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Abstract

This paper revisits the construction of Universal One-Way Hash Functions (UOWHFs) from
any one-way function due to Rompel (STOC 1990). We give a simpler construction of UOWHFs,
which also obtains better efficiency and security. The construction exploits a strong connection
to the recently introduced notion of inaccessible entropy (Haitner et al., STOC 2009). With
this perspective, we observe that a small tweak of any one-way function f is already a weak
form of a UOWHF: Consider F (x, i) that outputs the i-bit long prefix of f(x). If F were a
UOWHF then given a random x and i it would be hard to come up with x′ ̸= x such that
F (x, i) = F (x′, i). While this may not be the case, we show (rather easily) that it is hard to
sample x′ with almost full entropy among all the possible such values of x′. The rest of our
construction simply amplifies and exploits this basic property.

With this and other recent works, we have that the constructions of three fundamental
cryptographic primitives (Pseudorandom Generators, Statistically Hiding Commitments and
UOWHFs) out of one-way functions are to a large extent unified. In particular, all three con-
structions rely on and manipulate computational notions of entropy in similar ways. Pseudo-
random Generators rely on the well-established notion of pseudoentropy, whereas Statistically
Hiding Commitments and UOWHFs rely on the newer notion of inaccessible entropy.

In an additional result, we use the notion of inaccessible entropy for reproving the sem-
inal result of Impagliazzo and Levin (FOCS 1989): a reduction from “uniform distribution”
average case complexity problems to ones with arbitrary (though polynomial samplable one)
distributions.
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1 Introduction

The following text is discussing our construction of universal one-way hash functions. Our result
for average case complexity is described in Section 6.

Universal one-way hash functions (UOWHFs), as introduced by Naor and Yung [16], are a
weaker form of collision-resistant hash functions. The standard notion of collision resistance requires
that given a randomly chosen function f ← F from the hash family, it is infeasible to find any pair
of distinct inputs x, x′ such that f(x) = f(x′). UOWHFs only require target collision resistance,
where the adversary must specify one of the inputs x before seeing the description of the function
f . Formally:

Definition 1. A family of functions Fk =
{
Fz : {0, 1}n(k) 7→ {0, 1}m(k)

}
z∈{0,1}k is a family of

universal one-way hash functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k and x ∈ {0, 1}n(k), Fz(x) can be evaluated in time poly(n(k), k).

2. Shrinking: m(k) < n(k).

3. Target Collision Resistance: For every probabilistic polynomial-time adversary A, the proba-
bility that A succeeds in the following game is negligible in k:

(a) Let (x, state)← A(1k) ∈ {0, 1}n(k) × {0, 1}∗.
(b) Choose z ← {0, 1}k.
(c) Let x′ ← A(state, z) ∈ {0, 1}n(k).
(d) A succeeds if x ̸= x′ and Fz(x) = Fz(x

′).

It turns out that this weaker security property suffices for many applications. The most im-
mediate application given in [16] is secure fingerprinting, whereby the pair (f, f(x)) can taken as
a compact “fingerprint” of a large file x, such that it is infeasible for an adversary, seeing the
fingerprint, to change the file x to x′ without being detected. More dramatically, Naor and Yung
[16] also showed that UOWHFs can be used to construct secure digital signature schemes, whereas
all previous constructions (with proofs of security in the standard model) were based on trapdoor
functions (as might have been expected to be necessary due to the public-key nature of signature
schemes). More recently, UOWHFs have been used in the Cramer-Shoup encryption scheme [6]
and in the construction of statistically hiding commitment schemes from one-way functions [7, 8].

Naor and Yung [16] gave a simple and elegant construction of UOWHFs from any one-way
permutation, where Santis and Yung [21] generalized the construction of [16] to get UOWHFs
from regular one-way function. Rompel [19] gave a much more involved construction to prove that
UOWHFs can be constructed from an arbitrary one-way function, thereby resolving the complexity
of UOWHFs (as one-way functions are the minimal complexity assumption for complexity-based
cryptography, and are easily implied by UOWHFs).1 While complications may be expected for
constructions from arbitrary one-way functions (due to their lack of structure), Rompel’s analysis
also feels quite ad hoc. In contrast, the construction of pseudorandom generators from one-way
functions of [10], while also somewhat complex, involves natural abstractions (e.g., pseudoentropy)
that allow for modularity and measure for what is being achieved at each stage of the construction.

1More details of [19]’s proof are worked out, with some corrections, in [20, 14].
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In this paper, we give simpler constructions of UOWHFs from one-way functions, based on
(a variant of) the recently introduced notion of inaccessible entropy [8]. In addition, one of the
constructions obtains slightly better efficiency and security.

1.1 Inaccessible Entropy

For describing our construction, it will be cleaner to work with a variant of UOWHFs where there
is a single shrinking function F : {0, 1}n 7→ {0, 1}m (for each setting of the security parameter k)
such that it is infeasible to find collisions with random inputs. That is, an adversary A is given a
uniformly random x ← {0, 1}n, outputs an x′ such that F (x′) = F (x), and succeeds if x′ ̸= x.2

Note that we can assume without loss of generality that x′ = A(x) is always a preimage of F (x)
(A has the option of outputting x in case it does not find a different preimage); we refer to an
algorithm A with this property as an F -collision finder.

Our construction is based on an entropy-theoretic view of UOWHFs. The fact that F is shrink-
ing implies that there are many preimages x′ available to A. Indeed, if we consider an (inefficient)
adversary A(x) that outputs x′ ← F−1(F (x)) and let X be a random variable uniformly distributed
on {0, 1}n, then

H(A(X) | X) = H(X | F (X)) ≥ n−m,

where H(· | ·) denotes conditional Shannon entropy. (See Section 2 for more definitional details.)
We refer to the quantity H(X | F (X)) as the real entropy of F−1.

On the other hand, the target collision resistance means that effectively only one of the preimages
is accessible to A. That is for every probabilistic polynomial-time F -collision finder A, we have
Pr[A(X) ̸= X] = neg(n), which is equivalent to requiring that:

H(A(X) | X) = neg(n)

for all probabilistic polynomial-time F -collision finders A. (If A can find a collision X ′ with non-
negligible probability, then it can achieve non-negligible conditional entropy by outputting X ′ with
probability 1/2 and outputting X with probability 1/2.) We refer to the maximum of H(A(X) | X)
over all efficient F -collision finders as the accessible entropy of F−1. We stress that accessible
entropy refers to an upper bound on a form of computational entropy, in contrast to the H̊astad
et al. notion of pseudoentropy [10].

Thus, a natural weakening of the UOWHF property is to simply require a noticeable gap
between the real and accessible entropies of F−1. That is, for every probabilistic polynomial-time
F -collision finder A, we have H(A(X) | X) < H(X | F (X)) −∆, for some noticeable ∆, which we
refer to as the inaccessible entropy of F .

1.2 Our Constructions

Our constructions of UOWHFs have two parts. First, we show how to obtain a function with no-
ticeable inaccessible entropy from any one-way function. Second, we show how to build a UOWHF
from any function with inaccessible entropy.

2It is easy to convert any such function F into a standard UOWHF family by defining Fz(x) = F (z + x).
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OWFs =⇒ Inaccessible Entropy. Given a one-way function f : {0, 1}n 7→ {0, 1}m, we show
that a random truncation of f has inaccessible entropy. Specifically, we define F (x, i) to be the
first i bits of f(x).

To see that this works, suppose for contradiction that F does not have noticeable inaccessible
entropy. That is, we have an efficient adversary A that on input (x, i) can sample from the set
S(x, i) = {x′ : f(x′)1...i = f(x)1...i} with almost-maximal entropy, which is equivalent to sampling
according to a distribution that is statistically close to the uniform distribution on S(x, i). We can
now use A to construct an inverter Inv for f that works as follows on input y: choose x0 ← {0, 1}n,
and then for i = 1, . . . , n generate a random xi ← A(xi−1, i − 1) subject to the constraint that
f(xi)1,··· ,i = y1,··· ,i. The latter step is feasible, since we are guaranteed that f(xi)1,...,i−1 = y1,··· ,i−1
by the fact that A is an F -collision finder, and the expected number of trials needed get agreement
with yi is at most 2 (since yi ∈ {0, 1}, and y and f(xi) are statistically close). It is not difficult
to show that when run on a random output Y of f , Inv produces an almost-uniform preimage of
Y . This contradicts the one-wayness of f . Indeed, we only need f to be a distributional one-way
function [13], whereby it is infeasible to generate almost-uniform preimages under f .

Inaccessible Entropy =⇒ UOWHFs. Once we have a non-negligible amount of inaccessible
entropy, we can construct a UOWHF via a series of standard transformations.

1. Repetition: By evaluating F on many inputs, we can increase the amount of inaccessible
entropy from 1/poly(n) to poly(n). Specifically, we take F t(x1, . . . , xt) = (F (x1), . . . , F (xt))
where t = poly(n). This transformation also has the useful effect of converting the real
entropy of F−1 to min-entropy.

2. Hashing Inputs: By hashing the input to F (namely taking F ′(x, g) = (F (x), g(x)) for a
universal hash function g), we can reduce both the real (min-)entropy and the accessible
entropy so that (F ′)−1 still has a significant amount of real entropy, but has (weak) target
collision resistance (on random inputs).

3. Hashing Outputs: By hashing the output to F (namely taking F ′(x, g) = g(F (x))), we can
reduce the output length of F to obtain a shrinking function that still has (weak) target
collision resistance.

There are two technicalities that occur in the above steps. First, hashing the inputs only
yields weak target collision resistance; this is due to the fact that accessible Shannon entropy is
an average-case measure and thus allows for the possibility that the adversary can achieve high
accessible entropy most of the time. Fortunately, this weak form of target collision resistance can
be amplified to full target collision resistance using another application of repetition and hashing
(similar to [4]).

Second, the hashing steps require having a fairly accurate estimate of the real entropy. This can
be handled similarly to [10, 19], by trying all (polynomially many) possibilities and concatenating
the resulting UOWHFs, at least one of which will be target collision resistant.

A More Efficient Construction. We obtain a more efficient construction of UOWHFs by
hashing the output of the one-way function f before truncating. That is, we define F (x, g, i) =
(g, g(f(x))1···i). This function is in the spirit of the function that Rompel [19] uses as a first step,
but our function uses three-wise independent hash function instead of n-wise independent one,
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and enjoys a much simpler structure.3 Our analysis of this function is significantly simpler than
[19]’s and can be viewed as providing a clean abstraction of what it achieves (namely, inaccessible
entropy) that makes the subsequent transformation to a UOWHF much easier.

We obtain improved UOWHF parameters over our first construction for two reasons. First, we
obtain a larger amount of inaccessible entropy: (log n)/n bits instead of roughly 1/n4 bits. Second,
we obtain a bound on a stronger form of accessible entropy, which enables us to get full target
collision resistance when we hash the inputs, avoiding the second amplification step.

The resulting overall construction yields better parameters than Rompel’s original construction.
A one-way function of input length n yields a UOWHF with output length Õ(n7), improving
Rompel’s bound of Õ(n8). Additionally, we are able to reduce the key length needed: Rompel’s
original construction uses a key of length Õ(n12), whereas our construction only needs a key of length
Õ(n7). If we allow the construction to utilize some nonuniform information (namely an estimate of
the real entropy of F−1), then we obtain output length Õ(n5), improving Rompel’s bound of Õ(n6).
For the key length, the improvement in this case is from Õ(n7) to Õ(n5). Of course, these bounds
are still far from practical, but they illustrate the utility of inaccessible entropy in reasoning about
UOWHFs, which may prove useful in future constructions (whether based on one-way functions or
other building blocks).

1.3 Perspective

The idea of inaccessible entropy was introduced in [8] for the purpose of constructing statistically
hiding commitment schemes from one-way functions and from zero-knowledge proofs. There, the
nature of statistically hiding commitments necessitated more involved notions of inaccessible en-
tropy than we present here — inaccessible entropy was defined in [8] for interactive protocols and
for “generators” that output many blocks, where one considers adversaries that try to generate
next-messages or next-blocks of high entropy. In such a setting, it is necessary to have the adver-
sary privately “justify” that it is behaving consistently with the honest party, and to appropriately
discount the entropy in case the adversary outputs an invalid justification.

Here, we are able to work with a much simpler form of inaccessible entropy. The simplicity
comes from the noninteractive nature of UOWHFs (so we only need to measure the entropy of a
single string output by the adversary), and the fact that we can assume without loss of generality
that the adversary behaves consistently with the honest party. Thus, the definitions here can serve
as a gentler introduction to the concept of inaccessible entropy. On the other hand, the many-round
notions from [8] allow for a useful “entropy equalization” transformation that avoids the need to try
all possible guesses for the entropy. We do not know an analogous transformation for constructing
UOWHFs. We also note that our simple construction of a function with inaccessible entropy by
randomly truncating a one-way function (and its analysis) is inspired by the the construction of an
“inaccessible entropy generator” from a one-way function in [8].

Finally, with our constructions, the proof that one-way functions imply UOWHFs now parallels
those of pseudorandom generators [10, 9] and statistically hiding commitments [7, 8], with UOWHFs
and statistically hiding commitments using dual notions of entropy (high real entropy, low accessible
entropy) to pseudorandom generators (low real entropy, high pseudoentropy).

3[19] started with the function f ′(z, g1, g2) := (g2(f0(g1(z))), g1, g2), where g1 and g2 are n-wise independent
hash-functions, and f0 is defined as f0(x, y, i) = (f(x), yn−i, 0i).
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Paper Organization

Formal definitions are given in Section 2, where the notion of inaccessible entropy used through
the paper is defined in Section 3. In Section 4 we show how to use any one-way function to get a
function with inaccessible entropy, where in Section 5 we use any function with inaccessible entropy
to construct UOWHF. Finally, our result for average case complexity is described in Section 6.

2 Preliminaries

Most of the material in this section is taken almost verbatim from [8], and missing proofs can be
found in that paper.

2.1 Notation

All logarithms considered here are in base two. For t ∈ N, we let [t] = {1, . . . , t}. A function
µ : N→ [0, 1] is negligible, denoted µ(n) = neg(n), if µ(n) = n−ω(1). We let poly denote the set all
polynomials, and let pptm denote the set of probabilistic algorithms (i.e., Turing machines) that
run in strictly polynomial time.

2.2 Random Variables

Let X and Y be random variables taking values in a discrete universe U . We adopt the convention
that when the same random variable appears multiple times in an expression, all occurrences
refer to the same instantiation. For example, Pr[X = X] is 1. For an event E, we write X|E
to denote the random variable X conditioned on E. The support of a random variable X is
Supp(X) := {x : Pr[X = x] > 0}. X is flat if it is uniform on its support. For an event E, we
write I(E) for the corresponding indicatory random variable, i.e., I(E) is 1 when E occurs and is
0 otherwise.

We write ∥X − Y ∥ to denote the statistical difference (also known as, variation distance) between
X and Y , i.e.,

∥X − Y ∥ = max
T⊆U
|Pr[X ∈ T ]− Pr[Y ∈ T ]|

If ∥X − Y ∥ ≤ ε (respectively, ∥X − Y ∥ > ε), we say that X and Y are ε-close [resp., ε-far].

