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Abstract

Bogoliubov’s theory states that self-interaction effects in Bose-Einstein condensates produce a

characteristic linear dispersion at low momenta. One of the curious features of Bogoliubov’s theory

is that the new quasiparticles in the system are linear combinations of creation and destruction

operators of the bosons. In exciton-polariton condensates, this gives the possibility of directly ob-

serving the negative branch of the Bogoliubov dispersion in the photoluminescence (PL) emission.

Here we theoretically examine the PL spectra of exciton-polariton condensates taking into account

of reservoir effects. At sufficiently high excitation densities, the negative dispersion becomes visi-

ble. We also discuss the possibility for relaxation oscillations to occur under conditions of strong

reservoir coupling. This is found to give a secondary mechanism for making the negative branch

visible.
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Recent experimental advances have achieved the condensation of exciton-polaritons in

semiconductor microcavity structures [1–3]. The short lifetime of the exciton-polaritons

on the order of picoseconds means that the condensate is rather different in nature to a

traditional atomic Bose-Einstein condensate. The condensate exists only resulting from the

replenishing of the polaritons from a reservoir of uncondensed polaritons, which is in turn

populated by illumination by a laser. Despite this difference, such condensates exhibit many

of the characteristics expected in equilibrium condensates, ranging from superfluidity [4] to

vortex formation [5, 6]. In the work of Ref. [7], it was shown that self-interaction effects of

the condensate cause the dispersion characteristics of exciton-polariton condensates follow a

Bogoliubov dispersion relation. Although in the work of Ref. [7] no negative branch of the

Bogoliubov dispersion [8] was detected, recently a four-wave mixing experiment has revealed

the presence of the negative branch [9]. The four-wave mixing experiment was originally

theoretically proposed in Ref. [10]. The relative difficulty of the observation of the negative

branch was attributed in this work to the bright condensate emission which easily masks

the weaker negative branch.

In this paper we present a detailed theoretical analysis of the photoluminescence (PL) of

the negative Bogoliubov branch. In contrast to the four-wave mixing approach of Ref. [10],

the PL is calculated directly via two-time correlation functions of the polariton equations of

motion. In particular, we incorporate the effect of the bottleneck polaritons which is known

to strongly influence the dispersion of the polaritons [11]. To this end, we first reformulate

the theory of Ref. [11] in a Heisenberg-Langevin formalism. The reformulation makes it

clear that the theory is a modified Bogoliubov theory defining new bosonic excitations in

the system.

The polaritons are assumed to obey the Hamiltonian

H =

∫

d2x
[

p†(x)

(

−
~
2∇2

2m

)

p(x) +
gA

2
p†(x)p†(x)p(x)p(x)

+ g̃Ap†(x)p(x)nR(x)
]

(1)

where p†(x) is a creation operator for a polariton at position x, nR(x) is the number operator

of the reservoir polaritons, m is the mass of a polariton, g is the interaction energy of the

polaritons, and g̃ is the polariton-reservoir interaction. For example, including only the

exchange interaction g = 6e2

4πǫaB
|X|4

a2
B

A
, where e is the electronic charge, aB is the Bohr

radius, X is the excitonic Hopfield coefficient, and A is the sample area, and we use SI units
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[12]. The polaritons then obey the Heisenberg-Langevin equations of motion

i~
dp

dt
= [p(x), H ] +

i

2
(R(nR(x))− γ) p(x) (2)

where R(nR(x)) is the stimulated gain coefficient [13] of the reservoir polaritons into the

condensate and γ/~ is the decay rate of the polaritons through the microcavity mirrors.

Following Ref. [11], we linearize equation (2) such that it only involves terms linear in either

the polariton or reservoir operators. To achieve this goal, we expand the reservoir operator

into its average and fluctuation components

nR(x) = n0
R +

n0
R

ψ0
δn(x) (3)

where n0
R is the average reservoir number and ψ0 is the amplitude of polaritons in the

condensate. The prefactor of δn(x) is chosen for later convenience. Substituting (3) into

(1) and rewriting the operators in terms of their Fourier components p(x) = 1√
A

∑

k pke
ikx

and δn(x) = 1
A

∑

k δnke
ikx, we obtain

H =
∑

k

(
~
2k2

2m
+ g̃n0

R)p
†
kpk +

g

2

∑

k,k′,q

p†k+qp
†
k′−qpk′pk

+
g̃n0

R

ψ0

∑

k,q

p†k+qδnqpk. (4)

