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Abstract

We propose a novel scheme for the lithography of arbitrary, two-dimensional nanostructures via 

matter-wave interference.  The required quantum control is provided by a /2-  -  /2 atom 

interferometer with an integrated atom lens system.  The lens system is developed such that it allows 

simultaneous control over atomic wave-packet spatial extent, trajectory, and phase signature.  We 

demonstrate arbitrary pattern formations with two-dimensional 
87

Rb wave-packets through numerical 

simulations of the scheme in a practical parameter space.  Prospects for experimental realizations of the 

lithography scheme are also discussed. 

PACS:  39.20.+q,  03.75.Dg,  04.80.-y,  32.80.Pj 
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I. INTRODUCTION 

The last few decades have seen a great deal of increased activity toward the development of a broad array 

of lithographic techniques [1, 2].  This is because of their fundamental relevance across all technological 

platforms.  These techniques can be divided into two categories:  parallel techniques using light and serial 

techniques using matter.  The optical lithography techniques have the advantage of being fast because they 

can expose the entire pattern in parallel.  However, these techniques are beginning to reach the limits

imposed upon them by the laws of optics, namely the diffraction limit [3].  The current state-of-the-art in

optical lithography that is used in industry can achieve feature sizes on the order of hundreds of

nanometers.  Efforts are being made to push these limits back by using shorter wavelength light such as x-

rays [2], but this presents problems of its own.  The serial lithography techniques, such as electron beam 

lithography [1], can readily attain a resolution on the order of tens of nanometers.  However, because of

their serial nature these methods are very slow and do not provide a feasible platform for the industrial 

mass fabrication of nano-devices. 

A new avenue for lithography presents itself out of recent developments in the fields of atomic

physics and atom optics, namely the experimental realization of a Bose-Einstein Condensate (BEC) [4, 

5] and the demonstration of the atom interferometer [6-12].  In essence, these developments provide us 

with the tools needed in order to harness the wave nature of matter.  This is fortuitous for lithography 

because the comparatively smaller de Broglie wavelength of atoms readily allows for a lithographic

resolution on the nanometer scale.  The atom interferometer provides a means of interfering matter

waves in order to achieve lithography on such a scale.  The BEC, on the other hand, provides a highly 

coherent and populous source with which to perform this lithography in a parallel fashion.  The

opportunity thus presents itself to combine the enhanced resolution of matter interferometry with the

high throughput of traditional optical lithography. 

It should be noted that, although there has been research activity on atom lithography [13-15] for

a number of years, most of the work has involved using standing waves of light as optical masks for the 

controlled deposition of atoms on a substrate.  The primary limitations of using such optical masks are 

that the lithographic pattern can not be arbitrary and that the resolution of the pattern is limited to the

100nm scale.  Since our scheme uses the atom interferometer, however, it allows for pattern formation 

by self-interference of a matter wave, and is thus unhampered by the inherent limitations of the optical 

mask technique. 

In this paper we seek to demonstrate theoretically the use of the atom interferometer as a 

platform for nanolithography by proposing a technique that allows for the manipulation of a single atom 

wavepacket so as to achieve two-dimensional lithography of an arbitrary pattern on the single nanometer

scale.  To do this our scheme employs a lens system along one arm of the interferometer that performs

Fourier imaging [3] of the wavepacket component that travels along that arm. By investigating such a 

technique for a single atom wavepacket, we hope to establish the viability of using a similar technique 

for a single BEC wavepacket, which would allow for truly high throughput lithography. 

The paper is organized as follows.  Section II presents an overview of the proposed technique. 

Sec. III and IV provide a theoretical analysis of the atom interferometer itself and our proposed imaging 

system, respectively.  Sec. V is devoted to some practical considerations of the setup and its parameter

space, and Sec. VI gives the results of numerical simulations.  Finally, we touch upon the issue of 

replacing the single atom wavepacket with the macroscopic wavefunction of a BEC in Sec. VII. 

Appendices A and B show some of the steps in the derivations. 
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II.A.  Principles of Operation 

In a /2-  - /2 atom interferometer (AI), which was first theoretically proposed by Borde [6] and 

experimentally demonstrated by Kasevich and Chu [7], an atom beam is released from a trap and 

propagates in free space until it encounters a /2 pulse, which acts as a 50/50 beam splitter [16-22].  The

split components then further propagate in freespace until they encounter a  pulse, which acts as a 

mirror so that the trajectories of the split beam components now intersect.  The beams propagate in free 

space again until they encounter another /2 pulse at their point of intersection, which now acts as a 

beam mixer.  Because of this beam-mixing, any phase shift  introduced between the beams before they 

are mixed will cause an interference to occur such that the observed intensity of one of the mixed beams

at a substrate will be proportional to 1+cos , much like the Mach-Zehnder interferometer [23] from 

classical optics.  For our scheme we propose the same type of interferometer, but with a single atom

released from the trap instead of a whole beam.

Now, if we introduce an arbitrary, spatially varying phase shift yx,  between the two arms of 

the interferometer before they mix, the intensity of their interference pattern as observed on a substrate 

will be proportional to 1+cos yx, .  Thus, in our system, we use a fortuitous choice of yx,  in order

to form an arbitrary, two-dimensional pattern.  This quantum phase engineering (already demonstrated

for BECs [24, 25]) is achieved by using the ac-stark effect so that xy yxI ,, , where yxI ,  is the

intensity of an incident light pulse. 

Also, in order to achieve interference patterns on the nanoscale, yx,  must itself be at 

nanometer resolution.  However, reliable intensity modulation of a light pulse is limited to the sub-

micron range due to diffraction effects.  One way to address this is by focusing the wavepacket after it is 

exposed to the sub-micron resolution phase shift yx, , thereby further scaling down yx,  to 

nanometer resolution after it is applied to the wavepacket.  Our scheme achieves this scaling via an atom 

lens system.

