Universal One-Way Hash Functions and Average Case Complexity via Inaccessible Entropy

Iftach Haitner* Thomas Holenstein ${ }^{\dagger}$ Omer Reingold ${ }^{\ddagger} \quad$ Salil Vadhan ${ }^{\S}$ Hoeteck Wee ${ }^{〔}$

December 11, 2014

Abstract

This paper revisits the construction of Universal One-Way Hash Functions (UOWHFs) from any one-way function due to Rompel (STOC 1990). We give a simpler construction of UOWHFs, which also obtains better efficiency and security. The construction exploits a strong connection to the recently introduced notion of inaccessible entropy (Haitner et al., STOC 2009). With this perspective, we observe that a small tweak of any one-way function f is already a weak form of a UOWHF: Consider $F(x, i)$ that outputs the i-bit long prefix of $f(x)$. If F were a UOWHF then given a random x and i it would be hard to come up with $x^{\prime} \neq x$ such that $F(x, i)=F\left(x^{\prime}, i\right)$. While this may not be the case, we show (rather easily) that it is hard to sample x^{\prime} with almost full entropy among all the possible such values of x^{\prime}. The rest of our construction simply amplifies and exploits this basic property.

With this and other recent works, we have that the constructions of three fundamental cryptographic primitives (Pseudorandom Generators, Statistically Hiding Commitments and UOWHFs) out of one-way functions are to a large extent unified. In particular, all three constructions rely on and manipulate computational notions of entropy in similar ways. Pseudorandom Generators rely on the well-established notion of pseudoentropy, whereas Statistically Hiding Commitments and UOWHFs rely on the newer notion of inaccessible entropy.

In an additional result, we use the notion of inaccessible entropy for reproving the seminal result of Impagliazzo and Levin (FOCS 1989): a reduction from "uniform distribution" average case complexity problems to ones with arbitrary (though polynomial samplable one) distributions.

Keywords: computational complexity, cryptography, hashing, target collision-resistance, oneway functions

[^0]
Contents

1 Introduction 1
1.1 Inaccessible Entropy 2
1.2 Our Constructions 2
1.3 Perspective 4
2 Preliminaries 5
2.1 Notation 5
2.2 Random Variables 5
2.3 Entropy Measures 5
2.4 Hashing 7
3 Inaccessible Entropy for Inversion Problems 7
4 Inaccessible Entropy from One-way Functions 11
4.1 A Direct Construction 11
4.2 A More Efficient Construction 15
4.2.1 Accessible Inputs of F - Proving Claim 21 17
4.2.2 Upper Bounding the Size of \mathcal{L} - Proving Claim 22 18
5 UOWHFs from Inaccessible Entropy 20
5.1 The More Efficient UOWHF 20
5.1.1 Gap Amplification 21
5.1.2 Entropy Reduction 22
5.1.3 Reducing Output Length 23
5.1.4 Additional Transformations 24
5.1.5 Putting Everything Together 24
5.2 UOWHF via a Direct Construction 26
5.2.1 Putting Everything Together 29
6 Connection to Average Case Complexity 31
6.1 Preliminaries and the Impagliazzo and Levin Result 31
6.1.1 Algorithms That Err 31
6.1.2 Samplable Distributions 32
6.1.3 Impagliazzo and Levin Result 32
6.1.4 Search Problems 33
6.1.5 Search Problems vs. Decision Problems 33
6.1.6 The Valiant-Vazirani Lemma 34
6.2 Proving Lemma 43 Via Inaccessible Entropy 34
6.2.1 A Relation with Bounded Accessible Average Max-Entropy 35
6.2.2 Accessible Average Max-Entropy 36
6.2.3 Proving Lemma 48 37
6.2.4 A Difficult Problem For the Uniform Distribution 41
6.2.5 Putting It Together 43

1 Introduction

The following text is discussing our construction of universal one-way hash functions. Our result for average case complexity is described in Section 6.

Universal one-way hash functions (UOWHFs), as introduced by Naor and Yung [16], are a weaker form of collision-resistant hash functions. The standard notion of collision resistance requires that given a randomly chosen function $f \leftarrow \mathcal{F}$ from the hash family, it is infeasible to find any pair of distinct inputs x, x^{\prime} such that $f(x)=f\left(x^{\prime}\right)$. UOWHFs only require target collision resistance, where the adversary must specify one of the inputs x before seeing the description of the function f. Formally:

Definition 1. A family of functions $\mathcal{F}_{k}=\left\{F_{z}:\{0,1\}^{n(k)} \mapsto\{0,1\}^{m(k)}\right\}_{z \in\{0,1\}^{k}}$ is a family of universal one-way hash functions (UOWHFs) if it satisfies:

1. Efficiency: Given $z \in\{0,1\}^{k}$ and $x \in\{0,1\}^{n(k)}, F_{z}(x)$ can be evaluated in time $\operatorname{poly}(n(k), k)$.
2. Shrinking: $m(k)<n(k)$.
3. Target Collision Resistance: For every probabilistic polynomial-time adversary A, the probability that A succeeds in the following game is negligible in k :
(a) Let $(x$, state $) \leftarrow \mathrm{A}\left(1^{k}\right) \in\{0,1\}^{n(k)} \times\{0,1\}^{*}$.
(b) Choose $z \leftarrow\{0,1\}^{k}$.
(c) Let $x^{\prime} \leftarrow \mathrm{A}($ state,$z) \in\{0,1\}^{n(k)}$.
(d) A succeeds if $x \neq x^{\prime}$ and $F_{z}(x)=F_{z}\left(x^{\prime}\right)$.

It turns out that this weaker security property suffices for many applications. The most immediate application given in [16] is secure fingerprinting, whereby the pair $(f, f(x))$ can taken as a compact "fingerprint" of a large file x, such that it is infeasible for an adversary, seeing the fingerprint, to change the file x to x^{\prime} without being detected. More dramatically, Naor and Yung [16] also showed that UOWHFs can be used to construct secure digital signature schemes, whereas all previous constructions (with proofs of security in the standard model) were based on trapdoor functions (as might have been expected to be necessary due to the public-key nature of signature schemes). More recently, UOWHFs have been used in the Cramer-Shoup encryption scheme [6] and in the construction of statistically hiding commitment schemes from one-way functions [7, 8].

Naor and Yung [16] gave a simple and elegant construction of UOWHFs from any one-way permutation, where Santis and Yung [21] generalized the construction of [16] to get UOWHFs from regular one-way function. Rompel [19] gave a much more involved construction to prove that UOWHFs can be constructed from an arbitrary one-way function, thereby resolving the complexity of UOWHFs (as one-way functions are the minimal complexity assumption for complexity-based cryptography, and are easily implied by UOWHFs). ${ }^{1}$ While complications may be expected for constructions from arbitrary one-way functions (due to their lack of structure), Rompel's analysis also feels quite ad hoc. In contrast, the construction of pseudorandom generators from one-way functions of [10], while also somewhat complex, involves natural abstractions (e.g., pseudoentropy) that allow for modularity and measure for what is being achieved at each stage of the construction.

[^1]In this paper, we give simpler constructions of UOWHFs from one-way functions, based on (a variant of) the recently introduced notion of inaccessible entropy [8]. In addition, one of the constructions obtains slightly better efficiency and security.

1.1 Inaccessible Entropy

For describing our construction, it will be cleaner to work with a variant of UOWHFs where there is a single shrinking function $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ (for each setting of the security parameter k) such that it is infeasible to find collisions with random inputs. That is, an adversary A is given a uniformly random $x \leftarrow\{0,1\}^{n}$, outputs an x^{\prime} such that $F\left(x^{\prime}\right)=F(x)$, and succeeds if $x^{\prime} \neq x .^{2}$ Note that we can assume without loss of generality that $x^{\prime}=\mathrm{A}(x)$ is always a preimage of $F(x)$ (A has the option of outputting x in case it does not find a different preimage); we refer to an algorithm A with this property as an F-collision finder.

Our construction is based on an entropy-theoretic view of UOWHFs. The fact that F is shrinking implies that there are many preimages x^{\prime} available to A . Indeed, if we consider an (inefficient) adversary $\mathrm{A}(x)$ that outputs $x^{\prime} \leftarrow F^{-1}(F(x))$ and let X be a random variable uniformly distributed on $\{0,1\}^{n}$, then

$$
\mathrm{H}(\mathrm{~A}(X) \mid X)=\mathrm{H}(X \mid F(X)) \geq n-m,
$$

where $\mathrm{H}(\cdot \mid \cdot)$ denotes conditional Shannon entropy. (See Section 2 for more definitional details.) We refer to the quantity $\mathrm{H}(X \mid F(X))$ as the real entropy of F^{-1}.

On the other hand, the target collision resistance means that effectively only one of the preimages is accessible to A . That is for every probabilistic polynomial-time F-collision finder A , we have $\operatorname{Pr}[\mathrm{A}(X) \neq X]=\operatorname{neg}(n)$, which is equivalent to requiring that:

$$
\mathrm{H}(\mathrm{~A}(X) \mid X)=\operatorname{neg}(n)
$$

for all probabilistic polynomial-time F-collision finders A. (If A can find a collision X^{\prime} with nonnegligible probability, then it can achieve non-negligible conditional entropy by outputting X^{\prime} with probability $1 / 2$ and outputting X with probability $1 / 2$.) We refer to the maximum of $\mathrm{H}(\mathrm{A}(X) \mid X)$ over all efficient F-collision finders as the accessible entropy of F^{-1}. We stress that accessible entropy refers to an upper bound on a form of computational entropy, in contrast to the Håstad et al. notion of pseudoentropy [10].

Thus, a natural weakening of the UOWHF property is to simply require a noticeable gap between the real and accessible entropies of F^{-1}. That is, for every probabilistic polynomial-time F-collision finder A, we have $\mathrm{H}(\mathrm{A}(X) \mid X)<\mathrm{H}(X \mid F(X))-\Delta$, for some noticeable Δ, which we refer to as the inaccessible entropy of F.

1.2 Our Constructions

Our constructions of UOWHFs have two parts. First, we show how to obtain a function with noticeable inaccessible entropy from any one-way function. Second, we show how to build a UOWHF from any function with inaccessible entropy.

[^2]OWFs \Longrightarrow Inaccessible Entropy. Given a one-way function $f:\{0,1\}^{n} \mapsto\{0,1\}^{m}$, we show that a random truncation of f has inaccessible entropy. Specifically, we define $F(x, i)$ to be the first i bits of $f(x)$.

To see that this works, suppose for contradiction that F does not have noticeable inaccessible entropy. That is, we have an efficient adversary A that on input (x, i) can sample from the set $S(x, i)=\left\{x^{\prime}: f\left(x^{\prime}\right)_{1 \ldots i}=f(x)_{1 \ldots i}\right\}$ with almost-maximal entropy, which is equivalent to sampling according to a distribution that is statistically close to the uniform distribution on $S(x, i)$. We can now use A to construct an inverter Inv for f that works as follows on input y : choose $x_{0} \leftarrow\{0,1\}^{n}$, and then for $i=1, \ldots, n$ generate a random $x_{i} \leftarrow A\left(x_{i-1}, i-1\right)$ subject to the constraint that $f\left(x_{i}\right)_{1, \cdots, i}=y_{1, \cdots, i}$. The latter step is feasible, since we are guaranteed that $f\left(x_{i}\right)_{1, \ldots, i-1}=y_{1, \cdots, i-1}$ by the fact that A is an F-collision finder, and the expected number of trials needed get agreement with y_{i} is at most 2 (since $y_{i} \in\{0,1\}$, and y and $f\left(x_{i}\right)$ are statistically close). It is not difficult to show that when run on a random output Y of f, Inv produces an almost-uniform preimage of Y. This contradicts the one-wayness of f. Indeed, we only need f to be a distributional one-way function [13], whereby it is infeasible to generate almost-uniform preimages under f.

Inaccessible Entropy \Longrightarrow UOWHFs. Once we have a non-negligible amount of inaccessible entropy, we can construct a UOWHF via a series of standard transformations.

1. Repetition: By evaluating F on many inputs, we can increase the amount of inaccessible entropy from $1 / \operatorname{poly}(n)$ to $\operatorname{poly}(n)$. Specifically, we take $F^{t}\left(x_{1}, \ldots, x_{t}\right)=\left(F\left(x_{1}\right), \ldots, F\left(x_{t}\right)\right)$ where $t=\operatorname{poly}(n)$. This transformation also has the useful effect of converting the real entropy of F^{-1} to min-entropy.
2. Hashing Inputs: By hashing the input to F (namely taking $F^{\prime}(x, g)=(F(x), g(x))$ for a universal hash function g), we can reduce both the real (min-)entropy and the accessible entropy so that $\left(F^{\prime}\right)^{-1}$ still has a significant amount of real entropy, but has (weak) target collision resistance (on random inputs).
3. Hashing Outputs: By hashing the output to F (namely taking $F^{\prime}(x, g)=g(F(x))$), we can reduce the output length of F to obtain a shrinking function that still has (weak) target collision resistance.

There are two technicalities that occur in the above steps. First, hashing the inputs only yields weak target collision resistance; this is due to the fact that accessible Shannon entropy is an average-case measure and thus allows for the possibility that the adversary can achieve high accessible entropy most of the time. Fortunately, this weak form of target collision resistance can be amplified to full target collision resistance using another application of repetition and hashing (similar to [4]).

Second, the hashing steps require having a fairly accurate estimate of the real entropy. This can be handled similarly to [10, 19], by trying all (polynomially many) possibilities and concatenating the resulting UOWHFs, at least one of which will be target collision resistant.

A More Efficient Construction. We obtain a more efficient construction of UOWHFs by hashing the output of the one-way function f before truncating. That is, we define $F(x, g, i)=$ $\left(g, g(f(x))_{1 \cdots i}\right)$. This function is in the spirit of the function that Rompel [19] uses as a first step, but our function uses three-wise independent hash function instead of n-wise independent one,
and enjoys a much simpler structure. ${ }^{3}$ Our analysis of this function is significantly simpler than [19]'s and can be viewed as providing a clean abstraction of what it achieves (namely, inaccessible entropy) that makes the subsequent transformation to a UOWHF much easier.

We obtain improved UOWHF parameters over our first construction for two reasons. First, we obtain a larger amount of inaccessible entropy: $(\log n) / n$ bits instead of roughly $1 / n^{4}$ bits. Second, we obtain a bound on a stronger form of accessible entropy, which enables us to get full target collision resistance when we hash the inputs, avoiding the second amplification step.

The resulting overall construction yields better parameters than Rompel's original construction. A one-way function of input length n yields a UOWHF with output length $\tilde{O}\left(n^{7}\right)$, improving Rompel's bound of $\tilde{O}\left(n^{8}\right)$. Additionally, we are able to reduce the key length needed: Rompel's original construction uses a key of length $\tilde{O}\left(n^{12}\right)$, whereas our construction only needs a key of length $\tilde{O}\left(n^{7}\right)$. If we allow the construction to utilize some nonuniform information (namely an estimate of the real entropy of F^{-1}), then we obtain output length $\tilde{O}\left(n^{5}\right)$, improving Rompel's bound of $\tilde{O}\left(n^{6}\right)$. For the key length, the improvement in this case is from $\tilde{O}\left(n^{7}\right)$ to $\tilde{O}\left(n^{5}\right)$. Of course, these bounds are still far from practical, but they illustrate the utility of inaccessible entropy in reasoning about UOWHFs, which may prove useful in future constructions (whether based on one-way functions or other building blocks).

1.3 Perspective

The idea of inaccessible entropy was introduced in [8] for the purpose of constructing statistically hiding commitment schemes from one-way functions and from zero-knowledge proofs. There, the nature of statistically hiding commitments necessitated more involved notions of inaccessible entropy than we present here - inaccessible entropy was defined in [8] for interactive protocols and for "generators" that output many blocks, where one considers adversaries that try to generate next-messages or next-blocks of high entropy. In such a setting, it is necessary to have the adversary privately "justify" that it is behaving consistently with the honest party, and to appropriately discount the entropy in case the adversary outputs an invalid justification.

Here, we are able to work with a much simpler form of inaccessible entropy. The simplicity comes from the noninteractive nature of UOWHFs (so we only need to measure the entropy of a single string output by the adversary), and the fact that we can assume without loss of generality that the adversary behaves consistently with the honest party. Thus, the definitions here can serve as a gentler introduction to the concept of inaccessible entropy. On the other hand, the many-round notions from [8] allow for a useful "entropy equalization" transformation that avoids the need to try all possible guesses for the entropy. We do not know an analogous transformation for constructing UOWHFs. We also note that our simple construction of a function with inaccessible entropy by randomly truncating a one-way function (and its analysis) is inspired by the the construction of an "inaccessible entropy generator" from a one-way function in [8].

Finally, with our constructions, the proof that one-way functions imply UOWHFs now parallels those of pseudorandom generators [10, 9] and statistically hiding commitments [7, 8], with UOWHFs and statistically hiding commitments using dual notions of entropy (high real entropy, low accessible entropy) to pseudorandom generators (low real entropy, high pseudoentropy).

[^3]
Paper Organization

Formal definitions are given in Section 2, where the notion of inaccessible entropy used through the paper is defined in Section 3. In Section 4 we show how to use any one-way function to get a function with inaccessible entropy, where in Section 5 we use any function with inaccessible entropy to construct UOWHF. Finally, our result for average case complexity is described in Section 6.

2 Preliminaries

Most of the material in this section is taken almost verbatim from [8], and missing proofs can be found in that paper.

2.1 Notation

All logarithms considered here are in base two. For $t \in \mathbb{N}$, we let $[t]=\{1, \ldots, t\}$. A function $\mu: \mathbb{N} \rightarrow[0,1]$ is negligible, denoted $\mu(n)=\operatorname{neg}(n)$, if $\mu(n)=n^{-\omega(1)}$. We let poly denote the set all polynomials, and let PPTM denote the set of probabilistic algorithms (i.e., Turing machines) that run in strictly polynomial time.

2.2 Random Variables

Let X and Y be random variables taking values in a discrete universe \mathcal{U}. We adopt the convention that when the same random variable appears multiple times in an expression, all occurrences refer to the same instantiation. For example, $\operatorname{Pr}[X=X]$ is 1 . For an event E, we write $\left.X\right|_{E}$ to denote the random variable X conditioned on E. The support of a random variable X is $\operatorname{Supp}(X):=\{x: \operatorname{Pr}[X=x]>0\}$. X is flat if it is uniform on its support. For an event E, we write $I(E)$ for the corresponding indicatory random variable, i.e., $I(E)$ is 1 when E occurs and is 0 otherwise.

We write $\|X-Y\|$ to denote the statistical difference (also known as, variation distance) between X and Y, i.e.,

$$
\|X-Y\|=\max _{T \subseteq \mathcal{U}}|\operatorname{Pr}[X \in T]-\operatorname{Pr}[Y \in T]|
$$

If $\|X-Y\| \leq \varepsilon$ (respectively, $\|X-Y\|>\varepsilon$), we say that X and Y are ε-close [resp., ε-far].

2.3 Entropy Measures

We will refer to several measures of entropy in this work. The relation and motivation of these measures is best understood by considering a notion that we will refer to as the sample-entropy: For a random variable X and $x \in \operatorname{Supp}(X)$, we define the sample-entropy of x with respect to X to be the quantity

$$
\mathrm{H}_{X}(x):=\log (1 / \operatorname{Pr}[X=x]) .
$$

The sample-entropy measures the amount of "randomness" or "surprise" in the specific sample x, assuming that x has been generated according to X. Using this notion, we can define the Shannon entropy $\mathrm{H}(X)$ and min-entropy $\mathrm{H}_{\infty}(X)$ as follows:

$$
\begin{aligned}
\mathrm{H}(X) & :=\mathrm{E}_{x \leftarrow X}\left[\mathrm{H}_{X}(x)\right] \\
\mathrm{H}_{\infty}(X) & :=\min _{x \in \operatorname{Supp}(X)} \mathrm{H}_{X}(x)
\end{aligned}
$$

We will also discuss the max-entropy $\mathrm{H}_{0}(X):=\log (|\operatorname{Supp}(X)|)$. The term "max-entropy" and its relation to the sample-entropy will be made apparent below.

It can be shown that $\mathrm{H}_{\infty}(X) \leq \mathrm{H}(X) \leq \mathrm{H}_{0}(X)$ with equality if and only if X is flat. Thus, saying $\mathrm{H}_{\infty}(X) \geq k$ is a strong way of saying that X has "high entropy" and $\mathrm{H}_{0}(X) \leq k$ a strong way of saying that X as "low entropy".

Smoothed Entropies. Shannon entropy is robust in that it is insensitive to small statistical differences. Specifically, if X and Y are ε-close then $|\mathrm{H}(X)-\mathrm{H}(Y)| \leq \varepsilon \cdot \log |\mathcal{U}|$. For example, if $\mathcal{U}=$ $\{0,1\}^{n}$ and $\varepsilon=\varepsilon(n)$ is a negligible function of n (i.e., $\left.\varepsilon=n^{-\omega(1)}\right)$, then the difference in Shannon entropies is vanishingly small (indeed, negligible). In contrast, min-entropy and max-entropy are brittle and can change dramatically with a small statistical difference. Thus, it is common to work with "smoothed" versions of these measures, whereby we consider a random variable X to have high entropy (respectively, low entropy) if X is ε-close to some X^{\prime} with $\mathrm{H}_{\infty}(X) \geq k$ resp., $\left.\mathrm{H}_{0}(X) \leq k\right]$ for some parameter k and a negligible $\varepsilon .{ }^{4}$

These smoothed versions of min-entropy and max-entropy can be captured quite closely (and more concretely) by requiring that the sample-entropy is large or small with high probability:

Lemma 2. 1. Suppose that with probability at least $1-\varepsilon$ over $x \leftarrow X$, we have $\mathrm{H}_{X}(x) \geq k$. Then X is ε-close to a random variable X^{\prime} such that $\mathrm{H}_{\infty}\left(X^{\prime}\right) \geq k$.
2. Suppose that X is ε-close to a random variable X^{\prime} such that $\mathrm{H}_{\infty}\left(X^{\prime}\right) \geq k$. Then with probability at least $1-2 \varepsilon$ over $x \leftarrow X$, we have $\mathrm{H}_{X}(x) \geq k-\log (1 / \varepsilon)$.

Lemma 3. 1. Suppose that with probability at least $1-\varepsilon$ over $x \leftarrow X$, we have $\mathrm{H}_{X}(x) \leq k$. Then X is ε-close to a random variable X^{\prime} such that $\mathrm{H}_{0}\left(X^{\prime}\right) \leq k$.
2. Suppose that X is ε-close to a random variable X^{\prime} such that $\mathrm{H}_{0}\left(X^{\prime}\right) \leq k$. Then with probability at least $1-2 \varepsilon$ over $x \leftarrow X$, we have $\mathrm{H}_{X}(x) \leq k+\log (1 / \varepsilon)$.

Think of ε as inverse polynomial or a slightly negligible function in $n=\log (|\mathcal{U}|)$. The above lemmas show that up to negligible statistical difference and a slightly super-logarithmic number of entropy bits, the min-entropy [resp., max-entropy] is captured by lower [resp., upper] bound on sample-entropy.

