use it to correct the rela-
tionship between FSRs and cavity thicknesses in what
follows: ∆ν = 1/2αnbl.
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TABLE I. Fitted parameters for the transmission spectrum of the BaF2 flow cell filled with FeCO5.

lcell
a nb f1

b k01
c Γ1

d f2 k02 Γ2 f3 k03 Γ3 f4 k04 Γ4 f5 k05 Γ5 f6 k06 Γ6 f7 k07 Γ7

2.00 1.46 3.02 1.98 5.31 0.69 2.02 22.2 0.16 1.95 15.4 0.70 1.99 41.6 0.36 2.00 9.43 0.01 2.10 20.0 4.32 19.8 4.17 · 104

a Cavity length in µm.
b All oscillator strengths fj are in 105 µm−2.
c All resonant wave vectors k0j are in 103 µm−1.
d All phenomenological damping constants Γj are in µm−1.

FIG. 6. Schematic representation of the modeled cavity flow
cell of thickness l for transfer matrix calculations. The gray
rectangles represent the Mylar spacer separating the cavity
Au mirrors. Those Au mirrors are 13 nm thick. The field
amplitudes are defined as in Fig. 5, where this time C is the
transmission coefficient of a bare ZnSe window.

FIG. 7. IR spectrum of dilute CS2 (10 wt % in toluene, black
dashed line) and corresponding spectrum a resonant cavity
(blue spectrum). When pure liquid CS2 (100 wt %) is in-
jected in the cavity, multiple splittings are observed with a
resonant mode splitting h̄Ω100% ∼287 cm−1 (red curve). The
polaritonic modes labeling is the same as in the main text.

Appendix B: Vibrational strong coupling of CS2

Similarly to the case of Fe(CO)5, the spectrum of
strongly coupled CS2 goes from the normal double
peaked spectrum at low concentration with a mode split-
ting h̄Ω10% ∼ 100 cm−1 to multi-mode splittings for a
pure liquid with h̄Ω100% ∼287 cm−1, as shown in Fig. 7.
This large splitting amounts to ca. 19% of the vibra-
tional transition frequency. Here the cavity is tuned to
the asymmetric stretching mode of CS2 (structure in in-
set of Fig. 7) [36].

As discussed in the main text, the high absorbance of
the molecules can lead to multiple polaritonic states in-
volving the off-resonance modes of the cavity. By a simi-

lar process, one can reach the extreme case in which po-
laritonic states are observed even when no optical mode
is resonant with the vibrational transition. This is illus-
trated in Fig. 8 where pure liquid CS2 is injected into the
cavity tuned so that the CS stretching mode energy lies
in the cavity free spectral range, between the 3rd and 4th

modes as shown schematically in the left panel. The re-
sulting transmission spectrum displays an off-resonance
coupling with a skewed energy level distribution, with
two new dispersive modes on either sides of the bare
CS stretching band (Fig. 8, right panel). Moreover, it
can be noted that the new states formed have an en-
ergy splitting at normal incidence of ∼ 350 cm−1 result-
ing from both the effect of detuning and coupling inter-
action. Again the dispersive behavior of these states is
direct reflection of their photonic versus vibrational com-
ponents. These characteristics of the off-resonant hybrid
states are highly analogous to those resulting from or-
bital mixing in organometallic complexes in which the
metal-ligand bonding molecular orbitals have more lig-
and character and anti-bonding molecular orbitals have
more metal character, as explained by Ligand Field The-
ory (LFT) [37].

Appendix C: Collective vibrational coupling: a
model for ultra-strongly coupled oscillators

We describe our molecular liquid as an ensemble of
N individual ground-state mechanical oscillators to each
of which is associated a localized vibrational dipole pi.
This yields a effective density of polarization P(r) =∑N
i=1 piδ(r) which corresponds to a collective dipole

P(0) =
∑N
i=1 pi localized on r = 0. This collective dipole

is coupled to the electric displacement D(r) of a single
mth-order longitudinal cavity mode of volume Vc. In this
effective dipolar point of view and neglecting the inho-
mogeneities of the cavity mode profile, the Hamiltonian
describing the coupled system writes as

H = Hm
cav +Hvib −

1

ε0
D(0) ·P(0) +

1

2ε0Vν
P(0)2 (C1)

where Vν corresponds to the intra-cavity volume occupied
by the molecules.

With a background refractive index n inside the cavity
of length L, the dispersion of the mth-order mode writes
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FIG. 8. Left panel: dilute CS2 transmission spectrum. Cen-
tral panel: schematic illustration of the off resonant coupling
between the CS asymmetric stretching mode and the 3rd and
4th-order optical modes of a FP cavity. Right panel: disper-
sion spectrum measured by angle dependent IR transmission
spectroscopy (unpolarized, 0−22o) of pure CS2 in the cavity.

as

ωmc =
c

n

√(mπ
L

)2
+
∣∣k‖∣∣2 (C2)

and is therefore parametrized by the conserved in-plane
component k‖ of the light wavevector. This leads to de-
fine the cavity field Hamiltonian:

