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We consider how to forecast progress in the domain of quantum computing. For this purpose we
collect a dataset of quantum computer systems to date, scored on their physical qubits and gate
error rate, and we define an index combining both metrics, the generalized logical qubit. We study
the relationship between physical qubits and gate error rate, and tentatively conclude that they are
positively correlated (albeit with some room for doubt), indicating a frontier of development that
trades-off between them. We also apply a log-linear regression on the metrics to provide a tentative
upper bound on how much progress can be expected over time. Within the (generally optimistic)
assumptions of our model, including the key assumption that exponential progress in qubit count
and gate fidelity will continue, we estimate that that proof-of-concept fault-tolerant computation
based on superconductor technology is unlikely (<5% confidence) to be exhibited before 2026, and
that quantum devices capable of factoring RSA-2048 are unlikely (<5% confidence) to exist before
2039. It is of course possible that these milestones will in fact be reached earlier, but that this would
require faster progress than has yet been seen.

In this article we consider the problem of anticipating
progress on Quantum Computing. The following is an
outline of the contents.

Section I contextualizes this article as part of our on-
going investigation of the transformative impact of quan-
tum computing.

• In Section I A we discuss previous related work
on anticipating quantum computing timelines and
technological forecasting.

• In Section I B we discuss shortcomings of our meth-
ods.

Section II describes how this article quantifies progress
in quantum computing.

• In Section II A we introduce the distinction be-
tween quantum annealers, Noisy Intermediate Scale
Quantum (NISQ) computers, and fault-tolerant
quantum computers (FTQC).

• In Section II B we discuss what concrete milestones
we intend to forecast. Drawing from [1], we es-
tablish the milestone of the first large-scale fault-
tolerant quantum computer capable of breaking the
modern cryptographic scheme RSA 2048 as the
question of interest in this report.

• In Section II C, we discuss metrics for tracking
progress so far. We establish the number of physical
qubits and the average two-qubit error rate as our
metrics of interest. We combine these into a single
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metric, the number of “generalized logical qubits,”
which estimates how many logical qubits a fault-
tolerant computer with a given number of physical
qubits and two-qubit gate errors could support, but
which is defined even for current-generation devices
which are yet too noisy to support a single (true)
logical qubit.

• In Section II D, we relate our forecasting question
to our metrics of interest. As a precise operational-
ization of our question of interest, we choose to
forecast when we will be able to showcase proof-
of-concept quantum error correction — specifically
when a quantum computer will be powerful enough
to break the commonly used RSA-2048 crypto-
graphic scheme. This is operationalized as a func-
tion of the number of generalized logical qubits,
concretely at 4100 logical qubits.

Section III reviews progress so far in the metrics of
interest. Accompanying this section we present a pub-
licly available database of major contributions in quan-
tum computing hardware we have curated.

Section IV presents our main model and results.

• In Section IV A, we apply a multivariate log linear
regression model to study the relationship between
the number of physical qubits and the error rate
in a system. When conditioning on time we find a
positive correlation between the metrics, with more
qubits being associated with higher error rates, sug-
gesting a frontier of development that trades-off one
against another.

• In Section IV B, we assume exponential progress of
QC and apply a log linear multivariate model to
provide an upper bound of likely progress of QC
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based on superconductors. We find that it is 95%
likely that proof-of-concept FTQL will be not be
developed before 2026, and that RSA-2048 will be
safe from quantum computation by 2039 with the
same confidence. Note however that our model is
very limited in data and makes strong assumptions
about the statistical nature of the underlying met-
rics.

• In Section IV C we explore the robustness of our
extrapolation model in the previous section, dis-
cussing alternative modelling choices and how they
would affect our conclusions.

• In Section IV D we provide minimal validation of
the extrapolation model we propose.

Section V collects our conclusions and suggests possi-
ble improvements and open questions for future work.

The data [2] we collected and the code for our models
[3] is freely available online.

To aid the reader in quickly navigating this article,
each section begin with the central question it intends to
answer.

I. INTRODUCTION

Why bother thinking about progress in quantum
computing, and what’s already known?

In this article we engage with the task of predicting
the arrival of major milestones in quantum computing.
We will not describe the basics of quantum computing
here, but instead will refer the reader to introductions at
the popular [4, 5], semi-technical [1, 6–8], and technical
levels [9–13].

Instead, we mention only these brief ideas: Like
traditional (classical) computers, quantum computers
are information-processing devices that physically imple-
ment mathematical computations. Unlike classical com-
puters, quantum computers harness physical phenomena
associated with quantum mechanics which generally can
only be observed on microscopic scales. Although very
difficult to build, such devices will be able to solve some
specific math problems which are intractable to solve on
classical computers.

However, even when quantum computers are very ad-
vanced they are not expected to fully replace classical
computers because, for most mathematical problems,
quantum effects do not offer a computational speed-up;
it is only useful on certain kinds of tasks. Indeed, within
realistic architecture proposals, the core quantum pro-
cessing device relies on pre- and post-processing by clas-
sical computers for its basic operation. At the theoretical
level, quantum computers represent a true paradigm shift
in our basic understanding of physical computation, but

at the practical level quantum computers are likely to
be analogous to existing specialized computational mod-
ules like graphics-processing units and tensor-processing
units, i.e., they will be dedicated physical devices opti-
mized to solve a particular subset of computational prob-
lems.

The most anticipated applications of quantum comput-
ing include constrained optimization, efficient simulation
of chemical reactions and other large interacting quan-
tum mechanical systems, and cryptanalysis. (Improve-
ments to machine-learning computations is also possible,
although currently more speculative.) It is as of yet un-
clear how important or far reaching these applications
will be. Some further reading about applications can be
found in [1, 14–16].

This article is part of a broader investigation we are
conducting, trying to anticipate the transformative im-
pact that quantum computing will have on society. Un-
derstanding better the major milestones of this technol-
ogy will give us better insight into what quantum com-
puting is capable of, by when and how many warning
signs and room-for-maneuver will society have to adapt
to unexpected developments.