Conditional Entropies. We will also be interested in conditional versions of entropy. For jointly distributed random variables (X, Y) and $(x, y) \in \operatorname{Supp}(X, Y)$, we define the conditional sampleentropy to be $\mathrm{H}_{X \mid Y}(x \mid y)=\log (1 / \operatorname{Pr}[X=x \mid Y=y])$. Then the standard conditional Shannon entropy can be written as:

$$
\mathrm{H}(X \mid Y)=\underset{(x, y) \leftarrow(X, Y)}{\mathrm{E}}\left[\mathrm{H}_{X \mid Y}(x \mid y)\right]=\underset{y \leftarrow Y}{\mathrm{E}}\left[\mathrm{H}\left(\left.X\right|_{Y=y}\right)\right]=\mathrm{H}(X, Y)-\mathrm{H}(Y) .
$$

There is no standard definition of conditional min-entropy and max-entropy, or even their smoothed versions. For us, it will be most convenient to generalize the sample-entropy characterizations of smoothed min-entropy and max-entropy given above. Specifically we will think of X as having "high min-entropy" [resp., "low max-entropy"] given Y if with probability at least $1-\varepsilon$ over $(x, y) \leftarrow(X, Y)$, we have $\mathrm{H}_{X \mid Y}(x \mid y) \geq k$ [resp., $\left.\mathrm{H}_{X \mid Y}(x \mid y) \leq k\right]$.

[^4]Flattening Shannon Entropy. The asymptotic equipartition property in information theory states that for independent random variables $X^{t}=\left(X_{1}, \ldots, X_{t}\right)$, with high probability the sampleentropy $\mathrm{H}_{X^{t}}\left(X_{1}, \ldots, X_{t}\right)$ is close to its expectation. In [10] a quantitative bound on this was shown by reducing it to the Hoeffding bound (one cannot directly apply the Hoeffding bound, because $\mathrm{H}_{X}(X)$ does not have an upper bound, but one can define a related random variable which does). We use a different bound here, which was proven in [11]. The bound has the advantage that it is somewhat easier to state, even though the proof is longer. We remark that the bound from [10] would be sufficient for our purpose (whose proof is much easier).

Lemma 4.

1. Let X be a random variable taking values in a universe \mathcal{U}, let $t \in \mathbb{N}$, and let $\varepsilon>2^{-t}$. Then with probability at least $1-\varepsilon$ over $x \leftarrow X^{t}$,

$$
\left|\mathrm{H}_{X^{t}}(x)-t \cdot \mathrm{H}(X)\right| \leq O(\sqrt{t \cdot \log (1 / \varepsilon)} \cdot \log (|\mathcal{U}|))
$$

2. Let X, Y be jointly distributed random variables where X takes values in a universe \mathcal{U}, let $t \in \mathbb{N}$, and let $\varepsilon>2^{-t}$. Then with probability at least $1-\varepsilon$ over $(x, y) \leftarrow\left(X^{t}, Y^{t}\right):=(X, Y)^{t}$,

$$
\left|\mathrm{H}_{X^{t} \mid Y^{t}}(x \mid y)-t \cdot \mathrm{H}(X \mid Y)\right| \leq O(\sqrt{t \cdot \log (1 / \varepsilon)} \cdot \log (|\mathcal{U}|))
$$

The statement follows directly from [11, Thm 2].

2.4 Hashing

A family of functions $F=\left\{f:\{0,1\}^{n} \mapsto\{0,1\}^{m}\right\}$ is 2-universal if for every $x \neq x^{\prime} \in\{0,1\}^{n}$, when we choose $F \leftarrow F$, we have $\operatorname{Pr}\left[F(x)=F\left(x^{\prime}\right)\right] \leq 1 /\left|\{0,1\}^{m}\right| . F$ is t-wise independent if for all distinct $x_{1}, \ldots, x_{t} \in\{0,1\}^{n}$, when we choose $F \leftarrow F$, the random variables $F\left(x_{1}\right), \ldots, F\left(x_{t}\right)$ are independent and each uniformly distributed over $\{0,1\}^{m}$.
F is explicit if given the description of a function $f \in F$ and $x \in\{0,1\}^{n}, f(x)$ can be computed in time poly $(n, m) . F$ is constructible if it is explicit and there is a probabilistic polynomial-time algorithm that given $x \in\{0,1\}^{n}$, and $y \in\{0,1\}^{m}$, outputs a random $f \leftarrow F$ such that $f(x)=y$.

It is well-known that there are constructible families of t-wise independent functions in which choosing a function $f \leftarrow F$ uses only $t \cdot \max \{n, m\}$ random bits.

3 Inaccessible Entropy for Inversion Problems

As discussed in the introduction, for a function F, we define the real entropy of F^{-1} to be the amount of entropy left in the input after revealing the output.

Definition 5. Let n be a security parameter, and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ a function. We say that F^{-1} has real Shannon entropy k if

$$
\mathrm{H}(X \mid F(X))=k,
$$

where X is uniformly distributed on $\{0,1\}^{n}$. We say that F^{-1} has real min-entropy at least k if there is a negligible function $\varepsilon=\varepsilon(n)$ such that

$$
\operatorname{Pr}_{x \leftarrow X}\left[\mathrm{H}_{X \mid F(X)}(x \mid F(x)) \geq k\right] \geq 1-\varepsilon(n) .
$$

We say that F^{-1} has real max-entropy at most k if there is a negligible function $\varepsilon=\varepsilon(n)$ such that

$$
\operatorname{Pr}_{x \leftarrow X}\left[\mathrm{H}_{X \mid F(X)}(x \mid F(x)) \leq k\right] \geq 1-\varepsilon(n) .
$$

Note that more concrete formulas for the entropies above are:

$$
\begin{aligned}
\mathrm{H}_{X \mid F(X)}(x \mid F(x)) & =\log \left|F^{-1}(F(x))\right| \\
\mathrm{H}(X \mid F(X)) & =\mathrm{E}\left[\log \left|F^{-1}(F(X))\right|\right] .
\end{aligned}
$$

As our goal is to construct UOWHFs that are shrinking, achieving high real entropy is a natural intermediate step. Indeed, the amount by which F shrinks is a lower bound on the real entropy of F^{-1} :

Proposition 6. If $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$, then the real Shannon entropy of F^{-1} is at least $n-m$, and the real min-entropy of F^{-1} is at least $n-m-s$ for any $s=\omega(\log n)$.

Proof. For Shannon entropy, we have

$$
\mathrm{H}(X \mid F(X)) \geq \mathrm{H}(X)-\mathrm{H}(F(X)) \geq n-m .
$$

For min-entropy, let $S=\left\{y \in\{0,1\}^{m}: \operatorname{Pr}[f(X)=y]<2^{-m-s}\right\}$. Then $\operatorname{Pr}[f(X) \in S] \leq 2^{m}$. $2^{-m-s}=\operatorname{neg}(n)$, and for every x such that $f(x) \notin S$, we have
$\mathrm{H}_{X \mid F(X)}(x \mid F(x))=\log \frac{1}{\operatorname{Pr}[X=x \mid F(X)=f(x)]}=\log \frac{\operatorname{Pr}[f(X)=f(x)]}{\operatorname{Pr}[X=x]} \geq \log \frac{2^{-m-s}}{2^{-n}}=n-m-s$.

To motivate the definition of accessible entropy, we now present an alternative formulation of real entropy in terms of the entropy that computationally unbounded "collision-finding" adversaries can generate.

Definition 7. For a function $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$, an F-collision-finder is a randomized algorithm A such that for every $x \in\{0,1\}^{n}$ and coin tosses r for A , we have $\mathrm{A}(x ; r) \in F^{-1}(F(x))$.

Note that A is required to always produce an input $x^{\prime} \in\{0,1\}^{n}$ such that $F(x)=F\left(x^{\prime}\right)$. This is a reasonable constraint because A has the option of outputting $x^{\prime}=x$ if it does not find a true collision. We consider A's goal to be maximizing the entropy of its output $x^{\prime}=A(x)$, given a random input x. If we let A be computationally unbounded, then the optimum turns out to equal exactly the real entropy:

Proposition 8. Let $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$. Then the real Shannon entropy of F^{-1} equals the maximum of $\mathrm{H}(\mathrm{A}(X ; R) \mid X)$ over all (computationally unbounded) F-collision finders A , where the random variable X is uniformly distributed in $\{0,1\}^{n}$ and R is uniformly random coin tosses for A. That is,

$$
\mathrm{H}(X \mid F(X))=\max _{\mathrm{A}} \mathrm{H}(\mathrm{~A}(X ; R) \mid X),
$$

where the maximum is taken over all F-collision finders A .

Proof. The "optimal" F-collision finder A that maximizes $\mathrm{H}(\mathrm{A}(X) \mid X)$ is the algorithm $\widetilde{\mathrm{A}}$ that, on input x, outputs a uniformly random element of $f^{-1}(f(x))$. Then

$$
\mathrm{H}(\widetilde{\mathrm{~A}}(X ; R) \mid X)=\mathrm{E}\left[\log \left\|f^{-1}(f(X))\right\|\right]=\mathrm{H}(X \mid F(X))
$$

The notion of accessible entropy simply restricts the above to efficient adversaries, e.g. those that run in probabilistic polynomial time (PPTM for short):

Definition 9. Let n be a security parameter and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ a function. We say that F^{-1} has accessible Shannon entropy at most k if for every PPTM F-collision-finder A, we have

$$
\mathrm{H}(\mathrm{~A}(X ; R) \mid X) \leq k
$$

for all sufficiently large n, where the random variable X is uniformly distributed on $\{0,1\}^{n}$ and R is uniformly random coin tosses for A .

As usual, it is often useful to have an upper bound not only on Shannon entropy, but on the max-entropy (up to some negligible statistical distance). Recall that a random variable Z has max-entropy at most k iff the support of Z is contained in a set of size 2^{k}. Thus, we require that $\mathrm{A}(X ; R)$ is contained in a set $\mathcal{L}(X)$ of size at most 2^{k}, except with negligible probability:

Definition 10. Let n be a security parameter and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ a function. For $p=p(n) \in$ $[0,1]$, we say that F^{-1} has p-accessible max-entropy at most k if for every РPTM F-collision-finder A, there exists a family of sets $\{\mathcal{L}(x)\}_{x \in \operatorname{Supp}(X)}$ each of size at most 2^{k} such that $x \in \mathcal{L}(x)$ for all $x \in \operatorname{Supp}(X)$ and

$$
\operatorname{Pr}[\mathrm{A}(X ; R) \in \mathcal{L}(X)] \geq 1-p
$$

for all sufficiently large n, where the random variable X is uniformly distributed on $\{0,1\}^{n}$ and R is uniformly random coin tosses for A . In addition, if $p=\varepsilon(n)$ for some negligible function $\varepsilon(\cdot)$, then we simply say that F^{-1} has accessible max-entropy at most k.

The reason that having an upper bound on accessible entropy is useful as an intermediate step towards constructing UOWHFs is that accessible max-entropy 0 is equivalent to target collision resistance (on random inputs):

Definition 11. Let $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ be a function. For $q=q(n) \in[0,1]$, we say that F is q-collision-resistant on random inputs if for every PPTM F-collision-finder A,

$$
\operatorname{Pr}[\mathrm{A}(X ; R)=X] \geq q,
$$

for all sufficiently large n, where the random variable X is uniformly distributed on $\{0,1\}^{n}$ and R is uniformly random coin tosses for A. In addition, if $q=1-\varepsilon(n)$ for some negligible function $\varepsilon(\cdot)$, we say that F is collision-resistant on random inputs.

Lemma 12. Let n be a security parameter and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ be a function. Then, for any $p=p(n) \in(0,1)$, the following statements are equivalent:
(1) F^{-1} has p-accessible max-entropy 0 .
(2) F is $(1-p)$-collision-resistant on random inputs.

In particular, F^{-1} has accessible max-entropy 0 iff F is collision-resistant on random inputs.
Proof. Note that (1) implies (2) follows readily from the definition. To see that (2) implies (1), simply take $\mathcal{L}(x)=\{x\}$.

While bounding p-accessible max-entropy with negligible p is our ultimate goal, one of our constructions will work by first giving a bound on accessible Shannon entropy, and then deducing a bound on p-accessible max-entropy for a value of $p<1$ using the following lemma:

Lemma 13. Let n be a security parameter and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ be a function. If F^{-1} has accessible Shannon entropy at most k, then F^{-1} has p-accessible max-entropy at most $k / p+O\left(2^{-k / p}\right)$ for any $p=p(n) \in(0,1)$.

Proof. Fix any pptm F-collision-finder A. From the bound on accessible Shannon entropy, we have that $\mathrm{H}(\mathrm{A}(X ; R) \mid X) \leq k$. Applying Markov's inequality, we have

$$
\operatorname{Pr}_{x \leftarrow X, r \leftarrow R}\left[\mathrm{H}_{\mathrm{A}(X ; R) \mid X}(\mathrm{~A}(x ; r) \mid x) \leq k / p\right] \geq 1-p
$$

Take $\mathcal{L}(x)$ to be the set:

$$
\mathcal{L}(x)=\{x\} \cup\left\{x^{\prime}: \mathrm{H}_{\mathrm{A}(X ; R) \mid X}\left(x^{\prime} \mid x\right) \leq k / p\right\}
$$

We may rewrite $\mathcal{L}(x)$ as $\{x\} \cup\left\{x^{\prime}: \operatorname{Pr}_{r}\left[\mathrm{~A}(x ; r)=x^{\prime}\right] \geq 2^{-k / p}\right\}$. It is easy to see that $|\mathcal{L}(x)| \leq 2^{k / p}+1$ and thus F^{-1} has p-accessible max-entropy at most $k / p+O\left(2^{-k / p}\right)$.

Once we have a bound on p-accessible max-entropy for some $p<1$, we need to apply several transformations to obtain a function with a good bound on $\operatorname{neg}(n)$-accessible max-entropy.

Our second construction (which achieves better parameters), starts with a bound on a different average-case form of accessible entropy, which is stronger than bounding the accessible Shannon entropy. The benefit of this notion it that it can be converted more efficiently to neg (n)-accessible max-entropy, by simply taking repetitions.

To motivate the definition, recall that a bound on accessible Shannon entropy means that the sample entropy $\mathrm{H}_{\mathrm{A}(X ; R) \mid X}\left(x^{\prime} \mid x\right)$ is small on average over $x \leftarrow X$ and $x^{\prime} \leftarrow \mathrm{A}(x ; R)$. This sample entropy may depend on both the input x and the x^{\prime} output by the adversary (which in turn may depend on its coin tosses). A stronger requirement is to say that we have upper bounds $k(x)$ on the sample entropy that depend only on x. The following definition captures this idea, thinking of $k(x)=\log |\mathcal{L}(x)|$. (We work with sets rather than sample entropy to avoid paying the $\log (1 / \varepsilon) \operatorname{loss}$ in Lemma 3.)

Definition 14. Let n be a security parameter and $F:\{0,1\}^{n} \mapsto\{0,1\}^{m}$ a function. We say that F^{-1} has accessible average max-entropy at most k if for every РРтм F-collision-finder A, there exists a family of sets $\{\mathcal{L}(x)\}_{x \in \operatorname{Supp}(X)}$ and a negligible function $\varepsilon=\varepsilon(n)$ such that $x \in \mathcal{L}(x)$ for all $x \in \operatorname{Supp}(X), \mathrm{E}[\log |\mathcal{L}(X)|] \leq k$ and

$$
\operatorname{Pr}[\mathrm{A}(X ; R) \in \mathcal{L}(X)] \geq 1-\varepsilon(n),
$$

for all sufficiently large n, where the random variable X is uniformly distributed on $\{0,1\}^{n}$ and R is uniformly random coin tosses for A .

We observe that bounding accessible average max-entropy is indeed stronger than bounding accessible Shannon entropy:

Proposition 15. If F^{-1} has accessible average max-entropy at most k, then for every constant c, F^{-1} has accessible Shannon entropy at most $k+1 / n^{c}$.

Proof. Given an F-collision-finder A, let $\{\mathcal{L}(x)\}$ be the sets guaranteed in Definition 14. Let random variable X be uniformly distributed in $\{0,1\}^{n}$, let R be uniformly random coin tosses for A, and let I be the indicator random variable for $\mathrm{A}(X ; R) \in \mathcal{L}(X)$. So $\operatorname{Pr}[I=0]=\operatorname{neg}(n)$. Then:

$$
\begin{aligned}
\mathrm{H}(\mathrm{~A}(X ; R) \mid X) & \leq \mathrm{H}(\mathrm{~A}(X ; R) \mid X, I)+\mathrm{H}(I) \\
& \leq \operatorname{Pr}[I=1] \cdot \mathrm{H}(\mathrm{~A}(X ; R) \mid X, I=1)+\operatorname{Pr}[I=0] \cdot \mathrm{H}(\mathrm{~A}(X ; R) \mid X, I=1)+\operatorname{neg}(n) \\
& \leq \operatorname{Pr}[I=1] \cdot \mathrm{E}[\log |\mathcal{L}(X)| \mid I=1]+\operatorname{Pr}[I=0] \cdot n+\operatorname{neg}(n) \\
& \leq \mathrm{E}[\log |\mathcal{L}(X)|]+\operatorname{neg}(n) \\
& \leq k+\operatorname{neg}(n) .
\end{aligned}
$$

4 Inaccessible Entropy from One-way Functions

4.1 A Direct Construction

The goal of this section is to prove the following theorem:
Theorem 16. Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a one-way function and define F over $\{0,1\}^{n} \times[n]$ as $F(x, i)=f(x)_{1, \ldots, i-1}$. Then, F^{-1} has accessible Shannon entropy at most $\mathrm{H}(Z \mid F(Z))-\frac{1}{64 n^{2}}$, where $Z=(X, I)$ is uniformly distributed over $\{0,1\}^{n} \times[n]$.

We do not know whether the function F^{-1} has even less accessible Shannon entropy, (say, with a gap of $\left.\Omega\left(\frac{1}{n}\right)\right)$. However, it seems that a significantly stronger bound would require much more effort, and even improving the bound to $\Omega\left(\frac{1}{n}\right)$ does not seem to yield an overall construction which is as efficient as the one resulting from Section 4.2. Therefore we aim to present a proof which is as simple as possible.

We begin with a high-level overview of our approach. Recall from Proposition 8 the "optimal" F-collision-finder $\widetilde{\mathrm{A}}$ that computes $F^{-1}(F(\cdot))$. The proof basically proceeds in three steps:

1. First, we show that it is easy to invert f using $\widetilde{\mathrm{A}}$ (Lemma 17).
2. Next, we show that if a F-collision-finder A has high accessible Shannon entropy, then it must behave very similarly to \widetilde{A} (Lemma 18).
3. Finally, we show that if A behaves very similarly to $\widetilde{\mathrm{A}}$, then it is also easy to invert f using A (Lemma 19).

We may then deduce that if f is one-way, any F-collision-finder A must have accessible Shannon entropy bounded away from $\mathrm{H}(Z \mid F(Z))$.

Step 1. Suppose we have an optimal collision finder $\widetilde{\mathrm{A}}(x, i ; r)$ that outputs a uniform random element from $F^{-1}(F(x, i))$. In order to invert an element y, we repeat the following process: start with an arbitrary element $x^{(0)}$ and use $\widetilde{\mathrm{A}}$ to find an element $x^{(1)}$ such that $f\left(x^{(1)}\right)$ has the same first bit as y. In the i^{\prime} th step find $x^{(i)}$ such that the first i bits of $f\left(x^{(i)}\right)$ equal $y_{1, \ldots, i}$ (until $i=n$).

This is done more formally in the following algorithm for an arbitrary oracle CF which we set to \widetilde{A} in the first lemma we prove. The algorithm ExtendOne does a single step. Besides the new symbol x^{\prime} which we are interested in, ExtendOne also returns the number of calls which it did to the oracle. This is completely uninteresting to the overall algorithm, but we use it later in the analysis when we bound the number of oracle queries made by ExtendOne.

```
Algorithm ExtendOne
Oracle: An F-collision finder CF.
Input: }x\in{0,1\mp@subsup{}}{}{n},b\in{0,1},i\in[n]
j:= 0
repeat
    x':= CF (x,i)
    j:=j+1
until f(x')}\mp@subsup{}{i}{\prime}=
return ( }\mp@subsup{x}{}{\prime},j
```


Inverter Inv

Oracle: An F-collision finder CF.
Input: $y \in\{0,1\}^{n}$
$x^{(0)} \leftarrow U_{n}$
for $i=1$ to n do:
$\left(x^{(i)}, j\right):=$ ExtendOne $^{\mathrm{CF}}\left(x^{(i-1)}, y_{i}, i\right)$
done
return $x^{(n)}$
We first show that with our optimal collision finder \widetilde{A}, the inverter inverts with only $2 n$ calls in expectation (even though it can happen that it runs forever). Towards proving that, we define $p\left(b \mid y_{1, \ldots, i-1}\right)$ as the probability that the i 'th bit of $f(x)$ equals b, conditioned on the event that $f(x)_{1, \ldots, i-1}=y_{1, \ldots, i-1}$ (or 0 if $f(x)_{1, \ldots, i-1}=y_{1, \ldots, i-1}$ is impossible).
Lemma 17. The expected number of calls to $\widetilde{\mathrm{A}}$ in a random execution of $\operatorname{lnv}^{\widetilde{A}}(y=f(x))$ with $x \leftarrow\{0,1\}^{n}$, is at most $2 n$.

Proof. Fix some string $y_{1, \ldots, i-1}$ in the image of F. We want to study the expected number of calls to $\widetilde{\mathrm{A}}\left(x^{(i-1)}, i\right)$ in case $F\left(x^{(i-1)}, i\right)=y_{1, \ldots, i-1}$.

If we would know y_{i}, then this expected number of calls would be $\frac{1}{p\left(y_{i} \mid y_{1}, \ldots, i-1\right)}$. Since $y_{i}=0$ with probability $p\left(0 \mid y_{1, \ldots, i-1}\right)$ we get that the expected number of calls is 1 if either of the probabilities is 0 and $p\left(0 \mid y_{1, \ldots, i-1}\right) \cdot \frac{1}{p\left(0 \mid y_{1}, \ldots, i-1\right)}+p\left(1 \mid y_{1, \ldots, i-1}\right) \cdot \frac{1}{1 \mid p\left(y_{1}, \ldots, i-1\right)}=2$ otherwise. Using linearity of expectation we get the result.

Step 2. Given an F-collision finder A, we define $\epsilon(x, i)$ to be the statistical distance of the distribution of $\mathrm{A}(x, i ; r)$ and the the output distribution of $\widetilde{\mathrm{A}}(x, i ; r)$ (which equals the uniform distribution over $\left.F^{-1}(F(x, i))\right)$.

We want to show that if A has high accessible Shannon entropy, then A behaves very similarly to $\widetilde{\mathrm{A}}$. The next lemma formalizes this by stating that $\varepsilon(x, i)$ is small on average (over the uniform random choice of $x \in\{0,1\}^{n}$ and $\left.i \in[n]\right)$. The lemma follows by applying Jensen's inequality on the well known relationship between entropy gap and statistical distance.

