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Abstract
The objective of the proposed MAQRO mission is to harness space for achieving long
free-fall times, extreme vacuum, nano-gravity, and cryogenic temperatures to test the
foundations of physics in macroscopic quantum experiments. This will result in the
development of novel quantum sensors and a means to probe the foundations of quantum
physics at the interface with gravity. Earlier studies showed that the proposal is feasible but
that several critical challenges remain, and key technologies need to be developed. These
new technologies will open up the potential for achieving additional science objectives. The
proposed research campaign aims to advance the state of the art and to perform the first
macroscopic quantum experiments in space. Experiments on the ground, in micro-gravity,
and in space will drive the proposed research campaign during the current decade to enable
the implementation of MAQRO within the subsequent decade.
Primary area: The effects of the spaceflight environment physical systems and processes.
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1 Science Case and Motivation
Are there fundamental limits to the size, complexity, or mass of quantum superpositions? Do
we fully understand all fundamental sources of decoherence leading to the decay of macro-
scopic quantum states or will we see deviations due to yet unknown physics? Gravitational
time dilation [1, 2] or space-time fluctuations [3], for example, may result in modifications
of the Schrödinger equation, decoherence and a quantum-classical transition [4]. Identifying
such modifications would provide new insights for understanding the fundamental laws of
Nature. With the space-based platform MAQRO proposed here, these questions will be an-
swered by observing free quantum evolution and interference of dielectric test particles with
radii of about 100 nm.

Quantum physics predicts that physical systems of arbitrary size and complexity can be in
superpositions of distinct states. This is well illustrated by Schrödinger’s dead-and-alive cat
gedankenexperiment [5]. While challenging our intuitive understanding of reality, the predic-
tions of quantum theory have been confirmed with large molecules consisting of thousands
of atoms and masses of up to 3× 104 amu (atomic mass units) [6].

MAQRO will investigate sources of decoherence affecting macroscopic quantum superpo-
sitions, such as the scattering of residual gas, or solar/cosmic radiation. MAQRO also has
the potential to detect some forms of dark or exotic matter [7, 8, 9], and for rare scattering
processes in a space environment. MAQRO could provide experimental input for the stan-
dard model of cosmology, for possible extensions of the standard model of particle physics,
and for a better understanding of the origin of the Universe and the foundations of physics.

1.1 Science Objectives
The science objectives (SOs) of the medium-size mission proposal MAQRO submitted to the
European Space Agency (ESA) [10, 11] were as follows:

• SO1: Testing the predictions of quantum physics in parameter regimes that overlap
with ground-based tests.

• SO2: Testing standard decoherence mechanisms with test particle sizes and masses
beyond existing experiments.

• SO3: Testing gravitational decoherence with sufficiently massive test particles.
This research campaign will investigate whether the experiments suggested for MAQRO can
be adapted to address additional objectives (AOs) including but not limited to:

• AO1: Measuring the effect of decoherence on rotational quantum revivals.
• AO2: Using the macroscopic quantum systems on MAQRO or trapped charged particles

as highly-sensitive detectors for dark or exotic matter.
MAQRO is based on optomechanics with optically trapped dielectric particles [12, 13, 14].

After their release, their free evolution is monitored over long periods of time. While this
remains the central approach of MAQRO, we will also investigate the feasibility of measuring
rotational quantum revivals as an additional experimental method (AO1 above).

Optically trapped particles may be able to detect dark matter [15] and exotic physics, espe-
cially when operated at [16, 17] or beyond [7, 8, 9] the standard quantum limit. Attaining the
requirements for achieving the primary science objectives of MAQRO (SO1–3) will enhance
the detection sensitivity to sources of anomalous diffusion [18, 19] to unprecedented degrees.
The environmental isolation and large test particle masses in MAQRO provide perfect con-
ditions for detecting impulses or accelerations imparted by relic dark matter particles over
a wide range of parameter space for mass and interaction strength [8, 9] (AO2 above). We
also expect improved sensitivity to additional models of dark matter including composite
particles [15] or ultralight dark matter [20], which will be investigated in detail.