A. Previous work

To our knowledge, the most comprehensive assessment
of future progress in quantum computing is the recent re-
port by the National Academies of Sciences, Engineering,
and Medicine [1]. They propose several milestones and
metrics to track progress in Quantum Computing [17].
They find that RSA 2048 cryptography schemes will be
safe during the next decade [18]. We borrow from this
work to set our milestones and metrics of interest in Sec-
tion II [19].

Ref. [20] survey experts in quantum computing about
their projected timelines. They find that 22.7% of the ex-
perts they surveyed think it is likely or highly likely that
quantum computers will be able to crack RSA-2048 keys
by 2030, and 50% think that is likely or highly likely that
we will be able to crack RSA-2048 keys by 2035. We use
their work as a baseline for comparison in Section IV B.

Ref. [21] conducted a quantitative study of progress
in several technologies, finding evidence of exponential
progress in the cost of many technologies such as tran-
sistors, genomic sequencing, DRAMs, etc. Their findings
lend support to our modelling assumption of exponen-
tial progress in quantum computing, which is detailed in
Section IV.

On the topic of trend robustness, [22] examines 37 tech-
nological trends, and finds a robust discontinuity in 32%
of these trends, with a base yearly rate of 0.1% chances
of a discontinuity per year for each trend. This result is
indicative of the base chance for modelling error through
Section IV.

Ref. [23] also grapples with the question of how to com-
bine different aspects of technology to find regularities in
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progress, focusing on military tech as a case study. His
approach is conceptually similar to our overall analysis,
with two marked differences: a) Kott’s figure of merit is
automatically derived, while ours is motivated by expert
knowledge; b) Kott’s approach is closer to machine learn-
ing, in that he fits his models according to a loss function
while we use classical statistical analysis.

B. Limitations

Young technologies have meager track records, and
predictions about the future rely heavily on educated
guesses by experts (sometimes supplemented by more re-
liable arguments, e.g., constraints from basic physics).
As a technology matures, data accumulates and predic-
tions become more strongly driven by the extrapolation
of past trends.

Quantum computing is still a very young field. Experi-
mentation with quantum control of information has been
occurring for decades, but devices advanced enough to
be interpreted as non-trivial “computers” with quantifi-
able and comparable parameters are quite new. Because
of this paucity of evidence, essentially all existing predic-
tions about the future are based on expert wisdom (with
all of its known flaws).

We consider this work to be merely a first attempt
at systematically gathering and extrapolating data. At
best, our results should be considered one piece of rele-
vant evidence that can supplement expert opinion, and
perhaps a reason to somewhat decrease one’s credence in
more extreme predictions.

Our data sources are opportunistic. We include in-
dustry blog announcements, not just academic journal
articles. We are exposed to significant noise, e.g., from
what numbers researchers choose to report, and what
numbers we (as non-experts) are able to interpret. Some
of this noise is random and will average out as the dataset
accumulates, but much of it is biased and will not [24].

We consider our modeling assumptions to be optimistic
in at least three ways. First, we are extrapolating from
the best reported qubit numbers and error rates and ig-
nore other values that have been reported. Second, we
ignore both qubit connectivity and the trade-off between
the number of physical qubits and the error rate. Third,
we presume that constant-rate exponential growth will
continue in the long term, which is disputed, especially
for the average two-qubit gate error rate. These assump-
tions are discussed in more detail later.

For these reasons, the confidence intervals predicted
by our model are quite different from the credences one
might get from a wise and holistic Bayesian analysis.
Still, we do expect the former to be useful input for the
latter.

We are partially motivated by aggressive predictions
often made informally and in the media about when
quantum computers will have important real-world ef-
fects (e.g., by threatening the security of cryptography

systems). We hope our work will advance the discussion
about the future of this field by compelling commenta-
tors to acknowledge that aggressive predictions require
making assumptions about the rate of progress increasing
above the current trend, when in fact the expert wisdom
seems to point, if anything, toward future progress falling
below the current trend, especially for gate fidelity.

II. OPERATIONALIZING PROGRESS

How should we measure progress in quantum
computing?

In this section we define the concrete milestone we are
trying to predict, and relate it to metrics of current quan-
tum computing systems.

For this purpose we define our own index, the gener-
alized logical qubits (GLQs), which estimates the num-
ber of qubits that will be available for computation after
accounting for error-correction overheads, and which ex-
tends to fractions less than 1 for machines (e.g. all extant
ones) that fall short of the important technical threshold
of fault tolerance, described further below.

We then explain why the thresholds of 1 and 4100
GLQs roughly correspond to the very important mile-
stones of showcasing fault tolerance and compromising
the widely used online security standard RSA 2048.

Readers uninterested in the motivations of our met-
ric definitions and subsequent operationalization can just
take these as given and skip to Section III.

A. Types of quantum computation

What approaches are there towards large-scale
quantum computing?

Very roughly, approaches to computing (both quantum
and classical) can be divided into analog and digital de-
vices. Within classical computing these categories are
now strongly associated with representing information
using continuous and discrete variables, respectively, but
they are also deeply connected with the degree to which
the dynamics of the physical system implementing the
computation are abstracted away from the mathematical
form of the computation itself. In short: analog com-
puters take advantage of natural physical dynamics that
“look like” the computation one wants to perform, and
are often limited to such computations, while digital com-
puters are universal — in the sense that they are capable
of performing any reasonable computation given enough
resources — but require greater technological sophistica-
tion.
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The analog-digital distinction is not a perfect di-
chotomy, but it has key implications for the use of er-
ror correction and, more broadly, fault tolerance [25]. In
general, analog devices are less suitable for error correc-
tion. In the long run this leaves them vulnerable to noise
as that problem becomes progressively worse for longer
computations on larger devices.

Historically, for both quantum and classical comput-
ers, rudimentary analog devices without error correction
became available before digital devices. In the case of
classical computers, digital devices ultimately won out
as technological capabilities improved. Experts disagree
whether quantum analog computers will enjoy a time pe-
riod where they are more practically useful than both
quantum digital devices and classical devices. By far the
most advanced form of analog quantum computing are
so-called quantum annealers [26] (though alternative ap-
proaches are being pursued, e.g., [27]).

For these reasons, one can usefully identify three broad
categories of quantum computing [1]:

• Analog quantum annealers;

• Noisy Intermediate Scale Quantum (NISQ)
computers; and

• Scalable, gate-based, digital fault-tolerant quan-
tum computers (FTQC).