Lemma 18. Assume $\mathrm{H}(\mathrm{A}(Z)) \geq \mathrm{H}(Z \mid F(Z))-\frac{1}{64 n^{2}}$, then $\mathrm{E}_{i \leftarrow[n], x \leftarrow\{0,1\}^{n}}[\varepsilon(x, i)] \leq \frac{1}{8 n}$.
Proof.

$$
\begin{aligned}
\|(Z, \widetilde{\mathrm{~A}}(Z))-(Z, \mathrm{~A}(Z))\| & =\underset{z \leftarrow Z}{\mathrm{E}}[|(z, \widetilde{\mathrm{~A}}(z))-(z, \mathrm{~A}(z))|] \\
& \leq \underset{z \leftarrow Z}{\mathrm{E}}[\sqrt{\mathrm{H}(\widetilde{\mathrm{~A}}(z))-\mathrm{H}(\mathrm{~A}(z))]} \\
& \leq \sqrt{z \leftarrow Z[\mathrm{H}(\widetilde{\mathrm{~A}}(z))-\mathrm{H}(\mathrm{~A}(z))]} \\
& \leq \frac{1}{8 n} .
\end{aligned}
$$

The first inequality uses the fact that if W is a random variable whose support is contained in a set S and U is the uniform distribution on S, then $\|U-W\| \leq \sqrt{\mathrm{H}(U)-\mathrm{H}(W)}$ (see [5, Lemma 11.6.1]). The second inequality follows by Jensen's inequality. The final inequality uses $\mathrm{H}(\widetilde{\mathrm{A}}(Z))=$ $\mathrm{H}(Z \mid F(Z))$ (Proposition 8).

Step 3. We have seen now that $\operatorname{Inv} v^{\widetilde{A}}$ inverts f with $2 n$ calls in expectation and that A behaves similarly as \widetilde{A}. We now want to show that lnv^{A} also inverts f efficiently. The main technical difficulty is that even though $\operatorname{Inv}{ }^{\widetilde{A}}$ makes $2 n$ calls to \widetilde{A} in expectation and A and \widetilde{A} are close in statistical distance, we cannot immediately deduce an upper bound on the number of calls Inv ${ }^{A}$ makes to A. Indeed, our analysis below exploits the fact that Inv and ExtendOne have a fairly specific structure.

We find it convenient to assume $\operatorname{Pr}_{R}[\mathrm{~A}(x, i ; R)=\widetilde{\mathrm{A}}(x, i ; R)]=1-\epsilon(x, i)$, where $\widetilde{\mathrm{A}}$ is an optimal collision finder as above. This is always possible since we do not require $\widetilde{\mathrm{A}}$ to be polynomial time, and also because we allow us to extend the number of random bits A uses (we assume it just ignores unused ones). To do this, $\widetilde{\mathrm{A}}$ first computes the statistics of A on input (x, i), and also the result of $\mathrm{A}(x, i ; r)$. He checks whether $\mathrm{A}(x, i ; r)$ is one of the elements which occur too often, and outputs a different, carefully chosen one, with appropriate probability if this is the case.

We now show that in most executions of ExtendOne it does not matter whether we use A or \widetilde{A} (that is, ExtendOne makes the same number of oracle queries to A and \widetilde{A}, and outputs the same value).

Lemma 19. For any $(x, i) \in\{0,1\}^{n} \times[n]$, and any $y_{i} \in\{0,1\}$, we have

$$
\begin{equation*}
\underset{R}{\operatorname{Pr}}\left[\operatorname{ExtendOne}{ }^{\mathrm{A}}\left(x, y_{i}, i ; R\right)=\operatorname{ExtendOne}^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right)\right] \geq 1-\frac{2 \varepsilon(x, i)}{p\left(y_{i} \mid y_{1, \ldots, i-1}\right)} \tag{1}
\end{equation*}
$$

Note that the oracle algorithm ExtendOne is deterministic, and in the above expressions, R refers to the coin tosses used by the oracles that ExtendOne queries, namely A and $\widetilde{\mathrm{A}}$ respectively. We stress that the lemma says that both the value x^{\prime} and the number j returned are equal with high probability.

Proof. Let $J=J(R)$ be the second coordinate of the output of ExtendOne ${ }^{\mathrm{A}}\left(x, y_{i}, i ; R\right)$ (i.e., the counter) and $\widetilde{J}=\widetilde{J}(R)$ the analogous output of ExtendOne ${ }^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right)$. We write

$$
\begin{align*}
& \underset{R}{\operatorname{Pr}_{R}}\left[\operatorname{ExtendOne}^{A}\left(x, y_{i}, i ; R\right)=\operatorname{ExtendOne}^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right)\right]= \\
& \sum_{j \geq 1} \underset{R}{\operatorname{Pr}}[\min (J, \widetilde{J})=j] \cdot \operatorname{Pr}_{R}\left[\operatorname{ExtendOne}^{A}\left(x, y_{i}, i ; R\right)=\operatorname{ExtendOne}^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right) \mid \min (J, \widetilde{J})=j\right] \\
& \quad=\underset{j \leftarrow P_{J}}{\mathrm{E}}\left[\operatorname{Pr}_{R}\left[\operatorname{ExtendOne}^{A}\left(x, y_{i}, i ; R\right)=\operatorname{ExtendOne}^{\widetilde{A}}\left(x, y_{i}, i ; R\right) \mid \min (J, \widetilde{J})=j\right]\right] \tag{2}
\end{align*}
$$

where P_{J} is some distribution over the integers which, as it turns out, we don't need to know.
Let now R^{\prime} be the randomness used by A or $\widetilde{\mathrm{A}}$ in round j. Then,

$$
\begin{aligned}
& \operatorname{Pr}_{R}\left[\operatorname{ExtendOne}^{A}\left(x, y_{i}, i ; R\right)=\text { ExtendOne }^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right) \mid \min (J, \widetilde{J})=j\right] \\
& =\underset{R^{\prime}}{\operatorname{Pr}}\left[A\left(x, i ; R^{\prime}\right)=\widetilde{\mathrm{A}}\left(x, i ; R^{\prime}\right) \mid f\left(A\left(x, i ; R^{\prime}\right)\right)_{i}=y_{i} \vee f\left(\widetilde{\mathrm{~A}}\left(x, i ; R^{\prime}\right)\right)_{i}=y_{i}\right],
\end{aligned}
$$

because each iteration of ExtendOne uses fresh independent randomness.
Let P be the distribution over $\{0,1\}^{n}$ produced by $A\left(x, i ; R^{\prime}\right)$, and P^{*} be the (uniform) distribution produced by $\widetilde{\mathrm{A}}\left(x, i ; R^{\prime}\right)$. We get, for $p=p\left(y_{i} \mid y_{1, \ldots, i-1}\right)$ and $\varepsilon=\varepsilon(x, i)$:

$$
\begin{gathered}
\operatorname{Pr}_{R^{\prime}}\left[A\left(x, i ; R^{\prime}\right)=\widetilde{\mathrm{A}}\left(x, i ; R^{\prime}\right) \mid f\left(A\left(x, i ; R^{\prime}\right)\right)_{i}=y_{i} \vee f\left(\widetilde{\mathrm{~A}}\left(x, i ; R^{\prime}\right)\right)_{i}=y_{i}\right] \\
\quad=\frac{\sum_{x \in F^{-1}\left(y_{1}, \ldots, i\right)} \min \left(P(x), P^{*}(x)\right)}{\sum_{x \in F^{-1}\left(y_{1}, \ldots, i\right)} \max \left(P(x), P^{*}(x)\right)} \geq \frac{p-\varepsilon}{p+\varepsilon}=\frac{1-\frac{\varepsilon}{p}}{1+\frac{\varepsilon}{p}} \geq 1-\frac{2 \varepsilon}{p} .
\end{gathered}
$$

Collecting the equations and inserting into (2) proves the lemma.
Putting everything together. We can now finish the proof of Theorem 16. Consider the following random variables: let X be uniformly drawn from $\{0,1\}^{n}$ and let $Y=f(X)$. Run $\operatorname{Inv}^{\mathrm{A}}(Y)$ and $\operatorname{Inv} \widetilde{\mathrm{A}}^{(}(Y)$ in parallel, using the same randomness in both executions. Let $\widetilde{X}^{(0)}, \ldots, \widetilde{X}^{(n)}$ be the random variables which have the values assigned to $x^{(0)}, \ldots, x^{(n)}$ in the run of $\operatorname{Inv}{ }^{\widetilde{A}}$. Finally, let the indicator variables Q_{i} be 1, iff the i 'th call to ExtendOne in the above parallel run is the first call such that ExtendOne ${ }^{\mathrm{A}}\left(\widetilde{X}^{(i)}, Y_{i}, i ; \cdot\right) \neq$ ExtendOne $^{\widetilde{\mathrm{A}}}\left(\widetilde{X}^{(i)}, Y_{i}, i ; \cdot\right)$.

We proceed to obtain an upper bound on $\operatorname{Pr}\left[Q_{i}=1\right]$. Observe that for all $x \in\{0,1\}^{n}$:

$$
\begin{aligned}
& \operatorname{Pr}\left[Q_{i}=1 \mid \widetilde{X}^{(i-1)}=x\right] \\
& =\operatorname{Pr}\left[\operatorname{ExtendOne}^{\mathrm{A}}\left(x, Y_{i}, i ; R\right) \neq \mathrm{ExtendOne}^{\widetilde{\mathrm{A}}}\left(x, Y_{i}, i ; R\right) \mid \widetilde{X}^{(i-1)}=x\right] \\
& =\sum_{y_{i} \in\{0,1\}} p\left(y_{i} \mid f(x)_{1, \ldots, i-1}\right) \cdot \operatorname{Pr}\left[\operatorname{ExtendOne}^{\mathrm{A}}\left(x, y_{i}, i ; R\right) \neq \operatorname{ExtendOne}^{\widetilde{\mathrm{A}}}\left(x, y_{i}, i ; R\right)\right] \\
& \leq \sum_{y_{i} \in\{0,1\}} p\left(y_{i} \mid f(x)_{1, \ldots, i-1}\right) \cdot \frac{2 \epsilon(x, i)}{p\left(y_{i} \mid f(x)_{1, \ldots, i-1}\right)} \\
& =4 \epsilon(x, i)
\end{aligned}
$$

where the inequality above follows by Lemma 19. Averaging over x, we have that for all $i=1, \ldots, n$:

$$
\begin{equation*}
\operatorname{Pr}\left[Q_{i}=1\right] \leq 4 \underset{x \leftarrow\{0,1\}^{n}}{\mathrm{E}}[\epsilon(x, i)] \tag{3}
\end{equation*}
$$

Here, we use the fact that by induction on i, the random variable \widetilde{X}^{i}, for $i \in\{0, \ldots, n\}$, is uniformly distributed in $\{0,1\}^{n}$ (it is uniform preimage of a uniformly chosen output). Using Equation (3), we have

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{i=1}^{n} Q_{i} \geq 1\right] & =\sum_{i=1}^{n} \operatorname{Pr}\left[Q_{i}=1\right] \\
& =n \cdot \underset{i \leftarrow[n], x \leftarrow\{0,1\}^{n}}{\mathrm{E}}\left[Q_{i}\right] \\
& \leq 4 n \cdot \underset{i \leftarrow[n], x \leftarrow\{0,1\}^{n}}{\operatorname{E}}[\varepsilon(x, i)] \\
& \leq \frac{1}{2}
\end{aligned}
$$

where the last inequality follows from Lemma 18 . Hence, with probability $\frac{1}{2}$, a run of $\operatorname{Inv}^{\mathrm{A}}$ and $\operatorname{Inv} \widetilde{A}^{\widetilde{A}}$ produce the same output and use the same number of queries to the oracles A. Moreover, the probability that $\operatorname{Inv} v^{\widetilde{A}}$ uses more than $8 n$ oracle queries is at most $\frac{1}{4}$ (by applying Markov's inequality on Lemma 17). Hence, with probability $\frac{1}{4}$, Inv ${ }^{\text {A }}$ inverts f using $8 n$ oracle queries in total, which contradicts the one-wayness of f. In order to make sure that $\operatorname{lnv}{ }^{A}$ runs in polynomial time, we just halt it after $8 n$ calls.

4.2 A More Efficient Construction

The following theorem shows that a simplified variant of the first step of [19] (which is also the first step of [14]) yields inaccessible entropy with much stronger guarantees than those obtained in Section 4.1. The function we construct is $F(x, g, i)=\left(g(f(x))_{1, \ldots, i}, g\right)$, where $g:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is a three-wise independent function. Since the composition of g and f is still a one-way function, Theorem 16 already implies that F^{-1} has inaccessible entropy. The benefits of the additional hashing step are that 1 . we get more inaccessible entropy $\left(\tilde{\Theta}(1 / n)\right.$ bits rather than $\tilde{\Theta}\left(1 / n^{2}\right)$ bits), and 2 . we get a bound on accessible average max-entropy rather than accessible Shannon entropy. These allow for a simpler and more efficient transformation of F into a UOWHF.

Theorem 20 (Inaccessible average max-entropy from one-way functions). Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a one-way function and let $\mathcal{G}=\left\{g:\{0,1\}^{n} \mapsto\{0,1\}^{n}\right\}$ be a family of constructible, three-wise independent hash functions. Define F over $\operatorname{Dom}(F):=\{0,1\}^{n} \times \mathcal{G} \times[n]$ by

$$
F(x, g, i)=\left(g(f(x))_{1, \ldots, i}, g, i\right) .
$$

Then, for every constant $d>0, F^{-1}$ has accessible average max-entropy at most $\mathrm{H}(Z \mid F(Z))-$ $(d \log n) / n$, where Z is uniformly distributed over $\operatorname{Dom}(F)$.

Proof. Let c be a sufficiently large constant (whose value to be determined later as a function of the constant d in the theorem statement). The sets $\{\mathcal{L}(x, g, i)\}_{x \in\{0,1\}^{n}, i \in[n], g \in \mathcal{G}}$ realizing the inaccessible entropy of F^{-1} are defined by

$$
\begin{equation*}
\mathcal{L}(x, g, i)=\left\{\left(x^{\prime}, g, i\right): f\left(x^{\prime}\right) \in \tilde{\mathcal{L}}(f(x), i) \wedge g\left(f\left(x^{\prime}\right)\right)_{1, \ldots, i}=g(f(x))_{1, \ldots, i}\right\} \tag{4}
\end{equation*}
$$

where for $y \in\{0,1\}^{n}$ and $i \in[n]$, we let

$$
\begin{align*}
\tilde{\mathcal{L}}(y, i) & =\{y\} \cup\left\{y^{\prime} \in\{0,1\}^{n}: \mathrm{H}_{f(X)}\left(y^{\prime}\right) \geq(i+c \cdot \log n)\right\} \tag{5}\\
& =\{y\} \cup\left\{y^{\prime} \in\{0,1\}^{n}:\left|f^{-1}\left(y^{\prime}\right)\right| \leq 2^{n-i} / n^{c}\right\} .
\end{align*}
$$

Namely, $\tilde{\mathcal{L}}(y, i)$ consists, in addition to y itself, of " i-light" images with respect to $f .{ }^{5}$ As a warm-up, it is helpful to write down $\tilde{\mathcal{L}}(y, i)$ and $\mathcal{L}(x, g, i)$ for the case where f is a one-way permutation. ${ }^{6}$

The proof of the theorem immediately follows by the following two claims.
Claim 21. For every PPTM F-collision-finder A and every constant $c>0$, it holds that

$$
\operatorname{Pr}[\mathrm{A}(Z ; R) \notin \mathcal{L}(Z)] \leq \operatorname{neg}(n),
$$

where Z is uniformly distributed over $\operatorname{Dom}(F)$ and R is uniformly distributed over the random coins of A.

Claim 22. For any constant c it holds that

$$
\mathrm{E}[\log |\mathcal{L}(Z)|] \leq \mathrm{E}\left[\log \left|F^{-1}(F(Z))\right|\right]-\Omega\left(\frac{c \log n}{n}\right)
$$

where Z is uniformly distributed in $\operatorname{Dom}(F)$.

[^5]
4.2.1 Accessible Inputs of F - Proving Claim 21

Proof of Claim 21. Recall that $Z=(X, G, I)$ is uniformly distributed over $\operatorname{Dom}(F)$, and that R is uniformly distributed over the random coins of A. It suffices to show that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}_{1}(X, G, I ; R) \notin f^{-1}(\tilde{\mathcal{L}}(f(X), I))\right] \leq \operatorname{neg}(n) \tag{6}
\end{equation*}
$$

where A_{1} denotes the first component of A 's output (this holds since the other two output components of A are required to equal (G, I), due to the fact that $F(X, G, I)$ determines $(G, I))$.

We construct an inverter Inv such that for all F-collision-finders A and for c as in Equation (5) we have

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{lnv}{ }^{\mathrm{A}}(Y) \in f^{-1}(Y)\right] \geq \frac{1}{n^{c}} \cdot \operatorname{Pr}\left[\mathrm{~A}_{1}(X, G, I ; R) \notin f^{-1}(\tilde{\mathcal{L}}(f(X), I))\right] \tag{7}
\end{equation*}
$$

where $Y=f(X)$, and the proof of Claim 21 follows readily from the one-wayness of f.

Inverter $\operatorname{Inv} \mathrm{A}^{\mathrm{A}}$
Oracle: An F-collision finder A.
Input: $y \in\{0,1\}^{n}$
$x \leftarrow\{0,1\}^{n}$
$i \leftarrow[n]$
$g^{\prime} \leftarrow \mathcal{G}_{y, x, i}:=\left\{g \in \mathcal{G}: g(y)_{1 \ldots i}=g(f(x))_{1 \ldots i}\right\}$
return $A_{1}\left(x, g^{\prime}, i ; r\right)$

Observe that Inv can be implemented efficiently by sampling g^{\prime} as follows: pick first $z, z^{*} \in\{0,1\}^{n}$ such that $z_{1 \ldots i}=z_{1 \ldots i}^{*}$ and use the constructibility of \mathcal{G} to pick g with $g(f(x))=z$ and $g(y)=z^{*}$.

We analyze the success probability of Inv^{A}. Using the short hand notation $\operatorname{Pr}_{g^{\prime}}[\cdots]$ for $\operatorname{Pr}_{g^{\prime} \leftarrow \mathcal{G}_{y, x, i}}[\cdots]$ we observe that

$$
\begin{align*}
\operatorname{Pr}\left[\operatorname{lnv} \mathrm{A}^{\mathrm{A}}(Y) \in f^{-1}(Y)\right] & \underset{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}{\mathrm{E}}\left[\sum_{y \in\{0,1\}^{n}} \operatorname{Pr}[f(X)=y] \cdot \operatorname{Pr}_{g^{\prime}, r}^{\operatorname{Pr}}\left[\mathrm{A}_{1}\left(x, g^{\prime}, i ; r\right) \in f^{-1}(y)\right]\right] \tag{8}\\
& \geq \underset{x, i}{\mathrm{E}}\left[\sum_{y \notin \tilde{\mathcal{L}}(f(x), i)} \frac{2^{-i}}{n^{c}} \cdot \underset{g^{\prime}, r}{ }\left[\mathrm{~A}_{1}\left(x, g^{\prime}, i ; r\right) \in f^{-1}(y)\right]\right]
\end{align*}
$$

where the inequality holds since $\operatorname{Pr}[f(X)=y] \geq 2^{-i} / n^{c}$ for any $y \notin \tilde{\mathcal{L}}(f(x), i)$.
Next, observe that for any tuple (y, x, i) such that $y \neq f(x)$, it holds that (where we distinguish $\operatorname{Pr}_{g^{\prime}}[\cdots]$ as above from $\left.\operatorname{Pr}_{g}[\cdots]=\operatorname{Pr}_{g \leftarrow \mathcal{G}}[\cdots]\right)$

$$
\begin{align*}
\operatorname{Pr}_{g^{\prime}, r}\left[\mathrm{~A}_{1}\left(x, g^{\prime}, i ; r\right) \in f^{-1}(y)\right] & =\operatorname{Pr}_{g \leftarrow \mathcal{G}, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y) \mid g(f(x))_{1 \cdots i}=g(y)_{1 \cdots i}\right] \tag{9}\\
& =\frac{\operatorname{Pr}_{g, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y) \wedge g(f(x))_{1 \cdots i}=g(y)_{1 \cdots i}\right]}{\operatorname{Pr}_{g, r}\left[g(f(x))_{1 \cdots i}=g(y)_{1 \cdots i}\right]} \\
& =\frac{\operatorname{Pr}_{g, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y)\right]}{\operatorname{Pr}_{g, r}\left[g(f(x))_{1 \cdots i}=g(y)_{1 \cdots i}\right]} \\
& =2^{i} \cdot \operatorname{Pr}_{g, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y)\right] .
\end{align*}
$$

The second equality follows by Bayes' rule and the third uses the fact that A is a F-collision finder. The last equality follows since \mathcal{G} is two-wise independent (recall we assumed that \mathcal{G} is three-wise independent) and $f(x) \neq y$.

Combining the two preceding observations, and the fact that $f(x) \in \tilde{\mathcal{L}}(f(x), i)$, we have that

$$
\begin{aligned}
\operatorname{Pr}\left[\operatorname{lnv} \mathrm{A}^{\mathrm{A}}(Y) \in f^{-1}(Y)\right] & \geq \underset{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}{\mathrm{E}}\left[\sum_{y \notin \tilde{\mathcal{L}}(f(x), i)} \frac{2^{-i}}{n^{c}} \cdot 2^{i} \cdot \operatorname{Pr}_{g \leftarrow \mathcal{G}, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y)\right]\right] \\
& \geq \frac{1}{n^{c}} \cdot \underset{x, i}{\mathrm{E}}\left[\sum_{y \notin \tilde{\mathcal{L}}(f(x), i)} \cdot \operatorname{Pr}_{g, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \in f^{-1}(y)\right]\right] \\
& =\frac{1}{n^{c}} \cdot \operatorname{Pr}_{x, g, i, r}\left[\mathrm{~A}_{1}(x, g, i ; r) \notin f^{-1}(\tilde{\mathcal{L}}(f(x), i))\right],
\end{aligned}
$$

and the proof of the claim follows.

4.2.2 Upper Bounding the Size of \mathcal{L} - Proving Claim 22

Recall that $Z=(X, G, I)$ is uniformly distributed over $\operatorname{Dom}(F)$. In the following we relate the size of $\mathcal{L}(Z)$ to that of $F^{-1}(F(Z))$.