We note here that δnk should be interpreted as the amount of density fluctuations in the

reservoir with Fourier component k, and should not be confused with the number of reser-

voir polaritons with momentum k. We now follow the same procedure to the Bogoliubov

prescription to obtain a Hamiltonian that is bilinear in the variables (pk, p
†
−k, δnk) by picking

out terms in the summation which involve polariton operators with k = 0, and set these to

their average values pk=0 → Ψ0 = ψ0e
−iµT t/~ [14], where µT = g̃n0

R+g|Ψ0|
2 is the condensate

energy. This gives

H =
g

2
|Ψ0|

4 +
∑

k

[

(
~
2k2

2m
+ g̃n0

R + 2g|Ψ0|
2)p†kpk

+
g

2
(Ψ2

0p
†
kp

†
−k +Ψ∗

0
2pkp−k) +

g̃n0
R

ψ0

δnk(Ψ0p
†
k +Ψ∗

0p−k)
]

. (5)

The resulting equation of motion for the polariton operators is thus

i~
dpk
dt

=

(

~
2k2

2m
+ g̃n0

R + 2g|Ψ0|
2

)

pk + gΨ2
0p

†
−k

+
n0
RΨ0

ψ0

(g̃ +
i

2
R′(n0

R))δnk. (6)
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Meanwhile, the reservoir equation of motion obeys

dnR(x)

dt
= G(x)− γRnR(x)−R(nR(x))p

†(x)p(x), (7)

where G is the Langevin noise operator for the number operator for reservoir polaritons [15]

and γR/~ is the decay rate of the reservoir polaritons. The noise operator G originates from

the coupling of the reservoir modes to high energy excitations induced by the laser pump.

We have neglected the diffusion of the reservoir polaritons since they have a negligible effect

on the dispersion characteristics. Substituting (3) into (7), expanding in Fourier space, and

performing the Bogoliubov linearization we obtain

d

dt
δnk =

ψ0

n0
R

(G0 − γRn
0
R)δ(k = 0)− γRδnk

−
ψ0R(n

0
R)

n0
R

(Ψ0p
†
k +Ψ∗

0p−k)− R′(n0
R)|Ψ0|

2δnk, (8)

where we have assumed a homogeneous pump G(x) = G0.

The k 6= 0 components of eqns. (6) and (8) can be conveniently summarized in the form

i~
d

dt
pik =

3
∑

j=1

M ij
k p

j
k (9)

where pik = (pk, p
†
−ke

−2iµT t/~, δnke
−iµT t/~), and

M ij
k =











~2k2

2m
+ gψ2

0 gψ2
0 (g̃ + i

2
R′(n0

R))n
0
R

−gψ2
0 −~

2k2

2m
− gψ2

0 (−g̃ + i
2
R′(n0

R))n
0
R

−i
R(n0

R
)ψ2

0

n0

R

−i
R(n0

R
)ψ2

0

n0

R

−i(γR +R′(n0
R)ψ

2
0)











The matrix Mk is identical to that given in Ref. [11].

In Fig. 1 we show the real part of the eigenvalues of Mk for typical parameter values.

We identify two regimes which depend primarily on the relative magnitude of the scattering

rate R and the reservoir decay rate γR. In Ref. [11], it was generally assumed that γR was

large, giving the characteristic flat dispersion regime in the vicinity of k = 0, as seen in

Fig. 1a. However, considering that reservoir polaritons originate from the bottleneck region

[16] which generally have a longer lifetime than the condensate polaritons, it is possible to

consider the opposite regime where γR is small and the scattering rate R is large. In such a

regime (see Fig. 1b) the eigenspectrum shows a split dispersion at k = 0, with a rounding of

the Bogoliubov spectrum, such that the particles once again acquire an effective mass. This
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FIG. 1: (Color online) (a) (b) Energy eigenvalues and (c) (d) ratio of coefficients |ui1k |
2/|ui2k |

2 for

the eigensolutions of the matrix Mk (solid lines). Dashed lines show the corresponding values for

Bogoliubov theory (no reservoir), with energy dispersion EBog(k)/E0 =

√

(ka)2((ka)2 +
2gψ2

0

E0
) and

coefficients |ui1k |
2 − 1/2 = |ui2k |

2 + 1/2 = (~
2k2

2m + gψ2
0)/2EBog(k). The energy scale is measured

in units of E0 = ~2

2ma2
, where a is the experimental length scale (e.g. in GaAs a = 10−4cm and

E0 = 0.68meV). Parameters used are g̃n0R = 1, gψ2
0 = 1, R′(n0R)n

0
R = 1, R(n0R) = 1, g = g̃, and

(a) (c) γR = 1 (corresponding to a flat dispersion regime) (b) (d) γR = 0.1 (corresponding to a

relaxation oscillation regime). All parameters in units of E0.

is caused by relaxation oscillations in the system, where the reservoir and the condensate

repeatedly exchange population if displaced out of equilibrium. A simplified description can

be obtained by expanding the Gross-Pitaevskii and reservoir equations in Ref. [11] around

their steady state values ψ(t) = ψ0 + δψ(t) and nR(t) = n0
R + (n0

R/ψ0)δn(t) and ignoring

interaction effects g = g̃ = 0. For small k we obtain

~
d

dt





δψ

δn



 =





0 1
2
R′(n0

R)n
0
R

−
2R(n0

R
)ψ2

0

n0

R

−γR −R′(n0
R)ψ

2
0









δψ

δn





The imaginary part of the eigenvalues gives the oscillation frequency, which is

ω =
1

~

√

R′(n0
R)R(n

0
R)ψ

2
0 − (γR +R′(n0

R)ψ
2
0)

2/4. (10)

In the limit of small scattering R(nR) or large γR the frequency becomes pure imaginary,

indicating that only damping occurs.
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The eigenvalues of the matrix Mk give the new collective excitations of the system.