Strictly speaking, the category of NISQ computers in-
cludes both analog and digital devices, but it can be
useful, if crude, to simply think of them as digital de-
vices that are not fault tolerant, and hence are limited in
the scale of the computations they can perform by noise.
Most experts agree that FTQC devices will dominate in
the long-term [1] (though there are notable dissenters),
and the timescale on which this comes about is very un-
certain.

B. Milestones

What are the most important technical milestones on
the road to scalable quantum computing?

For each of the three categories in the previous sub-
section we can identify three relevant milestones beyond
the theoretical.

1. Prototype: A proof-of-concept implementation of
the most basic machine operations.

2. Quantum supremacy (or “quantum advan-
tage” [28]): The resolution of a mathematical prob-
lem by the quantum computer that would be un-
feasible to solve classically [29].

3. Practical demonstration: Application to prob-
lems that are of interest independent from quantum
computing.

Progress along these miles stones is summarized in Ta-
ble I. Proof-of-concept machines showcasing analog quan-
tum annealers [30] and NISQ computers [31] have existed
for several years. Google recently claimed the quantum
supremacy milestone [32] with a NISQ computer, show-
casing a quantum processor capable of sampling in 0.02
seconds a probability distribution that would take the
current fastest supercomputer (IBM’s Summit as of this
writing) 2.5 days to sample [33].

However, the highest-quality quantum computing ex-
periments can apply only of order 1,000 gate operations
before an error is likely to occur [34]. In order to per-
form usefully long logical computations, it will be neces-
sary to use error-correction on the physical qubits. Fault-
tolerant quantum computers will be able to drive logical
errors down arbitrarily low, with overhead requirements
that scale logarithmically with the desired logical error
rate (which is inversely proportional to the average length
of computation that can be performed without error).
The theory behind error correction and FTQC is well-
developed [35] but no functional experimental prototype
exists as of the writing of this paper.

Our question of interest is when either of these tech-
nologies will be good enough to solve problems inacces-
sible to classical computers.

Question of interest: When will we have quantum
computers capable of solving problems which cannot be
feasibly be solved classically and which have noticeable
real-world implications?

This prompts the related question, which of the three
candidate technologies will first achieve this milestone?

Analog quantum annealers are not seen as a practi-
cal solution for large scale quantum computing due to
the lack of a practical error correction scheme to enable
computations of arbitrary length [1].

Similarly, while some small applications on certified
randomness have been proposed using NISQ [36] [37], no
major applications are envisioned yet [1].

Thus for the purposes of this report we will choose to
study progress in FTQC.

Proxy for question of interest: When will we have
large scale, fault-tolerant quantum computing?
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Technology
Analog Quantum

Annealers NISQ Computer FTQC

Stage Prototype Quantum supremacy Theoretical

Example D-Wave’s 2000Q [38] Google’s Scamore [32]
Fault-tolerant quantum

computation [35]

TABLE I. A map of milestones in quantum computing. In this article we focus on forecasting progress in FTQC.

C. Metrics

How can we quantitatively track progress toward the
relevant milestones?

The performance of current systems can be monitored
via several useful quantities. Some of the most relevant
are [1]:

• Number of physical qubits in a system. This
is the simplest measure we have. It is the number
of two-state physical subsystems in the computer in
which coherent quantum information can be stored,
such as the orientation (up or down) of a particle, or
the direction (clockwise or counterclockwise) that
a current in a superconducting wire is flowing.

• Average two-qubit-gate error rate. This is
measured as the probability that when a quantum
logic gate [39] (similar to a classical AND and OR
gate) is applied in the system it fails to produce
the correct output. An analogous metric exists for
one-qubit gates, but the single-qubit error rate is
typically much lower, so the overall error rate per
operation is dominated by the two-qubit-gate error
rate. In this work we will often simply refer to this
as the error rate.

• Coherence time. The computational power of
quantum computers relies on the physical qubits
remaining highly isolated from their surrounding
environment. When the qubits interact with their
environment, information about the state of the
qubits “leaks out” , a process known as decoher-
ence, inhibiting the necessary quantum coherent
effects. Longer coherence times allow more gates
to be performed before this happens, allowing for
more complicated quantum computation.

• Qubit connectivity. Two physical qubits are
connected when a gate operation can be achieved
by inducing the qubits to physically interact with
each other, which often is only possible if they are
a short distance apart. The connectivity of a com-
puter is the (graph) structure of these connections.
To apply a gate to unconnected qubits, multiple
costly interactions between intermediate qubits in
a chain must be used. One quantitative measure

of a computer’s connectivity is the average num-
ber of connections it takes to link two qubits in the
system.

• Number of logical qubits in a system. A quan-
tum computer with error correction and a given
number of noisy physical qubits can emulate a
noiseless computation on a smaller number of logi-
cal qubits. As the noise in a device gets greater,
it can generally support fewer logical qubits for
the same number of physical qubits. If the noise
is greater than some threshold, zero logical qubits
can be supported. Very few extant devices have
achieved noise levels below this threshold, and none
of them have created a single logical qubit (in part
because of insufficient, and insufficiently connected,
physical qubits).

In this report we choose to focus on (1) the physical
number of qubits in a system and (2) the average two-
qubit error rate, because they are of high importance and
are widely reported in the literature [40].

Beyond these immediate metrics, we can try to com-
bine them to produce a metric that captures progress
more accurately. IBM opts for this approach and tracks
the quantum volume [41].

In a similar spirit, we construct our own figure of merit,
the number of generalized logical qubits. This figure
approximates the number of logical qubits that a device
theoretically would be able to simulate using quantum er-
ror correction at a given average error rate with a given
number of physical qubits using the surface code [42–44],
the leading choice error correction scheme for systems
based on superconducting qubits. Unlike the actual num-
ber of logical qubits, this metric extends smoothly and
sensibly to fractional qubits. It is well-defined for devices
that have achieved two-qubit gate error rates below the
fault-tolerance threshold mentioned above.