2.3 Entropy Measures

We will refer to several measures of entropy in this work. The relation and motivation of these
measures is best understood by considering a notion that we will refer to as the sample-entropy:
For a random variable X and x ∈ Supp(X), we define the sample-entropy of x with respect to X
to be the quantity

HX(x) := log(1/Pr[X = x]).

The sample-entropy measures the amount of “randomness” or “surprise” in the specific sample x,
assuming that x has been generated according to X. Using this notion, we can define the Shannon
entropy H(X) and min-entropy H∞(X) as follows:

H(X) := E
x←X

[HX(x)]

H∞(X) := min
x∈Supp(X)

HX(x)
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We will also discuss the max-entropy H0(X) := log(|Supp(X)|). The term “max-entropy” and its
relation to the sample-entropy will be made apparent below.

It can be shown that H∞(X) ≤ H(X) ≤ H0(X) with equality if and only if X is flat. Thus,
saying H∞(X) ≥ k is a strong way of saying that X has “high entropy” and H0(X) ≤ k a strong
way of saying that X as “low entropy”.

Smoothed Entropies. Shannon entropy is robust in that it is insensitive to small statistical
differences. Specifically, ifX and Y are ε-close then |H(X)−H(Y )| ≤ ε·log |U|. For example, if U =
{0, 1}n and ε = ε(n) is a negligible function of n (i.e., ε = n−ω(1)), then the difference in Shannon
entropies is vanishingly small (indeed, negligible). In contrast, min-entropy and max-entropy are
brittle and can change dramatically with a small statistical difference. Thus, it is common to work
with “smoothed” versions of these measures, whereby we consider a random variable X to have high
entropy (respectively, low entropy) if X is ε-close to some X ′ with H∞(X) ≥ k [resp., H0(X) ≤ k]
for some parameter k and a negligible ε.4

These smoothed versions of min-entropy and max-entropy can be captured quite closely (and
more concretely) by requiring that the sample-entropy is large or small with high probability:

Lemma 2. 1. Suppose that with probability at least 1 − ε over x ← X, we have HX(x) ≥ k.
Then X is ε-close to a random variable X ′ such that H∞(X ′) ≥ k.

2. Suppose that X is ε-close to a random variable X ′ such that H∞(X ′) ≥ k. Then with proba-
bility at least 1− 2ε over x← X, we have HX(x) ≥ k − log(1/ε).

Lemma 3. 1. Suppose that with probability at least 1 − ε over x ← X, we have HX(x) ≤ k.
Then X is ε-close to a random variable X ′ such that H0(X

′) ≤ k.

2. Suppose that X is ε-close to a random variable X ′ such that H0(X
′) ≤ k. Then with probability

at least 1− 2ε over x← X, we have HX(x) ≤ k + log(1/ε).

Think of ε as inverse polynomial or a slightly negligible function in n = log(|U|). The above
lemmas show that up to negligible statistical difference and a slightly super-logarithmic number
of entropy bits, the min-entropy [resp., max-entropy] is captured by lower [resp., upper] bound on
sample-entropy.

Conditional Entropies. We will also be interested in conditional versions of entropy. For jointly
distributed random variables (X,Y ) and (x, y) ∈ Supp(X,Y ), we define the conditional sample-
entropy to be HX|Y (x | y) = log(1/Pr[X = x | Y = y]). Then the standard conditional Shannon
entropy can be written as:

H(X | Y ) = E
(x,y)←(X,Y )

[
HX|Y (x | y)

]
= E

y←Y
[H(X|Y=y)] = H(X,Y )−H(Y ).

There is no standard definition of conditional min-entropy and max-entropy, or even their smoothed
versions. For us, it will be most convenient to generalize the sample-entropy characterizations of
smoothed min-entropy and max-entropy given above. Specifically we will think of X as having
“high min-entropy” [resp., “low max-entropy”] given Y if with probability at least 1 − ε over
(x, y)← (X,Y ), we have HX|Y (x | y) ≥ k [resp., HX|Y (x | y) ≤ k].

4The term “smoothed entropy” was coined by Renner and Wolf [18], but the notion of smoothed min-entropy has
commonly been used (without a name) in the literature on randomness extractors [17].
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Flattening Shannon Entropy. The asymptotic equipartition property in information theory
states that for independent random variables Xt = (X1, . . . , Xt), with high probability the sample-
entropy HXt(X1, . . . , Xt) is close to its expectation. In [10] a quantitative bound on this was shown
by reducing it to the Hoeffding bound (one cannot directly apply the Hoeffding bound, because
HX(X) does not have an upper bound, but one can define a related random variable which does).
We use a different bound here, which was proven in [11]. The bound has the advantage that it is
somewhat easier to state, even though the proof is longer. We remark that the bound from [10]
would be sufficient for our purpose (whose proof is much easier).

Lemma 4.

1. Let X be a random variable taking values in a universe U , let t ∈ N, and let ε > 2−t. Then
with probability at least 1− ε over x← Xt,

|HXt(x)− t ·H(X)| ≤ O(
√

t · log(1/ε) · log(|U|))

2. Let X,Y be jointly distributed random variables where X takes values in a universe U , let
t ∈ N, and let ε > 2−t. Then with probability at least 1− ε over (x, y)← (Xt, Y t) := (X,Y )t,∣∣HXt|Y t(x | y)− t ·H(X | Y )

∣∣ ≤ O(
√

t · log(1/ε) · log(|U|))

The statement follows directly from [11, Thm 2].

2.4 Hashing

A family of functions F = {f : {0, 1}n 7→ {0, 1}m} is 2-universal if for every x ̸= x′ ∈ {0, 1}n, when
we choose F ← F , we have Pr[F (x) = F (x′)] ≤ 1/ |{0, 1}m|. F is t-wise independent if for all
distinct x1, . . . , xt ∈ {0, 1}n, when we choose F ← F , the random variables F (x1), . . . , F (xt) are
independent and each uniformly distributed over {0, 1}m.

F is explicit if given the description of a function f ∈ F and x ∈ {0, 1}n, f(x) can be computed
in time poly(n,m). F is constructible if it is explicit and there is a probabilistic polynomial-time
algorithm that given x ∈ {0, 1}n, and y ∈ {0, 1}m, outputs a random f ← F such that f(x) = y.

It is well-known that there are constructible families of t-wise independent functions in which
choosing a function f ← F uses only t ·max {n,m} random bits.

3 Inaccessible Entropy for Inversion Problems

As discussed in the introduction, for a function F , we define the real entropy of F−1 to be the
amount of entropy left in the input after revealing the output.

Definition 5. Let n be a security parameter, and F : {0, 1}n 7→ {0, 1}m a function. We say that
F−1 has real Shannon entropy k if

H(X | F (X)) = k,

where X is uniformly distributed on {0, 1}n. We say that F−1 has real min-entropy at least k if
there is a negligible function ε = ε(n) such that

Prx←X

[
HX|F (X)(x | F (x)) ≥ k

]
≥ 1− ε(n).
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We say that F−1 has real max-entropy at most k if there is a negligible function ε = ε(n) such that

Prx←X

[
HX|F (X)(x | F (x)) ≤ k

]
≥ 1− ε(n).

Note that more concrete formulas for the entropies above are:

HX|F (X)(x | F (x)) = log
∣∣F−1(F (x))

∣∣
H(X | F (X)) = E

[
log

∣∣F−1(F (X))
∣∣] .

As our goal is to construct UOWHFs that are shrinking, achieving high real entropy is a natural
intermediate step. Indeed, the amount by which F shrinks is a lower bound on the real entropy of
F−1:

Proposition 6. If F : {0, 1}n 7→ {0, 1}m, then the real Shannon entropy of F−1 is at least n−m,
and the real min-entropy of F−1 is at least n−m− s for any s = ω(log n).

Proof. For Shannon entropy, we have

H(X | F (X)) ≥ H(X)−H(F (X)) ≥ n−m.

For min-entropy, let S = {y ∈ {0, 1}m : Pr[f(X) = y] < 2−m−s}. Then Pr[f(X) ∈ S] ≤ 2m ·
2−m−s = neg(n), and for every x such that f(x) /∈ S, we have

HX|F (X)(x | F (x)) = log
1

Pr[X = x | F (X) = f(x)]
= log

Pr[f(X) = f(x)]

Pr[X = x]
≥ log

2−m−s

2−n
= n−m− s.

□

To motivate the definition of accessible entropy, we now present an alternative formulation of
real entropy in terms of the entropy that computationally unbounded “collision-finding” adversaries
can generate.

Definition 7. For a function F : {0, 1}n 7→ {0, 1}m, an F -collision-finder is a randomized algorithm
A such that for every x ∈ {0, 1}n and coin tosses r for A, we have A(x; r) ∈ F−1(F (x)).

Note that A is required to always produce an input x′ ∈ {0, 1}n such that F (x) = F (x′). This
is a reasonable constraint because A has the option of outputting x′ = x if it does not find a true
collision. We consider A’s goal to be maximizing the entropy of its output x′ = A(x), given a
random input x. If we let A be computationally unbounded, then the optimum turns out to equal
exactly the real entropy:

Proposition 8. Let F : {0, 1}n 7→ {0, 1}m. Then the real Shannon entropy of F−1 equals the
maximum of H(A(X;R) | X) over all (computationally unbounded) F -collision finders A, where the
random variable X is uniformly distributed in {0, 1}n and R is uniformly random coin tosses for
A. That is,

H(X | F (X)) = max
A

H(A(X;R) | X),

where the maximum is taken over all F -collision finders A.
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Proof. The “optimal” F -collision finder A that maximizes H(A(X) | X) is the algorithm Ã that,
on input x, outputs a uniformly random element of f−1(f(x)). Then

H(Ã(X;R) | X) = E[log
∥∥f−1(f(X))

∥∥] = H(X | F (X)).

□

The notion of accessible entropy simply restricts the above to efficient adversaries, e.g. those
that run in probabilistic polynomial time (pptm for short):

Definition 9. Let n be a security parameter and F : {0, 1}n 7→ {0, 1}m a function. We say that
F−1 has accessible Shannon entropy at most k if for every pptm F -collision-finder A, we have

H(A(X;R) | X) ≤ k

for all sufficiently large n, where the random variable X is uniformly distributed on {0, 1}n and R
is uniformly random coin tosses for A.

As usual, it is often useful to have an upper bound not only on Shannon entropy, but on the
max-entropy (up to some negligible statistical distance). Recall that a random variable Z has
max-entropy at most k iff the support of Z is contained in a set of size 2k. Thus, we require that
A(X;R) is contained in a set L(X) of size at most 2k, except with negligible probability:

Definition 10. Let n be a security parameter and F : {0, 1}n 7→ {0, 1}m a function. For p = p(n) ∈
[0, 1], we say that F−1 has p-accessible max-entropy at most k if for every pptm F -collision-finder
A, there exists a family of sets {L(x)}x∈Supp(X) each of size at most 2k such that x ∈ L(x) for all
x ∈ Supp(X) and

Pr [A(X;R) ∈ L(X)] ≥ 1− p

for all sufficiently large n, where the random variable X is uniformly distributed on {0, 1}n and R
is uniformly random coin tosses for A. In addition, if p = ε(n) for some negligible function ε(·),
then we simply say that F−1 has accessible max-entropy at most k.

The reason that having an upper bound on accessible entropy is useful as an intermediate step
towards constructing UOWHFs is that accessible max-entropy 0 is equivalent to target collision
resistance (on random inputs):

Definition 11. Let F : {0, 1}n 7→ {0, 1}m be a function. For q = q(n) ∈ [0, 1], we say that F is
q-collision-resistant on random inputs if for every pptm F -collision-finder A,

Pr[A(X;R) = X] ≥ q,

for all sufficiently large n, where the random variable X is uniformly distributed on {0, 1}n and R
is uniformly random coin tosses for A. In addition, if q = 1 − ε(n) for some negligible function
ε(·), we say that F is collision-resistant on random inputs.

Lemma 12. Let n be a security parameter and F : {0, 1}n 7→ {0, 1}m be a function. Then, for any
p = p(n) ∈ (0, 1), the following statements are equivalent:

(1) F−1 has p-accessible max-entropy 0.
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(2) F is (1− p)-collision-resistant on random inputs.

In particular, F−1 has accessible max-entropy 0 iff F is collision-resistant on random inputs.

Proof. Note that (1) implies (2) follows readily from the definition. To see that (2) implies (1),
simply take L(x) = {x}. □

While bounding p-accessible max-entropy with negligible p is our ultimate goal, one of our
constructions will work by first giving a bound on accessible Shannon entropy, and then deducing
a bound on p-accessible max-entropy for a value of p < 1 using the following lemma:

Lemma 13. Let n be a security parameter and F : {0, 1}n 7→ {0, 1}m be a function. If F−1 has
accessible Shannon entropy at most k, then F−1 has p-accessible max-entropy at most k/p+O(2−k/p)
for any p = p(n) ∈ (0, 1).

Proof. Fix any pptm F -collision-finder A. From the bound on accessible Shannon entropy, we have
that H(A(X;R) | X) ≤ k. Applying Markov’s inequality, we have

Pr
x←X,r←R

[
HA(X;R)|X(A(x; r) | x) ≤ k/p

]
≥ 1− p

Take L(x) to be the set:

L(x) = {x} ∪
{
x′ : HA(X;R)|X(x′ | x) ≤ k/p

}
We may rewrite L(x) as {x}∪

{
x′ : Prr[A(x; r) = x′] ≥ 2−k/p

}
. It is easy to see that |L(x)| ≤ 2k/p+1

and thus F−1 has p-accessible max-entropy at most k/p+O(2−k/p). □

Once we have a bound on p-accessible max-entropy for some p < 1, we need to apply several
transformations to obtain a function with a good bound on neg(n)-accessible max-entropy.

Our second construction (which achieves better parameters), starts with a bound on a different
average-case form of accessible entropy, which is stronger than bounding the accessible Shannon
entropy. The benefit of this notion it that it can be converted more efficiently to neg(n)-accessible
max-entropy, by simply taking repetitions.

To motivate the definition, recall that a bound on accessible Shannon entropy means that the
sample entropy HA(X;R)|X(x′ | x) is small on average over x ← X and x′ ← A(x;R). This sample
entropy may depend on both the input x and the x′ output by the adversary (which in turn may
depend on its coin tosses). A stronger requirement is to say that we have upper bounds k(x) on
the sample entropy that depend only on x. The following definition captures this idea, thinking of
k(x) = log |L(x)|. (We work with sets rather than sample entropy to avoid paying the log(1/ε) loss
in Lemma 3.)

Definition 14. Let n be a security parameter and F : {0, 1}n 7→ {0, 1}m a function. We say that
F−1 has accessible average max-entropy at most k if for every pptm F -collision-finder A, there
exists a family of sets {L(x)}x∈Supp(X) and a negligible function ε = ε(n) such that x ∈ L(x) for
all x ∈ Supp(X), E[log |L(X)|] ≤ k and

Pr [A(X;R) ∈ L(X)] ≥ 1− ε(n),

for all sufficiently large n, where the random variable X is uniformly distributed on {0, 1}n and R
is uniformly random coin tosses for A.
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We observe that bounding accessible average max-entropy is indeed stronger than bounding
accessible Shannon entropy:

Proposition 15. If F−1 has accessible average max-entropy at most k, then for every constant c,
F−1 has accessible Shannon entropy at most k + 1/nc.