1.2 Science Requirements
A macroscopic quantum object in superposition must be isolated from its environment to
prevent decoherence by scattering of surrounding particles. Depending on how much infor-
mation a scattering event carries away, the decoherence will be (a) in the short-wavelength
limit, where a single scattering event may destroy the superposition, or (b) in the long-
wavelength limit, where the superposition may survive many scattering events [21, 22]. To
observe macroscopic superpositions, the probability of short-wavelength scattering events
must be negligible [23]. This can be monitored using weakly trapped test particles or their
free evolution. In the presence of long-wavelength decoherence, the evolution of a test parti-
cle’s center-of-mass (CM) in 1D is given by a Markovian master equation[22]:

˙̂ρ(t) = (i/2m~)[ρ̂, p̂2]− Λ[Ô, [Ô, ρ̂]]. (1)

~: Planck’s constant,m: test-particle mass, dot: time derivative, x̂, p̂: position and momentum
operators; ρ̂(t): density operator at time t. Ô can be replaced by x̂ for decoherence in the
position basis, or by p̂2/(2m) for decoherence in the energy basis, such as predicted by theories
in the frameworks of general relativity and quantum field theory [24, 25]. The two terms on
the right-hand side represent coherent quantum evolution and decoherence, respectively. The
decoherence parameter Λ encodes the strength of both environmental decoherence and of
fundamental deviations from the predictions of quantum physics.

We will describe the science requirements needed to fulfil the science objectives in terms
of the range of values of Λ our experiments need to be sensitive to. Based on this, we will
derive the required test masses, particle sizes, particle and environment temperatures, and
vacuum conditions. To illustrate this for testing gravitational decoherence [4] with trans-
parent, dielectric particles, we will consider the “K model” of gravitational decoherence by
Károlyházy [3, 26] and the “DP model” of gravitationally induced collapse by Diósi and
Penrose [27, 28, 29, 30] for continuous mass distributions [31]. For particles below a critical
size, the K model predicts a negligibly small Λ. Close to that critical size (∼ 100 nm), the
predictions of the two models intersect. In MAQRO, we aim to achieve sensitivity to the
values of Λ in this range or larger. This corresponds to radii of 100− 180 nm, and a mass of
∼ 1010 amu. Sensitivity in this regime requires the detection of decoherence parameters of
Λ ≥ 1011 s−1m−2. For a superposition size ∆x comparable to the particle radius, this requires
coherence times 1/(Λ∆x2) ≥ 102 s. Reducing these times would require even larger superpo-
sitions, which become increasingly difficult to achieve. Free evolution times of a few 100 s may
be feasible, depending on the attainable vacuum and on the shielding from electrons [23].
For example, a measurement time of ∼ 100 s will require a scattering rate below 10 mHz. In
helium gas at 20 K, that value corresponds to . 10−15mbar. Achieving these extremely high
vacuum (XHV) conditions is a critical challenge [23]. An alternative approach may be to
apply the method of quantum mechanical squeezing. This could reduce the required free-fall
times [19] with the downsides of adding complexity and noise. Equivalently, if we had an
XHV environment, squeezing would enable tests of even weaker decoherence effects.

MAQRO will measure Λ using dielectric test particles of varying transparent materials and
radii via the following methods [11, 23]:
(a) monitoring the heating of the CM motion of a weakly trapped particle.
(b) monitoring the wavepacket expansion of particles released from a trap.
(c) observing near-field matter-wave interference.

We will investigate the feasibility of integrating further measurement techniques:
(d) orientational quantum revivals of rotating test particles.
(e) monitoring trapped charged particles to detect dark or exotic matter.