Formally, we define the number of generalized logical
qubits to be NL = NP fQEC, where NP is the number of
physical qubits, pP is the two-qubit gate error rate,

fQEC =

[
4

log
(√

10 pP/pL
)

log (pth/pP)
+ 1

]−2
(1)

is an overhead factor (0 < fQEC < 1) accounting for er-
ror correction, pth ≈ 10−2 is the approximate threshold
error under which fault-tolerance becomes possible for
the surface code [43–45], and pL = 10−18 is the accept-
able logical error rate. A contour plot of this function is
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given in Figure II C, and additional detail can be found in appendix VI A.

FIG. 1. Contour plot of the generalized logical qubit map. Our primary thresholds of interest, 1 and 4100, are delineated with
dotted curves. The contours asymptote at the fault tolerance threshold pth ≈ 10−2. Note that our definition depends on the
underlying error correction scheme, in this case we are assuming the surface code.

Milestone Operationalization

Quantum fault tolerance 1 generalized logical qubits

RSA 2048 quantum attack 4100 generalized logical qubits

TABLE II. Milestones of interest operationalized in terms of generalized logical qubits.

D. Operationalization

How can we convert our primary forecasting questions
into statements about generalized logical qubits?

In this subsubsection, we develop our preferred oper-
ationalization of progress milestones, as summarized in
Table II.

Question of interest: When will we have fault-
tolerant quantum computing?

As discussed in Section II A, the first step to that
achievement is proof-of-concept quantum error correc-
tion. One reasonable operationalization of this interme-
diate milestone based on quantum computing is straight-
forward.

Operationalization: When will the number of gen-
eralized logical qubits exceed 1?

The next step would be to scale up fault-tolerant quan-
tum computers to a size where they can perform useful
computation. As a landmark of disruptive application we
chose the development of a quantum computer capable of
threatening a commonly used cryptographic algorithm,
RSA 2048.

Question of interest: When will a large fault-
tolerant quantum computer that can run Shor’s algo-
rithm to break RSA 2048 be developed?

This operationalization is based on one of the most an-
ticipated uses of a quantum computer. However, this op-
erationalization does not allow a ready estimation based
on short term metrics. We address that now:
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FIG. 2. Reported number of physical qubits of systems between 2003 and 2020. n = 52 data points.

FIG. 3. Reported average two-qubit gate error rate of systems between 2003 and 2020. n = 40 data points. (This is smaller
than Fig. 2 because fewer papers reported qubit counts than error rates.)

First, note that running Shor’s algorithm to break RSA 2048 will almost certainly require error correction [46];
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the computation is of sufficient length that many phys-
ical errors will reliably occur in any hardware available
in the foreseeable future. Next we observe that the num-
ber of logical qubits needed to run Shor’s algorithm to
break RSA 2048 has been estimated at ∼4098 logical
qubits [47–49] [50]. We can thus use our generalized log-
ical qubits metric to operationalize this question.

Operationalization: When will a quantum com-
puter with more than ∼4098 generalized logical qubits
be built?

III. CURRENT STATE OF THE ART

How do current systems perform on the metrics of
interest?

Using Refs. [1, 51] as a helpful starting point, we
compiled a large historical dataset available here [52].
Altogether, it is based on data points reported by
Refs. [31, 32, 42, 53–81].

The metrics we are plotting in Figs. 2, 3, 4 are the
physical qubits, average two-qubit gate error rate and our
own index, the generalized logical qubits. Explanation
of these metrics can be found in Section II C. They are
plotted against the date when the system specifications
were made public.[82] Our data runs from the year 2003,
the date of the earliest source we could find satisfying
our requirements, to the first half of 2020, when we froze
our dataset for the purpose of our analysis.

In total we have n = 52 data points for which we know
the number of physical qubits and the date, n = 40 where
we know the physical qubits, the error rate and the date,
n = 12 where we know the physical qubits, the error rate,
the date and the GLQs are well defined.

The datapoints collect systems using different quan-
tum computing technologies, including superconduc-
torts, trapped ion qubits, spin qubits and silicon qubits.

IV. MODELLING FUTURE PROGRESS

When will various quantum computing abilities be
achieved, and how certain are we?

In previous sections we have identified the key met-
rics that indicate progress (physical qubits and gate er-
ror rate), constructed an index that combines the two
(the generalized logical qubit, abbreviated as GLQ) and

casted the milestones we are interested in terms of our in-
dex (1 GLQ for the proof-of-concept error correction and
4100 GLQs for a quantum Shor attack on RSA 2048).

Here we statistically analyze the historic trends on
these metrics.

First in Section IV A we show that quantum computer
designs so far exhibit a trade off between a large number
of physical qubits and low gate error rate.

Then, specializing to superconducting qubit devices,
in Section IV B we extrapolate the current trends in the
best performance on these metrics to predict the trend
in GLQs and make predictions about our milestones of
interest. Section IV C and Section IV D explore our ex-
trapolation model in depth, respectively looking at al-
ternate modelling choices and a rolling validation of the
model.

Through this section we are assuming a continued
trend of exponential progress for physical qubits and av-
erage gate error.

Ref. [22] examines 37 technological trends, and finds a
robust discontinuity in 32% of these trends, with a base
yearly rate of 0.1% chances of a discontinuity per year
for each trend. This work suggests a substantial chance
of modelling error that we are not explicitly accounting
for.

A. A technological development frontier

How do the physical qubits and average two-qubit gate
error rate relate to each other?

To answer this question, we will model how papers
score in both metrics as a multivariate log linear model
[83] that takes as input a date and outputs a distribu-
tion for the combination of metrics that papers around
that date are likely to produce. In particular, we are not
just looking at the total correlation between these two
metrics over our full dataset, since steady but indepen-
dent progress in each would induce a positive correlation;
rather we are looking at the correlation between them
conditional on the year of publication to see whether
there is a trade-off between these two metrics at any given
level of technological maturity.

For a quick and informal introduction to multivariate
models, see [84]. For a more formal treatment, see Chap-
ter 6 of Ref. [85].