Proof. Given an F -collision-finder A, let {L(x)} be the sets guaranteed in Definition 14. Let random
variable X be uniformly distributed in {0, 1}n, let R be uniformly random coin tosses for A, and
let I be the indicator random variable for A(X;R) ∈ L(X). So Pr[I = 0] = neg(n). Then:

H(A(X;R) | X) ≤ H(A(X;R) | X, I) + H(I)

≤ Pr[I = 1] ·H(A(X;R) | X, I = 1) + Pr[I = 0] ·H(A(X;R) | X, I = 1) + neg(n)

≤ Pr[I = 1] · E[log |L(X)| | I = 1] + Pr[I = 0] · n+ neg(n)

≤ E[log |L(X)|] + neg(n)

≤ k + neg(n).

□

4 Inaccessible Entropy from One-way Functions

4.1 A Direct Construction

The goal of this section is to prove the following theorem:

Theorem 16. Let f : {0, 1}n 7→ {0, 1}n be a one-way function and define F over {0, 1}n × [n]
as F (x, i) = f(x)1,...,i−1. Then, F−1 has accessible Shannon entropy at most H(Z | F (Z)) − 1

64n2 ,
where Z = (X, I) is uniformly distributed over {0, 1}n × [n].

We do not know whether the function F−1 has even less accessible Shannon entropy, (say, with
a gap of Ω( 1n)). However, it seems that a significantly stronger bound would require much more
effort, and even improving the bound to Ω( 1n) does not seem to yield an overall construction which
is as efficient as the one resulting from Section 4.2. Therefore we aim to present a proof which is
as simple as possible.

We begin with a high-level overview of our approach. Recall from Proposition 8 the “optimal”
F -collision-finder Ã that computes F−1(F (·)). The proof basically proceeds in three steps:

1. First, we show that it is easy to invert f using Ã (Lemma 17).

2. Next, we show that if a F -collision-finder A has high accessible Shannon entropy, then it must
behave very similarly to Ã (Lemma 18).

3. Finally, we show that if A behaves very similarly to Ã, then it is also easy to invert f using
A (Lemma 19).

We may then deduce that if f is one-way, any F -collision-finder A must have accessible Shannon
entropy bounded away from H(Z | F (Z)).
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Step 1. Suppose we have an optimal collision finder Ã(x, i; r) that outputs a uniform random
element from F−1(F (x, i)). In order to invert an element y, we repeat the following process: start
with an arbitrary element x(0) and use Ã to find an element x(1) such that f(x(1)) has the same
first bit as y. In the i’th step find x(i) such that the first i bits of f(x(i)) equal y1,...,i (until i = n).

This is done more formally in the following algorithm for an arbitrary oracle CF which we set
to Ã in the first lemma we prove. The algorithm ExtendOne does a single step. Besides the new
symbol x′ which we are interested in, ExtendOne also returns the number of calls which it did to the
oracle. This is completely uninteresting to the overall algorithm, but we use it later in the analysis
when we bound the number of oracle queries made by ExtendOne.

Algorithm ExtendOne

Oracle: An F -collision finder CF.
Input: x ∈ {0, 1}n, b ∈ {0, 1}, i ∈ [n].

j := 0
repeat

x′ := CF(x, i)
j := j + 1

until f(x′)i = b
return (x′, j)

Inverter Inv

Oracle: An F -collision finder CF.
Input: y ∈ {0, 1}n

x(0) ← Un

for i = 1 to n do:
(x(i), j) := ExtendOneCF(x(i−1), yi, i)

done
return x(n)

We first show that with our optimal collision finder Ã, the inverter inverts with only 2n calls
in expectation (even though it can happen that it runs forever). Towards proving that, we define
p(b | y1,...,i−1) as the probability that the i’th bit of f(x) equals b, conditioned on the event that
f(x)1,...,i−1 = y1,...,i−1 (or 0 if f(x)1,...,i−1 = y1,...,i−1 is impossible).

Lemma 17. The expected number of calls to Ã in a random execution of InvÃ(y = f(x)) with
x← {0, 1}n, is at most 2n.

Proof. Fix some string y1,...,i−1 in the image of F . We want to study the expected number of calls

to Ã(x(i−1), i) in case F (x(i−1), i) = y1,...,i−1.
If we would know yi, then this expected number of calls would be 1

p(yi|y1,...,i−1)
. Since yi = 0 with

probability p(0 | y1,...,i−1) we get that the expected number of calls is 1 if either of the probabilities
is 0 and p(0 | y1,...,i−1) · 1

p(0|y1,...,i−1)
+ p(1 | y1,...,i−1) · 1

1|p(y1,...,i−1)
= 2 otherwise. Using linearity of

expectation we get the result. □
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Step 2. Given an F -collision finder A, we define ϵ(x, i) to be the statistical distance of the
distribution of A(x, i; r) and the the output distribution of Ã(x, i; r) (which equals the uniform
distribution over F−1(F (x, i))).

We want to show that if A has high accessible Shannon entropy, then A behaves very similarly
to Ã. The next lemma formalizes this by stating that ε(x, i) is small on average (over the uniform
random choice of x ∈ {0, 1}n and i ∈ [n]). The lemma follows by applying Jensen’s inequality on
the well known relationship between entropy gap and statistical distance.

Lemma 18. Assume H(A(Z)) ≥ H(Z | F (Z))− 1
64n2 , then Ei←[n],x←{0,1}n [ε(x, i)] ≤ 1

8n .

Proof. ∥∥∥(Z, Ã(Z))− (Z,A(Z))
∥∥∥ = E

z←Z
[
∣∣∣(z, Ã(z))− (z,A(z))

∣∣∣]
≤ E

z←Z
[

√
H(Ã(z))−H(A(z))]

≤
√

E
z←Z

[H(Ã(z))−H(A(z))]

≤ 1

8n
.

The first inequality uses the fact that if W is a random variable whose support is contained in a
set S and U is the uniform distribution on S, then ∥U −W∥ ≤

√
H(U)−H(W ) (see [5, Lemma

11.6.1]). The second inequality follows by Jensen’s inequality. The final inequality uses H(Ã(Z)) =
H(Z | F (Z)) (Proposition 8). □

Step 3. We have seen now that InvÃ inverts f with 2n calls in expectation and that A behaves
similarly as Ã. We now want to show that InvA also inverts f efficiently. The main technical

difficulty is that even though InvÃ makes 2n calls to Ã in expectation and A and Ã are close in
statistical distance, we cannot immediately deduce an upper bound on the number of calls InvA

makes to A. Indeed, our analysis below exploits the fact that Inv and ExtendOne have a fairly
specific structure.

We find it convenient to assume PrR[A(x, i;R) = Ã(x, i;R)] = 1− ϵ(x, i), where Ã is an optimal
collision finder as above. This is always possible since we do not require Ã to be polynomial time,
and also because we allow us to extend the number of random bits A uses (we assume it just ignores
unused ones). To do this, Ã first computes the statistics of A on input (x, i), and also the result of
A(x, i; r). He checks whether A(x, i; r) is one of the elements which occur too often, and outputs a
different, carefully chosen one, with appropriate probability if this is the case.

We now show that in most executions of ExtendOne it does not matter whether we use A or Ã
(that is, ExtendOne makes the same number of oracle queries to A and Ã, and outputs the same
value).

Lemma 19. For any (x, i) ∈ {0, 1}n × [n], and any yi ∈ {0, 1}, we have

Pr
R
[ExtendOneA(x, yi, i;R) = ExtendOneÃ(x, yi, i;R)] ≥ 1− 2ε(x, i)

p(yi | y1,...,i−1)
(1)
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Note that the oracle algorithm ExtendOne is deterministic, and in the above expressions, R
refers to the coin tosses used by the oracles that ExtendOne queries, namely A and Ã respectively.
We stress that the lemma says that both the value x′ and the number j returned are equal with
high probability.

Proof. Let J = J(R) be the second coordinate of the output of ExtendOneA(x, yi, i;R) (i.e., the

counter) and J̃ = J̃(R) the analogous output of ExtendOneÃ(x, yi, i;R). We write

Pr
R
[ExtendOneA(x, yi, i;R) = ExtendOneÃ(x, yi, i;R)] =∑

j≥1
Pr
R
[min(J, J̃) = j] · Pr

R
[ExtendOneA(x, yi, i;R) = ExtendOneÃ(x, yi, i;R)|min(J, J̃) = j]

= E
j←PJ

[
Pr
R
[ExtendOneA(x, yi, i;R) = ExtendOneÃ(x, yi, i;R)|min(J, J̃) = j]

]
(2)

where PJ is some distribution over the integers which, as it turns out, we don’t need to know.
Let now R′ be the randomness used by A or Ã in round j. Then,

Pr
R
[ExtendOneA(x, yi, i;R) = ExtendOneÃ(x, yi, i;R)|min(J, J̃) = j]

= Pr
R′

[
A(x, i;R′) = Ã(x, i;R′) | f(A(x, i;R′))i = yi ∨ f(Ã(x, i;R′))i = yi

]
,

because each iteration of ExtendOne uses fresh independent randomness.
Let P be the distribution over {0, 1}n produced by A(x, i;R′), and P ∗ be the (uniform) distri-

bution produced by Ã(x, i;R′). We get, for p = p(yi | y1,...,i−1) and ε = ε(x, i):

Pr
R′

[
A(x, i;R′) = Ã(x, i;R′) | f(A(x, i;R′))i = yi ∨ f(Ã(x, i;R′))i = yi

]
=

∑
x∈F−1(y1,...,i)

min(P (x), P ∗(x))∑
x∈F−1(y1,...,i)

max(P (x), P ∗(x))
≥ p− ε

p+ ε
=

1− ε
p

1 + ε
p

≥ 1− 2ε

p
.

Collecting the equations and inserting into (2) proves the lemma. □

Putting everything together. We can now finish the proof of Theorem 16. Consider the
following random variables: let X be uniformly drawn from {0, 1}n and let Y = f(X). Run

InvA(Y ) and InvÃ(Y ) in parallel, using the same randomness in both executions. Let X̃(0), . . . , X̃(n)

be the random variables which have the values assigned to x(0), . . . , x(n) in the run of InvÃ. Finally,
let the indicator variables Qi be 1, iff the i’th call to ExtendOne in the above parallel run is the

first call such that ExtendOneA(X̃(i), Yi, i; ·) ̸= ExtendOneÃ(X̃(i), Yi, i; ·).
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We proceed to obtain an upper bound on Pr[Qi = 1]. Observe that for all x ∈ {0, 1}n:

Pr[Qi = 1 | X̃(i−1) = x]

= Pr[ExtendOneA(x, Yi, i;R) ̸= ExtendOneÃ(x, Yi, i;R) | X̃(i−1) = x]

=
∑

yi∈{0,1}

p(yi | f(x)1,...,i−1) · Pr[ExtendOneA(x, yi, i;R) ̸= ExtendOneÃ(x, yi, i;R)]

≤
∑

yi∈{0,1}

p(yi | f(x)1,...,i−1) ·
2ϵ(x, i)

p(yi | f(x)1,...,i−1)

= 4ϵ(x, i)

where the inequality above follows by Lemma 19. Averaging over x, we have that for all i = 1, . . . , n:

Pr[Qi = 1] ≤ 4 E
x←{0,1}n

[ϵ(x, i)] (3)

Here, we use the fact that by induction on i, the random variable X̃i, for i ∈ {0, . . . , n}, is uniformly
distributed in {0, 1}n (it is uniform preimage of a uniformly chosen output). Using Equation (3),
we have

Pr

[
n∑

i=1

Qi ≥ 1

]
=

n∑
i=1

Pr[Qi = 1]

= n · E
i←[n],x←{0,1}n

[Qi]

≤ 4n · E
i←[n],x←{0,1}n

[ε(x, i)]

≤ 1

2

where the last inequality follows from Lemma 18. Hence, with probability 1
2 , a run of InvA and

InvÃ produce the same output and use the same number of queries to the oracles A. Moreover, the

probability that InvÃ uses more than 8n oracle queries is at most 1
4 (by applying Markov’s inequality

on Lemma 17). Hence, with probability 1
4 , Inv

A inverts f using 8n oracle queries in total, which

contradicts the one-wayness of f . In order to make sure that InvA runs in polynomial time, we just
halt it after 8n calls.

4.2 A More Efficient Construction

The following theorem shows that a simplified variant of the first step of [19] (which is also the
first step of [14]) yields inaccessible entropy with much stronger guarantees than those obtained in
Section 4.1. The function we construct is F (x, g, i) = (g(f(x))1,...,i, g), where g : {0, 1}n 7→ {0, 1}n
is a three-wise independent function. Since the composition of g and f is still a one-way function,
Theorem 16 already implies that F−1 has inaccessible entropy. The benefits of the additional
hashing step are that 1. we get more inaccessible entropy (Θ̃(1/n) bits rather than Θ̃(1/n2) bits),
and 2. we get a bound on accessible average max-entropy rather than accessible Shannon entropy.
These allow for a simpler and more efficient transformation of F into a UOWHF.
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Theorem 20 (Inaccessible average max-entropy from one-way functions). Let f : {0, 1}n 7→ {0, 1}n
be a one-way function and let G = {g : {0, 1}n 7→ {0, 1}n} be a family of constructible, three-wise
independent hash functions. Define F over Dom(F ) := {0, 1}n × G × [n] by

F (x, g, i) = (g(f(x))1,...,i, g, i).

Then, for every constant d > 0, F−1 has accessible average max-entropy at most H(Z | F (Z)) −
(d log n)/n, where Z is uniformly distributed over Dom(F ).

Proof. Let c be a sufficiently large constant (whose value to be determined later as a function of the
constant d in the theorem statement). The sets {L(x, g, i)}x∈{0,1}n,i∈[n],g∈G realizing the inaccessible

entropy of F−1 are defined by

L(x, g, i) = {(x′, g, i) : f(x′) ∈ L̃(f(x), i) ∧ g(f(x′))1,...,i = g(f(x))1,...,i} (4)

where for y ∈ {0, 1}n and i ∈ [n], we let

L̃(y, i) = {y} ∪
{
y′ ∈ {0, 1}n : Hf(X)(y

′) ≥ (i+ c · log n)
}

(5)

= {y} ∪
{
y′ ∈ {0, 1}n : |f−1(y′)| ≤ 2n−i/nc

}
.

Namely, L̃(y, i) consists, in addition to y itself, of “i-light” images with respect to f .5 As a warm-up,
it is helpful to write down L̃(y, i) and L(x, g, i) for the case where f is a one-way permutation.6

The proof of the theorem immediately follows by the following two claims.

Claim 21. For every pptm F -collision-finder A and every constant c > 0, it holds that

Pr[A(Z;R) /∈ L(Z)] ≤ neg(n),

where Z is uniformly distributed over Dom(F ) and R is uniformly distributed over the random
coins of A.