Additionally, just as with a gaussian laser beam, exposing a single gaussian wavepacket to a 

spatially varying phase shift yx,  will cause it to scatter.  In order for both the phase-shifted and non-

phase-shifted components of the wavepacket to properly interfere, our lens system is also used to 

perform Fourier imaging such that, at the substrate, the phase-shifted component of the wavepacket is an 

unscattered gaussian that is properly aligned with its non-phase-shifted counterpart and has the phase 

information yx,  still intact.  Indeed, the lens system, which is created using the ac-stark effect,

serves the double purpose of scaling down the phase information yx,  from sub-micron resolution to 

single nanometer resolution and neutralizing the wavepacket scattering caused by the same phase shift 

yx, .

II. B. Schematic

In our overall scheme, represented by Fig. 1, the atoms are treated as lambda systems [26-33] 

(Inset B) and are prepared in ground state 1 .  A single atom trap [34-36] is used to release just one 

atomic wavepacket along the z-axis.  After traveling a short distance, the wavepacket is split by a /2

pulse into internal states 1  and 3 .  The state 3   component gains additional momentum along the y-

axis and separates from the state 1  component after they both travel further along the z-axis.  Next, a 
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pulse causes the two components to transition their internal states and thereby reflect their trajectories. 

The component along the top arm is now in the original ground state 1  and proceeds to be exposed to

the lens system.  The lenses of the lens system are pulses of light that intercept the state 1  component

of the wavepacket at different times.  By modulating their spatial intensity in the x-y plane, these pulses 

of light are tailored to impart a particular phase pattern in the x-y plane to the wavepacket component 

that they interact with via the ac-stark effect.  As shown in Inset B, the detuning of the light that the 

lenses are composed of is several times larger for state 3  than for state 1 .  The lenses can therefore 

be considered to have a negligible ac-stark effect on the state 3 wavepacket component as compared to 

the state 1   component.  The first light pulse is intensity modulated to carry the phase information of 

the first lens of the lens system.  It then intercepts the state 1   wavepacket component and adds the

phase 1(x,y).  After some time the state 1   component evolves due to the first lens such that it is an 

appropriate size for exposure to the phase information corresponding to the arbitrary pattern image

(Inset A).  Another light pulse is intensity modulated to carry the phase information of both the second 

lens and the inverse cosine of the arbitrary pattern.  The pulse intercepts the state 1  component and 

adds the additional phase 2(x,y).  After some time a third light pulse is prepared and exposed to the 

state 1  component to add a phase of 3(x,y) to effect the third lens of the lens system.  Soon after, the 

final /2 pulse mixes the trajectories of the wavepacket components.  After the light pulses for the lens 

system have passed through, a chemically treated wafer is set to intercept the state 1  component in the

x-y plane.  Due to the mixing caused by the last /2 pulse, only part of what is now the state 1

component has gone through the lens system.  Because of the lens system, it arrives at the wafer with a

phase that is a scaled down version of the image phase P(x,y) = arccosP(x,y).  The other part of what is 

now the state 1  component did not go through the lens system.  There is therefore a phase difference of 

P(x,y) between the two parts of the state 1  component and the wavepacket strikes the wafer in an 

interference pattern proportional to 1+cos(arccosP(x,y)) = 1+P(x,y).  The impact with the wafer alters 

the chemically treated surface, and the pattern is developed through chemical etching.

As a note, one preparation for the wafer is to coat it with a self-assembled monolayer (SAM) 

[37].  However, S. B. Hill et al. [38] demonstrate an alternate approach using hydrogen passivation, 

which may be better suited for lithography at the single nanometer scale due to its inherent atomic-scale

granularity.

III. Analysis of the Interferometer ( /2 -  - /2)

III. A. Formalism 

As explained in the previous section, we consider the behavior of a single atomic wavepacket in 

our formulation of the problem.  Also, in order to understand and simulate the AI [6-12] properly, the 

atom must be modeled both internally and externally.  It is the internal evolution of the atom while in a 

laser field that allows for the splitting and redirecting of the beam to occur in the AI.  However, the 

internal evolution is also dependent on the external state.  Also, while the external state of the atom 
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accounts for most of the interference effects which result in the arbitrary pattern formation, the internal 

state is responsible for some nuances here as well. 

In following the coordinate system as shown in Fig. 1, we write the initial external wavefunction

as:

2

2

2
exp

1
0,

r
tre (1)

where jyixr ˆˆ .  Our use here of a two-dimensional model is justified because no measurement is

made in the z direction.  Internally, the atom is modeled as a three level lambda system [26-33] (as

shown in Fig. 1 Inset B) and is assumed to be initially in state 1 :

3)(2)(1)( 321 tctctcti , (2)

where we consider 0)0(,0)0(,1)0( 321 ccc .  States 1  and 3  are metastable states, while state 

2  is an excited state. 