We make use of the following property of three-wise independent hash-functions.
Claim 23. Let i, x and x^{*}, be such that $f(x) \neq f\left(x^{*}\right)$ and $i \leq \mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))$. Then,

$$
\underset{\substack{z^{\prime} \leftarrow F^{-1}(F(x, g, g, i))}}{\operatorname{Pr}}\left[z^{\prime}=\left(x^{*}, g, i\right)\right] \geq \frac{2^{-n}}{8} .
$$

Note that in the above experiment it is always the case that $\left(g^{\prime}, i^{\prime}\right)=(g, i)$, letting $z^{\prime}=\left(x^{\prime}, g^{\prime}, i^{\prime}\right)$.
Proof. Note that with probability 2^{-i} over $g \leftarrow \mathcal{G}$, it holds that $g\left(f\left(x^{*}\right)\right)_{1 \cdots i}=g(f(x))_{1 \cdots i}$. Henceforth, we condition on this event that we denote by E, and let $w=g\left(f\left(x^{*}\right)\right)_{1 \cdots i}=g(f(x))_{1 \cdots i}$. Observe that for a fixed g satisfying E, it holds that

$$
\begin{equation*}
\operatorname{Pr}_{z^{\prime} \leftarrow F^{-1}(F(x, g, i))}\left[z^{\prime}=\left(x^{*}, g, i\right) \mid E\right] \geq \frac{1}{\left|F^{-1}(F(x, g, i))\right|} \tag{10}
\end{equation*}
$$

In order to obtain a lower bound on $\left|F^{-1}(F(x, g, i))\right|$, we first consider x^{\prime} such that $f\left(x^{\prime}\right) \notin$ $\left\{f(x), f\left(x^{*}\right)\right\}$. By the three-wise independence of \mathcal{G},

$$
\begin{equation*}
\operatorname{Pr}_{g \leftarrow \mathcal{G}}\left[g\left(f\left(x^{\prime}\right)\right)=w \mid E\right]=2^{-i} \tag{11}
\end{equation*}
$$

This implies that the expected number of x^{\prime} such that $g\left(f\left(x^{\prime}\right)\right)=w$ and $f\left(x^{\prime}\right) \notin\left\{f(x), f\left(x^{*}\right)\right\}$ is at most 2^{n-i}. By Markov's inequality, we have that with probability at least $1 / 2$ over $g \leftarrow \mathcal{G}$ (conditioned on E),

$$
\begin{equation*}
\left|F^{-1}(F(x, g, i))\right| \leq 2 \cdot 2^{n-i}+\left|f^{-1}(f(x))\right|+\left|f^{-1}\left(f\left(x^{*}\right)\right)\right| \leq 4 \cdot 2^{n-i} \tag{12}
\end{equation*}
$$

where the second inequality uses the fact that $i \leq \mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))$. Putting everything together, we have that the probability we obtain x^{*} is at least $2^{-i} \cdot 1 / 2 \cdot\left(4 \cdot 2^{n-i}\right)^{-1}=2^{-n} / 8$.

We now use Claim 23 for proving Claim 22.

Proof of Claim 22. Let $Z^{\prime}=\left(X^{\prime}, G, I\right) \leftarrow F^{-1}(F(Z=(X, G, I))$) (note that indeed the second and third coordinates of Z and Z^{\prime} are guaranteed to match). We claim that for proving Claim 22 it suffices to show that

$$
\begin{equation*}
\operatorname{Pr}\left[X^{\prime} \notin f^{-1}(\tilde{\mathcal{L}}(f(X), I))\right] \in \Omega\left(\frac{c \log (n)}{n}\right) \tag{13}
\end{equation*}
$$

Indeed, let $\overline{\mathcal{L}}(z):=F^{-1}(F(z)) \backslash \mathcal{L}(z)$, and compute

$$
\begin{align*}
\mathrm{E}\left[\log \left|F^{-1}(F(Z))\right|\right]-\mathrm{E}[\log |\mathcal{L}(Z)|] & =\mathrm{E}\left[\log \left(1+\frac{|\overline{\mathcal{L}}(Z)|}{|\mathcal{L}(Z)|}\right)\right] \tag{14}\\
& \geq \mathrm{E}\left[\log \left(1+\frac{|\overline{\mathcal{L}}(Z)|}{\left|F^{-1}(F(Z))\right|}\right)\right] \\
& \geq \frac{1}{2} \mathrm{E}\left[\frac{|\overline{\mathcal{L}}(Z)|}{\left|F^{-1}(F(Z))\right|}\right] \\
& =\frac{1}{2} \operatorname{Pr}\left[X^{\prime} \notin f^{-1}(\tilde{\mathcal{L}}(f(X), I))\right] \\
& \in \Omega\left(\frac{c \log (n)}{n}\right),
\end{align*}
$$

where the first equality holds since by definition $\mathcal{L}(Z) \subseteq F^{-1}(F(z))$, the second inequality holds since $\log (1+\alpha) \geq \frac{\alpha}{2}$ for $\alpha \in[0,1]$ and the containment by Equation (13).

We prove Equation (13) in two steps. First, observe that for all x :

$$
\begin{align*}
& \operatorname{Pr}_{g, i}\left[f\left(x^{\prime}\right) \notin \tilde{\mathcal{L}}(f(x), i):\left(x^{\prime}, g, i\right) \leftarrow F^{-1}(F(x, g, i))\right] \tag{15}\\
& \geq \operatorname{Pr}_{g, i}\left[f\left(x^{\prime}\right) \neq f(x) \wedge\left(i \leq \mathrm{H}_{f(X)}\left(f\left(x^{\prime}\right)\right)<i+c \log n\right):\left(x^{\prime}, g, i\right) \leftarrow F^{-1}(F(x, g, i))\right] \\
& =\frac{1}{n} \sum_{x^{*}: f(x) \neq f\left(x^{*}\right)}\left(\sum_{i \leq \mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right)<i+c \log n} \operatorname{Pr}_{g}\left[\left(x^{*}, g, i\right) \leftarrow F^{-1}(F(x, g, i))\right]\right) \\
& \geq \frac{1}{n} \cdot \sum_{\substack{x^{*}: f(x) \neq f\left(x^{*}\right) \\
\wedge\left(\mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))\right)}}\left(\sum_{\substack{i \leq \mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right)<i+c \log n}} \frac{2^{-n}}{8}\right) \quad \text { (by Claim 23) } \\
& \geq \frac{c \log n}{n} . \sum_{\substack{x^{*}: f(x) \neq f\left(x^{*}\right) \\
\wedge\left(\mathrm{H}_{f(X)}\left(f\left(x^{\prime}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))\right)}} \frac{2^{-n}}{8} \\
& =\frac{c \log n}{8 n} \cdot \operatorname{Pr}_{x^{*}}\left[f(x) \neq f\left(x^{*}\right) \wedge\left(\mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))\right)\right] .
\end{align*}
$$

It follows that

$$
\begin{align*}
\operatorname{Pr}\left[X^{\prime} \notin f^{-1}(\tilde{\mathcal{L}}(f(X), I))\right] & =\operatorname{Pr}_{x, g, i}\left[x^{\prime} \notin \tilde{\mathcal{L}}(f(x), i):\left(x^{\prime}, g, i\right) \leftarrow F^{-1}(F(x, g, i))\right] \tag{16}\\
& \geq \frac{c \log n}{8 n} \operatorname{Pr}_{x, x^{*}}\left[f(x) \neq f\left(x^{*}\right) \wedge\left(\mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \leq \mathrm{H}_{f(X)}(f(x))\right)\right] \\
& \geq \frac{c \log n}{8 n} \cdot \frac{1}{2} \cdot\left(1-\operatorname{Pr}_{x, x^{*}}\left[f(x) \neq f\left(x^{*}\right)\right]\right) \\
& \geq \frac{c \log n}{8 n} \cdot \frac{1}{2} \cdot \frac{1}{2},
\end{align*}
$$

where the last inequality holds since the one-wayness of f yields that $\operatorname{Pr}_{x, x^{*}}\left[f(x)=f\left(x^{*}\right)\right]$ is negligible (otherwise inverting f is trivial), which concludes the the proof of Equation (13), and hence of the claim.

5 UOWHFs from Inaccessible Entropy

In this section we show how to construct a UOWHF from any efficiently computable function with a noticeable gap between real Shannon entropy and either accessible average max-entropy or accessible Shannon entropy. Recall that the more efficient construction from Section 4.2 satisfies the former, and the more direct construction from Section 4.1 satisfies the latter. Combined with these constructions, we obtain two new constructions of UOWHFs from any one-way function.

In both cases, we first transform the entropy gap into a noticeable gap between real Shannon entropy and accessible max-entropy. We begin with the construction that starts from a gap between real Shannon entropy and accessible average max-entropy because the transformation involves fewer steps (and is also more efficient).

5.1 The More Efficient UOWHF

Theorem 24. Suppose there exists a polynomial-time computable function $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ such that F^{-1} has a noticeable gap Δ between real Shannon entropy and accessible average maxentropy. Then, there exists a family of universal one-way hash functions with output length $O\left(\tilde{n}^{4} s / \Delta^{3}\right)$ and key length $O\left(\tilde{n}^{4} s / \Delta^{3} \cdot \log n\right)$ for any $s=\omega(\log n)$, where n is the security parameter. ${ }^{7}$

We first show how to combine this with Theorem 20 to get a universal one-way hash function.
Theorem 25. Suppose there exists a one-way function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$. Then, there exists a family of universal one-way hash functions with key and output length $O\left(n^{7}\right)$.

Proof. Fixing $s:=\log ^{2}(n)$, we use Theorem 20 to get a function $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ with $\tilde{n}=O(n)$ and gap $\Delta=\log n / n$ between real Shannon entropy and accessible average max-entropy. By Theorem 24 we get a family of universal one-way hash functions with output length $O\left(\tilde{n}^{4} s / \Delta^{3}\right)=$ $O\left(n^{4} \log ^{2}(n) / \log ^{3}(n)\right)$ and key length $O\left(\tilde{n}^{4} s / \Delta^{3} \cdot \log (n)\right)=O\left(n^{7}\right)$.

[^6]Overview. The construction proceeds via a series of transformations as outlined in Section 1.2: gap amplification (via repetition), entropy reduction (by hashing inputs) and reducing output length (by hashing outputs). In each of these transformations, we use n_{0} to denote the input length of the function F we start with, and n to denote the security parameter.

5.1.1 Gap Amplification

Here, we show that a direct product construction increases the gap between real entropy and accessible entropy. Another useful effect of direct product (for certain settings of parameters) is turning real Shannon entropy into real min-entropy, and turning accessible average max-entropy into accessible max-entropy.

Lemma 26 (Gap amplification). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ be a function. For $t \in \operatorname{poly}(n)$, let F^{t} be the t-fold direct product of F. Then, F^{t} satisfies the following properties:
i. If F^{-1} has real Shannon entropy at least k, then $\left(F^{t}\right)^{-1}$ has real min-entropy at least $t \cdot k-$ $\tilde{n} \cdot \sqrt{s t}$ for any $s=\omega(\log n)$ and $t>s$.
ii. If F^{-1} has accessible average max-entropy at most k, then $\left(F^{t}\right)^{-1}$ has accessible max-entropy at most $t \cdot k+\tilde{n} \cdot \sqrt{s t}$ for any $s=\omega(\log n)$.

Proof. In the following X and $X^{(t)}=\left(X_{1}, \ldots, X_{t}\right)$ are uniformly distributed over $\{0,1\}^{\tilde{n}}$ and $\left(\{0,1\}^{\tilde{n}}\right)^{t}$ respectively.
i. Follows readily from Lemma 4 (with $\epsilon=2^{-s}$).
ii. Given any PPTM F^{t}-collision-finder A^{\prime}, we construct a PPTM F-collision-finder A that:

On input x, picks a random i in $[t]$ along with random $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{t}$, computes $\mathrm{A}^{\prime}\left(x_{1}, \ldots, x_{t}\right) \mapsto\left(x_{1}^{\prime}, \ldots, x_{t}^{\prime}\right)$, and outputs x_{i}^{\prime}.
By the bound on the accessible average max-entropy of F^{-1}, we know that there exists a family of sets $\{\mathcal{L}(x)\}$ such that $\mathrm{E}[\log |\mathcal{L}(X)|] \leq k, x \in \mathcal{L}(x)$, and $\operatorname{Pr}[\mathrm{A}(X) \notin \mathcal{L}(X)] \leq \operatorname{neg}(n)$. Consider the family of sets $\left\{\mathcal{L}^{\prime}\left(x^{(t)}\right): x^{(t)} \in\left(\{0,1\}^{\tilde{n}}\right)^{t}\right\}$ given by:

$$
\mathcal{L}^{\prime}\left(x^{(t)}\right)=\mathcal{L}\left(x_{1}^{(t)}\right) \times \mathcal{L}\left(x_{2}^{(t)}\right) \times \cdots \times \mathcal{L}\left(x_{t}^{(t)}\right) .
$$

By linearity of expectations, we have $\mathrm{E}\left[\log \left|\mathcal{L}^{\prime}\left(X_{1}, \ldots, X_{t}\right)\right|\right] \leq t \cdot k$. Moreover, by the Chernoff-Hoeffding bound and using the fact that $\log |\mathcal{L}(X)|$ assumes values in $[0, \tilde{n}]$, we have

$$
\begin{align*}
& \operatorname{Pr}\left[\log \left|\mathcal{L}^{\prime}\left(X^{(t)}\right)\right| \geq t \cdot k+\tilde{n} \sqrt{s t}\right] \tag{17}\\
& =\operatorname{Pr}\left[\log \left|\mathcal{L}\left(X_{1}^{(t)}\right)\right|+\cdots+\log \left|\mathcal{L}\left(X_{t}^{(t)}\right)\right| \geq t \cdot k+\tilde{n} \sqrt{s t}\right] \leq e^{-2 s}
\end{align*}
$$

We claim that this implies that A^{\prime} has accessible max-entropy at most $t \cdot k+\tilde{n} \sqrt{s t}$. Suppose otherwise, then there exists a non-negligible function ϵ such that

$$
\operatorname{Pr}\left[\mathrm{A}^{\prime}\left(F^{t}\left(X^{(t)}\right)\right) \notin \mathcal{L}^{\prime}\left(X^{(t)}\right)\right] \geq \epsilon-e^{-2 s} \geq \epsilon / 2
$$

Therefore,

$$
\operatorname{Pr}[\mathrm{A}(F(X)) \notin \mathcal{L}(X)]=\operatorname{Pr}\left[\mathrm{A}^{\prime}\left(F^{t}\left(X^{(t)}\right)\right) \notin \mathcal{L}^{\prime}\left(X^{(t)}\right)\right] / t \geq \epsilon / 2 t
$$

which contradicts our assumption on A.

5.1.2 Entropy Reduction

Next we describe a construction that given F and any parameter ℓ, reduces the accessible maxentropy of F^{-1} by roughly ℓ bits, while approximately preserving the gap between real min-entropy and accessible max-entropy.

Lemma 27 (Reducing entropy). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ be a function. Fix a family of pairwise independent hash functions $\mathcal{G}=\left\{g:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{\ell}\right\}$. Then, $F^{\prime}:\{0,1\}^{\tilde{n}} \times \mathcal{G} \mapsto\{0,1\}^{m} \times \mathcal{G} \times\{0,1\}^{\ell}$ as given by $F^{\prime}(x, g)=(F(x), g, g(x))$ satisfies the following properties:
i. Assuming F^{-1} has real min-entropy at least k, then $\left(F^{\prime}\right)^{-1}$ has real min-entropy at least $k-\ell-s$ for any $s=\omega(\log n)$.
ii. Assuming F^{-1} has accessible max-entropy at most k, then $\left(F^{\prime}\right)^{-1}$ has accessible max-entropy at most $\max \{k-\ell+s, 0\}$ for any $s=\omega(\log n)$.

Proof. In the following X and G are uniformly distributed over $\{0,1\}^{\tilde{n}}$ and \mathcal{G}, respectively.
i. Fix $g \in \mathcal{G}$ and let $S_{g}=\left\{z \in\{0,1\}^{\ell}: \operatorname{Pr}[g(X)=z] \leq 2^{-\ell-s}\right\}$. Observe that:
(a) $\operatorname{Pr}\left[g(X) \in S_{g}\right] \leq 2^{-s}$ (by a union bound over $z \in S_{g}$);
(b) Fix any $z \notin S_{g}$ and any $x \in\{0,1\}^{n}$ such that $\mathrm{H}_{X \mid F(X)}(x \mid F(x)) \geq k$. Then,

$$
\begin{aligned}
\operatorname{Pr}\left[X=x \mid F^{\prime}(X, g)=(F(x), g, z)\right] & =\operatorname{Pr}[X=x \mid F(X)=F(x) \wedge g(X)=z] \\
& \leq \frac{\operatorname{Pr}[X=x \mid F(X)=F(x)]}{\operatorname{Pr}[g(X)=z]} \\
& \leq \frac{2^{-k}}{2^{-\ell-s}}=2^{-(k-\ell-s)} .
\end{aligned}
$$

where the second inequality follows from our assumptions on z and x.
Combining the above two observations and the bound on the real min-entropy of F, it follows that for all $g \in \mathcal{G}$, with probability $1-2^{-s}-\operatorname{neg}(n)$ over $x \leftarrow X$, we have

$$
\operatorname{Pr}\left[X=x \mid F^{\prime}(X, g)=F^{\prime}(x, g)\right] \leq 2^{-(k-\ell-s)} .
$$

The bound on the real min-entropy of F^{\prime} follows readily.
ii. Given a PPTM F^{\prime}-collision-finder A^{\prime}, we construct a PPTM F-collision-finder A as follows:

On input x, picks a pair (g, r) uniformly at random and output $\mathrm{A}^{\prime}(x, g ; r)$.

By the bound on the accessible max-entropy of F^{-1}, we know that there exists a family of sets $\left\{\mathcal{L}(x) \subseteq\{0,1\}^{\tilde{n}}: x \in\{0,1\}^{\tilde{n}}\right\}$ such that $|\mathcal{L}(x)| \leq 2^{k}, x \in \mathcal{L}(x)$, and

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{A}(X, G ; R) \in \mathcal{L}(X)] \geq 1-\operatorname{neg}(n) \tag{18}
\end{equation*}
$$

where R is uniformly distributed over the random coins of A . Let $\mathcal{L}^{\prime}(x, g):=$ $\left\{\left(x^{\prime}, g\right): x^{\prime} \in \mathcal{L}(x) \wedge g\left(x^{\prime}\right)=g(x)\right\}$. Equation (18) yields that

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}^{\prime}(X, G ; R) \in \mathcal{L}^{\prime}(X, G)\right] \geq 1-\operatorname{neg}(n) \tag{19}
\end{equation*}
$$

We next bound the size of the set $\mathcal{L}^{\prime}(x, g)$ using the pairwise independent of \mathcal{G}. Specifically, for all $x \in\{0,1\}^{n}$ it holds that

$$
\begin{equation*}
\left.\operatorname{Pr}\left[\left|\mathcal{L}^{\prime}(x, G)\right| \leq 2^{k-\ell+s-1}+1\right\}\right] \geq 1-2^{-(s-1)} \tag{20}
\end{equation*}
$$

where we are taking into account the possibility that $x \in \mathcal{L}(x)$. Combining the last two inequalities, we obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}^{\prime}(X, G ; R) \in \mathcal{L}^{\prime}(X, G) \wedge\left|\mathcal{L}^{\prime}(X, G)\right| \leq \max \left\{2^{k-\ell+s}, 1\right\}\right] \geq 1-\operatorname{neg}(n)-2^{-(s-1)} \tag{21}
\end{equation*}
$$

The above yields an upper bound of $\max \{k-\ell+s, 0\}$ on the accessible max-entropy of $\left(F^{\prime}\right)^{-1}$.

5.1.3 Reducing Output Length

The next transformation gives us a way to derive a function that is both length-decreasing and collision-resistant on random inputs.
Lemma 28 (Reducing output length). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ be a function. Fix a family of pairwise independent hash functions $\mathcal{G}=\left\{g:\{0,1\}^{m} \mapsto\{0,1\}^{\tilde{n}-\log n}\right\}$ and let $F^{\prime}:\{0,1\}^{n} \times \mathcal{G} \mapsto\{0,1\}^{\tilde{n}-\log n} \times \mathcal{G}$ be defined by $F^{\prime}(x, g)=(g, g(F(x)))$. The following holds: if F^{-1} has real min-entropy at least $\omega(\log n)$ and F is collision-resistant on random inputs, then F^{\prime} is collision-resistant on random inputs.
Proof. The bound on real min-entropy implies that there exists a subset $S \subseteq\{0,1\}^{\tilde{n}}$ of density at $\operatorname{most} \operatorname{neg}(n)$, such that for all $x \notin S$ it holds that $\left|F^{-1}(F(x))\right|=n^{\omega(1)}$. Hence,

$$
\begin{equation*}
|\operatorname{Im}(F)| \leq|F(S)|+|F(\bar{S})| \leq|S|+|\bar{S}| / n^{\omega(1)} \leq \operatorname{neg}(n) \cdot 2^{n} \tag{22}
\end{equation*}
$$

By the two-wise independent of \mathcal{G},

$$
\begin{equation*}
\operatorname{Pr}\left[\exists y^{\prime} \in \operatorname{Im}(F): y^{\prime} \neq F(X) \wedge G\left(y^{\prime}\right)=G(F(X))\right] \leq \frac{|\operatorname{Im}(F)|}{2^{\tilde{n}-\log n} \leq \operatorname{neg}(n)} \tag{23}
\end{equation*}
$$

Namely, $g(F(x)$) uniquely determines $F(x)$ with high probability. In particular, a collision for $g \circ F$ is also a collision for F. Given any PPTM F^{\prime}-collision-finder A^{\prime}, we construct a PPTM F-collisionfinder A as follows:

On input x, pick g and r at random and compute $x^{\prime}=\mathrm{A}^{\prime}(x, g ; r)$. If $F\left(x^{\prime}\right)=F(x)$, output x^{\prime}, else output x.
Equation (23) implies that $\operatorname{Pr}\left[\mathrm{A}^{\prime}(X, G ; R) \neq(\mathrm{A}(X ; G, R), G)\right] \leq \operatorname{neg}(n)$. Therefore, $\operatorname{Pr}\left[\mathrm{A}^{\prime}(X, G ; R)=(X, G)\right] \geq 1-\operatorname{neg}(n)$. Namely, F^{\prime} is also collision-resistant on random inputs.

5.1.4 Additional Transformations

We present two more standard transformations from folklore and previous work that are needed to complete the construction.

Lemma 29 (From random inputs to targets, folklore). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ be a length-decreasing function. Suppose F is collision-resistant on random inputs. Then, $\left\{F_{y}^{\prime}:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}\right\}_{y \in\{0,1\}^{\tilde{n}}}$ as defined by $F_{y}^{\prime}(x)=F(y+x)$ is a family of target collision-resistant hash functions.

Proof. Given a PPTM adversary A' that breaks target collision-resistance of F_{y}^{\prime}, we can construct a PPTM adversary A that breaks F as follows:

On input x, run $\mathrm{A}^{\prime}\left(1^{n}\right)$ to compute (x_{0}, state), and then run $\mathrm{A}^{\prime}\left(\right.$ state,$\left.x \oplus x_{0}\right)$ to compute x_{1}. Output $x \oplus x_{0} \oplus x_{1}$.

Note that $\left(x_{0}, x_{1}\right)$ is a collision for $F_{x \oplus x_{0}}^{\prime}$ iff $\left(x, x \oplus x_{0} \oplus x_{1}\right)$ is a collision for F. It then follows quite readily that A breaks F with the same probability that A^{\prime} breaks F_{y}^{\prime}.

The following result of Shoup [22] (improving on [16, 1]) shows that we can construct target collision-resistant hash functions for arbitrarily long inputs starting from one for a fixed input length.