Claim 22. For any constant c it holds that

E [log |L(Z)|] ≤ E
[
log

∣∣F−1(F (Z))
∣∣]− Ω

(
c log n

n

)
,

where Z is uniformly distributed in Dom(F ).
□

5Recall that the sample entropy is defined as Hf(X)(y) = log(1/Pr[f(X) = y]) = n− log
∣∣f−1(y)

∣∣, so the “heavy”
images, where f−1(y) is large, have low sample entropy.

6If f is a permutation, then L̃(y, i) is given by:

L̃(y, i) =

{
{0, 1}n if i ≤ n− c logn

{y} otherwise.

Then, for all x ∈ {0, 1}n, we have E[|L(x,G, i)|] = 2n−i for all i ≤ n− c logn and |L(x, g, i)| = 1 for all g ∈ G and all
i > n−c logn. This means that the entropy gap between F−1(F (Z)) and L(X,G, I) is roughly 1

n

∑
i>n−c logn n− i =

Ω(c2 log2 n/n).
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4.2.1 Accessible Inputs of F – Proving Claim 21

Proof of Claim 21. Recall that Z = (X,G, I) is uniformly distributed over Dom(F ), and that R is
uniformly distributed over the random coins of A. It suffices to show that

Pr[A1(X,G, I;R) /∈ f−1(L̃(f(X), I))] ≤ neg(n) (6)

where A1 denotes the first component of A’s output (this holds since the other two output compo-
nents of A are required to equal (G, I), due to the fact that F (X,G, I) determines (G, I)).

We construct an inverter Inv such that for all F -collision-finders A and for c as in Equation (5)
we have

Pr[InvA(Y ) ∈ f−1(Y )] ≥ 1

nc
· Pr[A1(X,G, I;R) /∈ f−1(L̃(f(X), I))] (7)

where Y = f(X), and the proof of Claim 21 follows readily from the one-wayness of f .

Inverter InvA

Oracle: An F -collision finder A.
Input: y ∈ {0, 1}n

x← {0, 1}n
i← [n]
g′ ← Gy,x,i := {g ∈ G : g(y)1...i = g(f(x))1...i}
return A1(x, g

′, i; r)

Observe that Inv can be implemented efficiently by sampling g′ as follows: pick first z, z∗ ∈ {0, 1}n
such that z1...i = z∗1...i and use the constructibility of G to pick g with g(f(x)) = z and g(y) = z∗.

We analyze the success probability of InvA. Using the short hand notation Prg′ [· · · ] for
Prg′←Gy,x,i [· · · ] we observe that

Pr[InvA(Y ) ∈ f−1(Y )] = E
x←{0,1}n,i←[n]

[∑
y∈{0,1}n

Pr[f(X) = y] · Pr
g′,r

[A1(x, g
′, i; r) ∈ f−1(y)]

]
(8)

≥ E
x,i

[∑
y/∈L̃(f(x),i)

2−i

nc
· Pr
g′,r

[A1(x, g
′, i; r) ∈ f−1(y)]

]
where the inequality holds since Pr[f(X) = y] ≥ 2−i/nc for any y /∈ L̃(f(x), i).

Next, observe that for any tuple (y, x, i) such that y ̸= f(x), it holds that (where we distinguish
Prg′ [· · · ] as above from Prg[· · · ] = Prg←G [· · · ])

Pr
g′,r

[
A1(x, g

′, i; r) ∈ f−1(y)
]
= Pr

g←G,r

[
A1(x, g, i; r) ∈ f−1(y) | g(f(x))1···i = g(y)1···i

]
(9)

=
Prg,r

[
A1(x, g, i; r) ∈ f−1(y) ∧ g(f(x))1···i = g(y)1···i

]
Prg,r

[
g(f(x))1···i = g(y)1···i

]
=

Prg,r
[
A1(x, g, i; r) ∈ f−1(y)

]
Prg,r

[
g(f(x))1···i = g(y)1···i

]
= 2i · Pr

g,r

[
A1(x, g, i; r) ∈ f−1(y)

]
.
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The second equality follows by Bayes’ rule and the third uses the fact that A is a F -collision finder.
The last equality follows since G is two-wise independent (recall we assumed that G is three-wise
independent) and f(x) ̸= y.

Combining the two preceding observations, and the fact that f(x) ∈ L̃(f(x), i), we have that

Pr[InvA(Y ) ∈ f−1(Y )] ≥ E
x←{0,1}n,i←[n]

[∑
y/∈L̃(f(x),i)

2−i

nc
· 2i · Pr

g←G,r

[
A1(x, g, i; r) ∈ f−1(y)

]]
≥ 1

nc
· E
x,i

[∑
y/∈L̃(f(x),i)

·Pr
g,r

[
A1(x, g, i; r) ∈ f−1(y)

]]
=

1

nc
· Pr
x,g,i,r

[
A1(x, g, i; r) /∈ f−1(L̃(f(x), i))

]
,

and the proof of the claim follows. □

4.2.2 Upper Bounding the Size of L – Proving Claim 22

Recall that Z = (X,G, I) is uniformly distributed over Dom(F ). In the following we relate the size
of L(Z) to that of F−1(F (Z)).

We make use of the following property of three-wise independent hash-functions.

Claim 23. Let i, x and x∗, be such that f(x) ̸= f(x∗) and i ≤ Hf(X)(f(x
∗)) ≤ Hf(X)(f(x)). Then,

Pr
g←G

z′←F−1(F (x,g,i))

[
z′ = (x∗, g, i)

]
≥ 2−n

8
.

Note that in the above experiment it is always the case that (g′, i′) = (g, i), letting z′ = (x′, g′, i′).

Proof. Note that with probability 2−i over g ← G, it holds that g(f(x∗))1···i = g(f(x))1···i. Hence-
forth, we condition on this event that we denote by E, and let w = g(f(x∗))1···i = g(f(x))1···i.
Observe that for a fixed g satisfying E, it holds that

Pr
z′←F−1(F (x,g,i))

[
z′ = (x∗, g, i) | E

]
≥ 1

|F−1(F (x, g, i))|
(10)

In order to obtain a lower bound on
∣∣F−1(F (x, g, i))

∣∣, we first consider x′ such that f(x′) /∈
{f(x), f(x∗)}. By the three-wise independence of G,

Pr
g←G

[
g(f(x′)) = w | E

]
= 2−i (11)

This implies that the expected number of x′ such that g(f(x′)) = w and f(x′) /∈ {f(x), f(x∗)}
is at most 2n−i. By Markov’s inequality, we have that with probability at least 1/2 over g ← G
(conditioned on E),

|F−1(F (x, g, i))| ≤ 2 · 2n−i + |f−1(f(x))|+ |f−1(f(x∗))| ≤ 4 · 2n−i, (12)

where the second inequality uses the fact that i ≤ Hf(X)(f(x
∗)) ≤ Hf(X)(f(x)). Putting everything

together, we have that the probability we obtain x∗ is at least 2−i · 1/2 · (4 · 2n−i)−1 = 2−n/8. □

We now use Claim 23 for proving Claim 22.
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Proof of Claim 22. Let Z ′ = (X ′, G, I) ← F−1(F (Z = (X,G, I))) (note that indeed the second
and third coordinates of Z and Z ′ are guaranteed to match). We claim that for proving Claim 22
it suffices to show that

Pr[X ′ /∈ f−1(L̃(f(X), I))] ∈ Ω

(
c log(n)

n

)
(13)

Indeed, let L(z) := F−1(F (z)) \ L(z), and compute

E
[
log

∣∣F−1(F (Z))
∣∣]− E [log |L(Z)|] = E

[
log

(
1 +

∣∣L(Z)
∣∣

|L(Z)|

)]
(14)

≥ E

[
log

(
1 +

∣∣L(Z)
∣∣

|F−1(F (Z))|

)]

≥ 1

2
E

[ ∣∣L(Z)
∣∣

|F−1(F (Z))|

]
=

1

2
Pr[X ′ /∈ f−1(L̃(f(X), I))]

∈ Ω

(
c log(n)

n

)
,

where the first equality holds since by definition L(Z) ⊆ F−1(F (z)), the second inequality holds
since log(1 + α) ≥ α

2 for α ∈ [0, 1] and the containment by Equation (13).
We prove Equation (13) in two steps. First, observe that for all x:

Pr
g,i

[
f(x′) /∈ L̃(f(x), i) : (x′, g, i)← F−1(F (x, g, i))

]
(15)

≥ Pr
g,i

[
f(x′) ̸= f(x) ∧ (i ≤ Hf(X)(f(x

′)) < i+ c log n) : (x′, g, i)← F−1(F (x, g, i))
]

=
1

n

∑
x∗ : f(x)̸=f(x∗)

( ∑
i≤Hf(X)(f(x

∗))<i+c logn

Pr
g

[
(x∗, g, i)← F−1(F (x, g, i))

])
≥ 1

n
·

∑
x∗ : f(x)̸=f(x∗)

∧(Hf(X)(f(x
∗))≤Hf(X)(f(x)))

( ∑
i≤Hf(X)(f(x

∗))<i+c logn

2−n

8

)
(by Claim 23)

≥ c logn

n
·

∑
x∗ : f(x) ̸=f(x∗)

∧(Hf(X)(f(x
∗))≤Hf(X)(f(x)))

2−n

8

=
c logn

8n
· Pr
x∗

[
f(x) ̸= f(x∗) ∧ (Hf(X)(f(x

∗)) ≤ Hf(X)(f(x)))
]
.
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It follows that

Pr[X ′ /∈ f−1(L̃(f(X), I))] = Pr
x,g,i

[
x′ /∈ L̃(f(x), i) : (x′, g, i)← F−1(F (x, g, i))

]
(16)

≥ c log n

8n
Pr
x,x∗

[
f(x) ̸= f(x∗) ∧ (Hf(X)(f(x

∗)) ≤ Hf(X)(f(x)))
]

≥ c log n

8n
· 1
2
·
(
1− Pr

x,x∗
[f(x) ̸= f(x∗)]

)
≥ c log n

8n
· 1
2
· 1
2
,

where the last inequality holds since the one-wayness of f yields that Prx,x∗ [f(x) = f(x∗)] is
negligible (otherwise inverting f is trivial), which concludes the the proof of Equation (13), and
hence of the claim. □

5 UOWHFs from Inaccessible Entropy

In this section we show how to construct a UOWHF from any efficiently computable function
with a noticeable gap between real Shannon entropy and either accessible average max-entropy or
accessible Shannon entropy. Recall that the more efficient construction from Section 4.2 satisfies
the former, and the more direct construction from Section 4.1 satisfies the latter. Combined with
these constructions, we obtain two new constructions of UOWHFs from any one-way function.

In both cases, we first transform the entropy gap into a noticeable gap between real Shannon
entropy and accessible max -entropy. We begin with the construction that starts from a gap between
real Shannon entropy and accessible average max-entropy because the transformation involves fewer
steps (and is also more efficient).

5.1 The More Efficient UOWHF

Theorem 24. Suppose there exists a polynomial-time computable function F : {0, 1}ñ 7→ {0, 1}m
such that F−1 has a noticeable gap ∆ between real Shannon entropy and accessible average max-
entropy. Then, there exists a family of universal one-way hash functions with output length
O(ñ4s/∆3) and key length O(ñ4s/∆3 · log n) for any s = ω(log n), where n is the security pa-
rameter.7

We first show how to combine this with Theorem 20 to get a universal one-way hash function.

Theorem 25. Suppose there exists a one-way function f : {0, 1}n 7→ {0, 1}n. Then, there exists a
family of universal one-way hash functions with key and output length O(n7).

Proof. Fixing s := log2(n), we use Theorem 20 to get a function F : {0, 1}ñ 7→ {0, 1}m with
ñ = O(n) and gap ∆ = log n/n between real Shannon entropy and accessible average max-entropy.
By Theorem 24 we get a family of universal one-way hash functions with output lengthO(ñ4s/∆3) =
O(n4 log2(n)/ log3(n)) and key length O(ñ4s/∆3 · log(n)) = O(n7). □

7Note that ∆ is not required to be efficiently computable.
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Overview. The construction proceeds via a series of transformations as outlined in Section 1.2:
gap amplification (via repetition), entropy reduction (by hashing inputs) and reducing output length
(by hashing outputs). In each of these transformations, we use n0 to denote the input length of
the function F we start with, and n to denote the security parameter.

5.1.1 Gap Amplification

Here, we show that a direct product construction increases the gap between real entropy and
accessible entropy. Another useful effect of direct product (for certain settings of parameters) is
turning real Shannon entropy into real min-entropy, and turning accessible average max-entropy
into accessible max-entropy.

Lemma 26 (Gap amplification). Let n be a security parameter and F : {0, 1}ñ 7→ {0, 1}m be a
function. For t ∈ poly(n), let F t be the t-fold direct product of F . Then, F t satisfies the following
properties:

i. If F−1 has real Shannon entropy at least k, then (F t)−1 has real min-entropy at least t · k −
ñ ·
√
st for any s = ω(log n) and t > s.

ii. If F−1 has accessible average max-entropy at most k, then (F t)−1 has accessible max-entropy
at most t · k + ñ ·

√
st for any s = ω(log n).

Proof. In the following X and X(t) = (X1, . . . , Xt) are uniformly distributed over {0, 1}ñ and
({0, 1}ñ)t respectively.

i. Follows readily from Lemma 4 (with ϵ = 2−s).

ii. Given any pptm F t-collision-finder A′, we construct a pptm F -collision-finder A that:

On input x, picks a random i in [t] along with random x1, . . . , xi−1, xi+1, . . . , xt,
computes A′(x1, . . . , xt) 7→ (x′1, . . . , x

′
t), and outputs x′i.

By the bound on the accessible average max-entropy of F−1, we know that there exists a
family of sets {L(x)} such that E

[
log |L(X)|

]
≤ k, x ∈ L(x), and Pr[A(X) /∈ L(X)] ≤ neg(n).

Consider the family of sets
{
L′(x(t)) : x(t) ∈ ({0, 1}ñ)t

}
given by:

L′(x(t)) = L(x(t)1 )× L(x(t)2 )× · · · × L(x(t)t ).

By linearity of expectations, we have E
[
log |L′(X1, . . . , Xt)|

]
≤ t · k. Moreover, by the

Chernoff-Hoeffding bound and using the fact that log |L(X)| assumes values in [0, ñ], we
have

Pr
[
log

∣∣∣L′(X(t))
∣∣∣ ≥ t · k + ñ

√
st
]

(17)

= Pr
[
log

∣∣∣L(X(t)
1 )

∣∣∣+ · · ·+ log
∣∣∣L(X(t)

t )
∣∣∣ ≥ t · k + ñ

√
st
]
≤ e−2s.

We claim that this implies that A′ has accessible max-entropy at most t · k + ñ
√
st. Suppose

otherwise, then there exists a non-negligible function ϵ such that

Pr[A′(F t(X(t))) /∈ L′(X(t))] ≥ ϵ− e−2s ≥ ϵ/2
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Therefore,

Pr[A(F (X)) /∈ L(X)] = Pr[A′(F t(X(t))) /∈ L′(X(t))]/t ≥ ϵ/2t

which contradicts our assumption on A.
□

5.1.2 Entropy Reduction

Next we describe a construction that given F and any parameter ℓ, reduces the accessible max-
entropy of F−1 by roughly ℓ bits, while approximately preserving the gap between real min-entropy
and accessible max-entropy.