As will become evident later, in some cases it is more expedient to express the atom’s

wavefunction in k-space [39].  To express our wavefunction, then, in terms of momentum, we first use 

Fourier theory to re-express the external wavefunction as:

yxyxyxee dpdppptpptyx ,,
2

1
,, , (3) 

where we let 
x

p
i

x

x

ep and
y

p
i

y

y

ep .  The complete wavefunction is simply the outer product of 

the internal and external states (Eq. (2) and (3)): 

yxyxyxyx pptppCpptppCtyx ,,2,,,,1,,
2

1
,, 21

,,,3,,3 yxyxyx dpdppptppC  (4) 

where tpptctpp yxenyxn ,,,,C .  In position space, the outer product gives: 

trtctrtctrtctr eee ,,3,,2,,1, 321 . (5) 
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III. B.  State Evolution in Freespace 

The freespace evolution of a the wavefunction is fully derived in appendix A.  Presented here are simply

the results cast in our particular formalism.  For the freespace Hamiltonian

yx

n

yxyxn

yx
dpdpppnppn

m

pp
H

3

1

22

,,,,
2

, if the wavefunction is known at time 0t ,

then after a duration of time T in freespace, the wavefunction becomes:

yx

T
m

pp
i

yx ppeppCTtr

yx

,,10,,
2

1
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1

22
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yx

T
m

pp
i
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,,20,,
2

22
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yxyx

T
m
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i

yx dpdpppeppC

yx

,,30,,
3

22

2

3 . (6a) 

We can also write it as:

Trce

TrceTrceTtr

e

Ti

e

Ti

e

Ti

,,30

,,20,,10,

3

21

3

21

 (6b) 

III. C. State Evolution in  and /2 pulse laser fields

The electromagnetic fields encountered by the atom at points 2, 3, and 7 in Fig. 1 that act as the 

and /2 pulses are each formed by two lasers that are counter-propagating in the y-z plane parallel to the

y axis.  We use the electric dipole approximation to write the hamiltonian in these fields as

,
2

2

,,,,
2
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0
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 (7) 
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where  and  are vectors denoting the magnitude and polarization of the fields traveling in the +/-

y directions respectively, 

0AE 0BE

is the position vector of the electron, and is the electron charge.  Please

refer to appendix B for the complete derivation of the wavefunction evolution in these fields.  Simply

the results are presented here. 

0e

If the atom begins completely in state tre ,,1  then after a time T of evolving in the above 

described fields, the result is:

,0,,3
2

sin0,,1
2

cos,
)( ykki

e

iTi

e
BAABAB erTierTTtr

(8)

where we have used the definitions given in the “formalism” section above.  We see that for a  pulse 

( /T ), Eq. (8) becomes:

ykki

e

ii
BA

ABAB

eyxietyx
)(

0,,,3/,, , (9) 

while for a /2 pulse ( )2/(T ), Eq. (8) yields:

.0,,,3
2

1

0,,,1
2

1
)2/(,,

)(2 ykki

e

ii

e

BA
ABAB

eyxie

yxtyx

 (10) 

Similarly, if the atom begins completely in state tre ,,3 , the wavefunction after a time T becomes:

,0,,,3
2

cos

0,,,1
2

sin,,
)(

yxT

eyxTieTtyx

e

ykki

e

iTi BABABA

 (11) 

so that for a  pulse, Eq. (11) gives: 
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ykki

e

ii
BA

BABA

eyxietyx )(0,,,1/,, , (12) 

and for a /2 pulse, Eq. (11) becomes:

.0,,,3
2

1

0,,,1
2

1
)2/(,,

)(2

yx

eyxietyx

e

ykki

e

ii
BA

BABA

 (13) 

III. D.  State Evolution Through the  Whole Interferometer

To see the effects of phase explicitly, we make use of the analysis that we have done for the state 

evolution of the wavepacket. Take our initial wavepacket  to have initial conditions as discussed in 

the “formalism” section.  At time t=0 the first /2 pulse equally splits  into two components a

and b  such that:

ykki

e

ii

a
BA

ABAB

eyxie
)(2 0,,,3

2

111

 (14a) 

0,,,1
2

1
yxeb , (14b)

where we used Eq. (8).  After a time t=T of freespace (Eq. (6b)) and then a  pulse, Eqs. (8) and (11)

yield:

0

00
2 ,,,1

2

1
=

032112

Tyyxe e

Tiii

a

BBAABA

 (15a) 

ykki

e

Tiii

b
BA

ABAB

eTyxie
)(

0,,,3
2

10122

. (15b) 

The a  component becomes shifted in space by  due to the momentum it gained in the +y direction

from the  pulse.  Now another zone of freespace for a time T  (Eq. (6b)) followed by the final /2 pulse 

(using Eqs. (8) and (11)) forms:

0y

0
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ykki

e
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e
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Now the b component is spatially aligned with the a  component.  However, another split occurs 

because both of these components are partially in internal state 3 .  After some further time T  in

freespace, state

1

3  has drifted further in the +y direction.  The substrate can now intercept the two 

internal states of the total wavefunction in separate locations.  We write the state 1 wavefunction as: 

21123232
22

1
2

1 BBAABAAABBAB iiii

ee

(17a)
031

100 2,,,1
Ti

e eTTyyx

and the state 3  wavefunction as: 

22
321312

2

1
3

ABAB
BBBAAA

ii
i

eei

(17b)
031)(

1010 2,,,3
Tiykki

e
BAeTTyyyx

These have populations: 
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,cos1
2

1
,cos1

2

1
033011  (18) 

where 3322110 22 BABABABA .  We see that the state populations are 

functions of the phase differences of the laser fields.  Since we can choose these phase differences 

arbitrarily, we can populate the states arbitrarily.  If we choose the phases, for example, such that 0  is

some multiple of 2 , then the wavepacket population will end up entirely in internal state 1 .

IV. Arbitrary Image Formation 

If, however, between the  pulse and second /2 pulse we apply a spatially varying phase shift

rP  to a , but keep 0  as a multiple of 2 , then the populations in Eqs. (18) become instead: 

rr PP cos1
2

1
,cos1

2

1
3311 . (19) 

Therefore, if we let rPrP arccos , where rP  is an arbitrary pattern normalized to 1, the state 

1  population will be:

rP1
2

1
11 . (20)

If the substrate at (8) in Fig. 1 intercepts just this state, the population distribution will be in the form of 

the arbitrary image.  Over time, depositions on the substrate will follow the population distribution, and

thereby physically form the image on the substrate. 