Lemma 30 (Increasing the input length [22]). Let n be a security parameter, $t=\operatorname{poly}(n)$ be a parameter and let $\left\{F_{y}:\{0,1\}^{\tilde{n}+\log n} \mapsto\{0,1\}^{\tilde{n}}\right\}$ be a family of target collision-resistant hash functions. Then, there exists a family of target collision-resistant hash functions $\left\{F_{y^{\prime}}^{\prime}:\{0,1\}^{\tilde{n}+t \log n} \mapsto\{0,1\}^{\tilde{n}}\right\}$ where $\left|y^{\prime}\right|=O(|y| \log t)$.

5.1.5 Putting Everything Together

Using these transformations, we can now prove Theorem 24.
Proof of Theorem 24. Recall that we have given $F:\{0,1\}^{n_{0}} \mapsto\{0,1\}^{m_{0}}, s \in \omega(\log n)$, the gap Δ and that n is the security parameter.

STEP 1 (gap amplification): For a parameter t, we define F_{1} as $F_{1}\left(x_{1}, \ldots, x_{t}\right)=$ $\left(F\left(x_{1}\right), \ldots, F\left(x_{t}\right)\right)$, the t-fold direct product of F. We choose the parameter $t \in O\left(n_{0}^{2} s / \Delta^{2}\right)$ such that

$$
t \cdot k_{\mathrm{REAL}}-n_{0} \cdot \sqrt{s t} \geq t \cdot\left(k_{\mathrm{REAL}}-\Delta / 2\right)+n_{0} \cdot \sqrt{s t}+3 s
$$

Lemma 26 yields that this repetition increases both the real and accessible entropies of F_{1} by a factor of t (comparing to F). In addition, this repetition converts real Shannon entropy to real min-entropy and accessible average max-entropy to accessible max-entropy (up to additive terms that are sub-linear in t). More precisely, we have the following properties:

- $F_{1}:\{0,1\}^{n_{1}} \rightarrow\{0,1\}^{m_{1}}$, where $n_{1}(n)=t \cdot n_{0}$ and $m_{1}(n)=t \cdot m_{0}$.
- F_{1}^{-1} has real min-entropy at least $t \cdot k_{\text {REAL }}-n_{0} \cdot \sqrt{s t} \geq t \cdot\left(k_{\text {REAL }}-\Delta / 2\right)+n_{0} \cdot \sqrt{s t}+3 s$.
- F_{1}^{-1} has accessible max-entropy at most $t \cdot\left(k_{\text {REAL }}-\Delta\right)+n_{0} \cdot \sqrt{s t}$.

In the next steps, the construction uses an additional parameter k. In case k is chosen such that

$$
\begin{equation*}
k \in\left[k_{\text {REAL }}, k_{\mathrm{REAL}}+\Delta / 2\right] \tag{24}
\end{equation*}
$$

we have

- F_{1}^{-1} has real min-entropy at least $t \cdot(k-\Delta)+n_{0} \cdot \sqrt{s t}+3 s$.
- F_{1}^{-1} has accessible max-entropy at most $t \cdot(k-\Delta)+n_{0} \cdot \sqrt{s t}$.

In steps 2 to 4 we will assume that we have k with this property, and so there is a gap of $3 s$ between real min-entropy and accessible max-entropy. In step 5 , we will essentially do "exhaustive search" over the values for k.

STEP 2 (entropy reduction): We next apply entropy reduction to F_{1} to obtain $F_{2}^{(k)}$. That is, $F_{2}^{(k)}(x, g)=\left(F_{1}(x), g, g(x)\right)$, where $g:\{0,1\}^{n_{1}} \mapsto\{0,1\}^{\ell}$ is selected from a family of pairwise independent hash functions with $\ell=t \cdot(k-\Delta)+n_{0} \cdot \sqrt{s t}+s=O\left(t n_{0}\right)$. Lemma 27 yields that this additional hashing reduces the real min-entropy and accessible max-entropy by ℓ (up to an additive term of s). More exactly, we have the following properties:

- $F_{2}^{(k)}:\{0,1\}^{n_{2}} \mapsto\{0,1\}^{m_{2}}$ where $n_{2}(n, k)=O\left(t n_{0}\right)$ and $m_{2}(n, k)=O\left(t n_{0}\right)$. Note that in particular n_{2} and m_{2} also depend on k (unlike n_{1} and m_{1}).
- If (24) holds, then $\left(F_{2}^{(k)}\right)^{-1}$ has real min-entropy at least s.
- If (24) holds, then $\left(F_{2}^{(k)}\right)^{-1}$ has accessible max-entropy at most 0 . Hence, $F_{2}^{(k)}$ is collisionresistant on random inputs (by Lemma 12).

STEP 3 (reducing the output length): We next reduce the output length of $F_{2}^{(k)}$ by hashing the output to $n_{2}-\log n$ bits. That is, $F_{3}^{(k)}(x, g)=\left(g, g\left(F_{2}^{(k)}(x)\right)\right)$ where $g:\{0,1\}^{m_{2}} \mapsto$ $\{0,1\}^{n_{2}-\log n}$ is selected from a family of pairwise-independent hash functions.

- $F_{3}^{(k)}:\{0,1\}^{n_{3}} \mapsto\{0,1\}^{m_{3}}$ where $n_{3}(n, k)=O\left(t n_{0}\right)$ and $m_{3}(n, k)=n_{3}-\log n$.
- By Lemma $28, F_{3}^{(k)}$ is collision-resistant on random inputs, assuming that (24) holds.

STEP 4 (adding random shifts) We then transform $F_{3}^{(k)}$ into a family $\left\{G_{y}^{(k)}\right\}$ of target collisionresistant hash functions via a random shift, following Lemma 29. That is, $G_{y}^{(k)}(x)=F_{3}^{(k)}(y+$ $x)$. We then have that

- $G_{y}^{(k)}(x):\{0,1\}^{n_{3}} \mapsto\{0,1\}^{m_{3}}$ and $G_{y}^{(k)}$ uses a key y of length $n_{3}(n, k)$.
- If (24) holds, then $\left\{G_{y}^{(k)}\right\}$ is target collision-resistant.

STEP 5 (removing non-uniformity): To remove the non-uniform advice k, we "try all possibilities" from 0 to n_{0} in steps of size $\Delta / 2$, similar to the approach used in [19] (see also [14, Section 3.6])
i. First, we construct $\kappa=n_{0} \cdot 2 / \Delta$ families of functions $\left\{G_{y}^{(k)}\right\}$, where we instantiate $\left\{G_{y}^{(k)}\right\}$ for all $k \in\left\{\frac{\Delta}{2}, 2 \cdot \frac{\Delta}{2}, 3 \cdot \frac{\Delta}{2}, \ldots, n_{0}\right\}$. These κ families of functions satisfy the following properties:

- Each of $G_{y}^{(k)}$ is length-decreasing; in particular, $G_{y}^{(k)}$ has input length $n_{3}(n, k)$ and output length $n_{3}(n, k)-\log n$. Note that $G_{y}^{\left(n_{0}\right)}$ has the longest input length, i.e., $n_{3}(n, i \Delta / 2) \leq n_{3}\left(n, n_{0}\right)$ for all i because $\ell(n, k)$ increases as a function of k. We may then assume that all κ functions $G_{y}^{1}, \ldots, G_{y}^{\kappa}$ have the same input length $n_{3}\left(n, n_{0}\right)$ and the same output length $n_{3}\left(n, n_{0}\right)-\log n$ by padding "extra part" of the input to the output.
- At least one of the $\left\{G_{y}^{(k)}\right\}$ is target collision-resistant; this is because $k_{\text {Real }} \in\left[0, n_{0}\right]$, and so (24) holds for some k which we picked.
ii. Next, for each k, we construct a family of functions $\left\{\tilde{G}_{\tilde{y}}^{(k)}\right\}$ from $\left\{G_{y}^{(k)}\right\}$ with input length $\kappa \cdot n_{3}\left(n, n_{0}\right)$, key length $O\left(n_{3}\left(n, n_{0}\right) \cdot \log n\right)$ and output length $n_{3}\left(n, n_{0}\right)-\log n$, by following the construction given by Lemma 30. Again, at least one of the $\left\{\tilde{G}_{\tilde{y}}^{(k)}\right\}$ for k as above is target collision-resistant.
iii. Finally, we define a family of functions $\left\{G_{\tilde{y}_{1}, \ldots, \tilde{y}_{k}}\right\}$ to be the concatenation of all $\tilde{G}_{\tilde{y}}^{(k)}$ on the same input. That is, $G_{\tilde{y}_{1}, \ldots, \tilde{y}_{\kappa}}(x)=\tilde{G}_{\tilde{y}_{1}}^{(\Delta / 2)}(x) \circ \cdots \circ \tilde{G}_{\tilde{y}_{\kappa}}^{\left(n_{0}\right)}(x)$.
- Note that G has input length $\kappa \cdot n_{3}\left(n, n_{0}\right)$ and output length $\kappa \cdot\left(n_{3}\left(n, n_{0}\right)-\log n\right)$, so G is length-decreasing.
- Moreover, since at least one of $\left\{\tilde{G}_{\tilde{y}_{1}}^{(\Delta / 2)}(x)\right\}, \ldots,\left\{\tilde{G}_{\tilde{y}_{\kappa}}^{\left(n_{0}\right)}\right\}$ is target collisionresistant, $\left\{G_{\tilde{y}_{1}, \ldots, \tilde{y}_{k}}\right\}$ must also be target collision-resistant. This is because a collision for $G_{\tilde{y}_{1}, \ldots, \tilde{y}_{\kappa}}$ is a collision for each of $\tilde{G}_{\tilde{y}_{1}}^{(\Delta / 2)}, \ldots, \tilde{G}_{\tilde{y}_{\kappa}}^{\left(n_{0}\right)}$.

The family $\left\{G_{\tilde{y}_{1}, \ldots, \tilde{y}_{\kappa}}\right\}$ is the universal one-way hash function we wanted to construct, and so this finishes the proof of Theorem 24.

5.2 UOWHF via a Direct Construction

Theorem 31. Suppose there exists a polynomial-time computable function $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ such that F^{-1} has a noticeable gap Δ between real Shannon entropy and accessible Shannon entropy. Then, there exists a family of universal one-way hash functions with output length $O\left(\tilde{n}^{8} s^{2} / \Delta^{7}\right)$ and key length $O\left(\tilde{n}^{8} s^{2} / \Delta^{7} \cdot \log n\right)$ for any $s=\omega(\log n)$.

As before, we can use Theorem 31 together with results from the previous sections to get a universal one-way hash function.

Theorem 32. Suppose there exists a one-way function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$. Then, there exists a family of universal one-way hash functions with key and output length $\tilde{O}\left(n^{22}\right)$.

Proof. We set $s:=\log ^{2}(n)$, and use Theorem 16 to get a F with $\tilde{n}=O(n)$, and $\Delta:=O\left(\frac{1}{n^{2}}\right)$. Using F in Theorem 31 this gives key and output length $\tilde{O}\left(n^{22}\right)$.

In order to prove Theorem 31, we show how to transform a noticeable gap between real Shannon entropy and accessible Shannon entropy to one between real Shannon entropy and accessible max-entropy, and then follow the construction from the previous section. This step is fairly involved as we are unable to show that parallel repetition directly transforms an upper bound on accessible Shannon entropy into one for accessible max-entropy. We proceed by first establishing some additional properties achieved by gap amplification and entropy reduction.

Lemma 33 (Gap amplification, continued). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto$ $\{0,1\}^{m}$ be a function. For $t \in \operatorname{poly}(n)$, let F^{t} be the t-fold direct product of F. Then, F^{t} also satisfies the following properties:
i. If F^{-1} has real Shannon entropy at most k, then $\left(F^{t}\right)^{-1}$ has real max-entropy at most $t \cdot k+$ $\tilde{n} \cdot \sqrt{s t}$ for any $s=\omega(\log n)$ and $t>s$.
ii. If F^{-1} has real min-entropy at least k, then $\left(F^{t}\right)^{-1}$ has real min-entropy at least $t \cdot k$.
iii. If F^{-1} has real max-entropy at most k, then $\left(F^{t}\right)^{-1}$ has real max-entropy at most $t \cdot k$.
iv. If F^{-1} has accessible Shannon entropy at most k, then $\left(F^{t}\right)^{-1}$ has accessible Shannon entropy at most $t \cdot k$.
v. If F^{-1} has accessible max-entropy at most k, then $\left(F^{t}\right)^{-1}$ has accessible max-entropy at most $t \cdot k$.
vi. If F is q-collision-resistant on random inputs and F^{-1} has real max-entropy at most k, then F^{-1} has accessible max-entropy at most $(1-q / 8) \cdot t k+t$, provided that $t=\omega((1 / q) \cdot \log n)$.

Proof. Again, X and $X^{(t)}=\left(X_{1}, \ldots, X_{t}\right)$ are uniformly distributed over $\{0,1\}^{\tilde{n}}$ and $\left(\{0,1\}^{\tilde{n}}\right)^{t}$ respectively.
i. Follows readily from Lemma 4.
ii. This follows from a union bound and that fact that for all x_{1}, \ldots, x_{t} :

$$
\mathrm{H}_{X^{(t)}}\left(x_{1}, \ldots, x_{t} \mid F^{t}\left(x_{1}, \ldots, x_{t}\right)\right)=\sum_{i=1}^{t} \mathrm{H}_{X \mid F(X)}\left(x_{i} \mid F\left(x_{i}\right)\right)
$$

iii. Same as previous part.
iv. Given any PPTM F^{t}-collision-finder A^{\prime}, we construct the following PPTM F-collision-finder A:

On input x, pick a random i in $[t]$ along with random $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{t}$, compute $\mathrm{A}^{\prime}\left(x_{1}, \ldots, x_{t}\right) \mapsto\left(x_{1}^{\prime}, \ldots, x_{t}^{\prime}\right)$, and output x_{i}^{\prime}.

Define the random variables $\left(X_{1}^{\prime}, \ldots, X_{t}^{\prime}\right)=\mathrm{A}^{\prime}\left(X_{1}, \ldots, X_{t}\right)$. Then,

$$
\begin{aligned}
\mathrm{H} & \left(X_{1}^{\prime}, \ldots, X_{t}^{\prime} \mid X_{1}, \ldots, X_{t}\right) & & \\
& \leq \mathrm{H}\left(X_{1}^{\prime} \mid X_{1}\right)+\cdots+\mathrm{H}\left(X_{t}^{\prime} \mid X_{t}\right) & & \text { subadditivity of conditional Shannon entropy } \\
& =t \cdot \mathrm{H}\left(X_{I}^{\prime} \mid X_{I}\right) & & \text { where } I \text { has the uniform distribution over }[t] \\
& =t \cdot \mathrm{H}(\mathrm{~A}(X) \mid X) & & \text { by definition of A } \\
& \leq t \cdot k & & \text { by the bound on accessible Shannon entropy of } F^{-1}
\end{aligned}
$$

v. Analogous to Lemma 26 part ii, but simpler, since we do not have to use the ChernoffHoeffding bound.
vi. Suppose on the contrary that there exists a PPTM F^{t}-collision-finder A^{\prime} that violates the guarantee on accessible max-entropy. For $x^{(t)} \in\left(\{0,1\}^{\tilde{n}}\right)^{t}$, let $B\left(x^{(t)}\right):=$
 real max-entropy, we have that $\operatorname{Pr}\left[\exists i \in[t]:\left|F^{-1}\left(F\left(X_{i}^{(t)}\right)\right)\right|>2^{k}\right] \leq t \cdot \operatorname{neg}(n)=\operatorname{neg}(n)$. Hence,

$$
\begin{equation*}
\operatorname{Pr}\left[\left|B\left(X^{(t)}\right)\right|>\binom{t}{q t} 2^{(1-q / 8) t k}\right] \leq \operatorname{neg}(n) \tag{25}
\end{equation*}
$$

Since A^{\prime} achieves accessible max-entropy greater than $(1-q / 8) t k+t$, there must exists a non-negligible function ϵ such that $\operatorname{Pr}\left[\mathrm{A}^{\prime}\left(X^{(t)} ; R^{\prime}\right) \notin B\left(X^{(t)}\right)\right] \geq \epsilon-t \cdot \operatorname{neg}(n) \geq \epsilon / 2$, where R^{\prime} is uniformly distributed over the random coins of A^{\prime}. Namely, A^{\prime} finds collisions on at least a $1-q / 8$ fraction of the coordinates with non-negligible probability.
Since F is q-collision resistant, this violates a standard Chernoff-type direct product theorem. We now give a self-contained proof, following a similar analysis done for standard collision resistance in [4]. Consider the following PPTM F-collision-finder A:

On input $x \in\{0,1\}^{\tilde{n}}$, pick a random $i \in[t]$ along with random $x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{t}$, compute $\mathrm{A}^{\prime}\left(x_{1}, \ldots, x_{t}\right) \mapsto\left(x_{1}^{\prime}, \ldots, x_{t}^{\prime}\right)$, and output x_{i}^{\prime}.
To analyze the success probability of A^{\prime}, fix any subset S of $\{0,1\}^{\tilde{n}}$ of density $q / 2$. If $t=$ $\omega(\log n / q)$, then a Chernoff bound yields that

$$
\operatorname{Pr}\left[\mathrm{A}^{\prime}\left(X^{(t)}\right) \notin B\left(X^{(t)}\right) \wedge\left|\left\{i \in[t]: X_{i}^{(t)} \in S\right\}\right| \geq q / 4\right] \geq \epsilon / 4
$$

This means that

$$
\operatorname{Pr}_{i \leftarrow[t]}\left[\mathrm{A}^{\prime}\left(X^{(t)}\right) \mapsto\left(X_{1}^{\prime}, \ldots, X_{t}^{\prime}\right) \wedge X_{i} \in S \wedge X_{i}^{\prime} \neq X_{i}\right] \geq \epsilon / 4 \cdot q / 8
$$

We may then deduce (following the same calculations in [4, Prop 2]) that

$$
\operatorname{Pr}_{x \leftarrow X}[\operatorname{Pr}[\mathrm{~A}(x ; R) \neq x] \geq \epsilon / 4 \cdot q / 8 \cdot 2 / q] \geq 1-q / 2 .
$$

where R is uniformly distributed over the random coins of A . By repeating A a sufficient number of times, we may find collisions on random inputs of F with probability $1-q$, contradicting our assumption that F is q-collision-resistant on random inputs.

Lemma 34 (Reducing entropy, continued). Let n be a security parameter and $F:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{m}$ be a function. Fix a family of 2-universal hash functions $\mathcal{G}=\left\{g:\{0,1\}^{\tilde{n}} \mapsto\{0,1\}^{\ell}\right\}$. Then, $F^{\prime}:\{0,1\}^{\tilde{n}} \times \mathcal{G} \mapsto\{0,1\}^{m} \times \mathcal{G} \times\{0,1\}^{\ell}$ as given by $F^{\prime}(x, g)=(F(x), g, g(x))$ satisfies the following properties:
i. If F^{-1} has real max-entropy at most k, then $\left(F^{\prime}\right)^{-1}$ has real max-entropy at most $\max \{k-\ell+s, 0\}$ for any $s=\omega(\log n)$.
ii. If F^{-1} has p-accessible max-entropy at most k, then $\left(F^{\prime}\right)^{-1}$ has $p+2^{-\Omega(s)}$-accessible maxentropy at most $\max \{k-\ell+s, 0\}$ for any s.

Proof. In the following X and G are uniformly distributed over $\{0,1\}^{\tilde{n}}$ and \mathcal{G} respectively.
i. Fix an x such that $\left|F^{-1}(F(x))\right| \leq 2^{k}$. By 2-universal hashing,

$$
\mathrm{E}\left[\left|G^{-1}(G(x)) \cap\left(F^{-1}(F(x)) \backslash\{x\}\right)\right|\right] \leq\left(2^{k}-1\right) \cdot 2^{-\ell} \leq 2^{k-\ell}
$$

The bound on the real max-entropy of F^{-1} and the Markov's inequality, yield that

$$
\operatorname{Pr}\left[\left|G^{-1}(G(X)) \cap\left(F^{-1}(F(X)) \backslash\{x\}\right)\right| \geq 2^{(s-1)} \cdot 2^{k-\ell}\right] \leq 2^{-(s-1)}+\operatorname{neg}(n) .
$$

The bound on the real max-entropy of $\left(F^{\prime}\right)^{-1}$ follows.
ii. Readily follows from the proof of Lemma 27 part ii.

5.2.1 Putting Everything Together

Proof of Theorem 31. Recall that we start out with a function $F:\{0,1\}^{n_{0}} \rightarrow\{0,1\}^{m_{0}}$ with a gap Δ between real Shannon entropy and accessible Shannon entropy. Let $k_{\text {REAL }}$ denote the real Shannon entropy of F^{-1}.

STEP 1 (gap amplification): Let F_{1} be the t-fold direct product of F for a sufficiently large t to be determined later. That is, $F_{1}\left(x_{1}, \ldots, x_{t}\right)=\left(F\left(x_{1}\right), \ldots, F\left(x_{t}\right)\right)$.
Lemma 26 yields that this repetition increases both the real and accessible entropies of F_{1} by a factor of t. In addition, the repetition converts real Shannon entropy to real min-entropy and real max-entropy (up to an additive $o(t)$ term). More precisely:

- $F_{1}:\{0,1\}^{n_{1}} \mapsto\{0,1\}^{m_{1}}$ where $n_{1}(n)=t \cdot \tilde{n}$ and $m_{1}(n)=t \cdot m$.
- F_{1}^{-1} has real min-entropy at least $t \cdot k_{\text {REAL }}-n_{0} \sqrt{s t}$ and real max-entropy at most t. $k_{\text {REAL }}+n_{0} \sqrt{s t}$.
- F_{1}^{-1} has accessible Shannon entropy at most $t \cdot k_{\text {Real }}-t \Delta$.

From the next step on, the construction again uses an additional parameter k. We will be especially interested in the case

$$
\begin{equation*}
k \in\left[k_{\mathrm{REAL}}, k_{\mathrm{REAL}}+\Delta^{2} / 128 n_{0}\right] . \tag{26}
\end{equation*}
$$

In case this holds,

- F_{1}^{-1} has accessible Shannon entropy at most $t k-t \Delta$. Lemma 13 yields that F_{1}^{-1} has $(1-\Delta / 4 k)$-accessible max-entropy at most $t k-t \Delta / 2$.

STEP 2 (entropy reduction): Apply entropy reduction to F_{1} with $\ell=t k-t \Delta / 2+s$ to obtain $F_{2}^{(k)}$. That is, $F_{2}^{(k)}(x, g)=\left(F_{1}(x), g, g(x)\right)$, where $g:\{0,1\}^{n_{1}} \mapsto\{0,1\}^{\ell}$ is selected from a family of 2-universal hash functions.
By Lemma 27 and Lemma 34, this reduces the accessible max-entropy to 0 , which allows us to deduce that $F_{2}^{(k)}$ is weakly collision-resistant on random inputs. Assuming Equation (26) we have

- $F_{2}^{(k)}:\{0,1\}^{n_{2}} \mapsto\{0,1\}^{m_{2}}$ where $n_{2}(n, k)=O\left(t n_{0}+\ell(n, k)\right)=O\left(t n_{0}\right)$ and $m_{2}(n, k)=$ $O\left(t m_{0}+\ell(n, k)\right)=O\left(t n_{0}\right)$.
- $\left(F_{2}^{(k)}\right)^{-1}$ has real min-entropy at least $t \cdot\left(k_{\text {REAL }}-k+\Delta / 2\right)-n_{0} \sqrt{s t}-2 s$, which is at least

$$
t \cdot\left(\Delta / 2-\Delta^{2} / 128 n_{0}\right)-n_{0} \sqrt{s t}-2 s
$$

and real max-entropy at most $t \cdot\left(k_{\text {REAL }}-k+\Delta / 2\right)+n_{0} \sqrt{s t} \leq t \cdot \Delta / 2+n_{0} \sqrt{s t}$.