Lemma 27 (Reducing entropy). Let n be a security parameter and F : {0, 1}ñ 7→ {0, 1}m be a
function. Fix a family of pairwise independent hash functions G =

{
g : {0, 1}ñ 7→ {0, 1}ℓ

}
. Then,

F ′ : {0, 1}ñ×G 7→ {0, 1}m×G ×{0, 1}ℓ as given by F ′(x, g) = (F (x), g, g(x)) satisfies the following
properties:

i. Assuming F−1 has real min-entropy at least k, then (F ′)−1 has real min-entropy at least
k − ℓ− s for any s = ω(log n).

ii. Assuming F−1 has accessible max-entropy at most k, then (F ′)−1 has accessible max-entropy
at most max {k − ℓ+ s, 0} for any s = ω(log n).

Proof. In the following X and G are uniformly distributed over {0, 1}ñ and G, respectively.

i. Fix g ∈ G and let Sg =
{
z ∈ {0, 1}ℓ : Pr[g(X) = z] ≤ 2−ℓ−s

}
. Observe that:

(a) Pr[g(X) ∈ Sg] ≤ 2−s (by a union bound over z ∈ Sg);

(b) Fix any z /∈ Sg and any x ∈ {0, 1}n such that HX|F (X)(x | F (x)) ≥ k. Then,

Pr[X = x | F ′(X, g) = (F (x), g, z)] = Pr[X = x | F (X) = F (x) ∧ g(X) = z]

≤ Pr[X = x | F (X) = F (x)]

Pr[g(X) = z]

≤ 2−k

2−ℓ−s
= 2−(k−ℓ−s).

where the second inequality follows from our assumptions on z and x.

Combining the above two observations and the bound on the real min-entropy of F , it follows
that for all g ∈ G, with probability 1− 2−s − neg(n) over x← X, we have

Pr[X = x | F ′(X, g) = F ′(x, g)] ≤ 2−(k−ℓ−s).

The bound on the real min-entropy of F ′ follows readily.

ii. Given a pptm F ′-collision-finder A′, we construct a pptm F -collision-finder A as follows:

On input x, picks a pair (g, r) uniformly at random and output A′(x, g; r).
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By the bound on the accessible max-entropy of F−1, we know that there exists a family of
sets

{
L(x) ⊆ {0, 1}ñ : x ∈ {0, 1}ñ

}
such that |L(x)| ≤ 2k, x ∈ L(x), and

Pr
[
A(X,G;R) ∈ L(X)

]
≥ 1− neg(n), (18)

where R is uniformly distributed over the random coins of A. Let L′(x, g) :=
{(x′, g) : x′ ∈ L(x) ∧ g(x′) = g(x)}. Equation (18) yields that

Pr
[
A′(X,G;R) ∈ L′(X,G)

]
≥ 1− neg(n) (19)

We next bound the size of the set L′(x, g) using the pairwise independent of G. Specifically,
for all x ∈ {0, 1}n it holds that

Pr
[∣∣L′(x,G)

∣∣ ≤ 2k−ℓ+s−1 + 1}
]
≥ 1− 2−(s−1), (20)

where we are taking into account the possibility that x ∈ L(x). Combining the last two
inequalities, we obtain

Pr
[
A′(X,G;R) ∈ L′(X,G) ∧

∣∣L′(X,G)
∣∣ ≤ max

{
2k−ℓ+s, 1

}]
≥ 1− neg(n)− 2−(s−1) (21)

The above yields an upper bound of max {k − ℓ+ s, 0} on the accessible max-entropy of
(F ′)−1.

□

5.1.3 Reducing Output Length

The next transformation gives us a way to derive a function that is both length-decreasing and
collision-resistant on random inputs.

Lemma 28 (Reducing output length). Let n be a security parameter and F : {0, 1}ñ 7→ {0, 1}m be
a function. Fix a family of pairwise independent hash functions G =

{
g : {0, 1}m 7→ {0, 1}ñ−logn

}
and let F ′ : {0, 1}n × G 7→ {0, 1}ñ−logn × G be defined by F ′(x, g) = (g, g(F (x))). The following
holds: if F−1 has real min-entropy at least ω(log n) and F is collision-resistant on random inputs,
then F ′ is collision-resistant on random inputs.

Proof. The bound on real min-entropy implies that there exists a subset S ⊆ {0, 1}ñ of density at
most neg(n), such that for all x /∈ S it holds that

∣∣F−1(F (x))
∣∣ = nω(1). Hence,

|Im(F )| ≤ |F (S)|+
∣∣F (S̄)

∣∣ ≤ |S|+ ∣∣S̄∣∣ /nω(1) ≤ neg(n) · 2n (22)

By the two-wise independent of G,

Pr
[
∃y′ ∈ Im(F ) : y′ ̸= F (X) ∧G(y′) = G(F (X))

]
≤ |Im(F )|

2ñ−logn
≤ neg(n) (23)

Namely, g(F (x)) uniquely determines F (x) with high probability. In particular, a collision for g ◦F
is also a collision for F . Given any pptm F ′-collision-finder A′, we construct a pptm F -collision-
finder A as follows:

On input x, pick g and r at random and compute x′ = A′(x, g; r). If F (x′) = F (x),
output x′, else output x.

Equation (23) implies that Pr[A′(X,G;R) ̸= (A(X;G,R), G)] ≤ neg(n). Therefore,
Pr[A′(X,G;R) = (X,G)] ≥ 1−neg(n). Namely, F ′ is also collision-resistant on random inputs. □
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5.1.4 Additional Transformations

We present two more standard transformations from folklore and previous work that are needed to
complete the construction.

Lemma 29 (From random inputs to targets, folklore). Let n be a security parameter and
F : {0, 1}ñ 7→ {0, 1}m be a length-decreasing function. Suppose F is collision-resistant on ran-
dom inputs. Then,

{
F ′y : {0, 1}ñ 7→ {0, 1}m

}
y∈{0,1}ñ as defined by F ′y(x) = F (y + x) is a family of

target collision-resistant hash functions.

Proof. Given a pptm adversary A′ that breaks target collision-resistance of F ′y, we can construct a
pptm adversary A that breaks F as follows:

On input x, run A′(1n) to compute (x0, state), and then run A′(state, x⊕x0) to compute
x1. Output x⊕ x0 ⊕ x1.

Note that (x0, x1) is a collision for F ′x⊕x0
iff (x, x ⊕ x0 ⊕ x1) is a collision for F . It then follows

quite readily that A breaks F with the same probability that A′ breaks F ′y. □

The following result of Shoup [22] (improving on [16, 1]) shows that we can construct target
collision-resistant hash functions for arbitrarily long inputs starting from one for a fixed input
length.

Lemma 30 (Increasing the input length [22]). Let n be a security parameter, t = poly(n)
be a parameter and let

{
Fy : {0, 1}ñ+logn 7→ {0, 1}ñ

}
be a family of target collision-resistant

hash functions. Then, there exists a family of target collision-resistant hash functions{
F ′y′ : {0, 1}ñ+t logn 7→ {0, 1}ñ

}
where |y′| = O(|y| log t).

5.1.5 Putting Everything Together

Using these transformations, we can now prove Theorem 24.

Proof of Theorem 24. Recall that we have given F : {0, 1}n0 7→ {0, 1}m0 , s ∈ ω(log n), the gap ∆
and that n is the security parameter.

step 1 (gap amplification): For a parameter t, we define F1 as F1(x1, . . . , xt) =
(F (x1), . . . , F (xt)), the t-fold direct product of F . We choose the parameter t ∈ O(n2

0s/∆
2)

such that
t · kreal − n0 ·

√
st ≥ t · (kreal −∆/2) + n0 ·

√
st+ 3s.

Lemma 26 yields that this repetition increases both the real and accessible entropies of F1

by a factor of t (comparing to F ). In addition, this repetition converts real Shannon entropy
to real min-entropy and accessible average max-entropy to accessible max-entropy (up to
additive terms that are sub-linear in t). More precisely, we have the following properties:

• F1 : {0, 1}n1 → {0, 1}m1 , where n1(n) = t · n0 and m1(n) = t ·m0.

• F−11 has real min-entropy at least t · kreal − n0 ·
√
st ≥ t · (kreal −∆/2) + n0 ·

√
st+ 3s.

• F−11 has accessible max-entropy at most t · (kreal −∆) + n0 ·
√
st.
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In the next steps, the construction uses an additional parameter k. In case k is chosen such
that

k ∈ [kreal, kreal +∆/2] (24)

we have

• F−11 has real min-entropy at least t · (k −∆) + n0 ·
√
st+ 3s.

• F−11 has accessible max-entropy at most t · (k −∆) + n0 ·
√
st.

In steps 2 to 4 we will assume that we have k with this property, and so there is a gap of
3s between real min-entropy and accessible max-entropy. In step 5, we will essentially do
“exhaustive search” over the values for k.

step 2 (entropy reduction): We next apply entropy reduction to F1 to obtain F
(k)
2 . That is,

F
(k)
2 (x, g) = (F1(x), g, g(x)), where g : {0, 1}n1 7→ {0, 1}ℓ is selected from a family of pairwise

independent hash functions with ℓ = t · (k−∆)+n0 ·
√
st+s = O(tn0). Lemma 27 yields that

this additional hashing reduces the real min-entropy and accessible max-entropy by ℓ (up to
an additive term of s). More exactly, we have the following properties:

• F
(k)
2 : {0, 1}n2 7→ {0, 1}m2 where n2(n, k) = O(tn0) and m2(n, k) = O(tn0). Note that in

particular n2 and m2 also depend on k (unlike n1 and m1).

• If (24) holds, then (F
(k)
2 )−1 has real min-entropy at least s.

• If (24) holds, then (F
(k)
2 )−1 has accessible max-entropy at most 0. Hence, F

(k)
2 is collision-

resistant on random inputs (by Lemma 12).

step 3 (reducing the output length): We next reduce the output length of F
(k)
2 by hashing

the output to n2 − log n bits. That is, F
(k)
3 (x, g) = (g, g(F

(k)
2 (x))) where g : {0, 1}m2 7→

{0, 1}n2−logn is selected from a family of pairwise-independent hash functions.

• F
(k)
3 : {0, 1}n3 7→ {0, 1}m3 where n3(n, k) = O(tn0) and m3(n, k) = n3 − log n.

• By Lemma 28, F
(k)
3 is collision-resistant on random inputs, assuming that (24) holds.

step 4 (adding random shifts) We then transform F
(k)
3 into a family

{
G

(k)
y

}
of target collision-

resistant hash functions via a random shift, following Lemma 29. That is, G
(k)
y (x) = F

(k)
3 (y+

x). We then have that

• G
(k)
y (x) : {0, 1}n3 7→ {0, 1}m3 and G

(k)
y uses a key y of length n3(n, k).

• If (24) holds, then
{
G

(k)
y

}
is target collision-resistant.

step 5 (removing non-uniformity): To remove the non-uniform advice k, we “try all possibil-
ities” from 0 to n0 in steps of size ∆/2, similar to the approach used in [19] (see also [14,
Section 3.6])
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i. First, we construct κ = n0 · 2/∆ families of functions
{
G

(k)
y

}
, where we instantiate{

G
(k)
y

}
for all k ∈

{
∆
2 , 2 ·

∆
2 , 3 ·

∆
2 , . . . , n0

}
. These κ families of functions satisfy the

following properties:

• Each of G
(k)
y is length-decreasing; in particular, G

(k)
y has input length n3(n, k) and

output length n3(n, k) − log n. Note that G
(n0)
y has the longest input length, i.e.,

n3(n, i∆/2) ≤ n3(n, n0) for all i because ℓ(n, k) increases as a function of k. We may
then assume that all κ functions G1

y, . . . , G
κ
y have the same input length n3(n, n0)

and the same output length n3(n, n0)− log n by padding “extra part” of the input
to the output.

• At least one of the
{
G

(k)
y

}
is target collision-resistant; this is because kreal ∈ [0, n0],

and so (24) holds for some k which we picked.

ii. Next, for each k, we construct a family of functions
{
G̃

(k)
ỹ

}
from

{
G

(k)
y

}
with input

length κ · n3(n, n0), key length O(n3(n, n0) · log n) and output length n3(n, n0)− log n,

by following the construction given by Lemma 30. Again, at least one of the
{
G̃

(k)
ỹ

}
for

k as above is target collision-resistant.

iii. Finally, we define a family of functions {Gỹ1,...,ỹκ} to be the concatenation of all G̃
(k)
ỹ on

the same input. That is, Gỹ1,...,ỹκ(x) = G̃
(∆/2)
ỹ1

(x) ◦ · · · ◦ G̃(n0)
ỹκ

(x).

• Note that G has input length κ · n3(n, n0) and output length κ · (n3(n, n0)− log n),
so G is length-decreasing.

• Moreover, since at least one of
{
G̃

(∆/2)
ỹ1

(x)
}
, . . . ,

{
G̃

(n0)
ỹκ

}
is target collision-

resistant, {Gỹ1,...,ỹκ} must also be target collision-resistant. This is because a colli-

sion for Gỹ1,...,ỹκ is a collision for each of G̃
(∆/2)
ỹ1

, . . . , G̃
(n0)
ỹκ

.

The family {Gỹ1,...,ỹκ} is the universal one-way hash function we wanted to construct, and so this
finishes the proof of Theorem 24. □

5.2 UOWHF via a Direct Construction

Theorem 31. Suppose there exists a polynomial-time computable function F : {0, 1}ñ 7→ {0, 1}m
such that F−1 has a noticeable gap ∆ between real Shannon entropy and accessible Shannon entropy.
Then, there exists a family of universal one-way hash functions with output length O(ñ8s2/∆7) and
key length O(ñ8s2/∆7 · log n) for any s = ω(log n).

As before, we can use Theorem 31 together with results from the previous sections to get a
universal one-way hash function.

Theorem 32. Suppose there exists a one-way function f : {0, 1}n 7→ {0, 1}n. Then, there exists a
family of universal one-way hash functions with key and output length Õ(n22).

Proof. We set s := log2(n), and use Theorem 16 to get a F with ñ = O(n), and ∆ := O( 1
n2 ). Using

F in Theorem 31 this gives key and output length Õ(n22). □

26



In order to prove Theorem 31, we show how to transform a noticeable gap between real Shan-
non entropy and accessible Shannon entropy to one between real Shannon entropy and accessible
max-entropy, and then follow the construction from the previous section. This step is fairly in-
volved as we are unable to show that parallel repetition directly transforms an upper bound on
accessible Shannon entropy into one for accessible max-entropy. We proceed by first establishing
some additional properties achieved by gap amplification and entropy reduction.