Our model has the form:

Y = XB + Ξ; Ξ ∼ N (0,Σ) (2)

where each column in Y ∈ Rn×2 corresponds to the log-
arithm of our metrics of interest (the physical qubits and
the average two-qubit gate error rate) for each of the
papers in our dataset, and X ∈ Rn×2 is the date as a
fractional year stacked with a constant intercept 1.

https://\protect \penalty \z@ {}docs.\protect \penalty \z@ {}google.\protect \penalty \z@ {}com/\protect \penalty \z@ {}spreadsheets/\protect \penalty \z@ {}d/\protect \penalty \z@ {}1pwb4gf\protect \penalty \z@ {}0FxlxgfVh\protect \penalty \z@ {}tXTaqEGS\protect \penalty \z@ {}9b7Fwsst\protect \penalty \z@ {}sJ0v7Zb1naQ0/\protect \penalty \z@ {}edit#\protect \penalty \z@ {}gid=0
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FIG. 4. Calculated GLQs for systems between 2003 and 2020. No data points are shown prior to 2014 because the metric is
not defined for devices with gate error rates that do not satisfy the fault-tolerance threshold. n = 12 data points.

FIG. 5. Physical qubits plotted against gate error rate for systems between 2003 and 2020. n = 40 data points.

The model is characterized by a matrix B ∈ R2×2 of drift parameters and a covariant noise matrix Σ ∈ R2×2.
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We can estimate their values with the max likelihood
estimators B̂ and Σ̂, calculated as:

B̂ =
(
X>X

)−1
X>Y (3)

Σ =
1

n− 2
(Y −XB)

>
(Y −XB) (4)

Using all data from 2003 onwards the maximum like-
lihood estimation of the parameters are displayed in Ta-
ble III.

The off-diagonal parameter of the symmetric matrix Σ̂

estimates the covariance between the two metrics.

We can provide a confidence interval for the covariance
using the naive bootstrap procedure [86] (see Chapter 11
of Ref. [87]).

Using all data from 2003 onward (n = 40 data points)
we estimate that the covariance is positive with 98.8%
confidence, with a 90% CI of (0.13, 0.76). We note that
the physical qubits metric is positively oriented while the
error rate metric is negatively oriented, so the positivity
of the covariance suggests the existence of a robust trade-
off between both metrics.

B̂ Σ̂

Intercept

Slope

Phys. qubits Gate error

-181 256

0.090 -0.13

Phys. qubits Gate error

0.76 0.44

0.44 2.02

TABLE III. Point estimates of the parameters of the multivariate log linear model for data between 2003 and 2020, n = 40
data points. The first row of B̂ are the intercepts, while the second row corresponds to the yearly log slope. Similarly, the first
column of B̂ corresponds to the parameters associated with the physical qubits, while the second corresponds to the parameters
associated with the average two-qubit gate error rate. To cast these values in a more amenable way, these parameters indicate
that the median value by the year 2020 are 9.22 physical qubits and 0.02 error rate. The first diagonal entry of Σ̂ is the
estimated variance for the log physical qubits, while the second diagonal entry is the variance of the log error rate, and the
off-diagonal symmetrical entries are the estimated covariance between the two metrics.

FIG. 6. Visualization of the Gaussian pdf of the model with the parameterization in Table III conditioned on the year 2023.
That is, the model predicts that a certain percentile of papers published in that year will report metrics inside the respective
ellipse. (Note that this is a prediction about the the distribution of all sources satisfying our selection criteria, not a prediction
about the best values obtained or the technological frontier.) The size and orientation of the ellipse represents the covariance
of the metrics. Each curve delineates an x% probability region, centered around the median.
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FIG. 7. Extrapolated progress of generalized logical qubits at 5%, 50%, and 95% bootstrapping quantiles (red, orange, and
blue, respectively). The trend lines are based on n = 39 data points corresponding to superconducting quantum computers
developed between 2007 to 2020 and constitute the main result of our paper. Also shown are the 12 data points from our
dataset for which the number of GLQs are defined. Directly extrapolating these data points would be very unreliable because
of their low number and position near the divergence at the fault-tolerance threshold.

In plain English, this suggests that quantum computer
designers face a trade-off between trying to optimize for
quantum computers with many physical qubits and quan-
tum computers with very low gate error rate.

If we focus on data on the most promising substrate so
far, superconducting qubits, from 2003 onward (n = 31
data points) we find that the correlation weakens, with a
90% CI of (-0.11, 0.48) and a confidence of 84.5% that the
covariance is positive. The significantly lower confidence
indicates that our finding is not robust.

B. Extrapolating current trends

When will we reach the relevant quantum computing
milestones?

Now, to extrapolate current trends of growth, we as-
sume continued exponential progress on the best physical
qubit and error rate metrics achieved so far. For reasons
described below, we consider this to provide a soft upper
bound on the likely rate of quantum computing progress.

We have chosen to focus on predicting the development
of superconductor-based quantum computers for two rea-
sons: First it is generally regarded as the single most
promising substrate for large-scale FTQC. Second, and
more practically, there are substantially more papers in

the literature quoting physical qubit numbers and gate
error rates in the superconducting category.

We now describe our main modeling method. We begin
by considering our two primary metrics — the number
of physical qubits and the error rate — separately. For
each metric, we select only the subset of data points cor-
responding to papers reporting a new best achieved value
of that metric (as of the year of publication). We then
take the two distinct dataset and, to each, we fit a log-
linear minimum square error model with log-Gaussian
noise.

In other words, for each of our two metrics we consider
just the set of new “world records” and perform tradi-
tional linear regression on that data in log space.[88] Al-
though this maximization procedure loses some informa-
tion before feeding it to our model, it is necessary in order
to correctly track our topic of interest: the bleeding-edge
capabilities of the field. Notably, this means our model
resists being influenced by a glut of papers describing
devices that are not intended to be competitive on our
chosen metrics.

The median trajectory of each model can be extrapo-
lated forward in time, and we combine these to produce
a prediction for the progress in generalized logical qubits.
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Here is a summary of our model:

Y1 = XB1 + Ξ1; Ξ1 ∼ N
(
0, σ2

1

)
(5)

Y2 = XB2 + Ξ2; Ξ2 ∼ N
(
0, σ2

2

)
(6)

Z = f (exp (Y1) , exp (Y2)) (7)

X = (1 t) stacks an intercept 1 and the date t. Y1 is
the maximum log physical qubits at date t. Y2 is the
minimum log average gate error rate at date t. Z is
the number of generalized logical qubits given the log
physical qubit metric Y1 and log gate error rate Y2.