- $\left(F_{2}^{(k)}\right)^{-1}$ has $\left(1-\Delta / 4 k+2^{-\Omega(s)}\right)$-accessible max-entropy at most 0 . Thus, $F_{2}^{(k)}$ is q -collision-resistant on random inputs (by Lemma 12), for $q=\Delta / 4 k-2^{-\Omega(s)}$.

STEP 3 (gap amplification): $F_{3}^{(k)}$ is t^{\prime}-fold direct product of $F_{2}^{(k)}$, where $t^{\prime}=s / q=O(k s / \Delta)$. That is, $F_{3}^{(k)}\left(x_{1}, \ldots, x_{t^{\prime}}\right)=\left(F_{2}^{(k)}\left(x_{1}\right), \ldots, F_{2}^{(k)}\left(x_{t^{\prime}}\right)\right)$.
By Lemma 33, this allows us to amplify the weak collision-resistance property of $F_{2}^{(k)}$ to obtain a gap between real min-entropy and accessible max-entropy in $F_{3}^{(k)}$, again assuming Equation (26).

- $\left(F_{3}^{(k)}\right)^{-1}$ has real min-entropy at least

$$
t^{\prime} \cdot\left(t \cdot\left(\Delta / 2-\Delta^{2} / 128 n_{0}\right)-n_{0} \sqrt{s t}-2 s\right)
$$

- $\left(F_{3}^{(k)}\right)^{-1}$ has accessible max-entropy at most $t^{\prime} \cdot\left((1-q / 8) \cdot\left(t \Delta / 2+n_{0} \sqrt{s t}\right)+1\right)$, which is at most:

$$
\left.t^{\prime} \cdot\left(t \cdot(\Delta / 2-\Delta q / 16)+n_{0} \sqrt{s t}\right)+1\right)
$$

Now, $k \leq n_{0}$, so $q=\Delta / 4 k-2^{-\Omega(s)} \geq \Delta / 4 n_{0}-2^{-\Omega(s)}$. This means $\left(F_{3}^{(k)}\right)^{-1}$ has accessible max-entropy at most:

$$
\left.t^{\prime} \cdot\left(t \cdot\left(\Delta / 2-\Delta^{2} / 64 n_{0}+2^{-\Omega(s)}\right)+n_{0} \sqrt{s t}\right)+1\right)
$$

Note that the gap is at least $t^{\prime} \cdot\left(t \cdot \Delta^{2} / 128 n_{0}-2^{-\Omega(s)}-\left(2 n_{0} \sqrt{s t}+2 s+1\right)\right)$, which is at least $3 s$ as long as:

$$
t \cdot \Delta^{2} / 128 n_{0} \geq 2^{-\Omega(s)}+2 n_{0} \sqrt{s t}+2 s+1+3 s / t^{\prime}
$$

Since $3 s / t^{\prime}=3 q \leq 3 \Delta$, we can set $t=O\left(n_{0} / \Delta+n_{0} s / \Delta^{2}+n_{0}^{4} s / \Delta^{4}\right)=O\left(n_{0}^{4} s / \Delta^{4}\right)$ so that $\left(F_{3}^{(k)}\right)^{-1}$ has a gap of $3 s$ between real min-entropy and accessible max-entropy, and moreover, we know where this gap is (given k).

STEP 4: We follow steps $2,3,4$, and 5 in the previous construction, with the following modifications in the parameters:

- We apply entropy reduction first, with

$$
\left.\ell=t^{\prime} \cdot\left(t \cdot(\Delta / 2-\Delta q / 16)+n_{0} \sqrt{s t}\right)+1\right)+s .
$$

- To remove the non-uniform advice k, we "try all possibilities" from 0 to n_{0} in steps of size $\Delta^{2} / 128 n_{0}$.

We then obtain a non-uniform construction of UOWHFs with output and key length $O\left(n_{0}\right.$. $\left.t \cdot t^{\prime}\right)=O\left(n_{0}^{6} s^{2} / \Delta^{5}\right)$, since $t=O\left(n_{0}^{4} s / \Delta^{4}\right)$ and $t^{\prime}=O\left(n_{0} s / \Delta\right)$. We also obtain a uniform construction with output length $O\left(n_{0} /\left(\Delta^{2} / n_{0}\right) \cdot n_{0} \cdot t \cdot t^{\prime} \cdot \log n\right)=O\left(n_{0}^{8} s^{2} / \Delta^{7}\right)$ and key length $O\left(n_{0}^{8} s^{2} / \Delta^{7} \cdot \log n\right)$.

This finishes the proof of Theorem 31.

6 Connection to Average Case Complexity

In this section we use the notion of inaccessible entropy for reproving a result by Impagliazzo and Levin [12], given in the realm of average case complexity. This result draws a connection between two seemingly separate lines of research: average case complexity and universal one-way hashfunctions (UOWHFs). More specifically, [12] show a reduction from "uniform distribution" average case complexity problems to ones with arbitrary (though polynomial samplable one) distributions. Here, we reprove this result using similar technique to the ones we used in the first part of the paper to reduce UOWHFs to one-way functions (OWFs).

Section 6.1 introduces the basic notion and definitions used through the section, and in particular what "success on the average" means. It also formally describes the result of Impagliazzo and Levin [12], a result that we reprove in Section 6.2.

6.1 Preliminaries and the Impagliazzo and Levin Result

We start by introducing some basic notions from average case complexity. ${ }^{8}$

6.1.1 Algorithms That Err

Let L be some language, and suppose $\mathrm{A}(y ; r)$ is a randomized algorithm with input $y \in\{0,1\}^{*}$, randomness r, and output domain $\{0,1, \perp\} .{ }^{9}$ It is useful to think that $\mathrm{A}(y, \cdot)$ is trying to decide L , where 0 and 1 are guesses whether $y \in \mathrm{~L}$, and \perp signals that A refuses to guess.

Recall that when defining a worst case complexity class (e.g., BPP), one requires $\operatorname{Pr}[\mathrm{A}(y ; R)=$ $\mathrm{L}(y)] \geq \frac{2}{3}$ for any $y \in\{0,1\}^{*}$ (the choice of the constant $\frac{2}{3}$ is somewhat arbitrary). In contrast, in average case complexity an algorithm is allowed to be wrong on some inputs. Specifically, the success probability of a decider A is measured not with respect to to single input, but with respect to a distribution over the elements of L .

Definition 35. A randomized algorithm A is α-correct on input $y \in\{0,1\}^{*}$ with respect to a language $\mathrm{L} \subseteq\{0,1\}^{*}$, if $\operatorname{Pr}[\mathrm{A}(y ; R)=\mathrm{L}(y)] \geq \alpha$, where we identify languages with their characteristic functions, and R is uniformly distributed over the possible random coins of A .

Assuming $L \in B P P$, then there exists an algorithm A that is $\frac{2}{3}$-correct with respect to L, for every $y \in\{0,1\}^{*}$.

[^7]Definition 36 (Problem). A problem is a pair $(\mathrm{L}, \mathcal{D})$ of language and distribution family, where $\mathrm{L} \subseteq\{0,1\}^{*}$ and $\mathcal{D}=\left\{D_{i}\right\}_{i \in \mathbb{N}}$ is a family of distributions over L .

The problem class HeurBPP contain those problems for which there exists an efficient algorithm that is correct on all but a "small" fraction of the inputs.

Definition 37 (HeurBPP). A problem (L, \mathcal{D}) is in HeurBPP , if there exists a four-input algorithm A such that the following holds for every $(n, \delta) \in \mathbb{N} \times(0,1]: \mathrm{A}\left(\cdot, 1^{n}, \delta ; \cdot\right)$ runs in time $p(n, 1 / \delta)$ for some $p \in$ poly, and

$$
\underset{Y \leftarrow D_{n}}{\operatorname{Pr}}\left[\mathrm{~A}\left(Y, 1^{n}, \delta ; \cdot\right) \text { is } \frac{2}{3} \text {-correct on } Y\right] \geq 1-\delta \text {. }
$$

Namely, A is allowed to run in time polynomial in the "sampling complexity" of the instance, and inverse polynomial in the probability with which it is allowed to err.

6.1.2 Samplable Distributions

We next study the families of distributions \mathcal{D} to consider. While it is most natural to focus on efficiently samplable distributions, the definition of HeurBPP does not pose such limits on the distributions considered; a pair $(\mathrm{L}, \mathcal{D})$ can be decided efficiently on average even if sampling the distribution \mathcal{D} is a computationally hard problem. For the reduction, however, we restrict ourselves to polynomial-time samplable distributions. This limitation is crucial, since with respect to arbitrary distributions, the notion of HeurBPP can degenerate to worst case complexity (see [15] or [3, Section 2.5]).

Definition 38 (Polynomial-time samplable distributions, (NP, PSamp)). A distribution family $\mathcal{D}=\left\{D_{n}\right\}_{n \in \mathbb{N}}$ is polynomial-time samplable, denoted $\mathcal{D} \in \mathrm{PSamp}$, if there exists a polynomial-time computable function D and a polynomial $p(n)$, such that $\mathrm{D}\left(1^{n}, U_{p(n)}\right)$ is distributed according to D_{n} for every $n \in \mathbb{N}$, where U_{m} is the uniform distribution over m-bit strings.

The product set (NP, PSamp) denotes the set of all pairs $(\mathrm{L}, \mathcal{D})$ with $\mathrm{L} \in \mathrm{NP}$ and $\mathcal{D} \in$ PSamp.
Note that the input $U_{p(n)}$ to D above is the only source of randomness used to sample the elements of \mathcal{D}. In the following we make use the distribution family $\mathcal{U}=\left\{U_{n}\right\}_{n \in \mathbb{N}}$ (clearly, $\mathcal{U} \in$ PSamp).

6.1.3 Impagliazzo and Levin Result

In the above terminology the result of Impagliazzo and Levin [12] can be stated as follows (cf., [3, Thm. 29]):

Theorem 39 ([12]). Suppose (NP, PSamp) \backslash HeurBPP $\neq \emptyset$, then $\exists \mathrm{L} \in \mathrm{NP}$ with $(\mathrm{L}, \mathcal{U}) \notin$ HeurBPP.
In other words, suppose there exists an average-case hard problem whose distribution is polynomial-time samplable, then there exists an average-case hard problem whose distribution is uniform.

Figure 1: Schematic proof of Theorem 39.

6.1.4 Search Problems

The proof of Theorem 39 uses the notion of "NP-search problems":
Definition 40 (Search problems). A search problem is a pair $(\mathcal{R}, \mathcal{D})$, where $\mathcal{R} \subseteq\{0,1\}^{*} \times\{0,1\}^{*}$ is a binary relation, and $\mathcal{D}=\left\{D_{i}\right\}_{i \in \mathbb{N}}$ is a family of distributions over $\{0,1\}^{*}$. In case \mathcal{R} is an NP-relation, then $(\mathcal{R}, \mathcal{D})$ is an NP-search problem.

For a relation \mathcal{R}, let $\mathcal{R}_{\mathbf{L}}$ be the corresponding language, i.e., $\mathcal{R}_{\mathbf{L}}=\{y: \exists w:(y, w) \in \mathcal{R}\}$.
The notion of heuristics is naturally generalized to NP-search problems. The only change is that in case the algorithm claims $y \in \mathcal{R}_{\mathrm{L}}$, it additionally has to provide a witness to prove that. A search algorithm A always outputs a pair, and we let A_{1} be the first component of this pair, and A_{2} be the second component.

Definition 41 (SearchHeurBPP). An NP-search problem (\mathcal{R}, \mathcal{D}) is in SearchHeurBPP, if there exists an algorithm A outputting pairs in $\{0,1, \perp\} \times\{0,1\}^{*}$ such that the following holds: (1) A_{1} is a heuristic for $\left(\mathcal{R}_{\mathrm{L}}, \mathcal{D}\right)$ and (2) $\mathrm{A}_{1}\left(y, 1^{n}, \delta ; r\right)=1 \Longrightarrow\left(y, \mathrm{~A}_{2}\left(y, 1^{n}, \delta ; r\right)\right) \in \mathcal{R}$.

Algorithm A is called a (randomized) heuristic search algorithm for $(\mathcal{R}, \mathcal{D})$.

6.1.5 Search Problems vs. Decision Problems

Suppose $(\mathrm{L}, \mathcal{D}) \in(\mathrm{NP}, \mathrm{PSamp})$ is a "difficult decision problem". Then any NP-relation associated with L gives a "difficult NP-search problem", because finding a witness also solves the decision problem.

The converse direction is less obvious (recall that even in worst-case complexity, one invokes self-reducibility). Nevertheless, Ben-David et al. [2] prove the following (see also [3, Thm. 4.5]):

Theorem 42 ([2]). Suppose there is an NP-relation \mathcal{R} with $(\mathcal{R}, \mathcal{U}) \notin$ SearchHeurBPP, then $\exists \mathrm{L} \in$ NP with $(\mathrm{L}, \mathcal{U}) \notin$ HeurBPP.

Using Theorem 42 the proof of Theorem 39 proceeds as follows (see Figure 1): suppose there is a pair $(\mathrm{L}, \mathcal{D}) \in(\mathrm{NP}, \mathrm{PSamp}) \backslash$ HeurBPP and let \mathcal{R} be an NP-relation for L . Then $(\mathcal{R}, \mathcal{D}) \notin$ SearchHeurBPP (if $(\mathcal{R}, \mathcal{D})$ would have a search heuristic algorithm, the first component of this algorithm, that outputs its left hand side output, would place $(\mathrm{L}, \mathcal{D}) \in$ HeurBPP.) The following lemma states that in this case there is a pair $(\mathcal{V}, \mathcal{U}) \notin$ SearchHeurBPP, and therefore Theorem 42 yields the conclusion.

Lemma 43 (Impagliazzo and Levin [12] main lemma, reproved here). Assume that there exists an NP-search problem $(\mathcal{R}, \mathcal{D})$ with $\mathcal{D} \in \operatorname{PSamp}$ such that $(\mathcal{R}, \mathcal{D}) \notin$ SearchHeurBPP, then there is an NP-relation \mathcal{V} such that $(\mathcal{V}, \mathcal{U}) \notin$ SearchHeurBPP.

Intuitively Lemma 43 states the following: suppose some sampling algorithm $\mathrm{D}\left(1^{n}, \cdot\right)$ generates hard search problems, then there exist an NP-search problem that is hard over the uniform distribution.

Consider the following application of Lemma 43; suppose that one-way functions exist and let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a length-preserving one-way function. Let $\mathrm{D}\left(1^{n}, r\right)$ be the algorithm that applies $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ on the input randomness $x=r$ and outputs $f(x)$, and set $\mathcal{D}=\left\{D_{n}\right\}_{n \in \mathbb{N}}$ to the corresponding distribution family. Furthermore, consider the NP-search problem given by the relation $\mathcal{R}=\left\{(f(x), x): x \in\{0,1\}^{*}\right\}$. It is easy to verify that the NP-search problem $(\mathcal{R}, \mathcal{D})$ is not in SearchHeurBPP.

Lemma 43 implies that hard problems exist for some uniform distribution, under the assumption that one-way functions exist. However, we knew this before: if one-way functions exist, then UOWHFs exist. Let \mathcal{F}_{k} be such a family as in Definition 1, and consider the relation $\mathcal{V}=\left\{\left((z, x), x^{\prime}\right): F_{z}(x)=F_{z}\left(x^{\prime}\right), x \neq x^{\prime}\right\}$, which asks us to find a non-trivial collision in F_{z} with a given x. By the security property of UOWHF, if we pick (z, x) uniformly at random, then this is a hard problem, and it is possible to show that $(\mathcal{V}, \mathcal{U}) \notin$ SearchHeurBPP. Thus, Rompel's result gives the conclusion of Lemma 43 in case we have the stronger assumption that one-way functions exist.

Given the above, it seems natural to ask whether the strategy used for constructing UOWHF from one-way functions, can be used for proving the general case stated in Lemma 43. In the following section we answer the above question in an affirmative way. Specifically, we present an alternative proof for Lemma 43 following a similar approach to that taken in the first part of this paper for constructing UOWHF from one-way functions.

6.1.6 The Valiant-Vazirani Lemma

We make use of the Valiant-Vazirani Lemma, originated in [23].
Lemma 44 ([23]). Let $\mathcal{S} \subseteq\{0,1\}^{*}$ be a set with $2^{k} \leq|\mathcal{S}| \leq 2^{k+1}$. Let \mathcal{G} be a family of two-universal hash-functions of the form $g:\{0,1\}^{*} \mapsto\{0,1\}^{k+2}$. Then for any $x \in \mathcal{S}$, the probability that x is the unique element in \mathcal{S} with $g(x)=0^{k+2}$ is at least $\frac{1}{2^{k+3}}$.

A more usual formulation of the Valiant-Vazirani lemma states that with probability at least $\frac{1}{8}$ there is exactly one element $x \in \mathcal{S}$ with $g(x)=0^{k+2}$. This follows immediately from the above form.

Proof. The probability that $g(x)=0^{k+2}$ for a fixed $x \in \mathcal{S}$ is $\frac{1}{2^{k+2}}$. Conditioned on this event, due to the two-universality of \mathcal{G}, the probability that any other element of \mathcal{S} is mapped to 0^{k+2} is at most $|\mathcal{S}| \frac{1}{2^{k+2}} \leq \frac{1}{2}$.

6.2 Proving Lemma 43 Via Inaccessible Entropy

Recall the basic idea underlying the two constructions of UOWHF from one-way functions presented in the first part of this paper. In a first step, we use the one-way function f to construct a function F that induces a gap between its real and accessible entropy (i.e., F has "inaccessible entropy"). Roughly, the distribution induced by the output of any efficient "collision-finder" algorithm getting a random x and outputting a random $x^{\prime} \in F^{-1}(F(x))$, has a smaller entropy than that induced by random preimage of $F(x)$. Afterwards, we use F to build the UOWHF.

We want to redo this first step in the current setting. Now, however, it is not anymore important to talk about collisions. ${ }^{10}$ Thus, we can instead define F such that $F^{-1}(y)$ has some inaccessible entropy for a uniform random y. This is in fact compatible with the construction given in Section 4.2: it is possible to show that the image of F is close to uniform in case $i \approx \mathrm{H}_{f(X)}(f(x))$ (recall that i is the number of bits hashed out from $f(x)$ in the definition of F).

Let now $(\mathcal{R}, \mathcal{D})$ be an NP search problem with $\mathcal{D} \in$ PSamp which is not in SearchHeurBPP. We would like to use a similar approach as above to define a relation with limited accessible maxentropy. One might suggest that the following search problem has inaccessible entropy: given a four tuple (n, i, g, z), where g is a two-universal hash-function, and z has i bits, find as solution an input x such that $g\left(\mathrm{D}\left(1^{n}, x\right)\right)_{1, \ldots, i}=z$. However, it turns out that one does not in fact need the randomness inherent in the choice of z (note that a typical two-universal hash-function XORs the output with a random string anyhow). Instead, it makes no difference to fix $z=0^{i}$, and so we adopt this to simplify the notation, so that the suggested search problem becomes to find x with $g\left(\mathrm{D}\left(1^{n}, x\right)\right)_{1, \ldots, i}=0^{i}$ for a given triple (n, i, g).

Problems with the above intuition and postprocessing the witness. A moment of thought reveals that there can be cases where this suggested search problem is easy. For example if the sampler $\mathrm{D}\left(1^{n}, x\right)$ simply outputs $y=x$ itself, which is possible if finding w with $(y, w) \in \mathcal{R}$ is difficult for a uniform random y. The solution is easy: ask the solving algorithm to output also a matching witness w with $\left(\mathrm{D}\left(1^{n}, x\right), w\right) \in \mathcal{R}$ (ignore invalid outputs).

Thus, the suggested search problem becomes: "given (n, i, g), find (x, w) such that $g\left(\mathrm{D}\left(1^{n}, x\right)\right)_{1 \ldots i}=0^{i}$ and $\left(\mathrm{D}\left(1^{n}, x\right), w\right) \in \mathcal{R} "$. The hope is then that this search problem has limited accessible entropy in the coordinate corresponding to x (we do not want to talk about the entropy in w because it arise from the number of witnesses which \mathcal{R} has, and at this point we have no control over this number).

There is a last little problem to take care of: we cannot encode n into the search problem, as there would be no way to ensure that (n, i, g) looks like a uniform bitstring. However, it is possible to ensure that the length of (i, g) uniquely define n, and we assume that this is done in such a way that n can be easily computed from the length of (i, g).

6.2.1 A Relation with Bounded Accessible Average Max-Entropy

Using the above discussion, we now finally have enough intuition to define the relation \mathcal{Q}. For $\mathcal{D} \in \operatorname{PSamp}$, we let $\operatorname{Canon}(\mathcal{D})$ be an arbitrary polynomial-time sampler for \mathcal{D}.

Definition 45. Let \mathcal{R} be an NP relation, let $\mathcal{D} \in \operatorname{PSamp}$, let $\mathrm{D}=\operatorname{Canon}(\mathcal{D})$ and let $d \in \mathbb{N}$ be such that D's running time on input $\left(1^{n}, \cdot\right)$ is bounded by n^{d}. Let \mathcal{G} be an explicit and constructible family of two-universal hash functions, where the family \mathcal{G}_{m} maps all strings of length at most m to strings of length m.

For $n \in \mathbb{N}$, define

$$
\mathcal{Q}^{(n)}:=\left\{((i, g),(x, w)): x \in\{0,1\}^{n^{d}}, i \in\left[n^{d}\right], g \in \mathcal{G}_{n^{d}}, g\left(\mathrm{D}\left(1^{n}, x\right)\right)_{1 \ldots i}=0^{i},\left(\mathrm{D}\left(1^{n}, x\right), w\right) \in \mathcal{R}\right\},
$$

and let $\mathcal{Q}:=\bigcup_{n \in \mathbb{N}} \mathcal{Q}^{(n)}$.

[^8]Note that the elements of \mathcal{G}_{m} in Definition 45 have domain $\bigcup_{i=0}^{m}\{0,1\}^{i}$. This somewhat unusual requirement is needed since the sampler might output strings of arbitrary lengths (up to n^{d}).

From now on, we will only consider the case where we have some fixed sampler D in mind. In this case, whenever n is given, we will assume that (i, g) are elements satisfying the conditions in Definition 45. Furthermore, we assume without loss of generality that (the encoding of) a uniform random bitstring, of the right length, induces the uniform distribution on $\mathcal{G}_{n^{d}} \times\left[n^{d}\right]$.