Hm
cav =

1

4
h̄ωmc

(
Q2
c + P 2

c

)
(C3)

where the optical position Qc and momentum Pc quadra-
tures are introduced, built from the a(a†) annihilation
(creation) photon operators as(

Qc
Pc

)
=

(
1 1
−i i

)(
a
a†

)
, (C4)

with [Qc, Pc] = 2i considering that [a, a†] = 1.
Putting aside the rotational excitations which are not

resolved in our experiment, the Born-Oppenheimer (BO)
approximation enables us to separate the electronic and
vibrational intra-molecular modes. We can thus con-
sider that the vibrational dipole associated with each of
the CO-stretching mode i of one Fe(CO)5 molecule is
merely defined from the dependence of the dipole mo-
ment 〈p〉e(Q)i on nuclear coordinates Q within the elec-
tronic state e considered. The BO approximation also in-
sures that the vibrational dynamics is performed within
the same electronic quantum state -in our case, the elec-
tronic ground state of Fe(CO)5. Within this approach,
each of the N molecular vibrations are treated in the

harmonic approximation (see [14]) and we thus define
the collective vibrational Hamiltonian as

Hvib =
1

4

N∑
i=1

h̄ων,i
(
Q2
ν,i + P 2

ν,i

)
(C5)

with ωiν the vibrational transition associated with a single
oscillator and(

Qν,i
Pν,i

)
=

(
1 1
−i i

)(
bi
b†i

)
, (C6)

the vibrational position and momentum quadratures re-

lated to the bi(b
†
i ) annihilation (creation) operators of the

vibrational mode of the ith molecule. The commutators
simply write as [bi, b

†
j ] = δi,j and [Qν,i, Pν,j ] = 2iδi,j .

At room temperature, one only retains low vibrational
excitation levels so that the vibrational dipole moment
is given by a first-order expansion on the nuclear coordi-
nates

〈p〉(Q)i = 〈pi〉0 +

(
∂〈p〉
∂Qi

)
0

·Qi (C7)

This expansion is taken with respect to the equilibrium
nuclear configuration (indicated by the subscript 0) in the
harmonic mean potential of the electronic ground state of
the Fe(CO)5 molecule. The first term corresponds to the
static dipole moment of the molecule at this equilibrium
nuclear position. This static term cancels out due to the
D3h point group symmetry of the Fe(CO)5 molecule.

The nuclear coordinate associated with the harmonic
molecular vibration is described in our model by a posi-
tion quadrature operator

Q̂i =

√
h̄

2µiων,i
Qν,i (C8)

where µi is the reduced mass of the vibrational mode
and Qzpf,i =

√
h̄/2µiων,i the zero-point fluctuation am-

plitude of the molecular oscillator.
At this stage, we now assume that all vibrational

modes are strictly degenerate in energy and mass ων,i =
ων,j , µi = µj . This leads us to the definition of the col-
lective dipole operator

P̂(0) =

(
∂〈p〉
∂Q

)
0

Qzpf

N∑
i=1

Qν,i. (C9)

The operator corresponding to the electric displacement
of the mth-order mode is given by [38]

1

ε0
D̂(0) = i

√
h̄ωmc
2ε0Vc

(
aεm − a†ε?m

)
(C10)

For the sake of the model’s simplicity, we will also as-
sume (i) that the dipoles are all perfectly aligned with
the polarization εm of the intracavity field and (ii) that
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Vc = Vν = V . Under these assumptions, the Hamiltonian
(C1) becomes

H = Hm
cav +Hvib

−ih̄Ω(a− a†)
N∑
i=1

Qν,i

+κ2
N∑
i=1

Qν,i

N∑
j=1

Qν,j (C11)

with

h̄Ω =

(
∂〈p〉
∂Q

)
0

√
h̄ωc

2ε0V
Qzpf (C12)

κ2 =
1

2ε0V

(
∂〈p〉
∂Q

)2

0

Q2
zpf

=
h̄Ω2

ων
(C13)

when at resonance ωmc = ων .
Given the exceptionally high coupling strength pro-

vided by the molecular liquid, the dipolar self-energy
term P(0)2/2ε0V in the full Hamiltonian cannot be ne-
glected in our description. The contribution of this self-
energy can safely be neglected in the standard regime of
strong coupling regime, but as it is known in the con-
text of intersubband polaritonic modes [20, 21], it must
be fully accounted for in the definition of the equation of
motion of the vibrational polaritonic states in the ultra-
strong coupling regime. This is the central point that
we demonstrate in the context of collective vibrational
excitations.

To do so, we adapt the original procedure of Hopfield
[39] (see also [20]) to the case of an ensemble of vibra-
tional modes. This procedure consists in writing down
the equation of motion of a polaritonic annihilation oper-
ator defined as a normal mode operator χ± of the system

[χ±, H] = ω±χ± (C14)

where ω± are the energies associated with the upper +
and lower − polaritonic states.