To define the science requirements, we will focus on method (c). For near-field interferometry
with a grating period d, the Talbot time md2/(2π~) determines the time scale. For 1010 amu
test particles and a grating period of 100 nm, this yields a baseline value of 100 s [11, 32].

To achieve a sensitivity to values of Λ as low as 1011 s−1m−2, decoherence effects have to
be suppressed very efficiently, which means that the requirements on both environment and
test particle become very stringent, for example in terms of temperature. The precise limits
on these temperatures depend on the material properties of the test particles. For silica
particles, the limit is . 20 K for both particle and environment. For silicon particles, the
requirements remain more relaxed with temperatures . 50 K.

1.3 The Case for Space
Experiments testing macroscopic quantum superpositions in space have several key advan-
tages. Some objectives may not be achievable on ground:
(a) Long coherence times and free-evolution times.

Observing the evolution of macroscopic quantum states on Earth requires trapping test
particles, e.g., via optical [12, 13, 14], electrostatic [33] or magnetic fields [34]. Trapping
will inevitably couple the systems to vibrations or to noise in the trapping potential or
lead to decoherence due to scattering or absorption [35, 36]. Methods to accelerate the
time evolution of the quantum state [34] may add excess noise.

(b) Isolation from low-frequency vibration or Newtonian noise.
Such noise can, e.g., wash out interference patterns or heat the CM motion of trapped
particles. Space can provide excellent microgravity (µg) conditions [37].

(c) Avoiding dephasing in gravitational potentials.
Gravitational time dilation can lead to dephasing between different branches of su-
perpositions in a gravitational field [1, 2]. While this is not an issue for freely falling
interfering particles, it may become relevant if guiding potentials are employed [38].

(d) Avoiding the shielding of dark matter/exotic matter by the atmosphere.
Some dark and exotic matter candidates within the detection range of MAQRO would
be blocked by, or thermalize with, Earth’s atmosphere before reaching terrestrial de-
tectors [8, 9]. MAQRO, in space, would have clean exposure to any dark matter flux
coming from outside the solar system, including the anisotropic dark matter “wind”
that would give a directional signal [9].

2 Mission Design and Technological Readiness
MAQRO can harness a space environment for experiments at cryogenic temperatures and
in XHV on an external optical bench [10, 11]. While earlier studies aimed to achieve the
required temperature via passive radiative cooling [39], the “quantum physics platform”
(QPPF) feasibility study [23] proposed additional active cooling to ensure temperatures
< 20 K, and to encase the optical bench, which will prevent electrons from charging the test
particles. The cover, however, renders XHV more difficult.

For a successful realization of MAQRO, three critical issues (C1-C3) will have to be ad-
dressed [23]. An XHV environment will need to be established and the test particles will need
to be protected from electrons (C1). These particles need to be loaded into an optical trap,
and their charge, mass, radius and material properties must be well characterized (C2). To
implement matter-wave interferometry, a phase grating will be used to prepare macroscopic
superpositions [40, 11]. For large particles, the scattering of grating photons may decohere
the quantum state (C3).



This needs to be done while fulfilling other key requirements including cryogenic tempera-
tures. Developing relevant solutions will be an essential part of this campaign. Experiments
on the ground and pathfinders in space will address C1. With respect to C2, groups con-
tinue working on reliable methods to load test particles into optical traps in vacuum (e.g.,
see [41, 42]). Ideas based on QPPF [23] and on an ESA-funded study [43] are being investi-
gated by ESA contractors. With respect to C3, it was shown that matter-wave interferometry
is still possible even for large test particles [32]. More work is required to ensure MAQRO’s
science objectives will be achieved, or to develop an alternative approach for preparing
macroscopic CM superpositions.
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Figure 1 Overview of technologies with a TRL < 6. Black semicircles: critical. *:
required for a covered optical bench (OB). **: required for an OB open to space.