Lemma 33 (Gap amplification, continued). Let n be a security parameter and F : {0, 1}ñ 7→
{0, 1}m be a function. For t ∈ poly(n), let F t be the t-fold direct product of F . Then, F t also
satisfies the following properties:

i. If F−1 has real Shannon entropy at most k, then (F t)−1 has real max-entropy at most t · k+
ñ ·
√
st for any s = ω(log n) and t > s.

ii. If F−1 has real min-entropy at least k, then (F t)−1 has real min-entropy at least t · k.

iii. If F−1 has real max-entropy at most k, then (F t)−1 has real max-entropy at most t · k.

iv. If F−1 has accessible Shannon entropy at most k, then (F t)−1 has accessible Shannon entropy
at most t · k.

v. If F−1 has accessible max-entropy at most k, then (F t)−1 has accessible max-entropy at most
t · k.

vi. If F is q-collision-resistant on random inputs and F−1 has real max-entropy at most k, then
F−1 has accessible max-entropy at most (1− q/8) · tk + t, provided that t = ω((1/q) · log n).

Proof. Again, X and X(t) = (X1, . . . , Xt) are uniformly distributed over {0, 1}ñ and ({0, 1}ñ)t
respectively.

i. Follows readily from Lemma 4.

ii. This follows from a union bound and that fact that for all x1, . . . , xt:

HX(t)(x1, . . . , xt | F t(x1, . . . , xt)) =
t∑

i=1

HX|F (X)(xi | F (xi))

iii. Same as previous part.

iv. Given any pptm F t-collision-finder A′, we construct the following pptm F -collision-finder A:

On input x, pick a random i in [t] along with random x1, . . . , xi−1, xi+1, . . . , xt,
compute A′(x1, . . . , xt) 7→ (x′1, . . . , x

′
t), and output x′i.

Define the random variables (X ′1, . . . , X
′
t) = A′(X1, . . . , Xt). Then,

H(X ′1, . . . , X
′
t | X1, . . . , Xt)

≤ H(X ′1 | X1) + · · ·+H(X ′t | Xt) subadditivity of conditional Shannon entropy
= t ·H(X ′I | XI) where I has the uniform distribution over [t]
= t ·H(A(X) | X) by definition of A
≤ t · k by the bound on accessible Shannon entropy of F−1
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v. Analogous to Lemma 26 part ii, but simpler, since we do not have to use the Chernoff-
Hoeffding bound.

vi. Suppose on the contrary that there exists a pptm F t-collision-finder A′ that vio-
lates the guarantee on accessible max-entropy. For x(t) ∈ ({0, 1}ñ)t, let B(x(t)) :={
x′(t) ∈ ({0, 1}ñ)t : F t(x(t)) = F t(x′(t)) ∧

∣∣∣{i ∈ [t] : x′
(t)
i = x

(t)
i

}∣∣∣ ≥ qt/8
}
. By the bound on

real max-entropy, we have that Pr[∃i ∈ [t] :
∣∣∣F−1(F (X

(t)
i ))

∣∣∣ > 2k] ≤ t · neg(n) = neg(n).

Hence,

Pr
[∣∣∣B(X(t))

∣∣∣ > (
t

qt

)
2(1−q/8)tk

]
≤ neg(n) (25)

Since A′ achieves accessible max-entropy greater than (1 − q/8)tk + t, there must exists a
non-negligible function ϵ such that Pr[A′(X(t);R′) /∈ B(X(t))] ≥ ϵ− t ·neg(n) ≥ ϵ/2, where R′

is uniformly distributed over the random coins of A′. Namely, A′ finds collisions on at least a
1− q/8 fraction of the coordinates with non-negligible probability.

Since F is q-collision resistant, this violates a standard Chernoff-type direct product theorem.
We now give a self-contained proof, following a similar analysis done for standard collision
resistance in [4]. Consider the following pptm F -collision-finder A:

On input x ∈ {0, 1}ñ, pick a random i ∈ [t] along with random
x1, . . . , xi−1, xi+1, . . . , xt, compute A′(x1, . . . , xt) 7→ (x′1, . . . , x

′
t), and output x′i.

To analyze the success probability of A′, fix any subset S of {0, 1}ñ of density q/2. If t =
ω(log n/q), then a Chernoff bound yields that

Pr[A′(X(t)) /∈ B(X(t)) ∧
∣∣∣{i ∈ [t] : X

(t)
i ∈ S

}∣∣∣ ≥ q/4] ≥ ϵ/4.

This means that

Pr
i←[t]

[A′(X(t)) 7→ (X ′1, . . . , X
′
t) ∧Xi ∈ S ∧X ′i ̸= Xi] ≥ ϵ/4 · q/8.

We may then deduce (following the same calculations in [4, Prop 2]) that

Pr
x←X

[
Pr[A(x;R) ̸= x] ≥ ϵ/4 · q/8 · 2/q

]
≥ 1− q/2.

where R is uniformly distributed over the random coins of A. By repeating A a sufficient
number of times, we may find collisions on random inputs of F with probability 1 − q,
contradicting our assumption that F is q-collision-resistant on random inputs.

□

Lemma 34 (Reducing entropy, continued). Let n be a security parameter and F : {0, 1}ñ 7→ {0, 1}m
be a function. Fix a family of 2-universal hash functions G =

{
g : {0, 1}ñ 7→ {0, 1}ℓ

}
. Then,

F ′ : {0, 1}ñ×G 7→ {0, 1}m×G ×{0, 1}ℓ as given by F ′(x, g) = (F (x), g, g(x)) satisfies the following
properties:

i. If F−1 has real max-entropy at most k, then (F ′)−1 has real max-entropy at most
max {k − ℓ+ s, 0} for any s = ω(log n).
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ii. If F−1 has p-accessible max-entropy at most k, then (F ′)−1 has p + 2−Ω(s)-accessible max-
entropy at most max {k − ℓ+ s, 0} for any s.

Proof. In the following X and G are uniformly distributed over {0, 1}ñ and G respectively.

i. Fix an x such that
∣∣F−1(F (x))

∣∣ ≤ 2k. By 2-universal hashing,

E
[∣∣G−1(G(x)) ∩ (F−1(F (x)) \ {x})

∣∣] ≤ (2k − 1) · 2−ℓ ≤ 2k−ℓ.

The bound on the real max-entropy of F−1 and the Markov’s inequality, yield that

Pr
[∣∣G−1(G(X)) ∩ (F−1(F (X)) \ {x})

∣∣ ≥ 2(s−1) · 2k−ℓ
]
≤ 2−(s−1) + neg(n).

The bound on the real max-entropy of (F ′)−1 follows.

ii. Readily follows from the proof of Lemma 27 part ii.
□

5.2.1 Putting Everything Together

Proof of Theorem 31. Recall that we start out with a function F : {0, 1}n0 → {0, 1}m0 with a
gap ∆ between real Shannon entropy and accessible Shannon entropy. Let kreal denote the real
Shannon entropy of F−1.

step 1 (gap amplification): Let F1 be the t-fold direct product of F for a sufficiently large t to
be determined later. That is, F1(x1, . . . , xt) = (F (x1), . . . , F (xt)).

Lemma 26 yields that this repetition increases both the real and accessible entropies of F1 by
a factor of t. In addition, the repetition converts real Shannon entropy to real min-entropy
and real max-entropy (up to an additive o(t) term). More precisely:

• F1 : {0, 1}n1 7→ {0, 1}m1 where n1(n) = t · ñ and m1(n) = t ·m.

• F−11 has real min-entropy at least t · kreal − n0

√
st and real max-entropy at most t ·

kreal + n0

√
st.

• F−11 has accessible Shannon entropy at most t · kreal − t∆.

From the next step on, the construction again uses an additional parameter k. We will be
especially interested in the case

k ∈ [kreal, kreal +∆2/128n0]. (26)

In case this holds,

• F−11 has accessible Shannon entropy at most tk − t∆. Lemma 13 yields that F−11 has
(1−∆/4k)-accessible max-entropy at most tk − t∆/2.

step 2 (entropy reduction): Apply entropy reduction to F1 with ℓ = tk − t∆/2 + s to obtain

F
(k)
2 . That is, F

(k)
2 (x, g) = (F1(x), g, g(x)), where g : {0, 1}n1 7→ {0, 1}ℓ is selected from a

family of 2-universal hash functions.

By Lemma 27 and Lemma 34, this reduces the accessible max-entropy to 0, which allows us

to deduce that F
(k)
2 is weakly collision-resistant on random inputs. Assuming Equation (26)

we have
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• F
(k)
2 : {0, 1}n2 7→ {0, 1}m2 where n2(n, k) = O(tn0 + ℓ(n, k)) = O(tn0) and m2(n, k) =

O(tm0 + ℓ(n, k)) = O(tn0).

• (F
(k)
2 )−1 has real min-entropy at least t · (kreal − k + ∆/2) − n0

√
st − 2s, which is at

least
t · (∆/2−∆2/128n0)− n0

√
st− 2s

and real max-entropy at most t · (kreal − k +∆/2) + n0

√
st ≤ t ·∆/2 + n0

√
st.

• (F
(k)
2 )−1 has (1 − ∆/4k + 2−Ω(s))-accessible max-entropy at most 0. Thus, F

(k)
2 is q-

collision-resistant on random inputs (by Lemma 12), for q = ∆/4k − 2−Ω(s).

step 3 (gap amplification): F
(k)
3 is t′-fold direct product of F

(k)
2 , where t′ = s/q = O(ks/∆).

That is, F
(k)
3 (x1, . . . , xt′) = (F

(k)
2 (x1), . . . , F

(k)
2 (xt′)).

By Lemma 33, this allows us to amplify the weak collision-resistance property of F
(k)
2 to

obtain a gap between real min-entropy and accessible max-entropy in F
(k)
3 , again assuming

Equation (26).

• (F
(k)
3 )−1 has real min-entropy at least

t′ ·
(
t · (∆/2−∆2/128n0)− n0

√
st− 2s

)
.

• (F
(k)
3 )−1 has accessible max-entropy at most t′ ·

(
(1− q/8) · (t∆/2 + n0

√
st) + 1

)
, which

is at most:
t′ ·

(
t · (∆/2−∆q/16) + n0

√
st) + 1

)
.

Now, k ≤ n0, so q = ∆/4k−2−Ω(s) ≥ ∆/4n0−2−Ω(s). This means (F
(k)
3 )−1 has accessible

max-entropy at most:

t′ ·
(
t · (∆/2−∆2/64n0 + 2−Ω(s)) + n0

√
st) + 1

)
.

Note that the gap is at least t′ ·
(
t ·∆2/128n0− 2−Ω(s)− (2n0

√
st+2s+1)

)
, which is at least

3s as long as:
t ·∆2/128n0 ≥ 2−Ω(s) + 2n0

√
st+ 2s+ 1 + 3s/t′

Since 3s/t′ = 3q ≤ 3∆, we can set t = O(n0/∆ + n0s/∆
2 + n4

0s/∆
4) = O(n4

0s/∆
4) so that

(F
(k)
3 )−1 has a gap of 3s between real min-entropy and accessible max-entropy, and moreover,

we know where this gap is (given k).

step 4: We follow steps 2, 3, 4, and 5 in the previous construction, with the following modifications
in the parameters:

• We apply entropy reduction first, with

ℓ = t′ ·
(
t · (∆/2−∆q/16) + n0

√
st) + 1

)
+ s.

• To remove the non-uniform advice k, we “try all possibilities” from 0 to n0 in steps of
size ∆2/128n0.
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We then obtain a non-uniform construction of UOWHFs with output and key length O(n0 ·
t · t′) = O(n6

0s
2/∆5), since t = O(n4

0s/∆
4) and t′ = O(n0s/∆). We also obtain a uniform

construction with output length O(n0/(∆
2/n0) ·n0 · t · t′ · log n) = O(n8

0s
2/∆7) and key length

O(n8
0s

2/∆7 · log n).

This finishes the proof of Theorem 31. □

6 Connection to Average Case Complexity

In this section we use the notion of inaccessible entropy for reproving a result by Impagliazzo and
Levin [12], given in the realm of average case complexity. This result draws a connection between
two seemingly separate lines of research: average case complexity and universal one-way hash-
functions (UOWHFs). More specifically, [12] show a reduction from “uniform distribution” average
case complexity problems to ones with arbitrary (though polynomial samplable one) distributions.
Here, we reprove this result using similar technique to the ones we used in the first part of the
paper to reduce UOWHFs to one-way functions (OWFs).

Section 6.1 introduces the basic notion and definitions used through the section, and in particular
what “success on the average” means. It also formally describes the result of Impagliazzo and Levin
[12], a result that we reprove in Section 6.2.

6.1 Preliminaries and the Impagliazzo and Levin Result

We start by introducing some basic notions from average case complexity.8

6.1.1 Algorithms That Err

Let L be some language, and suppose A(y; r) is a randomized algorithm with input y ∈ {0, 1}∗,
randomness r, and output domain {0, 1,⊥}.9 It is useful to think that A(y, ·) is trying to decide L,
where 0 and 1 are guesses whether y ∈ L, and ⊥ signals that A refuses to guess.

Recall that when defining a worst case complexity class (e.g., BPP), one requires Pr[A(y;R) =
L(y)] ≥ 2

3 for any y ∈ {0, 1}∗ (the choice of the constant 2
3 is somewhat arbitrary). In contrast,

in average case complexity an algorithm is allowed to be wrong on some inputs. Specifically, the
success probability of a decider A is measured not with respect to to single input, but with respect
to a distribution over the elements of L.

Definition 35. A randomized algorithm A is α-correct on input y ∈ {0, 1}∗ with respect to a lan-
guage L ⊆ {0, 1}∗, if Pr[A(y;R) = L(y)] ≥ α, where we identify languages with their characteristic
functions, and R is uniformly distributed over the possible random coins of A.

Assuming L ∈ BPP, then there exists an algorithm A that is 2
3 -correct with respect to L, for

every y ∈ {0, 1}∗.
8We limit the following discussion only to notions that we actually use, so this section should not be regarded as

an comprehensive introduction to the field of average case complexity (see Bogdanov and Trevisan [3] for such an
introduction). While the definitions given here are equivalent to the ones given in [3], some of them are formulated
somewhat differently (the interested reader is welcome to check their equivalence).

9We make the less common choice of using y as the input variable (and not x), since in our applications the
element y is sampled as the output of a one-way function.

31



Definition 36 (Problem). A problem is a pair (L,D) of language and distribution family, where
L ⊆ {0, 1}∗ and D = {Di}i∈N is a family of distributions over L.

The problem class HeurBPP contain those problems for which there exists an efficient algorithm
that is correct on all but a “small” fraction of the inputs.

Definition 37 (HeurBPP). A problem (L,D) is in HeurBPP, if there exists a four-input algorithm
A such that the following holds for every (n, δ) ∈ N× (0, 1]: A(·, 1n, δ; ·) runs in time p(n, 1/δ) for
some p ∈ poly, and

Pr
Y←Dn

[A(Y, 1n, δ; ·) is 2
3 -correct on Y ] ≥ 1− δ.

Namely, A is allowed to run in time polynomial in the “sampling complexity” of the instance,
and inverse polynomial in the probability with which it is allowed to err.