To produce our confidence intervals we are going to use
a bootstrapping procedure (see Chapter 11 of Ref. [87]).

Our dataset of n = 39 papers is resampled with repe-
tition B = 1000 times and log scaled.

Then the data for each of the metrics is aggregated via
a sparse maximum, where only the years where an actual
improvement is made are registered.

This produces two derivative datasets (X1, Y1) and
(X2, Y2) for the trend of max log physical qubits and
the trend of min log error rate respectively.

We use these datasets to compute the maximum likeli-
hood estimates for the parameters (intercept, slope, and
noise variance in log space) of the log-linear model.

Bi =
(
X>i Xi

)−1
X>i Yi (8)

σ2
i =

1

n− 1
(Yi −XiBi)

>
(Yi −XiBi) (9)

Note that unlike in Section IV A here we are fitting two
separate log linear models instead of a multivariate one.
Furthemore, we emphasize that we are fitting only the
subset of data corresponding to new best metric values
instead of all reported values like in Section IV A.

We use these estimates to estimate T , the date when
the critical threshold of 4100 qubits is crossed by the
median trajectory.

T = min{t : Z > 4100} (10)

≈ min

{
t : f

(
exp

(
B̂1

(
1
t

))
, (11)

exp

(
B̂2

(
1
t

)))
> 4100

}
(12)

The result is three representative trajectories corre-
sponding to the quantiles 0.05, 0.5 and 0.95 of T . For
more details on our calculations, please refer to our code
[89].

We consider this model optimistic in three ways. First,
it is being extrapolated over the maximum data instead

of the whole dataset. Second, it ignores the trade-off be-
tween both metrics we uncovered in Section IV A. Third,
it presumes that the regime of exponential growth will
continue in the long term, which is a dubious assump-
tion — especially for the average two-qubit gate error
rate [90].

This model predicts that proof-of-concept FTQL will
be developed between early 2026 and early 2033 with
90% confidence with the median in early 2030, and that
RSA-2048 Shor attacks will become feasible between mid
2039 and mid 2058 with 90% confidence with the median
in early 2050.

Because we are not completely confident in the model,
these do not exactly coincide with our Bayesian credences
for when these events will take place, but we do find them
a strong starting point for further deliberation.

These results are more pessimistic but broadly com-
parable to those produced through the survey of experts
in [20]. We emphasize that 22.7% of the experts they
surveyed think it is likely or highly likely that quantum
computers will be able to crack RSA-2048 keys by 2030,
and 50% think that is likely or highly likely that we will
be able to crack RSA-2048 keys by 2035.

Note that our models have two levels of modelled un-
certainty: the uncertainty introduced by bootstrapping
and the gaussian noise of each estimated model.

However, the gaussian noise is negligible compared to
the bootstrapping uncertainty. This is evident when we
plot the quantiles of gaussian noise for each bootstrapped
mode, see figure 9. Thus we ignore the gaussian uncer-
tainty in our analysis.

C. Model robustness

How robust are the conclusions of our extrapolation
model to various alternative choices we might have made?

As we analyzed the data, we also considered the follow-
ing variations on our model. Although our main model
is substantially better justified than these variations, we
will examine how they would affect things.

Choices made:

• Using a max procedure vs. using a best fit line for
all data points

• All data available vs using data of quantum com-
puters with more than two qubits

https://\protect \penalty \z@ {}colab.\protect \penalty \z@ {}research.\protect \penalty \z@ {}google.\protect \penalty \z@ {}com/\protect \penalty \z@ {}drive/\protect \penalty \z@ {}1XkWcs\protect \penalty \z@ {}Uy-Ci\protect \penalty \z@ {}NDDJffPC3d\protect \penalty \z@ {}NJbgvR\protect \penalty \z@ {}6iDAqh#\protect \penalty \z@ {}scrollTo=\protect \penalty \z@ {}jV29mJw\protect \penalty \z@ {}Oiz9W&\protect \penalty \z@ {}uniqifier=3
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FIG. 8. Extrapolated progress of physical qubits (upper plot) and average two-qubit gate error rate (lower plot), from n = 39
data points corresponding to superconducting quantum computers developed between 2007 to 2020. There are compelling
expert assessments that qubit error rates will not and need not fall as dramatically as depicted here (though note that these
error rates are still far larger than the rates experienced by modern classical computers).

If we do not aggregate the data through a maximum
at all we unsurprisingly get far more pessimistic predic-
tions, see Fig 10. Worth noting that in this case we are
not estimating the best results each year, but rather the
typical results each year.

Since many papers will report numbers of physical
qubits and gate error rates without attempting to push

the technological frontier on those particular metrics, we
believe our (sparse) max procedure allows our model to
better track the hypothetical technological level of the
field as a whole. (In particular, the max is not affected
by whether lots of non-frontier papers are published.) A
constraint imposed by using a max procedure is that it
greatly reduces the effective size of our dataset.
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FIG. 9. An optimistic extrapolation of current progress on GLQs, based on n = 39 data points corresponding to superconducting
quantum computers developed between 2007 to 2020, where we have plotted the 5%, 50% and 95% quantiles of the gaussian
noise credence intervals for the 5%, 50% and 95% quantile bootstrapped trajectories.

FIG. 10. Extrapolated progress of generalized logical qubits based on n = 39 data points corresponding to superconducting
quantum computers developed between 2007 to 2020 and fitted to the raw data, no maximum.

Our main model utilizes data from 2007 to 2020. If we
include data from 2014 onwards the resulting predictions
are substantially more optimistic, see fig 11. We have

selected this time threshold as 2014 marks the appear-
ance of superconducting quantum computers with more
than two qubits, which are arguably more representative
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of smooth progress.

Our model is quite simple. A more sophisticated ap-
proach would likely rely on modelling progress with a
geometric drift model as in [21]. Unfortunately, this ap-
proach was not workable because (1) we have insufficient
GLQ data points to apply the geometric drift model di-
rectly to univariate GLQ data and (2) the geometric drift
model has not yet be generalized to the multivariate set-
ting, which would require significant modifications [91].
Therefore, we have decided to use our simpler approach
instead.