6.2.2 Accessible Average Max-Entropy

We next define what it means for an NP-search problem to have limited accessible max-entropy, with respect to a part of its witness. This notion is modeled by introducing a function f that outputs the "interesting part" of the witness.

Definition 46. Let \mathcal{Q} be an NP relation, and $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ a function. For $y \in\{0,1\}^{*}$ let

$$
\mathcal{S}_{\mathcal{Q}, f}(y):=\{f(w):(y, w) \in \mathcal{Q}\} .
$$

The real average max-entropy of $(\mathcal{Q}, \mathcal{D})$ with respect to f, is the function

$$
\mathrm{H}_{\mathcal{Q}, \mathcal{D}, f}^{\text {Real }}(m)=\underset{Y \leftarrow D_{m}}{\mathrm{E}}\left[\log \left(\left|\mathcal{S}_{\mathcal{Q}, f}(Y)\right|\right)\right]
$$

letting $\log (0):=-1 .{ }^{11}$
In case the relation \mathcal{R} and f are clear from the context, we sometimes write $\mathcal{S}(y)$ instead of $\mathcal{S}_{\mathcal{Q}, f}(y)$.

We next define a useful notion of limited accessible max-entropy in this setting. Here, one should think of algorithm A as an algorithm which, on input y produces a witness w with $(y, w) \in \mathcal{Q}$. It furthermore "aims" to produce witnesses w for which $f(w)$ has as much entropy as possible.

Definition 47. Let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}, p, k: \mathbb{N} \times(0,1] \mapsto \mathbb{R}, \mathcal{Q}$ an NP-relation, and \mathcal{D} a family of distributions. The pair $(\mathcal{Q}, \mathcal{D})$ has i.o. (infinitely often) ρ-accessible average max-entropy at most k with respect to f, if for every four-input algorithm $\mathrm{A}\left(y, 1^{m}, \varepsilon ; r\right)$ running in time $\ell=\ell(m, 1 / \varepsilon)$ for some $\ell \in$ poly, there exists infinitely many m 's in \mathbb{N}, a function $\varepsilon(m)=\varepsilon \in(0,1]$ and an ensemble of set families $\left\{\left\{\mathcal{L}_{m}(y) \subseteq\{0,1\}^{*}\right\}_{y \in \operatorname{Supp}\left(D_{m}\right)}\right\}_{m \in \mathbb{N}}$, such that

$$
\begin{equation*}
\operatorname{Pr}_{Y \leftarrow D_{m}, R \leftarrow\{0,1\}^{\ell}}\left[\Gamma\left(Y, \mathrm{~A}\left(Y, 1^{m}, \varepsilon ; R\right)\right) \in\left(\mathcal{L}_{m}(Y) \cup\{\perp\}\right)\right] \geq 1-\rho(m, \varepsilon) \tag{27}
\end{equation*}
$$

where $\Gamma=\Gamma_{\mathcal{Q}, f}(y, w)$ equals $f(w)$ in case $(y, w) \in \mathcal{Q}$ and equals \perp otherwise, and

$$
\begin{equation*}
\underset{Y \leftarrow D_{m}}{\mathrm{E}}\left[\log \left(\left|\mathcal{L}_{m}(Y)\right|\right)\right] \leq k(m, \varepsilon) \tag{28}
\end{equation*}
$$

The following lemma, proven in Section 6.2.3, states that the relation \mathcal{Q} defined in Definition 45 has limited accessible max-entropy with respect to the function $(x, w) \mapsto x$.

[^9]Lemma 48. Let $(\mathcal{R}, \mathcal{D})$ be an NP relation with $\mathcal{D} \in \operatorname{PSamp}$ and $(\mathcal{R}, \mathcal{D}) \notin$ SearchHeurBPP. Define \mathcal{Q} from $(\mathcal{R}, \mathcal{D})$ as in Definition 45 , and let $f:\{0,1\}^{*} \times\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be given by $f(x, w)=x$. Then, for any $c \in \mathbb{N},(\mathcal{Q}, \mathcal{U})$ has i.o. $\left(\frac{\varepsilon}{m}\right)^{c}$-accessible average max-entropy at most $k(m, \varepsilon)=\mathrm{H}_{\mathcal{Q}, \mathcal{U}, f}^{\mathrm{Real}}(m)-\sqrt[c]{\varepsilon} \cdot m^{c}$ with respect to f.

Lemma 48 is proven below, and in Section 6.2.4 we use Lemma 48 for proving Lemma 43. The latter is done by additionally fixing the value of $h(x)_{1 \ldots j}$, where h is an additional random hash function, and j is a random integer (in a certain range). The ratio is that an algorithm producing (x, w) with $h(x)_{1 \ldots j}=0^{j}$, can be used to access max-entropy roughly 2^{j}.

6.2.3 Proving Lemma 48

The proof of Lemma 48 follows similar lines to the proof of Theorem 20.
Proof (of Lemma 48). Let A be an algorithm that "aims to produce max-entropy for \mathcal{Q} ". Without loss of generality, we assume that \mathbf{A} either outputs a valid witness (x, w) for a given input (i, g) or \perp. We show how to find infinitely many $m \in \mathbb{N}, \varepsilon=\varepsilon(m) \in(0,1]$, and ensemble of set families $\left\{\mathcal{L}_{m}=\left\{\mathcal{L}_{m}(i, g)\right\}_{(i, g) \in \mathcal{Q}_{L}}\right\}_{m \in \mathbb{N}}$ with the properties as required in the lemma (we write $\mathcal{L}_{m}(i, g)$ instead of $\mathcal{L}_{m}(y)$ because the elements of $\mathcal{Q}_{\mathbf{L}}$ are pairs $\left.(i, g)\right)$. Towards achieving the above, consider the following candidate algorithm B for a search heuristics for $(\mathcal{R}, \mathcal{D})$.

Let $\beta \in \mathbb{N}$ be a constant to be determined by the analysis, let $d \in \mathbb{N}$ be such that n^{d} is an upper bound on the runtime of the sampler D (recall that we have fixed D above) on input ($\left.1^{n}, \cdot\right)$, and let $\ell=\ell(m, \varepsilon)$ be an upper bound on the running time of A on parameters m and ε. Let $m(n)$ be the description length of a pair in $\left[n^{d}\right] \times \mathcal{G}_{n^{d}}$ and let $\varepsilon(n, \delta)=\left(\delta(n) / n^{\beta}\right)^{\beta}$.

```
Search Heuristics B \({ }^{A}\)
Oracle: A // Entropy generator for \((\mathcal{Q}, \mathcal{U})\).
Input: \(y \in\{0,1\}^{*}, 1^{n}\) and \(\delta \in(0,1]\).
\(\varepsilon=\varepsilon(n, \delta) ; m=m(n) ; \ell=\ell(m, \varepsilon)\)
repeat \(n \cdot(n / \delta)^{\beta}\) times:
    \(i \leftarrow\left[n^{d}\right]\)
    \(g \leftarrow\left\{g^{\prime} \in \mathcal{G}_{n^{d}}: g^{\prime}(y)_{1 \ldots i}=0^{i}\right\}\)
    \(r \leftarrow\{0,1\}^{\ell}\)
    \((x, w)=\mathrm{A}\left((i, g), 1^{m}, \varepsilon ; r\right)\)
    if \((y, w) \in \mathcal{R}\) and \(\mathrm{D}\left(1^{n}, x\right)=y\)
        return \((1, w)\)
return 0
```

It is clear that, for any $\beta \in \mathbb{N}$, the running time of B is $\operatorname{poly}(n, 1 / \delta)$. Recall that, by assumption, $(\mathcal{R}, \mathcal{D})$ has no search heuristics. Algorithm B satisfies item (2) of Definition 41, and since (\mathcal{R}, \mathcal{D}) has no search heuristics, it must fail to satisfy item (1) (i.e., B_{1} cannot be a randomized heuristic). Note now that algorithm B_{1} is always correct if $y \notin \mathrm{~L}$ (always outputs 0). Thus, B must fail to be correct on some $y \in \mathrm{~L}$. In fact, there exist infinitely many n 's in \mathbb{N} and a function $\delta=\delta(n) \in(0,1]$. such that $\mathrm{B}_{1}\left(y, 1^{n}, \delta ; \cdot\right)$ is not $\frac{2}{3}$-correct for more than a fraction δ of the inputs $y \in \mathcal{R}_{\mathrm{L}}$ produced by $\mathrm{D}\left(1^{n}, \cdot\right)$.

The following discussion is with respect to to any fixed pair $(n, \delta=\delta(n))$ from the above infinite set.

We present a family of sets $\left\{\mathcal{L}_{m}(i, g)\right\}_{(i, g) \in \mathcal{G}_{n^{d}} \times\left[n^{d}\right]}$ for which Equations (27) and (28) holds with respect to algorithm A and f, for the parameters $m=m(n), \varepsilon=\varepsilon(n, \delta)=\varepsilon(m)$, and ρ and k as stated in the lemma. Since this holds for any such pair (n, δ) and since $m(n) \in \Omega(n)$ (and thus, there are infinitely many different m 's) the proof of the lemma would follow.

Consider the following set

$$
\begin{equation*}
\mathcal{Y}=\left\{y \in \mathrm{~L}: \operatorname{Pr}_{\substack{I \leftarrow\left[n^{d}\right] \\ G \leftarrow \mathcal{G}_{n}{ }^{d} R \leftarrow\{0,1\}^{\ell} \ell}}\left[\mathrm{A}_{1}\left((I, G), 1^{m}, \varepsilon ; R\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right): G(y)_{1 \ldots I}=0^{I}\right]<\left(\frac{\varepsilon}{n}\right)^{\beta}\right\}, \tag{29}
\end{equation*}
$$

letting $\mathrm{D}^{-1}\left(1^{n}, y\right):=\left\{x \in\{0,1\}^{n^{d}}: \mathrm{D}\left(1^{n}, x\right)=y\right\}$ and let $\ell=\ell(m)$. Note that \mathcal{Y} contains all the y 's in L for which B_{1} is not $\frac{2}{3}$-correct, and the above discussion implies

$$
\begin{equation*}
\operatorname{Pr}_{Y \leftarrow D_{n}}[Y \in \mathcal{Y}]>\delta \tag{30}
\end{equation*}
$$

Towards defining the sets $\left\{\mathcal{L}_{m}(i, g)\right\}$, we partition the preimages of the elements in \mathcal{Y} into buckets; for $i \in\left\{0, \ldots, n^{d}-1\right\}$ let

$$
\begin{equation*}
\overline{\mathcal{L}}(i):=\left\{x \in\{0,1\}^{n^{d}}: \mathrm{D}\left(1^{n}, x\right) \in\left(\mathcal{Y} \cap\left\{y: \mathrm{H}_{D_{n}(y)}(y) \in[i, i+1)\right\}\right)\right\}, \tag{31}
\end{equation*}
$$

where $\mathrm{H}_{D_{n}(y)}(y)=-\log \left(1 / D_{n}(y)\right)$ is the sample entropy of y with respect to the distribution D_{n}. In words: $\overline{\mathcal{L}}(i)$ are those x for which $y=\mathrm{D}\left(1^{n}, x\right) \in \mathrm{L}$ is an element for which $\mathrm{B}(y)$ is unlikely to produce a witness, and for which y has roughly $2^{\left(n^{d}\right)-i}$ preimages.

For $(i, g) \in \mathcal{G}_{n^{d}}$, the set $\mathcal{L}_{m}(i, g)$ is defined as

$$
\begin{equation*}
\mathcal{L}_{m}(i, g):=\mathcal{S}(i, g) \backslash \overline{\mathcal{L}}(i), \tag{32}
\end{equation*}
$$

where $\mathcal{S}(i, g)$ is taken from Definition 46. In the remaining of the proof we show that, for the right choice of β, Equations (27) and (28) holds with respect to the family $\left\{\mathcal{L}_{m}(i, g)\right\}$ for the functions $\rho(m, \varepsilon)=\left(\frac{\varepsilon}{m}\right)^{c}$ and $k(m, \varepsilon)=\mathrm{H}_{\mathcal{Q}, \mathcal{U}, f}^{\text {Real }}(m)-\sqrt[c]{\varepsilon} \cdot m^{c}$. The proof easily follow by the next two claims.
Claim 49. We have

$$
\operatorname{Prr}_{\substack{I \leftarrow[n d], G \leftarrow \mathcal{G}_{n^{d}} \\ R \leftarrow\{0,1\}}}\left[\mathrm{A}_{1}\left((I, G), 1^{m}, \varepsilon ; R\right) \in \overline{\mathcal{L}}(I)\right] \leq 2 n^{d} \cdot\left(\frac{\varepsilon}{n}\right)^{\beta}
$$

Claim 50. For $i \in\left[n^{d}\right]$ and $g \in \mathcal{G}_{n^{d}}$, let $\tilde{\mathcal{S}}(i, g)=\mathcal{S}(i, g)$ in case this set in non-empty and $\tilde{\mathcal{S}}(i, g)=\{\perp\}$ otherwise, then

$$
\operatorname{Pr}_{\substack{I \leftarrow\left[n n^{d}\right], G \leftarrow \mathcal{G}_{n} d \\ X \leftarrow \mathcal{S}(I, G)}}[X \in \overline{\mathcal{L}}(I)] \geq \frac{\delta}{10 n^{d}}
$$

Before proving the above claims, we first use them to conclude the proof of the lemma. Claim 49 implies that for large enough β

$$
\begin{equation*}
\operatorname{Pr}_{\substack{I \leftarrow[n d], G \leftarrow \mathcal{G}^{d} \\ R \leftarrow\{0,1\}^{n^{d}}}}\left[\Gamma\left((I, G), \mathrm{A}\left((I, G), 1^{m}, \varepsilon ; R\right)\right) \in\left(\mathcal{L}_{m}(I, G) \cup\{\perp\}\right)\right] \geq 1-2 n^{d} \cdot\left(\frac{\varepsilon}{n}\right)^{\beta} \geq 1-\left(\frac{\varepsilon}{m}\right)^{c} \tag{33}
\end{equation*}
$$

yielding that Equation (27) holds for $\left\{\mathcal{L}_{m}(i, g)\right\}$ and ρ.
Applying Markov's inequality on Claim 50, yields that

$$
\begin{equation*}
\operatorname{Pr}_{X \leftarrow \mathcal{S}(i, g)}\left[\mathrm{D}\left(1^{n}, X\right) \in \overline{\mathcal{L}}(i)\right] \geq \frac{\delta}{20 n^{d}} \tag{34}
\end{equation*}
$$

for at least $\frac{\delta}{20 n^{d}}$ fraction of the pairs $(i, g) \in\left[n^{d}\right] \times \mathcal{G}_{n^{d}}$. Where for any such pair it holds that

$$
\begin{align*}
\log \left(\left|\mathcal{L}_{m}(i, g)\right|\right) & \leq \log \left(\left(1-\frac{\delta}{20 n^{d}}\right) \cdot|\mathcal{S}(i, g)|\right) \tag{35}\\
& \leq \log (|\mathcal{S}(i, g)|)-\frac{\delta}{20 n^{d}}
\end{align*}
$$

It follows that for large enough β

$$
\begin{aligned}
\mathrm{H}_{\mathcal{Q}, \mathcal{U}, f}^{\mathrm{Real}}(m)-\mathrm{E}\left[\log \left(\left|\mathcal{L}_{m}(I, G)\right|\right)\right] & =\underset{(I, G) \leftarrow\left[n^{d}\right] \times \mathcal{G}_{n^{d}}}{\mathrm{E}}[\log (|\mathcal{S}(I, G)|)-\log (|\mathcal{L}(m, I, G)|)] \\
& \geq \frac{\delta^{2}}{400 n^{d}}=\frac{\left(\sqrt[\beta]{\varepsilon} \cdot m^{\beta}\right)^{2}}{400 n^{d}} \\
& \geq \sqrt[c]{\varepsilon} \cdot m^{c}
\end{aligned}
$$

Hence, Equation (28) holds for $\left\{\mathcal{L}_{m}(i, g)\right\}$ and k, and the proof of the lemma follows.
Proof of Claim 49. Compute

$$
\begin{align*}
n^{d} \cdot\left(\frac{\varepsilon}{n}\right)^{\beta} & \geq \sum_{y \in \mathcal{Y}} D_{n}(y) \cdot n^{d} \cdot\left(\frac{\varepsilon}{n}\right)^{\beta} \tag{36}\\
& \geq \sum_{i=1}^{n^{d}} \sum_{y \in \mathrm{D}\left(1^{n}, \overline{\mathcal{L}}(i)\right)} D_{n}(y) \cdot \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n} d}, R \leftarrow\{0,1\}^{\ell}
\end{align*}\left[\mathrm{A}_{1}\left((i, G), 1^{m}, \varepsilon ; R\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right) \mid G(y)_{1 \ldots i}=0^{i}\right],
$$

letting $\left.\mathrm{D}\left(1^{n}, \overline{\mathcal{L}}(i)\right):=\left\{\mathrm{D}\left(1^{n}, x\right): x \in \overline{\mathcal{L}}(i)\right)\right\}$. In addition, for any (i, r) it holds that

$$
\begin{aligned}
\sum_{y \in \mathbf{D}\left(1^{m}, \overline{\mathcal{L}}(i)\right)} & D_{n}(y) \cdot \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}}\left[\mathrm{~A}_{1}\left((i, G), 1^{m}, \varepsilon ; r\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right) \mid G(y)_{1 \ldots i}=0^{i}\right] \\
& =\sum_{y \in \mathrm{D}\left(1^{m}, \overline{\mathcal{L}}(i)\right)} D_{n}(y) \cdot 2^{i} \cdot \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}}\left[\mathrm{~A}_{1}\left((i, G), 1^{m}, \varepsilon ; r\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right) \wedge G(y)_{1 \ldots i}=0^{i}\right] \\
& \left.\geq \sum_{y \in \mathrm{D}\left(1^{n}, \overline{\mathcal{L}}(i)\right)} D_{n}(y) \cdot 2^{i} \cdot \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}}\left[\mathrm{~A}_{1}\left((i, G), 1^{m}, \varepsilon ; r\right)\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right)\right] \\
& \left.\geq \frac{1}{2} \cdot \sum_{y \in \mathbf{D}\left(1^{m}, \overline{\mathcal{L}}(i)\right)} \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}}\left[\mathrm{~A}_{1}\left((i, G), 1^{m}, \varepsilon ; r\right)\right) \in \mathrm{D}^{-1}\left(1^{n}, y\right)\right] \\
& \left.=\frac{1}{2} \cdot \operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}}\left[\mathrm{~A}_{1}\left((i, G), 1^{m}, \varepsilon ; r\right)\right) \in \overline{\mathcal{L}}(i)\right] .
\end{aligned}
$$

Collecting the equations yields the claim.

For the proof of Claim 50, we need first a pairwise independence analogue of Claim 23. The proof is exactly the same, except a bit simpler as we fix the output w instead of fixing another preimage. We provide it for completeness.
Claim 51. Let $i \in\left[n^{d}\right], w \in\{0,1\}^{i}$ and $x^{*} \in\{0,1\}^{n^{d}}$ be such that $\mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \geq i$. Then,

$$
\operatorname{Pr}_{\substack{g \leftarrow \mathcal{G}_{n^{d}} \\ x \leftarrow(g \circ f)^{-1}(w)}}\left[x=x^{*}\right] \geq \frac{2^{-n^{d}}}{10},
$$

letting $(g \circ f)^{-1}(w)$ equals the set $\left\{x: g(f(x))_{1 \ldots i}=w\right\}$ in case this set is not empty, and $\{\perp\}$ otherwise.
Proof. Let G be uniformly distributed over $\mathcal{G}_{n^{d}}$, and let E be the event that $G\left(f\left(x^{*}\right)\right)=w$. Note that $\operatorname{Pr}[E]=2^{-i}$ and that

$$
\begin{equation*}
\operatorname{Pr}_{x \leftarrow(G \circ f)^{-1}(w)}\left[x=x^{*} \mid E\right]=\frac{1}{\left|(G \circ f)^{-1}(w)\right|} \tag{37}
\end{equation*}
$$

The pairwise independence of $\mathcal{G}_{n^{d}}$ yields that $\operatorname{Pr}[G(f(x))=w \mid E]=2^{-i}$ for any $x \in\{0,1\} \leq n^{d} \backslash$ $f^{-1}\left(f\left(x^{*}\right)\right)$. Hence, $\mathrm{E}\left[\left|(G \circ f)^{-1}(w) \backslash f^{-1}\left(f\left(x^{*}\right)\right)\right| \mid E\right] \leq 2 \cdot 2^{-i+n^{d}}$ and by Markov's inequality

$$
\begin{equation*}
\operatorname{Pr}\left[\left|(G \circ f)^{-1}(w) \backslash f^{-1}\left(f\left(x^{*}\right)\right)\right| \leq 4 \cdot 2^{-i+n^{d}} \mid E\right] \geq \frac{1}{2} \tag{38}
\end{equation*}
$$

Combining the above inequality and the assumption $\mathrm{H}_{f(X)}\left(f\left(x^{*}\right)\right) \geq i$, we get

$$
\begin{equation*}
\operatorname{Pr}\left[\left|(G \circ f)^{-1}(w)\right| \leq 4 \cdot 2^{-i+n^{d}}+\left\lvert\, f^{-1}\left(f\left(x^{*}\right)\left|\leq 5 \cdot 2^{-i+n^{d}}\right| E\right] \geq \frac{1}{2}\right.,\right. \tag{39}
\end{equation*}
$$

and conclude that

$$
\begin{aligned}
\operatorname{Pr}_{x \leftarrow(G \circ f)^{-1}(w)}\left[x=x^{*}\right] & =\operatorname{Pr}[E] \cdot \operatorname{Pr}_{x \leftarrow(G \circ f)^{-1}(w)}\left[x=x^{*} \mid E\right] \\
& \geq 2^{-i} \cdot \frac{1}{2} \cdot \frac{1}{5 \cdot 2^{-i+n^{d}}} \\
& =\frac{2^{-n^{d}}}{10} .
\end{aligned}
$$

Proof of Claim 50. For $i \in\left\{0 \ldots, n^{d}\right\}$ and $x \in \overline{\mathcal{L}}(i)$, Claim 51 yields that

$$
\begin{equation*}
\operatorname{Pr}_{G \leftarrow \mathcal{G}_{n^{d}}, X \leftarrow \tilde{\mathcal{S}}(i, G)}[X=x] \geq \frac{2^{-n^{d}}}{10} \tag{40}
\end{equation*}
$$

By Equation (30) it holds that $\operatorname{Pr}_{Y \leftarrow D_{n}}[Y \in \mathcal{Y}]>\delta$, and therefore $\operatorname{Pr}_{X \leftarrow\{0,1\}^{n}{ }^{n}}\left[X \in \bigcup_{i=1}^{n^{d}} \overline{\mathcal{L}}(i)\right]=$ $\operatorname{Pr}_{Y \leftarrow D_{n}}[Y \in \mathcal{Y}]>\delta$. We conclude that

$$
\begin{aligned}
\operatorname{Pr}_{\substack{I \leftarrow[n], G \leftarrow \mathcal{G}_{n^{d}} \\
X \leftarrow \overline{\mathcal{S}}(I, G)}}[X \in \overline{\mathcal{L}}(I)] & \geq \mathrm{E}[|\overline{\mathcal{L}}(I)|] \cdot \frac{2^{-n^{d}}}{10} \\
& \geq \frac{\delta \cdot 2^{n^{d}}}{n^{d}} \cdot \frac{2^{-n^{d}}}{10}=\frac{\delta}{10 n^{d}}
\end{aligned}
$$

6.2.4 A Difficult Problem For the Uniform Distribution

In this section we show how to transform a uniform search problem with a gap between its real and accessible entropy, into a uniform search problem for which no heuristic search algorithm exists (i.e., the problem is not in SearchHeurBPP). Combining it with Lemma 48 concludes the proof of Lemma 43.