IV. A.  Imparting an Arbitrary, Spatially Varying Phase Shift for Arbitrary Image Formation

We now review how to do such phase imprinting [24, 25] to a single wavepacket using the ac-

stark effect.

First, consider the SE for the wavepacket expressed in position space: 
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trrVtr
mt

tr
i ,,

2

,
2

2

. (21) 

If we consider a very short interaction time  with the potential rV , we find: 

trrV
t

tr
i ,

,

rV
i

etrtr ,, (22)

Thus, we see that an arbitrary phase shift rP  is imparted on the wavepacket in position space by 

choosing V rr P)/( .  Although this would give the negative of the desired phase, it makes no 

difference because it is the cosine of the phase that gives the interference pattern. 

In order to create the arbitrary potential needed to impart the arbitrary phase shift, we use the ac-

Stark effect (light shift).  As illustrated in Fig. 1 at 4b, 5b, and 6b, the atom will be in the internal state 

1 .  If exposed to a highly detuned laser field that only excites the 21  transition, the eigenstates

become perturbed such that their energies shift in proportion to the intensity of the laser field.  A 

spatially varying intensity will yield a spatially varying potential energy.  Specifically, in the limit that 

0/g , where g is proportional to the square root of the laser intensity and  is the detuning, it is 

found that the energy of the ground state is approximately 4/2g .  To impart the pattern phase, then, 

we subject the atomic wavepacket at 4b, 5b, and 6b in Fig. 1 to a laser field that has an intensity

variation in the x-y plane such that: 

,arccos)/4(

)/4(2

rP

rrg P (23)

where  is the arbitrary pattern normalized to 1 and rP t  is the interaction time.

IV. B.  The Need for a Lens System

The need for a lens system for the atomic wavepacket arises due to two separate considerations.

First, there is a need for expanding and focusing the wavepacket in order to shrink down the phase 

pattern imparted at (5b) in Fig. 1.  We have shown above how the phase pattern is imparted using an 

intensity variation on an impinging light pulse.  However, due to the diffraction limit of light, the scale

limit of this variation will be on the order of 100nm. This will cause the interference at (8) to occur on 
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that scale.  To reach a smaller scale, we require a lens system that allows expansion and focusing of the 

wavepacket to occur in the transverse plane.  Using such a system, we could, for example, expand the 

wavepacket by two orders of magnitude prior to (5b), impart the phase pattern at (5b), and then focus it 

back to its original size by the time it reaches (8).  The interference would then occur on the scale of 1 

nm.

The second consideration which must be made is that an arbitrary phase shift (x,y) introduced at 

(5b), if it has any variation at all in the transverse plane, will cause the wavepacket traveling along that 

arm of the AI to alter its momentum state.  Any freespace evolution after this point will make the 

wavepacket distort or go off trajectrory, causing a noisy interference or even eliminating interference at

(8) all together.

Our lens system, then, must accomplish two objectives simultaneously: 1) allow for an 

expansion and focusing of the wavepacket to occur and 2) have the wavepacket properly aligned and 

undistorted when it reaches (8).  To do this, we employ techniques similar to those developed in 

classical Fourier optics [3].  First we develop a diffraction theory for the 2D quantum mechanical

wavepacket, then we use the theory to setup a lens system that performs spatial Fourier transforms on 

the wavepacket in order to achieve the two above stated objectives. 

IV. C.  Development of the Quantum Mechanical Wavefunction Diffraction Theory 

Consider  the 2D SE in freespace: 

tr
yxmt

tr
i ,

2

,
2

2

2

22

. (24)

By inspection, we see that it is linear and shift independent.  If we can then find the impulse response of 

this “system” and convolve it with an arbitrary input, we can get an exact analytical expression for the

output.  To proceed, we first try to find the transfer function of the system.

Using the method of separation of variables, it is readily shown that all solutions of the system

(the 2D SE in free space) can be expressed as linear superpositions of the following function: 

)||
2

( 2

,
tk

m
rki

Aetr , (25)

where A is some constant and jkikk yx
ˆˆ  can take on any values.  Now let us take some arbitrary

input to our system at time t=0 and express it in terms of its Fourier components:

kdekr rki

inin
2

1
. (26)
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We can then evolve each Fourier component for a time T by using Eq. (25) to get the output: 

.
2

1

2

1

2

1

2

2

||
2

)||
2

(

kdek

kdeek

kdekr

rki

out

rki
Tk

m
i

in

Tk
m

rki

inout

(27)

It follows that:

Tk
m

i

inout ekk
2||

2 . (28)

Our transfer function, then, for a free space system of time duration T is: 

Tk
m

i

ekH
2||

2 . (29)

After taking the inverse Fourier transform, we find the impulse response to be: 

2||
2

r
T

m
i

e
T

m
irh . (30)

Finally, convolving this with some input to the system at time t=0, rin , gives the output at time

t=T, rout , to be: 

rdeere
T

m
ir

rr
T

m
ir

T

m
i

in

r
T

m
i

out

22 ||
2

||
2

2

1
. (31) 
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This expression is analogous to the Fresnel diffraction integral [3] from classical optics.

IV. D.  A Fourier Transform Lens Scheme 

Consider now the following: 

1) Take as input some wavefunction r , and use the light shift to apply a “lens” (in much the

same was as we show above how to apply the arbitrary pattern phase) such that it becomes:

2||
2

r
T

m
i

er

2) Pass it through the free space system for a time T using the above derived integral to get:

rdere
T

m
i

rr
T

m
ir

T

m
i 2||
2

2

1

3) Now use the light shift again to create another “lens” where the  phase shift is 
)

2
||

2
( 2r

T

m
i

e  so that

we are left with:

rder
T

m rr
T

m
i

2

1
.