Specifically, new quasiparticle operators

bik =
3

∑

j=1

uijk p
j
k (11)

may be defined where uijk are the eigenvectors of Mk. The matrix Mk allows for two types

of solutions, either dispersionless or bosonic, defined as whether the commutation relation

[bik, b
i
k

†
] = |ui1k |

2 − |ui2k |
2 (12)

is zero or non-zero respectively. Here we used the identities δn†
k = δn−k and [δnk, δn−k] = 0.

Operators with non-zero commutators may be normalized to ±1, defining new bosonic modes

of the system. From Fig. 1c we see that no bosonic solutions exist in the flat dispersion

regime, since all eigenvectors satisfy |ui1k |
2 = |ui2k |

2, which corresponds to [bik, b
i
k

†
] = 0 from

(12). In the the regime beyond the flat dispersion there is always one dispersionless solu-

tion with |ui1k |
2 = |ui2k |

2 corresponding to a renormalized density fluctuation solution. The

solution with |ui1k |
2 > |ui2k |

2 corresponds to a solution with [bk, bk
†] = 1, which is a new

“dissipative” Bogoliubov destruction operator. The solution with |ui1k |
2 < |ui2k |

2 meanwhile

corresponds to [b†−k, b−k] = −1, the dissipative Bogoliubov creation operator (see also Fig.

1d). Putting in the correct time dependences, outside the flat dispersion regime we may

associate the solutions to be bik ≡ (bk, b
†
−ke

−2iµT t/~, δmke
−iµT t/~), corresponding to the pos-

itive, negative, and dispersionless branches respectively. Since (11) appears to admix both

bosonic and number operators one may wonder how to interpret such an operator. The

clearest interpretation is that this is a displaced Bogoliubov operator bk = b′k + u13k δnk,

where the first two components form the boson operator and the reservoir creates displace-

ments in the vacuum from this state. In this case the amount of reservoir fluctuations of

wavelength k displaces the vacuum for Bogoliubov particles b′k at momentum k.

To calculate the PL spectrum we apply the methods presented in Ref. [12]. The PL

spectrum is given by

PL(k, ω) ∝ |Ck|
2Re[〈p†k(t = 0)p̃k(ω)〉]

= |Ck|
2Re[

∑

ij

(ū1ik )
∗ū1jk 〈bik

†
(t = 0)b̃jk(ω)〉] (13)

where ūk is the inverse of uk (normalized to satisfy bosonic commutation relations), Ck is

the Hopfield coefficient for the photonic component of the polaritons, and tildes denote time
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Fourier transformed variables. In the diagonal basis the equations of motion (9) are

i~
dbik
dt

= Ei
kb
i
k + iF i

k (14)

where we have added a Langevin noise operator F i
k = (Fk, F

†
−k, 0) to account for a thermal

population of dissipative Bogoliubov particles [14], and Ei
k are the eigenvalues of Mk. The

noise operator is assumed to obey correlations of the form [13]

〈bikF
†
k〉 = δi1Γkn

th

k (15)

where nth

k = 1/(eǫk/kBT − 1), ǫk = Re[E1
k] = −Re[E2

k], Γk = Im[E1
k] = Im[E2

k], T is the

temperature, and δij is the Kronecker delta. This ensures that the dissipative Bogoliubov

particles obey thermal statistics 〈b†kbk〉 = nth

k , with other off-diagonal correlations vanishing.

The choice of (15) is chosen primarily because it is the simplest choice, and is possible to

generalize to other distributions [17].

After a Fourier transform of (14) and inserting the correlations we obtain the expression

for the PL

PL(k, ω) ∝ |Ck|
2Re

[

i|ū11k |2nth

k

~ω − ǫk − iΓk

+
i|ū12k |2(nth

k + 1)

~ω + ǫk − iΓk

]

. (16)

Here the first term corresponds to the positive dispersion, weighted by the thermal pop-

ulation and the dissipative Bogoliubov coefficient, while the second term is the negative

dispersion, which only appears when there is appreciable Bogoliubov mixing between the pk

and p†−k operators. In Fig. 2a and 2b we plot the PL spectrum corresponding to low and high

density regimes respectively. At low density we see that only the positive branch is visible.