On the other hand, we could have applied an even
simpler model by just fitting the raw GLQs. However, the
GLQ metric is not well defined for most of the dataset, as
the gate error rate of most quantum computers is below
the 1e-2 threshold. Thus our dataset is quite limited and
the model very noisy. See figure 13 below.

Overall, we observe that the modelling choice makes a
significant difference to the predicted time when quantum
computing will reach the milestone of being able to crack
RSA 2048, which reduces our confidence on the main
model.

In particular, the much faster timelines for the 5%
quantile of the model fitted to data from 2014 to 2020
suggests that the trend of development may have sped
up in the last decade. However, given the paucity of
data and the dramatic differences with the 50% and 95%
quantile trajectories in this model this might be just the
result of noise.

D. Model validation

Does our extrapolation model perform well on historic

data?

In this subsection, we attempt to validate our model
by applying it to a subset of our data and using it to
predict the rest.

In figure 14 we plot the predictions when using data
from 2007 to 2018, and check the predictions for 2019
against the actual values. In Table IV we expand this
procedure to a rolling validation that encompasses differ-
ent years used as data. The results are consistent with
a well-calibrated model, with 1 value out of 10 falling
outside of the predicted 90% confidence intervals.

V. CONCLUSIONS AND OPEN QUESTIONS

A. Summary

We began this work by briefly summarizing some of
the past literature on technological progress, and argued
that exponential growth in hardware technology is a rea-
sonable (though by no means assured) expectation.

We then compiled a quantitative database of achieve-
ments in quantum computing research in the last two
decades, focusing especially on two metrics: the highest
physical qubit count and lowest average two-qubit gate
error rates.

When conditioning on year, we found an (an-
ti-)correlation between the highest qubit counts and the
lowest error rates across all technologies, in line with ex-
pectations that these metrics are in tension at a given
level of technological development. However, when look-
ing at superconducting data specifically our confidence
weakens significantly, indicating that this finding might
be spurious.
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FIG. 11. Extrapolated progress of generalized logical qubits based on n = 33 data points corresponding to superconducting
quantum computers developed between 2014 to 2020.

FIG. 12. The fit and extrapolation of the GLQ data (m = 5 years of data, n = 10 data points corresponding to superconducting
quantum computers developed between 2015 to 2020) to a geometric drift model.
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FIG. 13. Simple log-linear extrapolation of the GLQs of superconducting quantum computers between 2007 and 2020, n = 12.

FIG. 14. Extrapolated progress of generalized logical qubits based on n = 20 data points corresponding to superconducting
quantum computers developed between 2007 to 2018.
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2019 2018 2017 2016

Actual maximum 6.31e-03 4.29e-3 4.29e-3 1.44e-4

2007-2018 data n = 20 1.29e-3; 1.94e-3;
7.99e-2

N/A N/A N/A

2007-2017 data n = 14 0.; 6.21e-3;
2.69e-2

0.; 1.10e-2;
5.57e-2

N/A N/A

2007-2016 data n = 7 1.15e-4; 7.53e-3;
6.43e-2

5.82e-5; 4.44e-3;
3.02e-2

2.25e-5; 2.54e-3;
1-38e-2

N/A

2007-2015 data n = 5 3.97e-7; 5.84e-3;
1.57e-1

0.; 3.33e-3;
6.58e-2

0.; 1.18e-3;
2.55e-2

0.; 8.23e-4;
8.75e-3

TABLE IV. Actual and predicted records for GLQs in recent years, as predicted by models trained on different time spans,
following the modelling choices explained in Section IV B and Section IV C. Each entry contains the estimated 5%, 50%,
and 95% quantiles separated by semicolons. The confidence intervals where the actual value falls within the predicted 90%
confidence interval are shaded green, while the ones where it does not are shaded red. Note that when the predicted gate error
rate is above the threshold where error correction is possible we consider the generalized logical qubits to be 0., hence the null
entries.

We proposed a single scalar figure of merit to mea-
sure progress towards large-scale fault-tolerant quantum
computing, the generalized logical qubit (GLQ), which
combines our two metrics. Using GLQs, we operational-
ized two milestone of fault-tolerant quantum computing:

1. Realization of a single GLQ, roughly corresponding
to the beginning of scalable quantum computation.

2. Realization of 4100 GLQs, roughly corresponding
to the arrival of computing power that has practical
implications for real-world cryptographic systems.

Ultimately, we extrapolated the dataset we had avail-
able to predict a less than 5% chance that proof-of-
concept fault-tolerant computation will be achieved be-
fore 2024, and less than 5% chance that RSA-2048 Shor
attacks will be feasible before 2039. These predictions
are dependent on disputable modeling choices we have
made, although we generally feel our assumptions have
been conservative in the sense that these are reasonable
upper bounds on the rate of progress.

B. Future work

There is much room for future work to improve on our
methods, especially as more data points appear in the
coming years:

• Other datasets, such as patents as in [92].

• Modeling of other technical metrics like coherence
time, qubit connectivity, and quantum volume, and

incorporating other considerations (like the Steane
code) into the primary figures of merit.

• Substrates beyond superconducting qubits, espe-
cially ion traps.

• More sophisticated (but data-hungry) models like
that of [21] or [93].

• More extensive validation.

• Fitting the models to variables sensitive to global
developments that may alter the effort put into
quantum computing, such as cumulative inflation-
adjustment capital investment in quantum comput-
ing research.

• Estimate when reversible computing, a necessary
but not sufficient property of quantum computers,
will be developed in order to maintain progress in
classical computing. (We briefly expand on this in
Appendix 7.2.)

Our dataset is freely available here [94], and the code
for our models is here [95].
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T. Rosenband, and D. J. Wineland, Nature 422, 412
(2003).

[73] A. Nersisyan, S. Poletto, N. Alidoust, R. Manenti,
R. Renzas, C. Bui, K. Vu, T. Whyland, Y. Mohan,
E. A. Sete, S. Stanwyck, A. Bestwick, and M. Reagor,
arXiv:1901.08042 (2019).