We see that this is simply a scaled version of the Fourier transform of the input.  This lens system, then,

is such that:

r
T

m

T

m
r inout

2

1
, (32)

where inin TF .. .

IV. E. Using the F.T. lens scheme to Create a Distortion Free Expansion and Focusing System for

applying the Pattern Phase

In order to achieve our desired goals of doing expansion/focusing and preventing distortion, we 

propose the system illustrated in Fig. 2a.  We first input our Gaussian wavepacket into a F.T. scheme
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with a characteristic time parameter T .  We will then get the Fourier transform of the input (also a

Gaussian) scaled by .  Then, we give the wavepacket a phase shift that corresponds to the 

desired interference pattern (pattern phase) and put it through another F.T. scheme with the same time

parameter .  The wavefunction is now the convolution of the original input with the pattern phase. 

Finally, a third F.T. scheme is used with

AT

T

)/( ATm

AT

BT  so that the output is the same as the wavefunction just 

before the second F.T. scheme, but is now reflected about the origin and scaled by  instead of

.  The pattern phase, therefore, has been scaled down by a factor of T .  Since both T and

can be chosen arbitrarily, we can, in principle, scale down the pattern phase by orders of magnitude.

If, for example, the pattern phase is first imparted on a scale of ~100 nm, we can choose T  to be 

100 so that at the output of our lens system, it is on a scale of ~1 nm.  By scaling down the pattern 

phase, we can scale down the interference pattern at (8) in Fig. 1. 

)/( BTm

A

)/( ATm

BT

BA T/ A

BT/

Within the context of the interferometer, our lens system is placed at (4b), (5b), and (6b) in Fig.

1.  Now, since the system provides us with the desired output immediately in time after the final lens

(lens 3b in Fig. 2a), this final lens, the final /2 pulse, and the substrate (6) all need to be adjacent.  If 

they are not, the wavepacket will undergo extra freespace evolution and may distort.  However, such a 

geometry is difficult to achieve experimentally so we propose a modification to the lens system (Fig. 

2b).  Specifically, we can move the lens 3b in Fig. 2a to occur immediately before lens 2a, as long as we

rescale it to account for the different wavepacket size at that location.  We call the rescaled version b3 ,

which is the same as 3b except for the parameter T  in place of .  We can then place the substrate at

(8) in Fig. 2a to be where the lens 3b previously was; that is, a time T  away from lens 3a.  The final /2

pulse can occur anywhere between lens 3a and the substrate, as long as it is far enough away from the

substrate to allow sufficient time for the state

A BT

B

3  component to separate from the state 1  component.

To avoid disturbing the requisite symmetry of the AI, we accomplish this by choosing T  to be

sufficiently large while leaving the final /2 pulse itself in its original location.  This geometry will

allow the substrate to intercept the state

B

1  component exclusively and at precisely the right moment

such that it does not undergo too little or too much freespace evolution without having any of the final

/2 pulse, final lens, or substrate adjacent.  Finally, we can simplify the lens system’s implementation if

we combine the lenses that are adjacent.  Lenses 1b, 2a, b3 , and rP  can be combined into lens ;

lenses 2b and 3a can be combined into lens .  Explicitly, lens  has phase shift: 

rr
T

m
r P

A

2||
2

3
, (33)

and lens  has phase shift:

2
||

22

2r
T

m

T

m
r

BA

. (34)
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Fig. 2c shows the implementation of the lens system within the context of the whole AI.

A cause for concern may arise in the fact that with the lens system in place, the part of the 

wavepacket that travels along the arm without the lens will be interfering not with a phase modified

version of itself, but with a phase modified Fourier transform of itself.  That is, the output of the lens 

system is a phase modified Fourier transform of its input.  As such, the effective width of the

wavepacket coming from the lens system may be significantly larger than the effective width of that

coming from the arm without lenses, thus causing a truncation of the pattern formation around the edges.

This problem is addressed by selecting T  such that the wavepacket from the lens system is scaled to

have an effective width equivalent to or smaller than the wavepacket from the other arm.  Also, because 

of the Fourier transform, the wavepacket coming from the lens system, even without an added pattern 

phase, may have a different phase signature than the wavepacket coming from the other arm.  Regarding 

this issue, our numerical experiments show that after freespace propagation for a time on the order of the 

timescale determined as practical (see section on practical considerations), the phase difference between 

the original wavepacket and its Fourier transform is very small over the span of the effective width of 

the wavepacket.  Thus, the effect of this phase noise on the interference pattern is negligible.

B

V.  Some Practical Considerations 

V. A.  Wavepacket Behavior 

The behavior of the wavepacket primarily has implications for the time and wavepacket effective

width parameters of the lithography scheme.  As mentioned earlier, the scale limit of the intensity 

variation that creates the pattern phase when it is first applied is meters.  The lens system then 

further reduces the scale of the pattern phase by a factor of T .  To achieve lithography features on 

the scale of ~1nm, this ratio needs to be ~100.  However, we must also take into consideration the extent 

of the entire intensity variation.  In other words, referring to Fig. 2c, the effective width of the 

wavepacket at lens  must be large enough to accommodate the entire pattern on the light pulse bearing 

the phase pattern information.  We assume that this dimension will be on the order of a millimeter.  We

know that the wavepacket at lens  is a scaled Fourier transform of the wavepacket immediately before 

lens 1a, so that its effective width at lens  is 

710~

BA T/

in

A

m

T
.  This must be on the order of 10 .  Also, another

way in which the time parameters are restricted is by the total amount of time that the atom spends in the 

AI.  Even with a magnetic field slowing the atom’s fall, it is not practical to have the atom spend a large 

amount of time in the chamber.  We therefore impose the restriction that the atom spend no more time

than a minute or two in the chamber.  Explicitly, this translates to: T .