6.1.2 Samplable Distributions

We next study the families of distributions D to consider. While it is most natural to focus
on efficiently samplable distributions, the definition of HeurBPP does not pose such limits on
the distributions considered; a pair (L,D) can be decided efficiently on average even if sampling
the distribution D is a computationally hard problem. For the reduction, however, we restrict
ourselves to polynomial-time samplable distributions. This limitation is crucial, since with respect
to arbitrary distributions, the notion of HeurBPP can degenerate to worst case complexity (see [15]
or [3, Section 2.5]).

Definition 38 (Polynomial-time samplable distributions, (NP,PSamp)). A distribution family
D = {Dn}n∈N is polynomial-time samplable, denoted D ∈ PSamp, if there exists a polynomial-time
computable function D and a polynomial p(n), such that D(1n, Up(n)) is distributed according to Dn

for every n ∈ N, where Um is the uniform distribution over m-bit strings.
The product set (NP,PSamp) denotes the set of all pairs (L,D) with L ∈ NP and D ∈ PSamp.

Note that the input Up(n) to D above is the only source of randomness used to sample the
elements of D. In the following we make use the distribution family U = {Un}n∈N (clearly, U ∈
PSamp).

6.1.3 Impagliazzo and Levin Result

In the above terminology the result of Impagliazzo and Levin [12] can be stated as follows (cf., [3,
Thm. 29]):

Theorem 39 ([12]). Suppose (NP,PSamp)\HeurBPP ̸= ∅, then ∃L ∈ NP with (L,U) /∈ HeurBPP.

In other words, suppose there exists an average-case hard problem whose distribution is
polynomial-time samplable, then there exists an average-case hard problem whose distribution
is uniform.
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..

(L,D) /∈ HeurBPP

.

(L′,U) /∈ HeurBPP

.(R,D) /∈ SearchHeurBPP. (V,U) /∈ SearchHeurBPP.

Theorem 42

.

Trivial

. Lemma 43

Figure 1: Schematic proof of Theorem 39.

6.1.4 Search Problems

The proof of Theorem 39 uses the notion of “NP-search problems”:

Definition 40 (Search problems). A search problem is a pair (R,D), where R ⊆ {0, 1}∗ × {0, 1}∗
is a binary relation, and D = {Di}i∈N is a family of distributions over {0, 1}∗. In case R is an
NP-relation, then (R,D) is an NP-search problem.

For a relation R, let RL be the corresponding language, i.e., RL = {y : ∃w : (y, w) ∈ R}.
The notion of heuristics is naturally generalized to NP-search problems. The only change is

that in case the algorithm claims y ∈ RL, it additionally has to provide a witness to prove that. A
search algorithm A always outputs a pair, and we let A1 be the first component of this pair, and
A2 be the second component.

Definition 41 (SearchHeurBPP). An NP-search problem (R,D) is in SearchHeurBPP, if there
exists an algorithm A outputting pairs in {0, 1,⊥}×{0, 1}∗ such that the following holds: (1) A1 is
a heuristic for (RL,D) and (2) A1(y, 1

n, δ; r) = 1 =⇒ (y,A2(y, 1
n, δ; r)) ∈ R.

Algorithm A is called a (randomized) heuristic search algorithm for (R,D).

6.1.5 Search Problems vs. Decision Problems

Suppose (L,D) ∈ (NP,PSamp) is a “difficult decision problem”. Then any NP-relation associated
with L gives a “difficult NP-search problem”, because finding a witness also solves the decision
problem.

The converse direction is less obvious (recall that even in worst-case complexity, one invokes
self-reducibility). Nevertheless, Ben-David et al. [2] prove the following (see also [3, Thm. 4.5]):

Theorem 42 ([2]). Suppose there is an NP-relation R with (R,U) /∈ SearchHeurBPP, then ∃L ∈
NP with (L,U) /∈ HeurBPP.

Using Theorem 42 the proof of Theorem 39 proceeds as follows (see Figure 1): suppose there
is a pair (L,D) ∈ (NP,PSamp) \ HeurBPP and let R be an NP-relation for L. Then (R,D) /∈
SearchHeurBPP (if (R,D) would have a search heuristic algorithm, the first component of this
algorithm, that outputs its left hand side output, would place (L,D) ∈ HeurBPP.) The following
lemma states that in this case there is a pair (V,U) /∈ SearchHeurBPP, and therefore Theorem 42
yields the conclusion.

Lemma 43 (Impagliazzo and Levin [12] main lemma, reproved here). Assume that there exists an
NP-search problem (R,D) with D ∈ PSamp such that (R,D) /∈ SearchHeurBPP, then there is an
NP-relation V such that (V,U) /∈ SearchHeurBPP.
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Intuitively Lemma 43 states the following: suppose some sampling algorithm D(1n, ·) gener-
ates hard search problems, then there exist an NP-search problem that is hard over the uniform
distribution.

Consider the following application of Lemma 43; suppose that one-way functions exist and let
f : {0, 1}n 7→ {0, 1}n be a length-preserving one-way function. Let D(1n, r) be the algorithm that
applies f : {0, 1}n 7→ {0, 1}n on the input randomness x = r and outputs f(x), and setD = {Dn}n∈N
to the corresponding distribution family. Furthermore, consider the NP-search problem given by
the relation R = {(f(x), x) : x ∈ {0, 1}∗}. It is easy to verify that the NP-search problem (R,D) is
not in SearchHeurBPP.

Lemma 43 implies that hard problems exist for some uniform distribution, under the assump-
tion that one-way functions exist. However, we knew this before: if one-way functions exist,
then UOWHFs exist. Let Fk be such a family as in Definition 1, and consider the relation
V = {((z, x), x′) : Fz(x) = Fz(x

′), x ̸= x′}, which asks us to find a non-trivial collision in Fz

with a given x. By the security property of UOWHF, if we pick (z, x) uniformly at random, then
this is a hard problem, and it is possible to show that (V,U) /∈ SearchHeurBPP. Thus, Rompel’s
result gives the conclusion of Lemma 43 in case we have the stronger assumption that one-way
functions exist.

Given the above, it seems natural to ask whether the strategy used for constructing UOWHF
from one-way functions, can be used for proving the general case stated in Lemma 43. In the
following section we answer the above question in an affirmative way. Specifically, we present an
alternative proof for Lemma 43 following a similar approach to that taken in the first part of this
paper for constructing UOWHF from one-way functions.

6.1.6 The Valiant-Vazirani Lemma

We make use of the Valiant-Vazirani Lemma, originated in [23].

Lemma 44 ([23]). Let S ⊆ {0, 1}∗ be a set with 2k ≤ |S| ≤ 2k+1. Let G be a family of two-universal
hash-functions of the form g : {0, 1}∗ 7→ {0, 1}k+2. Then for any x ∈ S, the probability that x is the
unique element in S with g(x) = 0k+2 is at least 1

2k+3 .

A more usual formulation of the Valiant-Vazirani lemma states that with probability at least 1
8

there is exactly one element x ∈ S with g(x) = 0k+2. This follows immediately from the above
form.

Proof. The probability that g(x) = 0k+2 for a fixed x ∈ S is 1
2k+2 . Conditioned on this event, due

to the two-universality of G, the probability that any other element of S is mapped to 0k+2 is at
most |S| 1

2k+2 ≤ 1
2 . □

6.2 Proving Lemma 43 Via Inaccessible Entropy

Recall the basic idea underlying the two constructions of UOWHF from one-way functions presented
in the first part of this paper. In a first step, we use the one-way function f to construct a function
F that induces a gap between its real and accessible entropy (i.e., F has “inaccessible entropy”).
Roughly, the distribution induced by the output of any efficient “collision-finder” algorithm getting
a random x and outputting a random x′ ∈ F−1(F (x)), has a smaller entropy than that induced by
random preimage of F (x). Afterwards, we use F to build the UOWHF.
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We want to redo this first step in the current setting. Now, however, it is not anymore important
to talk about collisions.10 Thus, we can instead define F such that F−1(y) has some inaccessible
entropy for a uniform random y. This is in fact compatible with the construction given in Sec-
tion 4.2: it is possible to show that the image of F is close to uniform in case i ≈ Hf(X)(f(x))
(recall that i is the number of bits hashed out from f(x) in the definition of F ).

Let now (R,D) be an NP search problem with D ∈ PSamp which is not in SearchHeurBPP.
We would like to use a similar approach as above to define a relation with limited accessible max-
entropy. One might suggest that the following search problem has inaccessible entropy: given a
four tuple (n, i, g, z), where g is a two-universal hash-function, and z has i bits, find as solution an
input x such that g(D(1n, x))1,...,i = z. However, it turns out that one does not in fact need the
randomness inherent in the choice of z (note that a typical two-universal hash-function XORs the
output with a random string anyhow). Instead, it makes no difference to fix z = 0i, and so we
adopt this to simplify the notation, so that the suggested search problem becomes to find x with
g(D(1n, x))1,...,i = 0i for a given triple (n, i, g).

Problems with the above intuition and postprocessing the witness. Amoment of thought
reveals that there can be cases where this suggested search problem is easy. For example if the
sampler D(1n, x) simply outputs y = x itself, which is possible if finding w with (y, w) ∈ R is
difficult for a uniform random y. The solution is easy: ask the solving algorithm to output also a
matching witness w with (D(1n, x), w) ∈ R (ignore invalid outputs).

Thus, the suggested search problem becomes: “given (n, i, g), find (x,w) such that
g(D(1n, x))1...i = 0i and (D(1n, x), w) ∈ R”. The hope is then that this search problem has limited
accessible entropy in the coordinate corresponding to x (we do not want to talk about the entropy
in w because it arise from the number of witnesses which R has, and at this point we have no
control over this number).

There is a last little problem to take care of: we cannot encode n into the search problem, as
there would be no way to ensure that (n, i, g) looks like a uniform bitstring. However, it is possible
to ensure that the length of (i, g) uniquely define n, and we assume that this is done in such a way
that n can be easily computed from the length of (i, g).

6.2.1 A Relation with Bounded Accessible Average Max-Entropy

Using the above discussion, we now finally have enough intuition to define the relation Q. For
D ∈ PSamp, we let Canon(D) be an arbitrary polynomial-time sampler for D.

Definition 45. Let R be an NP relation, let D ∈ PSamp, let D = Canon(D) and let d ∈ N be
such that D’s running time on input (1n, ·) is bounded by nd. Let G be an explicit and constructible
family of two-universal hash functions, where the family Gm maps all strings of length at most m
to strings of length m.

For n ∈ N, define

Q(n) :=
{(

(i, g), (x,w)
)
: x ∈ {0, 1}nd

, i ∈ [nd], g ∈ Gnd , g(D(1n, x))1...i = 0i, (D(1n, x), w) ∈ R
}
,

and let Q :=
∪

n∈NQ(n).

10One advantage of using an “inversion problem” instead of a “collision problem” is that it becomes possible to
use two-wise independent hash-functions (instead of three-wise independent).
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Note that the elements of Gm in Definition 45 have domain
∪m

i=0{0, 1}i. This somewhat unusual
requirement is needed since the sampler might output strings of arbitrary lengths (up to nd).

From now on, we will only consider the case where we have some fixed sampler D in mind. In
this case, whenever n is given, we will assume that (i, g) are elements satisfying the conditions in
Definition 45. Furthermore, we assume without loss of generality that (the encoding of) a uniform
random bitstring, of the right length, induces the uniform distribution on Gnd × [nd].

6.2.2 Accessible Average Max-Entropy

We next define what it means for an NP-search problem to have limited accessible max-entropy,
with respect to a part of its witness. This notion is modeled by introducing a function f that
outputs the “interesting part” of the witness.

Definition 46. Let Q be an NP relation, and f : {0, 1}∗ 7→ {0, 1}∗ a function. For y ∈ {0, 1}∗ let

SQ,f (y) := {f(w) : (y, w) ∈ Q} .

The real average max-entropy of (Q,D) with respect to f , is the function

HReal
Q,D,f (m) = E

Y←Dm

[log(|SQ,f (Y )|)]

letting log(0) := −1.11

In case the relation R and f are clear from the context, we sometimes write S(y) instead of
SQ,f (y).

We next define a useful notion of limited accessible max-entropy in this setting. Here, one should
think of algorithm A as an algorithm which, on input y produces a witness w with (y, w) ∈ Q. It
furthermore “aims” to produce witnesses w for which f(w) has as much entropy as possible.

Definition 47. Let f : {0, 1}∗ 7→ {0, 1}∗, p, k : N× (0, 1] 7→ R, Q an NP-relation, and D a family
of distributions. The pair (Q,D) has i.o. (infinitely often) ρ-accessible average max-entropy at most k
with respect to f , if for every four-input algorithm A(y, 1m, ε; r) running in time ℓ = ℓ(m, 1/ε) for
some ℓ ∈ poly, there exists infinitely many m’s in N, a function ε(m) = ε ∈ (0, 1] and an ensemble

of set families
{
{Lm(y) ⊆ {0, 1}∗}y∈Supp(Dm)

}
m∈N

, such that

Pr
Y←Dm,R←{0,1}ℓ

[
Γ(Y,A(Y, 1m, ε;R)) ∈

(
Lm(Y ) ∪ {⊥}

)]
≥ 1− ρ(m, ε) (27)

where Γ = ΓQ,f (y, w) equals f(w) in case (y, w) ∈ Q and equals ⊥ otherwise, and

E
Y←Dm

[
log(|Lm(Y )|)

]
≤ k(m, ε) (28)

The following lemma, proven in Section 6.2.3, states that the relation Q defined in Definition 45
has limited accessible max-entropy with respect to the function (x,w) 7→ x.

11The convention log(0) = −1 helps us to simplify notation in a few places. (We need that log(0) < log(1) since
an algorithm which produces no valid witness should produce less entropy than an algorithm which produces some
valid witness).
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Lemma 48. Let (R,D) be an NP relation with D ∈ PSamp and (R,D) /∈ SearchHeurBPP.
Define Q from (R,D) as in Definition 45, and let f : {0, 1}∗ × {0, 1}∗ 7→ {0, 1}∗ be given by
f(x,w) = x. Then, for any c ∈ N, (Q,U) has i.o. ( ε

m)c-accessible average max-entropy at most

k(m, ε) = HReal
Q,U ,f (m)− c

√
ε ·mc with respect to f .

Lemma 48 is proven below, and in Section 6.2.4 we use Lemma 48 for proving Lemma 43. The
latter is done by additionally fixing the value of h(x)1...j , where h is an additional random hash
function, and j is a random integer (in a certain range). The ratio is that an algorithm producing
(x,w) with h(x)1...j = 0j , can be used to access max-entropy roughly 2j .

6.2.3 Proving Lemma 48

The proof of Lemma 48 follows similar lines to the proof of Theorem 20.

Proof (of Lemma 48). Let A be an algorithm that “aims to produce max-entropy for Q”. Without
loss of generality, we assume that A either outputs a valid witness (x,w) for a given input (i, g)
or ⊥. We show how to find infinitely many m ∈ N, ε = ε(m) ∈ (0, 1], and ensemble of set

families
{
Lm = {Lm(i, g)}(i,g)∈QL

}
m∈N

with the properties as required in the lemma (we write

Lm(i, g) instead of Lm(y) because the elements of QL are pairs (i, g)). Towards achieving the
above, consider the following candidate algorithm B for a search heuristics for (R,D).