[74] M. Reagor, C. B. Osborn, N. Tezak, A. Staley,

https://quantumcomputingreport.com/scorecards/
https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York-Brings-Worlds-Largest-Fleet-of-Quantum-Computing-Systems-Online-Unveils-New-53-Qubit-Quantum-System-for-Broad-Use
https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York-Brings-Worlds-Largest-Fleet-of-Quantum-Computing-Systems-Online-Unveils-New-53-Qubit-Quantum-System-for-Broad-Use
https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York-Brings-Worlds-Largest-Fleet-of-Quantum-Computing-Systems-Online-Unveils-New-53-Qubit-Quantum-System-for-Broad-Use
https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York-Brings-Worlds-Largest-Fleet-of-Quantum-Computing-Systems-Online-Unveils-New-53-Qubit-Quantum-System-for-Broad-Use
https://quantum-computing.ibm.com
https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/
https://newsroom.intel.com/news/intel-delivers-17-qubit-superconducting-chip-advanced-packaging-qutech/
https://aws.amazon.com/braket/hardware-providers/
http://docs.rigetti.com/en/1.9/qpu.html
http://docs.rigetti.com/en/1.9/qpu.html
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://medium.com/rigetti/the-rigetti-128-qubit-chip-and-what-it-means-for-quantum-df757d1b71ea
https://quantumcomputingreport.com/scorecards/qubit-quality/


21

G. Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete,
N. Didier, M. P. da Silva, E. Acala, J. Angeles, A. Best-
wick, M. Block, B. Bloom, A. Bradley, C. Bui, S. Cald-
well, L. Capelluto, R. Chilcott, J. Cordova, G. Cross-
man, M. Curtis, S. Deshpande, T. El Bouayadi, D. Gir-
shovich, S. Hong, A. Hudson, P. Karalekas, K. Kuang,
M. Lenihan, R. Manenti, T. Manning, J. Marshall,
Y. Mohan, W. O’Brien, J. Otterbach, A. Papageorge,
J. Paquette, M. Pelstring, A. Polloreno, V. Rawat,
C. A. Ryan, R. Renzas, N. Rubin, D. Russel, M. Rust,
D. Scarabelli, M. Selvanayagam, R. Sinclair, R. Smith,
M. Suska, T. To, M. Vahidpour, N. Vodrahalli, T. Why-
land, K. Yadav, W. Zeng, and C. T. Rigetti, Science
Advances 4, eaao3603 (2018).

[75] F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde,
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VI. APPENDIX

This appendix is intended for readers with some tech-
nical familiarity with quantum computing.

A. Generalized logical qubits

Our definition of the number of generalized logical
qubits makes use of the scaling associated with the (pla-
nar) surface error correction code [42–45]. Thus, when
we project the arrival of a fault-tolerant QC for a partic-
ular year with this metric, we are implicitly assuming the
device will use the surface code or something that makes
similar trade-offs [97].

For the surface code, the number of physical qubits
required to encode a single logical qubit is fQEC = (2d−
1)2 where d = 1, 3, 5, 7, . . . is the code distance, a measure
of the size of the errors to which the code is robust. To
a good approximation, this code satisfies [98]

pL ≈
√

10 pP

(
pP
pth

)(d−1)/2

(13)

where pP is the average two-qubit error rate on the raw
physical qubits in the computer, pth ≈ 10−2 is the ap-
proximate threshold error at which fault-tolerance be-
comes possible, and pL is the two-qubit error for the log-
ical qubits, i.e., the effective error rate of the mathemat-
ical computation [45]. As long as pP is below pth, the
logical error rate can be driven arbitrarily low by choos-
ing a sufficiently large code distance d (at the expense of
requiring more physical qubits to host the computation).

The inverse 1/pL is the number of two-qubit gates that
can typically be applied before an error occurs at the log-
ical level, and that sets the maximum size of the compu-
tation. The particular value we choose is not too impor-
tant because our results depend only weakly (logarith-
mically) on this choice, which in principle is determined
by the length of the particular computation one wants
to do. We follow [1] by taking pL = 10−18, correspond-
ing to computations with of order a trillion steps (not
necessarily in serial).

We then ignore the discreteness [99] of the code dis-
tance d, eliminate it from the equations, and derive ratio
of physical qubits per logical qubits:

fQEC =

[
4

log
(√

10 pP/pL
)

log (pth/pP)
+ 1

]−2
(14)

We emphasize that the above formula is only an approx-
imation, and in particular ignores the discreteness of the
code distance d.

B. Reversible computing

Landaurer’s limit [100–102] is a fundamental thermo-
dynamic barrier, imposing an energy cost on all com-
putations that are irreversible (at the logical level). It
is known that it can be circumvented by adopting re-
versible computing, where all computations are modified
to eliminate (almost all) irreversible steps [101, 102].

Landaurer’s limit is not yet a serious consideration
for modern classical computers because current technol-
ogy already wastes several orders of magnitude more
energy, due to conventional engineering imperfections,
than is required by Landaurer’s limit. But, as part of
the progress associated with Moore’s law, the amount
of energy wasted has been decreasing exponentially each
year, and eventually Landaurer’s limit will become im-
portant for continuing technological progress in classical
computing [103, 104]. Once that happens, classical com-
puters will likely need to become reversible (or partially
reversible) to continue improving.

Reversible computing is a prerequisite for quantum
computers in the sense that quantum computations are
necessarily reversible and a subset of quantum operations
(the classical operations with respect to some fixed com-
putational basis) are sufficient to implement any classi-
cal computation reversibly [105]. Indeed, our impression
from discussion with experts is that achieving reversibil-
ity is a large component of the engineering difficulty of
quantum computing. It is unclear how much more dif-
ficult it would be to build a useful quantum computer
once a useful reversible one is created.

Therefore, if we extrapolate current classical computa-
tion trends, the date at which classical computers become
reversible is a good hint at when quantum computers
may be available. We have not performed a thorough
search of the literature, but we did find a plot, Fig. 2
on page 386 of [106], suggesting that achieving (partial)
reversibility will become an important part of classical
computing technological progress in the mid 2030’s. A
quick skim of seminars and articles by DeBenedictis &
Frank seem broadly consistent with this [103–105].

Constructing a more accurate projection and draw-
ing implications for quantum computing is left for fu-
ture work. Besides being valuable by virtue of being in-
dependent (and complementary to) approaches directly
measuring research progress in quantum computing, the
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estimation approach based on reversible computing is no- table because it naturally incorporates the economics of
classical computing investments.
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