3

110~A

Now, as shown earlier, it is the state 1  component in our scheme that will form the desired

interference pattern.  The substrate must therefore intercept this component exclusive of the state 3

component.  Fortunately, the state 3  component will have an additional velocity in the y direction due 

to photon recoil so that the two states will separate if given enough time.  Also recall that each 

wavepacket state after the final /2 pulse is composed of two elements, one that went through the lens 

system and one that did not, such that the elements that traveled along the arm without the lens system
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will have larger effective widths (since the output of the lens system is smaller than its input).  The two 

states will be sufficiently separated, then, when the state 3  component has traveled far enough in the 

+y direction after the final /2 pulse such that there is no overlap of the larger effective widths.  Since 

we know that photon recoil gives the state 3  component an additional momentum of  in the +y

direction, we have: mv =   Also, it can be shown that the effective width of a wavepacket after

passing through freespace for a time T is

k2

.2 k

/1 T , where /m  and  is the original effective

width.  Therefore, for sufficient spatial separation of the states (assuming that the time between the final

/2 pulse and the substrate is on the order of T ) we need:  vB 1~ inBT /BT* .

BT
m

1

6

AT

~A

To summarize, our restrictions are: 

110~AT AT210~
310~

in

AT

in

B
inB

m

T
T

m

k
~

2
.

After using some simple algebra, we find that the first three restrictions are satisfied if we apply

the following:

510in

110~10~ Ain T
BT 210~ .

We can, for example, choose: , , T .  A simple check shows that these choices 

also satisfy the fourth restriction.

510in

110T 110~B

Finally, since our proposed lithography scheme involves the use of a single atom at a time, it 

entails the drawback of being very slow.  To make this type of lithography truly practical, a Bose-

Einstein condensate [4, 5] would have to be used instead of a single atomic wavepacket.

V. B.
87

Rubidium  Transition Scheme 

For practical implementation of our three-level atom, we use the D1 transitions in
87

Rb [40].

Fig. 3 illustrates.  One of the restrictions is that, in order to be able to neglect spontaneous emission, we

need for each single transition:

1**

2

0g
, (35)

where is the Rabi frequency,  is the detuning,  is the decay rate, and  is the interaction time.  Both

the Raman pulse scheme and the light shift scheme also require: 

0g

0g . (36)
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Each of the transitions that we have chosen are the strongest ones from their group, so we

assume them both to have a saturation intensity of about 3 .  We have the following relation: 2/ cmmW

2max2

max,0

satI

I
g . (37)

If we assume  and , we find that Hz.2

max /2 mmWI 17 sec10*33.3 9

max,0 10*6.8g

Now, the polarized light that we have chosen excites not only the desired transition from 1

to 2 , but also a transition from 2  to a different metastable state which we do not wish to populate. 

Fortunately, this second transition is about 6.8 GHz less than the first one, and its coupling strength is 

about 4 times smaller.  The   polarized light that we have chosen for the 2  to 3  transition also 

excites undesired transitions by linking state 1  to excited states other than the one we have chosen for

2 .  However, the undesired transitions that are excited in this case are also over 6 GHz larger than the 

desired transition.  We can therefore neglect the unwanted transitions by making sure that our 

polarized and   polarized pulses are detuned from their appropriate transitions by no more than a few

hundred MHz, thereby assuring that the detuning for the unwanted transitions is at least a factor of 10 

greater than the detuning for the desired transitions.  We choose our detuning to be 680 MHz. 

In order to satisfy the constraint that the Rabi frequency be much less than the detuning, we 

choose 68 MHz.  This is well below the maximum limit calculated above. 0g

As far as the interaction time for the /2 and  pulse scheme, it is the Raman Rabi frequency that 

is of interest:

2

2

0g
. (38)

Using this in Eq. (35), we get:

2

1**2

(39)
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Plugging in the chosen value for  and the typical value of 33.33 MHz for , we find that 2.10 .

We can satisfy this restraint by choosing  for the  pulse and half as much for the /2 pulse, 

giving a pulse duration of 924/ ns for a  pulse and 462 ns for a /2 pulse.

For the light shift we use the same  polarized excitation of state 3  as above.  The time

constraint in this case is: 

2
4

2

0g
. (40)

This gives an interaction time of 7.3 µsec.  Ideally, the light shift pulse will only interact with the

wavepacket in state 3 .  This may actually be possible if we choose T  to be large enough such that the 

two states gain enough of a transverse separation.  If, as by example above, we choose T , then

the separation between the two states will be on the order of a centimeter and there will be virtually no

overlap between the two components of the wavepacket in the separate arms.  The light pulse could then 

simply intercept only state 

A

110~A

3 .  If, however, the situation is such that the states are overlapping, then

state 1 will also see the light shift, but it will be about a factor of 10 less because of the detuning being

approximately 10 times larger for it than for the state 3  transition. 

VI.  Numerical Experiments

The numerical implementation of our lithography scheme was done in Matlab
TM

by distributing 

the wavepackets across finite meshes and then evolving them according to the Schrodinger equation.

This evolution was done in both position and momentum space according to expediency.  To go 

between the two domains, we used two-dimensional Fourier Transform and Inverse Fourier Transform

algorithms.

The initial wavepacket was taken in momentum space and completely in internal state 1 .

Specifically, the wavepacket was given by the Fourier Transform of Eq. (1):

2
exp0,

2
2

k
tke . (41)

The evolution of the wavepackets in the and 2/  pulses was done in momentum space in 

order to be able to account for the different detunings that result for each momentum component due to 

the Doppler shift.  Specifically, we numerically solved Eq. (B15) for the different components of the k-

space wavepacket mesh, then applied the inverse of the transformation matrix given by Eq. (B9) to go to

the original basis. 