The TRL of key technologies needs to be increased, as shown in Fig. 1: (1) optomechanical
cooling, (2) electro-optic modulators (EOMs), (3) near-infrared (NIR) lasers, (4) open-access
cavities, (5) position detection, (6) a deep-UV laser source, (7) fibers for deep UV, (8) fiber
Bragg gratings (FBGs), (9) homodyne detection, (10) a silicon-carbide (SiC) optical bench,
(11) passive radiative cooling, (12) XHV pressure sensors, (13) low-temperature (low-T)
sensors, (14) particle charge control, (15) Paul traps, (16) particle characterization, (17)
storage, and (18) steering. If the optical bench is covered, the cover (19) and non-evaporable
getters (20) have to be developed. If the optical bench is open to space, electromagnetic
shielding (21) must be developed to protect the test particles from electrons.

3 The Research Campaign
Technology development during the current decade could enable the implementation of
MAQRO before 2040. We envisage in-orbit demonstrations to de-risk the critical components
identified above and leveraging small satellite systems to accelerate mission development [44].

Fig. 2 provides an overview of key activities of this research campaign:
• theoretical analysis of new science objectives, the corresponding scientific requirements,

and the feasibility of addressing these objectives with MAQRO.
• laboratory experiments on matter-wave interferometry, rotational revivals, and proof-

of-principle tests addressing potential new science objectives.
• design and test passive cooling for MAQRO and CubeSat pathfinders.
• design and test radiation shields for MAQRO and CubeSat pathfinders to protect the

test particles from electrons on platforms open to space.
• experiments on free quantum evolution in µg may reach TRL 3 by 2023. These will be

followed by matter-wave interferometry in µg.



• several methods for particle storage, release and characterization are under investigation
and may reach TRL 3 by the time this campaign starts.

Experiments will aim to close the gap between state-of-the-art (∼ 3× 104 amu [6]) and the
minimum test masses in MAQRO (∼ 108 amu) with CM interference [40, 45], orientational
quantum revivals [46, 47] or electrostatically levitated objects [33, 48].
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Figure 2 Timeline of key activities. CS: CubeSat, FM: flight model, op.: operation.

3.1 MAQRO Pathfinders
µg and space experiments will be essential to better understand the effects of a space envi-
ronment on macroscopic quantum superpositions, and how to achieve XHV and protection
from radiation. This will be addressed by CubeSat pathfinders:

• MAQRO-PF1 LEO CubeSat: demonstrator for key technologies, e.g. passive-cooling
concepts [39, 49] or trapped particles as XHV sensors after a wakeshield [50, 51, 52].

• MAQRO-PF2 CubeSat Ride-share to L2: Test XHV, radiation conditions & passive
cooling. Show long free evolution for macroscopic superpositions.

3.2 Cost Estimate
We estimate the cost at completion of MAQRO as ∼ $550M [10, 11, 23], not taking into
account remaining research and development. The wet mass of MAQRO is 1700-1900 kg [11,
23]. An orbit around the Earth-Sun Lagrange point L2 is optimal [23].

In addition, we assume $50M for technology development, instrument delivery, spacecraft
I&T, and missions operations support. We estimate $120M for the research campaign during
this decade. MAQRO-PF2 can be executed for an estimated $15M. The cost and schedule
information in this document is of a budgetary and planning nature. It does not constitute a
commitment on the part of any of the authors or their host institutions. We encourage a joint
ESA-NASA effort to advance MAQRO, in the spirit of BECCAL and other multi-national
scientific collaborations. Parallel support would multiply the science return, with this effort
leveraging the expertise of partners across Europe and the US.

4 Summary
Experiments and theoretical studies performed in the current campaign will address remain-
ing critical issues in MAQRO and investigate the feasibility of adding novel experimental
methods and science objectives. Developing key technologies will lay the groundwork for
pathfinder CubeSat missions in LEO and around the Earth-Sun Lagrange point L2. These
will act as in-orbit demonstrators and provide insights into how the space environment af-
fects quantum systems, and how it can be harnessed for realizing macroscopic quantum
experiments.
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