Dealing with an ensemble of vibrational modes coupled
to the cavity field, the definition of the normal mode
operator

χ± = w±a+ x±B + y±a
† + z±B

† (C15)

involves collective operators defined as

B(B†) =
1√
N

N∑
i=1

bi(b
†
i )

B +B† =
1√
N

N∑
i=1

Qν,i. (C16)

From [bi, b
†
j ] = δi,j , these collective operators obey canon-

ical commutation relations

[B,B†] = 1. (C17)

This implies that the normal mode operators will have
the simple commutation relations

[χ±, χ±] = [χ†±, χ
†
±] = 0

[χ±, χ
†
±] = 1. (C18)

These definitions also lead to the following commutation
rules

[B,

N∑
i=1

Qν,i] =
√
N,

[B†,

N∑
i=1

Qν,i] = −
√
N,

[B,

N∑
i=1

Qν,i ·
N∑
j=1

Qν,j ] = 2N
(
B +B†

)
,

[B†,

N∑
i=1

Qν,i ·
N∑
j=1

Qν,j ] = −2N
(
B +B†

)
. (C19)

Using these rules, we derive the matrix for the equation
of motion (Hopfield matrix) h̄ωmc ih̄ΩR 0 ih̄ΩR

−ih̄ΩR h̄ων + 2h̄D ih̄ΩR 2h̄D
0 ih̄ΩR −h̄ωc ih̄ΩR

ih̄ΩR −2h̄D −ih̄ΩR −h̄ων − 2h̄D

 .

(C20)

where h̄ΩR = h̄Ω
√
N corresponds to the well-known fact

that the collective coupling strength is
√
N time stronger

than in the case of a single vibrational mode. The self-
energy term is also enhanced by N since we have h̄D =
Nκ2 = h̄(Ω2

R/ων).
The so-called rotating wave approximation (RWA) of

the Hamiltonian (C11) amounts to neglecting the off-
diagonal blocks of the Hopfield matrix. Interestingly,
as pointed out by Todorov et al. [21], polarization self-
interaction must also be neglected in this regime, as it is
a O(Ω2

R/ων) order term. The resulting matrix is h̄ωc ih̄ΩR 0 0
−ih̄ΩR h̄ων 0 0

0 0 −h̄ωc ih̄ΩR

0 0 −ih̄ΩR −h̄ων


RWA

. (C21)

Appendix D: Fitting the dispersion data

As explained in the main text, we measure experi-
mentally the transmission spectra of cavities of different
thicknesses, all filled with pure Fe(CO)5. The thickness
of each of those cavities is directly accessible from the
value of their FSR by making use of the correction factor
α described in section A. We thus end up with a set of
cavity spectra of various thicknesses, each of them dis-
playing multiple polaritonic resonances.

The resulting multimode polaritonic dispersion curves
were compared successively to the full Hamiltonian
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FIG. 9. Comparison between the fitting results for the RWA
and full Hamiltonian models. In both cases, the 10 observable
polaritonic branches are simultaneously fitted via the Rabi
splitting h̄ΩR. The bottom row is a blown up on around the
bare molecular vibrational mode energy.

model and to the RWA model by diagonalizing their re-
spective Hopfield matrices (C20) and (C21). We stress

that all the parameters entering those two models are
determined experimentally, except for the Rabi splitting
h̄ΩR. Indeed, the cavity mode energy h̄ωmc is directly
known from the mode order, the cavity FSR and the re-
fractive index, while the vibrational energy h̄ων simply
corresponds to the energy of maximal extinction in the
dilute solution transmission spectrum of Fig. 5(a). This
implies that the Rabi splitting h̄ΩR is the unique free
parameter in both fits.

In both cases, we search for a minimum of the following
quantity [40]:

χ2 =
∑
P±

m

∑
l

(EP±
m

(l)− ÊP±
m

(l))2 (D1)

where P±m is the upper (lower) polaritonic branch of mth

order, l is the cavity thickness, E is the corresponding
measured vibrational polaritonic energy and Ê is the cal-
culated vibrational polaritonic energy which depends on
the fitting parameter.

The main result of our analysis is the fact that even
though both models match well the data on a broad en-
ergy range, the RWA model is totally unable to repro-
duce the measured dispersions close to the bare vibra-
tional mode energy, as shown in Fig. 9. As emphasized
in the main text, this proves that our system has gen-
uinely reached the regime of USC.
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Majewski, Appl. Opt. 37, 5271 (1998).
[36] E. K. Plyler and C. J. Humphreys, J. Res. Natl. Bur.

Stand 39, 59 (1947).
[37] B. N. Figgis, Comprehensive Coordination Chemistry 1,

213 (1987).
[38] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,

Photons and Atoms: Introduction to Quantum Electro-
dynamics (Wiley-VCH, 1997).

[39] J. Hopfield, Phys. Rev. 112, 1555 (1958).
[40] S. G. Johnson, http://ab-initio.mit.edu/nlopt.

http://link.aps.org/doi/10.1103/PhysRevA.79.061803
http://dx.doi.org/10.1140/epjd/e2014-50539-x

	Multiple Rabi Splittings under Ultra-Strong Vibrational Coupling
	Abstract
	 Acknowledgments
	A Transfer matrix simulations
	B Vibrational strong coupling of CS2
	C Collective vibrational coupling: a model for ultra-strongly coupled oscillators
	D Fitting the dispersion data
	 References