Outside of the lens system, the free space evolution of the wavepackets was also done in 

momentum space.  This was achieved easily by using Eqs. (A4).  Within the lens system, however, it 
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was more computationally efficient to use Eq. (31) for the freespace evolution because of the need to

apply the lenses in position space.  The results of using Eq. (31) were initially cross-checked with the 

results of using Eqs. (A4) and were found to agree. 

Fig. 4a-b demonstrate the formation of an arbitrary pattern by interference of the state 1

wavepackets at the output of the interferometer.  Both figures were the result of applying the same

arbitrary pattern phase, but Fig. 4a was formed without any shrinking implemented (i.e. TA=TB).  Fig. 

4b, however, demonstrates the shrinking ability of the lens system by yielding a version of Fig. 4a that is

scaled by a factor of two ( 2BA TT ).  The length scales are in arbitrary units due to the use of

naturalized units for the sake of computational viability. 

VII. Suggestions for Extension to BEC

As mentioned above, in order to make the lithography scheme truly practical, a Bose-Einstein

condensate is required in place of the single atom.  Indeed, the self-interference of a BEC has already 

been demonstrated [41, 42].  The difficulty in using the BEC for controlled imaging, however, arises

from the nonlinear term in the Gross-Pitaevskii equation (GPE).  Our lens system, for example, would

not be valid as it was developed from the linear SE. 

One approach to getting around this problem is to try to eliminate the nonlinear term in the GPE.

Specifically, the GPE for the BEC takes the form 

2

0

2
2

2
UV

mt
i , (42)

where the nonlinear term coefficient is U  and a is the scattering length for the atom.  It has

been demonstrated for 

ma /4 2

0

87
Rb that the scattering length can be tuned over a broad range by exposing the 

BEC to magnetic fields of varying strength near Feshbach resonances [43, 44].  The relationship 

between the scattering length and the applied magnetic field B when near a Feshbach resonance can be 

written as 

peak

bg
BB

aa 1 , (43)

where  is the background scattering length,  is the resonance position, and bga peakB peakzero BB .

Setting  would therefore set the scattering length to zero and eliminate the nonlinear term in the 

GPE.  While the atom-atom interaction may not be completely eliminated in reality due to the 

fluctuation in density that we wish to effect through the lens system, it is worth investigating if it could 

be made to be negligible over an acceptable range.  We could then use our previously developed lens 

system to perform the imaging and thereby interfere thousands or millions of atoms simultaneously.

zeroBB
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Appendix A 
State Evolution in Free Space 

In free space, the Hamiltonian can be expressed in the momentum domain as: 
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n

yxyxn

yx
dpdpppnppn

m

pp
H

3

1

22

,,,,
2

. (A1) 

Where n  is the frequency corresponding to the eigenenergy of internal state n .  For a single

momentum component (  and 0xx pp 0yy pp ), the Hamiltonian for the total evolution in momentum

space is given by: 
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Using this in the SE, we get the equations of the amplitude  evolution in momentum space: 
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These yield the solutions:
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We see that if the wavefunction is known at time 0t , then after a duration of time T in freespace, the

wavefunction becomes:
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We can also write it as:

Trce

TrceTrceTtr

e

Ti

e

Ti

e

Ti

,,30

,,20,,10,

3

21

3

21

 (A6) 

Appendix B 
State Evolution in  and /2 pulse laser fields 

The electromagnetic fields encountered by the atom at points 2, 3, and 7 in Fig. 1 that act as the 

and /2 pulses are each formed by two lasers that are counter-propagating in the y-z plane parallel to the

y axis.  We will refer to the laser propagating in the +y direction as AE , and the one propagating in the –
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y direction as BE .  In deriving the equations of motion under this excitation, we make the following 

assumptions:  (1) the laser fields can be treated semi-classically [45], (2) the intensity profiles of the 

laser fields forming the  and /2 pulses remain constant over the extent of the atomic wavepacket, (3)

the wavelengths of the lasers are significantly larger than the separation distance between the nucleus

and electron of the atom, (4) AE excites only the 21  transition and BE only the 

23 transition, (5) AE  and BE  are far detuned from the transitions that they excite, and (6) AE  and 

BE  are of the same intensity.
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Using assumptions 1) and 2), we write the laser fields as:

ˆ(ˆ0

0

2
AA yiyktA

AAAA

e
E

tEE

(B1)

and

ˆ(ˆ0

0

2
B yiyktB

BBBB

e
E

tEE

, (B2)

where 0AE  and 0B  are vectors denoting the magnitude and polarization of their respective fields. 

Keeping in mind that our wavefunction is expressed in the momentum domain, we take position as an

operator.

The Hamiltonian here is expressed as the sum of two parts: 10 HHH .  The first part

corresponds to the non-interaction energy:

yx

n

yxy

x
dpdpppnp

m
H

3
2

0 ,,,
2

. (B3) 

The second part accounts for the interaction energy, for which we use assumption (3) from above to 

make the electric dipole approximation and get: 
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where is the position vector of the electron, and is the electron charge.  Now, seeing that expressions

of the form

0e

nEn A0 and nEn B0  are zero, and using assumption (4), we can express Eq. (B4) 

as:

)ˆ()ˆ(

1
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2
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where we let 1221 00 AAA EEg  and 3223 00 BBB EEg .  Finally, we can use 

the identities [39]:
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yxyx

yik dpdpkppnppne ,,,,
ˆ

  (B6a) 

and

yx

n

yxyx

yik dpdpkppnppne ,,,,
ˆ

,   (B6b) 

and the rotating wave approximation [45] in Eq. (B5) to give: 