The transformation is achieved by adding additional restriction on the witness of the given search problem. Specifically, requiring its "hash value" with respect to a randomly chosen pairwise independent hash function to be the all zero string.

We use the following definition:
Definition 52. Let \mathcal{Q} be an NP-relation, let $f:\{0,1\}^{*} \mapsto\{0,1\}^{*}$ be a function, let $\mathcal{G}=\left\{\mathcal{G}_{m}\right\}$ be family of pairwise independent hash function family, where the functions of \mathcal{G}_{k} map strings of length at most k to string of length m (as in Definition 45), and let $d \in \mathbb{N}$ be such that $(y, w) \in$ $\mathcal{Q} \Longrightarrow|f(w)| \leq|y|^{d}$. For $n \in \mathbb{N}$ let

$$
\mathcal{V}^{(n)}:=\left\{((y, j, g), w): y \in\{0,1\}^{n}, j \in\left[n^{d}+2\right], g \in \mathcal{G}_{n^{d}+2},(y, w) \in \mathcal{Q}, g(f(w))_{1 \ldots j}=0^{j}\right\}
$$

and let $\mathcal{V}:=\bigcup_{n \in \mathbb{N}} \mathcal{V}^{(n)}$.
As in Definition 52, we assume that the tuples (y, j, g) 's above can be encoded such that a uniformly random string, of the right length, decodes to a uniformly random tuple in $\{0,1\}^{n} \times$ $\left[n^{d}+2\right] \times \mathcal{G}_{n^{d}+2}$.

Lemma 53. Let \mathcal{Q}, f, d and \mathcal{V} be as in Definition 52. Suppose that $(\mathcal{Q}, \mathcal{U})$ has i.o. $\frac{(\varepsilon)^{2}}{50 m^{d}}$-accessible average max-entropy at most $\mathrm{H}_{\mathcal{Q}, \mathcal{U}, f}^{\mathrm{Real}}(m)-5 \varepsilon m^{d}$ with respect to f, then $(\mathcal{V}, \mathcal{U}) \notin$ SearchHeurBPP.
Proof. We assume towards a contradiction that $(\mathcal{V}, \mathcal{U}) \in \operatorname{SearchHeurBPP}$, and show that $(\mathcal{Q}, \mathcal{U})$ has too high accessible average max-entropy.

Let A be a randomized search heuristics for $(\mathcal{V}, \mathcal{U})$. The following algorithm B contradicts the assumption that $(\mathcal{Q}, \mathcal{U})$ has i.o. $\frac{(\varepsilon)^{2}}{50 m^{d}}$-accessible average max-entropy at most $\mathrm{H}_{\mathcal{Q}, \mathcal{U}, f}^{\mathrm{Real}}(m)-5 \varepsilon m^{d}$ with respect to f.

Let $\ell=\ell(n, \delta)$ be an upper bound on the running time of A on parameters n and δ. Let $n(m)$ be the description length of a triplet in $\{0,1\}^{m} \times\left[m^{d}+2\right] \times \mathcal{G}_{m^{d}+2}$ and let $\delta(m, \varepsilon)=\frac{\varepsilon^{2}}{100 m^{d}}$.

Entropy generator B^{A} for $(\mathcal{Q}, \mathcal{U})$
Oracle: $\mathrm{A} \quad / /$ Search heuristics for $(\mathcal{V}, \mathcal{U})$.
Input: $y \in\{0,1\}^{m}, 1^{m}$ and $\varepsilon \in(0,1]$
$\delta=\delta(m, \varepsilon) ; n=n(m) ; \ell=\ell(n, \delta)$
$j \leftarrow\left\{2, \ldots, m^{d}+2\right\}$
$g \leftarrow \mathcal{G}_{m}+2$
$r \leftarrow\{0,1\}^{\ell}$
$(b, w)=\mathrm{A}\left(y, j, h, 1^{n}, \delta ; r\right)$
if $b=1$ return w, else return \perp

It is clear that the running time of B is $\operatorname{poly}(m, 1 / \varepsilon)$. We show that B achieves high max-entropy for all (except maybe finitely many) values of m and any ε. Specifically, that for all (except maybe finitely many) (m, ε), there exists no family $\left\{\mathcal{L}_{m}(y)\right\}_{y \in\{0,1\}^{m}}$ as described in Definition 47 .

Fix m and ε, and let the random variables Y, J, G and R be uniformly chosen from $\{0,1\}^{m} \times$ $\left[m^{d}+2\right] \times \mathcal{G}_{m^{d}+2} \times\{0,1\}^{\ell}$. For $y \in\{0,1\}^{m}$, let $\eta(y)$ be the probability that $\mathrm{A}\left(y, J, G, 1^{n}, \delta ; \cdot\right)$ is not $\frac{2}{3}$-correct. Since $\mathrm{E}[\eta(Y)] \leq \delta=\frac{\varepsilon^{2}}{100 m^{d}}$, it holds that

$$
\begin{equation*}
\operatorname{Pr}\left[\eta(Y) \leq \frac{\varepsilon}{8 m^{d}}\right] \geq 1-\varepsilon \tag{41}
\end{equation*}
$$

Fix $y \in\{0,1\}^{m}$ and let $\mathcal{S}(y)=\mathcal{S}_{\mathcal{Q}, f}(y)=\{f(w):(y, w) \in \mathcal{Q}\}$. For $x \in \mathcal{S}(y)$ let $\mathcal{E}(y, x) \subseteq$ $\left[m^{d}+2\right] \times \mathcal{G}_{m^{d}+2}$ be the set of pairs (j, g) for which x is the only element in $\mathcal{S}(y)$ with $g(x)_{1 \ldots j}=0^{j}$. By Lemma 44

$$
\begin{equation*}
\operatorname{Pr}[(J, G) \in \mathcal{E}(y, x)] \geq \frac{1}{8|\mathcal{S}| m^{d}} \tag{42}
\end{equation*}
$$

For $x \in \mathcal{S}(y)$ let $\mathcal{E}^{\prime}(y, x) \subseteq \mathcal{E}(y, x)$ be such that $\operatorname{Pr}\left[(J, G) \in \mathcal{E}^{\prime}\left(y, x_{1}\right)\right]=\operatorname{Pr}\left[(J, G) \in \mathcal{E}^{\prime}\left(y, x_{2}\right)\right] \geq$ $\frac{1}{8|\mathcal{S}| m^{d}}$ for all $x_{1}, x_{2} \in \mathcal{S}(y)$, and let $\mathcal{E}^{\prime}(y)=\bigcup_{x \in \mathcal{S}} \mathcal{E}^{\prime}(y, x)$. Let $x_{y}(g, j)$ to be the unique element of $\mathcal{S}(y)$ with $g(x)_{1 \ldots j}=0^{j}$ in case it exists, and \perp otherwise, and let $X_{y}=x_{y}(G, J)$. Conditioned on $(J, G) \in \mathcal{E}^{\prime}(y)$, the random variable X_{y} is uniformly distributed over $\mathcal{S}(y)$. Furthermore, since $\operatorname{Pr}\left[(J, G) \in \mathcal{E}^{\prime}(y)\right] \geq \frac{1}{8 m^{d}}$, it holds that

$$
\begin{align*}
& \operatorname{Pr}\left[\mathrm{A}\left(y, J, G, 1^{n}, \delta ; \cdot\right) \text { is not } \frac{2}{3} \text {-correct } \mid(J, G) \in \mathcal{E}^{\prime}(y)\right] \tag{43}\\
& \leq 8 m^{d} \cdot \operatorname{Pr}\left[\mathrm{~A}\left(y, J, G, 1^{n}, \delta ; \cdot\right) \text { is not } \frac{2}{3} \text {-correct } \wedge(J, G) \in \mathcal{E}^{\prime}(y)\right] \\
& \leq 8 m^{d} \cdot \eta(y)
\end{align*}
$$

By definition,

$$
\begin{equation*}
\operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(y, j, g, 1^{n}, \delta ; R\right)\right)=x_{y}(j, g)\right] \geq \frac{2}{3} \tag{44}
\end{equation*}
$$

for every $(j, g) \in \mathcal{E}^{\prime}(y)$ such that $\mathrm{A}\left(y, j, g, 1^{n}, \delta ; \cdot\right)$ is $\frac{2}{3}$-correct.
For each $(j, g) \in \mathcal{E}^{\prime}(y)$, we now construct a set $\mathcal{R}(j, g)$ of random strings as follows: first pick all random strings r for which $f\left(\mathrm{~A}_{2}\left(y, j, g, 1^{n}, \delta ; r\right)\right)=x_{y}(j, g)$ is satisfied. Afterwards, if necessary, add other random strings or discard some of the picked random strings such that $|\mathcal{R}(j, g)|=\frac{2}{3} 2^{\ell}$.

Note that

$$
\begin{align*}
& \operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(y, J, G, 1^{n}, \delta ; R\right)\right)=X_{y} \mid(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] \tag{45}\\
& \geq \operatorname{Pr}\left[\mathrm{A}\left(y, J, G, 1^{n}, \delta ; \cdot\right) \text { is } \frac{2}{3} \text {-correct. } \mid(J, G) \in \mathcal{E}^{\prime}(y)\right] \\
& \geq 1-8 m^{d} \eta(y)
\end{align*}
$$

Hence, Equation (41) yields that

$$
\begin{equation*}
\operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(y, J, G, 1^{n}, \delta ; R\right)\right)=X_{y} \mid(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] \geq 1-\varepsilon \tag{46}
\end{equation*}
$$

for a $(1-\varepsilon)$ fraction of the y 's in $\{0,1\}^{m}$.
It remains to show that no family of sets $\{\mathcal{L}(y)\}_{y \in\{0,1\}^{m}}$ can be used to show that A has $\frac{(\varepsilon)^{2}}{50 m^{d}}$ accessible max-entropy at most $\mathrm{E}[\log (|\mathcal{S}(Y)|)]-5 \varepsilon m^{d}$. Fix a family $\{\mathcal{L}(y)\}$ with $\mathrm{E}[\log (|\mathcal{L}(Y)|)] \leq$ $\mathrm{E}[\log (|\mathcal{S}(Y)|)]-5 \varepsilon \mathrm{~m}^{d}$. The following claim concludes the proof of the lemma.

Claim 54. It holds that $\operatorname{Pr}\left[\Gamma\left(Y, \mathrm{~A}\left(Y, 1^{n}, \varepsilon ; R\right)\right) \notin \mathcal{L}(Y) \cup\{\perp\}\right] \geq \frac{(\varepsilon)^{2}}{50 m^{d}}$.
Proof. Note that $\log (|\mathcal{S}(y)|)-\log (|\mathcal{L}(y)|)>2 \varepsilon m^{d}$ holds for at least 2ε fraction of the y^{\prime} s in $\{0,1\}^{m}$ (otherwise, $\left.\mathrm{E}[\log (|\mathcal{S}(Y)|)-\log (|\mathcal{L}(Y)|)] \leq(1-2 \varepsilon) 2 \varepsilon m^{d}+2 \varepsilon \cdot\left(m^{d}+1\right)<5 \varepsilon n^{d}\right)$. Since Equation (46) holds for a $(1-\varepsilon)$ fraction of the y 's in $\{0,1\}^{m}$, there exists a set Good $\subseteq\{0,1\}^{m}$ of density ε such that both

$$
\begin{array}{r}
\log (|\mathcal{L}(y)|)<\log (|\mathcal{S}(y)|)-2 \varepsilon m^{d}, \text { and } \\
\operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(y, J, G, 1^{n}, \varepsilon ; R\right)\right)=X_{y} \mid(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] \geq 1-\varepsilon \tag{48}
\end{array}
$$

hold for every $y \in$ Good. It follows that

$$
\begin{equation*}
|\mathcal{L}(y)|<|\mathcal{S}(y)|(1-1.5 \varepsilon) \tag{49}
\end{equation*}
$$

for every $y \in$ Good; Equation (49) trivially holds in case $\mathcal{L}(y)=0$, where in case $|\mathcal{L}(y)|>0$, it holds that
i. $|\mathcal{L}(y)|<|\mathcal{S}(y)| \cdot e^{-2 \varepsilon \cdot \log |\mathcal{S}(y)|}$ (since $|\mathcal{S}(y)|>|\mathcal{L}(y)| \geq 1$) and
ii. $e^{-2 \varepsilon \cdot \log |\mathcal{S}(y)|} \leq|\mathcal{S}(y)| \cdot(1-1.5 \varepsilon)$ (since $e^{-\epsilon \kappa} \leq e^{-\epsilon}<1-0.75 \epsilon$ for $\kappa \geq 1$ and $\epsilon<\frac{1}{2}$).

Equation (49) yields that

$$
\begin{align*}
\operatorname{Pr}\left[X_{y} \in \mathcal{S}(y) \backslash \mathcal{L}(y) \mid(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] & =\operatorname{Pr}\left[X_{y} \in \mathcal{S}(y) \backslash \mathcal{L}(y) \mid(J, G) \in \mathcal{E}^{\prime}(y)\right] \tag{50}\\
& \geq 1.5 \varepsilon
\end{align*}
$$

for every $y \in$ Good, and therefore Equation (48) yields that

$$
\begin{equation*}
\operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(y, J, G, 1^{n}, \delta ; R\right)\right) \in \mathcal{S}(y) \backslash \mathcal{L}(y) \mid(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] \geq \frac{\varepsilon}{2} \tag{51}
\end{equation*}
$$

for every $y \in$ Good.
Since $\operatorname{Pr}[Y \in$ Good $] \geq \varepsilon$ and since $\operatorname{Pr}\left[(J, G) \in \mathcal{E}^{\prime}(y) \wedge R \in \mathcal{R}^{\prime}(J, G)\right] \geq \frac{2}{3}(1-\varepsilon) \frac{1}{8 m^{d}}$ for every $y \in$ Good, it follows that

$$
\operatorname{Pr}\left[f\left(\mathrm{~A}_{2}\left(Y, J, G, 1^{n}, \delta ; R\right)\right) \notin \mathcal{L}(y) \cup\{\perp\}\right] \geq \varepsilon \cdot \frac{2}{3} \cdot(1-\varepsilon) \cdot \frac{1}{8 m^{d}} \cdot \frac{\varepsilon}{2} \geq \frac{(\varepsilon)^{2}}{50 m^{d}}
$$

proving the claim and thus the lemma.

6.2.5 Putting It Together

We now use Lemmas 48 and 53 to prove Lemma 43 (and as we have seen, this implies Theorem 39).
Proof of Lemma 43. Lemma 48 yields that $(\mathcal{Q}, \mathcal{U})$ has i.o. $(\varepsilon / m)^{2 d}$-accessible average max-entropy at most $v-\sqrt[2 d]{\varepsilon} \cdot m^{2 d}$ with respect to f, for $v=\mathrm{E}_{I, G}\left[\log \left(\left|\mathcal{S}_{\mathcal{Q}, f}(I, G)\right|\right)\right]$. It follows that $(\mathcal{Q}, \mathcal{U})$ has i.o. $\frac{\varepsilon}{50 m^{d}}$-accessible average max-entropy at most $v-5 \varepsilon m^{d}$ with respect to f, and the proof follows by Lemma 53.

Remark 55. In the original argument by [12], the parameter j is set to $n-i$. While such a change would have made the above reduction more efficient, for clarity of presentation we have chosen not to use this optimization here.

Acknowledgements

We are thankful to Ran Raz and Chiu-Yuen Koo for useful conversations.

References

[1] M. Bellare and P. Rogaway. Collision-resistant hashing: Towards making UOWHFs practical. In CRYPTO, pages 470-484, 1997.
[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. J. Comput. Syst. Sci., 44(2):193-219, 1992.
[3] A. Bogdanov and L. Trevisan. Average-case complexity. Foundations and Trends in Theoretical Computer Science, 2, 2006.
[4] R. Canetti, R. L. Rivest, M. Sudan, L. Trevisan, S. P. Vadhan, and H. Wee. Amplifying collision resistance: A complexity-theoretic treatment. In CRYPTO, pages 264-283, 2007.
[5] T. M. Cover and J. A. Thomas. Elements of information theory. Wiley-Interscience, New York, NY, USA, second edition, 2006.
[6] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167-226 (electronic), 2003. ISSN 0097-5397.
[7] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically hiding commitments and statistical zero-knowledge arguments from any one-way function. SIAM Journal on Computing, 39(3):1153-1218, 2009.
[8] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In Proceedings of the 41 st Annual ACM Symposium on Theory of Computing (STOC). ACM Press, 2009.
[9] I. Haitner, O. Reingold, and S. Vadhan. Efficiency improvements in constructions of pseudorandom generators. In Proceedings of the 42 th Annual ACM Symposium on Theory of Computing (STOC). ACM Press, 2010.
[10] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way function. SIAM Journal on Computing, 28(4):1364-1396, 1999. Preliminary versions in STOC'89 and STOC'90.
[11] T. Holenstein and R. Renner. On the randomness of independent experiments. IEEE Transactions on Information Theory, 57(4):1865-1871, 2011.
[12] R. Impagliazzo and L. Levin. No better ways to generate hard NP instances than picking uniformly at random. In Proceedings of the 31st Annual Symposium on Foundations of Computer Science (FOCS), pages 812-821, 1990.
[13] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science (FOCS), pages 230-235, 1989.
[14] J. Katz and C. Koo. On constructing universal one-way hash functions from arbitrary one-way functions. Technical Report 2005/328, Cryptology ePrint Archive, 2005.
[15] M. Li and P. M. B. Vitányi. Average case complexity under the universal distribution equals worst-case complexity. Inf. Process. Lett., 42(3):145-149, 1992.
[16] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 33-43. ACM Press, 1989.
[17] N. Nisan and D. Zuckerman. Randomness is linear in space. Journal of Computer and System Sciences, 52(1):43-52, 1996.
[18] R. Renner and S. Wolf. Smooth Renyi entropy and applications. In IEEE International Symposium on Information Theory - ISIT 2004, page 233. IEEE, June 2004.
[19] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387-394, 1990.
[20] J. Rompel. Techniques for computing with low-independence randomness. PhD thesis, Massachusetts Institute of Technology, 1990. http://dspace.mit.edu/handle/1721.1/7582.
[21] A. D. Santis and M. Yung. On the design of provably secure cryptographic hash functions. In Advances in Cryptology - EUROCRYPT '90, 1990.
[22] V. Shoup. A composition theorem for universal one-way hash functions. In EUROCRYPT, pages 445-452, 2000.
[23] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science, 47:85-93, 1986.

[^0]: *School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il. Supported by US-Israel BSF grant 2010196. Part of this research was conducted while at Microsoft Research, New England Campus.
 ${ }^{\dagger}$ ETH Zurich, Department of Computer Science. E-mail: thomas.holenstein@inf.ethz.ch.
 ${ }^{\ddagger}$ Weizmann Institute of Science. E-mail: omer.reingold@gmail. com. Supported by US-Israel BSF grant 2006060.
 ${ }^{\S}$ School of Engineering and Applied Sciences and Center for Research on Computation and Society, Harvard University. E-mail: salil@seas.harvard.edu. Supported by NSF grant CNS-0831289 and US-Israel BSF grants 2006060, 2010196.
 ${ }^{\text {a }}$ CNRS and ENS, Paris. E-mail: wee@di.ens.fr. Most of work was done while at Queens College, CUNY. Supported in part by PSC-CUNY Award \#6014939 40 and NSF CAREER Award CNS-0953626.

[^1]: ${ }^{1}$ More details of [19]'s proof are worked out, with some corrections, in [20, 14].

[^2]: ${ }^{2}$ It is easy to convert any such function F into a standard UOWHF family by defining $F_{z}(x)=F(z+x)$.

[^3]: ${ }^{3}$ [19] started with the function $f^{\prime}\left(z, g_{1}, g_{2}\right):=\left(g_{2}\left(f_{0}\left(g_{1}(z)\right)\right), g_{1}, g_{2}\right)$, where g_{1} and g_{2} are n-wise independent hash-functions, and f_{0} is defined as $f_{0}(x, y, i)=\left(f(x), y^{n-i}, 0^{i}\right)$.

[^4]: ${ }^{4}$ The term "smoothed entropy" was coined by Renner and Wolf [18], but the notion of smoothed min-entropy has commonly been used (without a name) in the literature on randomness extractors [17].

[^5]: ${ }^{5}$ Recall that the sample entropy is defined as $\mathrm{H}_{f(X)}(y)=\log (1 / \operatorname{Pr}[f(X)=y])=n-\log \left|f^{-1}(y)\right|$, so the "heavy" images, where $f^{-1}(y)$ is large, have low sample entropy.
 ${ }^{6}$ If f is a permutation, then $\tilde{\mathcal{L}}(y, i)$ is given by:

 $$
 \tilde{\mathcal{L}}(y, i)= \begin{cases}\{0,1\}^{n} & \text { if } i \leq n-c \log n \\ \{y\} & \text { otherwise. }\end{cases}
 $$

 Then, for all $x \in\{0,1\}^{n}$, we have $\mathrm{E}[|\mathcal{L}(x, G, i)|]=2^{n-i}$ for all $i \leq n-c \log n$ and $|\mathcal{L}(x, g, i)|=1$ for all $g \in \mathcal{G}$ and all $i>n-c \log n$. This means that the entropy gap between $F^{-1}(F(Z))$ and $\mathcal{L}(X, G, I)$ is roughly $\frac{1}{n} \sum_{i>n-c \log n} n-i=$ $\Omega\left(c^{2} \log ^{2} n / n\right)$.

[^6]: ${ }^{7}$ Note that Δ is not required to be efficiently computable.

[^7]: ${ }^{8}$ We limit the following discussion only to notions that we actually use, so this section should not be regarded as an comprehensive introduction to the field of average case complexity (see Bogdanov and Trevisan [3] for such an introduction). While the definitions given here are equivalent to the ones given in [3], some of them are formulated somewhat differently (the interested reader is welcome to check their equivalence).
 ${ }^{9}$ We make the less common choice of using y as the input variable (and not x), since in our applications the element y is sampled as the output of a one-way function.

[^8]: ${ }^{10}$ One advantage of using an "inversion problem" instead of a "collision problem" is that it becomes possible to use two-wise independent hash-functions (instead of three-wise independent).

[^9]: ${ }^{11}$ The convention $\log (0)=-1$ helps us to simplify notation in a few places. (We need that $\log (0)<\log (1)$ since an algorithm which produces no valid witness should produce less entropy than an algorithm which produces some valid witness).