Here there is negligible mixing between the components (11) due to the small off-diagonal

components ofMk. The positive branch is populated via the thermal noise field Fk, while the

negative branch remains dark. At sufficiently high density, the off-diagonal components of

Mk become large enough such that there is some mixing of the components (11). This results

in a visible negative dispersion in the PL spectrum. A simple criterion for when the negative

branch becomes visible may be derived. As may be seen by inspection of the Bogoliubov

expression for the factor |ū12k |2 = (~
2k2

2m
+ gψ2

0)/2EBog(k) − 1/2, the negative component is

only appreciable for momenta ~2k2

2m
< gψ2

0. Due to the finite linewidth of the dispersion, the

negative dispersion only becomes resolvable beyond momenta ~
2k2

2m
> Γk. Thus the negative

dispersion only becomes visible for densities exceeding the criterion gψ2
0 ∼ Γk.
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FIG. 2: Photoluminescence of the excitation spectrum of exciton-polariton condensates for various

parameters. Regimes of (a) just above condensation threshold (b) thermally depleted high density

(c) high density and low temperature (d) zero interactions are shown. Parameters used are g̃n0R = 1,

R′(n0R)n
0
R = 1, R(n0R) = 1, g = g̃, γR = 1, and (a) ψ2

0 = 0.001n0R, kBT = 2, (b) ψ2
0 = n0R, kBT = 2,

(c) ψ2
0 = n0R, kBT = 0.1, (d) g = g̃ = 0, ψ2

0 = n0R, kBT = 2. A chemical potential of µ = −1 was

assumed in the thermal distribution in order to account for finite size effects of the condensate. All

parameters in units of E0. Zero detuning and a Rabi splitting of 10E0 was assumed to calculate

the Hopfield coefficient Ck.

It is interesting that for low temperatures where nth

k is small, only the negative excitation

branch is visible in the PL spectrum (Fig. 2c). The reason for this can be understood by

the following argument. According to the inverse relation of (11), the loss of a polariton out

of the system (which is the basic process underlying the PL) is described by the operator

pk = ū11k bk + ū12k b
†
−ke

−2iµT t/~ + ū13k δmke
−iµT t/~. (17)

The energy change of the system associated with the first term is µT + ǫk, which is nothing

but the standard mechanism for the PL with a positive dispersion. With no thermal pop-

ulation of dissipative Bogoliubov particles, the first term automatically gives zero, thus the

positive dispersion remains dark. The second term is associated with the gain of a dissipative

Bogoliubov particle and the loss of two condensate particles, which has an energy change of

2µT − (µT + ǫk) = µT − ǫk. Unlike the first term where a dissipative Bogoliubov particle

needs to be originally present, the second term does not require this condition and occurs
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regardless of the initial population. We note that a similar effect has been observed in atom

lasers [18]. The third term causes a loss of a condensate particle with an energy change of

µT independent of k, giving a dispersionless spectrum. This can in principle give rise to

a flat PL emission as seen in Fig. 1 if there are strong enough density fluctuations in the

reservoir, although we do not assume that this is typically the case in current experimental

systems.

There is another mechanism for making the negative branch visible, which is in a regime

where reservoir scattering is strong. To see this effect, we show in Fig. 2d the PL spectrum

for the illustrative case of zero interactions g = g̃ = 0. We again see that the negative

branch is visible along the eigenvalues of Mk. In this case the negative branch is visible

not because of self-interactions, but due to mediation via the reservoir mode. From our

simulation results we find that the negative branch becomes visible for the same condition

as that given to observe relaxation oscillation (i.e. that (10) is real). The mechanism for

this is that due to the relaxation oscillations there is an effective coupling of the pk and

p†−k operators mediated by the δnk operator. In practice both the self-interactions and the

reservoir effect are likely to contribute to making the negative dispersion visible.

In summary, we have calculated the PL spectrum of the excitations of exciton-polariton

condensates. At sufficiently high densities such that gψ2
0 ∼ Γk, the negative branch of the

Bogoliubov spectrum becomes visible. The negative dispersion should be visible even if no

thermal population is present, due to the nature of the PL emission being associated with

the loss of a polariton from the system. In the regime of long reservoir decay times, a regime

of relaxation oscillations was identified, which was also found to be able to illuminate the

negative dispersoin. One question which remains is why a four-wave mixing experiment

was required in order to see the negative dispersion in Ref. [9], instead of spontaneously.

One explanation is that the bright emission from the condensate itself may be masking the

negative branch, and only the faint tail at high momenta can be accessed [10]. Another pos-

sibility is the reduction of the condensate self-interactions at higher density due to reduction

of the Bohr radius [19, 20]. This may contribute to make the negative branch weaker than

expected due to the suppression of Bogoliubov mixing.
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