Ayxyx

tiA kppppe
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We note that the full interaction between the internal states ,2,1 and 3  occurs across groups

of three different momentum components: ,,,, Ayxyx kpppp and BAyx kkpp , .  This can be 

understood physically in terms of photon absorption/emission and conservation of momentum.  Keeping 

in mind assumption (4), if an atom begins in state 00 ,,1 yx pp  and absorbs a photon from field AE , it 

will transition to internal state 2  because it has become excited, but it will also gain the momentum of

the photon ( ) traveling in the +y direction.  It will therefore end up in state Ak Ayx kpp 00 ,,2 . Now

the atom is able to interact with field BE , which can cause stimulated emission of a photon with

momentum in the –y direction.  If such a photon is emitted, the atom itself will gain an equal

momentum in the opposite direction, bringing it into external state 

Bk

BAyx kkpp 00 , .  The atom will 

also make an internal transition to state 3  because of the de-excitation.  The total state will now be 

Byx kpp 00 ,,3 Ak .  We thereby see that our mathematics is corroborated by physical intuition.

Getting back to the Hamiltonian, we look at the general case of one momentum grouping so that

we get in matrix form  from Eqs. (B3) and (B7): 10 HHH
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In order to remove the time dependence we apply some transformation Q [39] of the form:
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so that the SE becomes
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Choosing ,0, 21 A B3 , A1 , 02 , and B3 , Eq. (B11) becomes:
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where we have taken:
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In order to further simplify the analysis, we set the zero energy at Ayx ppE 1001 ,  for some

specific momentum group with  and 0xx pp 0yy pp .  Also, since A and B can be chosen 

independently, we can let

AyxByx ppEppE 10013003 ,, .  With the energies thus set, Eq. (B12) becomes:
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where 20021001 ,, yxAyx ppEppE .  Using this Hamiltonian in Eq. (B10), we 

get the equations of motion as: 
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Assumption (5) allows us to make the adiabatic approximation so that we can set 0,,
~

002 tpp yxC ,

and assumption (6) gives us .  The Eqs. (B15) then simplify to: 0ggg BA
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where we have chosen to neglect state  from here on due to the adiabatic approximation.  We can

now use another transformation on this system to make it more tractable.  Let: 
2C
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.

The system in Eqs. (B16) then becomes:
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Solving this and reversing the transformations of Eqs. (B17) and (B9), we arrive at: 
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where we let 
2

2

0g
.  It should be noted, however, that these solutions were arrived at only for the 

specific momentum group where and0xx pp 0yy pp .  This was the case where both laser fields

were equally far detuned.  Other momentum groups will have slightly different solutions due to the 

Doppler shift, which causes the detunings to be perturbed.  For a more accurate description, we need to

numerically solve each momentum group’s original three equations of motion without making any

approximations.  This is what we do in our computational model.  For a basic phenomenological

understanding of the interferometer, however, it is sufficient to assume that the above analytical solution 

is accurate for all momentum components
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FIG. 1.  1.)  A single atomic wavepacket is released from the atom trap.  2.)  The wavepacket is split

using a /2 pulse.  3.)  The split components are reflected by a  pulse.  4a.)  The spatial light modulator

(SLM) modulates a light pulse such that it will act as the first lens of the atom lens system.  4b.)  The 

light pulse intercepts the wavepacket component that is in state 1 and imparts a phase signature 1(x,y)

via the ac-stark effect.  5a.)  Now the SLM modulates a second light pulse such that it will impart the 

both the phase information corresponding to the arbitrary image (arcos(P(x,y))) and the phase 

information of the second lens of the lens system.  5b.)  The second light pulse intercepts the same

wavepacket component as the first one and imparts the phase signature 2(x,y).  6a.)  The SLM

modulates a third light pulse, preparing it to act as the third lens of the lens system.  6b.)  The third light 

pulse intercepts the same wavepacket component as the other two pulses and imparts a phase 3(x,y).

7.)  Both wavepacket components are mixed along the two trajectories by a /2 pulse.  8.)  A chemically

treated wafer intercepts the state 1  component so that an interference pattern forms on the wafer

proportional to 1+cos[arcos(P(x,y))] = 1 + P(x,y).  INSET A.  The image P(x,y) that is to be transferred 

ultimately to the wafer.  INSET B.  The internal energy states of the wavepacket modeled as a lambda

system.  The light pulses used for the atom lenses have a much larger detuning for ground state 3 than

they do for ground state 1  so that they effectively only interact with the state 1  component of the 

wavepacket.  The /2 pulses and the  pulse use light that is largely detuned for both ground states. 
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FIG. 2.  (A)  The lens system.  Each lens is actually a pulse of light with a transverse intensity modulation.

Between lenses 1a and 1b and 2a and 2b are freespace regions of time duration T , while between lenses

3a and 3b there is a freespace region of duration T .  Lenses 1a and 2a give the wavefunction a phase 
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FIG. 3. The transition scheme.
+
-polarized light excites the 21 transition and -polarized light

excites the 32 transition.  Both lasers are detuned by 680 MHz.  For the  and /2 pulses, the two

transitions are simultaneously excited.  For the light shift based lens system, only the -polarized light is 

applied so as to affect only state 3 .  The detuning of the lasers is small enough such that all other 

transitions from the states 1 , 2 , and 3 that are excitable by either the 
+
-polarized or -polarized

light see a detuning that is at least a factor of 10 larger.  They can therefore be neglected. 
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(a)

(b)

FIG. 4. (a) An arbitrary image is formed with the lens system in place, but without any scaling.  We see 

that it is a more complex pattern than just a simple periodic structure such as sinusoidal fringes.(b) The 

same image as in (a) is formed with the lens system still in place, but a scaling factor of two has been 

used to shrink the pattern.