Let β ∈ N be a constant to be determined by the analysis, let d ∈ N be such that nd is an upper
bound on the runtime of the sampler D (recall that we have fixed D above) on input (1n, ·), and
let ℓ = ℓ(m, ε) be an upper bound on the running time of A on parameters m and ε. Let m(n) be
the description length of a pair in [nd]× Gnd and let ε(n, δ) = (δ(n)/nβ)β.

Search Heuristics BA

Oracle: A // Entropy generator for (Q,U).
Input: y ∈ {0, 1}∗, 1n and δ ∈ (0, 1].

ε = ε(n, δ); m = m(n); ℓ = ℓ(m, ε)
repeat n · (n/δ)β times:

i← [nd]
g ←

{
g′ ∈ Gnd : g′(y)1...i = 0i

}
r ← {0, 1}ℓ
(x,w) = A((i, g), 1m, ε; r)
if (y, w) ∈ R and D(1n, x) = y

return (1, w)
return 0

It is clear that, for any β ∈ N, the running time of B is poly(n, 1/δ). Recall that, by assumption,
(R,D) has no search heuristics. Algorithm B satisfies item (2) of Definition 41, and since (R,D)
has no search heuristics, it must fail to satisfy item (1) (i.e., B1 cannot be a randomized heuristic).
Note now that algorithm B1 is always correct if y /∈ L (always outputs 0). Thus, B must fail to be
correct on some y ∈ L. In fact, there exist infinitely many n’s in N and a function δ = δ(n) ∈ (0, 1].
such that B1(y, 1

n, δ; ·) is not 2
3 -correct for more than a fraction δ of the inputs y ∈ RL produced

by D(1n, ·).

37



The following discussion is with respect to to any fixed pair (n, δ = δ(n)) from the above infinite
set.

We present a family of sets {Lm(i, g)}(i,g)∈G
nd×[nd] for which Equations (27) and (28) holds with

respect to algorithm A and f , for the parameters m = m(n), ε = ε(n, δ) = ε(m), and ρ and k as
stated in the lemma. Since this holds for any such pair (n, δ) and since m(n) ∈ Ω(n) (and thus,
there are infinitely many different m’s) the proof of the lemma would follow.

Consider the following set

Y =

y ∈ L : Pr
I←[nd]

G←G
nd ,R←{0,1}ℓ

[A1((I,G), 1m, ε;R) ∈ D−1(1n, y) : G(y)1...I = 0I ] <
( ε

n

)β

 , (29)

letting D−1(1n, y) :=
{
x ∈ {0, 1}nd

: D(1n, x) = y
}

and let ℓ = ℓ(m). Note that Y contains all the

y’s in L for which B1 is not 2
3 -correct, and the above discussion implies

Pr
Y←Dn

[Y ∈ Y] > δ (30)

Towards defining the sets {Lm(i, g)}, we partition the preimages of the elements in Y into buckets;
for i ∈

{
0, . . . , nd − 1

}
let

L(i) :=
{
x ∈ {0, 1}nd

: D(1n, x) ∈
(
Y ∩

{
y : HDn(y)(y) ∈ [i, i+ 1)

})}
, (31)

where HDn(y)(y) = − log(1/Dn(y)) is the sample entropy of y with respect to the distribution Dn.

In words: L(i) are those x for which y = D(1n, x) ∈ L is an element for which B(y) is unlikely to

produce a witness, and for which y has roughly 2(n
d)−i preimages.

For (i, g) ∈ Gnd , the set Lm(i, g) is defined as

Lm(i, g) := S(i, g) \ L(i), (32)

where S(i, g) is taken from Definition 46. In the remaining of the proof we show that, for the right
choice of β, Equations (27) and (28) holds with respect to the family {Lm(i, g)} for the functions
ρ(m, ε) = ( ε

m)c and k(m, ε) = HReal
Q,U ,f (m)− c

√
ε ·mc. The proof easily follow by the next two claims.

Claim 49. We have

Pr
I←[nd],G←G

nd

R←{0,1}ℓ

[A1((I,G), 1m, ε;R) ∈ L(I)] ≤ 2nd ·
( ε

n

)β

Claim 50. For i ∈ [nd] and g ∈ Gnd, let S̃(i, g) = S(i, g) in case this set in non-empty and
S̃(i, g) = {⊥} otherwise, then

Pr
I←[nd],G←G

nd

X←S̃(I,G)

[X ∈ L(I)] ≥ δ

10nd
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Before proving the above claims, we first use them to conclude the proof of the lemma.
Claim 49 implies that for large enough β

Pr
I←[nd],G←G

nd

R←{0,1}ℓ

[Γ
(
(I,G),A((I,G), 1m, ε;R)

)
∈ (Lm(I,G) ∪ {⊥})] ≥ 1− 2nd ·

( ε

n

)β
≥ 1− (

ε

m
)c (33)

yielding that Equation (27) holds for {Lm(i, g)} and ρ.
Applying Markov’s inequality on Claim 50, yields that

Pr
X←S(i,g)

[D(1n, X) ∈ L(i)] ≥ δ

20nd
(34)

for at least δ
20nd fraction of the pairs (i, g) ∈ [nd]× Gnd . Where for any such pair it holds that

log(|Lm(i, g)|) ≤ log((1− δ

20nd
) · |S(i, g)|) (35)

≤ log(|S(i, g)|)− δ

20nd
.

It follows that for large enough β

HReal
Q,U ,f (m)− E[log(|Lm(I,G)|)] = E

(I,G)←[nd]×G
nd

[log(|S(I,G)|)− log(|L(m, I,G)|)]

≥ δ2

400nd
=

( β
√
ε ·mβ)2

400nd

≥ c
√
ε ·mc

Hence, Equation (28) holds for {Lm(i, g)} and k, and the proof of the lemma follows. □

Proof of Claim 49. Compute

nd ·
( ε

n

)β
≥

∑
y∈Y

Dn(y) · nd ·
( ε

n

)β
(36)

≥
nd∑
i=1

∑
y∈D(1n,L(i))

Dn(y) · Pr
G←G

nd ,R←{0,1}ℓ
[A1((i, G), 1m, ε;R) ∈ D−1(1n, y) | G(y)1...i = 0i],

letting D(1n,L(i)) :=
{
D(1n, x) : x ∈ L(i))

}
. In addition, for any (i, r) it holds that∑

y∈D(1m,L(i))

Dn(y) · Pr
G←G

nd

[A1((i, G), 1m, ε; r) ∈ D−1(1n, y) | G(y)1...i = 0i]

=
∑

y∈D(1m,L(i))

Dn(y) · 2i · Pr
G←G

nd

[A1((i, G), 1m, ε; r) ∈ D−1(1n, y) ∧G(y)1...i = 0i]

≥
∑

y∈D(1n,L(i))

Dn(y) · 2i · Pr
G←G

nd

[A1((i, G), 1m, ε; r)) ∈ D−1(1n, y)]

≥ 1

2
·

∑
y∈D(1m,L(i))

Pr
G←G

nd

[A1((i, G), 1m, ε; r)) ∈ D−1(1n, y)]

=
1

2
· Pr
G←G

nd

[A1((i, G), 1m, ε; r)) ∈ L(i)].

Collecting the equations yields the claim. □
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For the proof of Claim 50, we need first a pairwise independence analogue of Claim 23. The
proof is exactly the same, except a bit simpler as we fix the output w instead of fixing another
preimage. We provide it for completeness.

Claim 51. Let i ∈ [nd], w ∈ {0, 1}i and x∗ ∈ {0, 1}nd
be such that Hf(X)(f(x

∗)) ≥ i. Then,

Pr
g←G

nd

x←(g◦f)−1(w)

[x = x∗] ≥ 2−n
d

10
,

letting (g ◦ f)−1(w) equals the set {x : g(f(x))1...i = w} in case this set is not empty, and {⊥}
otherwise.

Proof. Let G be uniformly distributed over Gnd , and let E be the event that G(f(x∗)) = w. Note
that Pr[E] = 2−i and that

Pr
x←(G◦f)−1(w)

[x = x∗ | E] =
1

|(G ◦ f)−1(w)|
(37)

The pairwise independence of Gnd yields that Pr[G(f(x)) = w | E] = 2−i for any x ∈ {0, 1}≤nd \
f−1(f(x∗)). Hence, E

[∣∣(G ◦ f)−1(w) \ f−1(f(x∗))∣∣ | E]
≤ 2 · 2−i+nd

and by Markov’s inequality

Pr
[∣∣(G ◦ f)−1(w) \ f−1(f(x∗))∣∣ ≤ 4 · 2−i+nd | E

]
≥ 1

2
(38)

Combining the above inequality and the assumption Hf(X)(f(x
∗)) ≥ i, we get

Pr
[∣∣(G ◦ f)−1(w)∣∣ ≤ 4 · 2−i+nd

+ |f−1(f(x∗)| ≤ 5 · 2−i+nd | E
]
≥ 1

2
, (39)

and conclude that

Pr
x←(G◦f)−1(w)

[x = x∗] = Pr[E] · Pr
x←(G◦f)−1(w)

[x = x∗ | E]

≥ 2−i · 1
2
· 1

5 · 2−i+nd

=
2−n

d

10
.

□

Proof of Claim 50. For i ∈
{
0 . . . , nd

}
and x ∈ L(i), Claim 51 yields that

Pr
G←G

nd ,X←S̃(i,G)
[X = x] ≥ 2−n

d

10
(40)

By Equation (30) it holds that PrY←Dn [Y ∈ Y] > δ, and therefore Pr
X←{0,1}nd [X ∈

∪nd

i=1 L(i)] =
PrY←Dn [Y ∈ Y] > δ. We conclude that

Pr
I←[nd],G←G

nd

X←S̃(I,G)

[X ∈ L(I)] ≥ E
[∣∣L(I)∣∣] · 2−nd

10

≥ δ · 2nd

nd
· 2
−nd

10
=

δ

10nd
.

□
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6.2.4 A Difficult Problem For the Uniform Distribution

In this section we show how to transform a uniform search problem with a gap between its real
and accessible entropy, into a uniform search problem for which no heuristic search algorithm exists
(i.e., the problem is not in SearchHeurBPP). Combining it with Lemma 48 concludes the proof of
Lemma 43.

The transformation is achieved by adding additional restriction on the witness of the given
search problem. Specifically, requiring its “hash value” with respect to a randomly chosen pairwise
independent hash function to be the all zero string.

We use the following definition:

Definition 52. Let Q be an NP-relation, let f : {0, 1}∗ 7→ {0, 1}∗ be a function, let G = {Gm}
be family of pairwise independent hash function family, where the functions of Gk map strings of
length at most k to string of length m (as in Definition 45), and let d ∈ N be such that (y, w) ∈
Q =⇒ |f(w)| ≤ |y|d. For n ∈ N let

V(n) :=
{(

(y, j, g), w) : y ∈ {0, 1}n, j ∈ [nd + 2], g ∈ Gnd+2, (y, w) ∈ Q, g(f(w))1...j = 0j
}

and let V :=
∪

n∈N V(n).

As in Definition 52, we assume that the tuples (y, j, g)’s above can be encoded such that a
uniformly random string, of the right length, decodes to a uniformly random tuple in {0, 1}n ×
[nd + 2]× Gnd+2.

Lemma 53. Let Q, f , d and V be as in Definition 52. Suppose that (Q,U) has i.o. (ε)2

50md -accessible

average max-entropy at most HReal
Q,U ,f (m)− 5εmd with respect to f , then (V,U) /∈ SearchHeurBPP.

Proof. We assume towards a contradiction that (V,U) ∈ SearchHeurBPP, and show that (Q,U)
has too high accessible average max-entropy.

Let A be a randomized search heuristics for (V,U). The following algorithm B contradicts the

assumption that (Q,U) has i.o. (ε)2

50md -accessible average max-entropy at most HReal
Q,U ,f (m) − 5εmd

with respect to f .
Let ℓ = ℓ(n, δ) be an upper bound on the running time of A on parameters n and δ. Let n(m)

be the description length of a triplet in {0, 1}m × [md + 2]× Gmd+2 and let δ(m, ε) = ε2

100md .

Entropy generator BA for (Q,U)

Oracle: A // Search heuristics for (V,U).
Input: y ∈ {0, 1}m, 1m and ε ∈ (0, 1]

δ = δ(m, ε); n = n(m); ℓ = ℓ(n, δ)
j ←

{
2, . . . ,md + 2

}
g ← Gmd+2

r ← {0, 1}ℓ
(b, w) = A(y, j, h, 1n, δ; r)
if b = 1 return w, else return ⊥
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It is clear that the running time of B is poly(m, 1/ε). We show that B achieves high max-entropy
for all (except maybe finitely many) values of m and any ε. Specifically, that for all (except maybe
finitely many) (m, ε), there exists no family {Lm(y)}y∈{0,1}m as described in Definition 47.

Fix m and ε, and let the random variables Y , J , G and R be uniformly chosen from {0, 1}m ×
[md+2]×Gmd+2×{0, 1}ℓ. For y ∈ {0, 1}m, let η(y) be the probability that A(y, J,G, 1n, δ; ·) is not
2
3 -correct. Since E[η(Y )] ≤ δ = ε2

100md , it holds that

Pr
[
η(Y ) ≤ ε

8md

]
≥ 1− ε (41)

Fix y ∈ {0, 1}m and let S(y) = SQ,f (y) = {f(w) : (y, w) ∈ Q}. For x ∈ S(y) let E(y, x) ⊆
[md+2]×Gmd+2 be the set of pairs (j, g) for which x is the only element in S(y) with g(x)1...j = 0j .
By Lemma 44

Pr[(J,G) ∈ E(y, x)] ≥ 1

8|S|md
(42)

For x ∈ S(y) let E ′(y, x) ⊆ E(y, x) be such that Pr[(J,G) ∈ E ′(y, x1)] = Pr[(J,G) ∈ E ′(y, x2)] ≥
1

8|S|md for all x1, x2 ∈ S(y), and let E ′(y) =
∪

x∈S E ′(y, x). Let xy(g, j) to be the unique element

of S(y) with g(x)1...j = 0j in case it exists, and ⊥ otherwise, and let Xy = xy(G, J). Conditioned
on (J,G) ∈ E ′(y), the random variable Xy is uniformly distributed over S(y). Furthermore, since
Pr[(J,G) ∈ E ′(y)] ≥ 1

8md , it holds that

Pr[A(y, J,G, 1n, δ; ·) is not 2
3 -correct | (J,G) ∈ E ′(y)] (43)

≤ 8md · Pr[A(y, J,G, 1n, δ; ·) is not 2
3 -correct ∧ (J,G) ∈ E ′(y)]

≤ 8md · η(y).

By definition,

Pr[f(A2(y, j, g, 1
n, δ;R)) = xy(j, g)] ≥

2

3
(44)

for every (j, g) ∈ E ′(y) such that A(y, j, g, 1n, δ; ·) is 2
3 -correct.

For each (j, g) ∈ E ′(y), we now construct a set R(j, g) of random strings as follows: first pick
all random strings r for which f(A2(y, j, g, 1

n, δ; r)) = xy(j, g) is satisfied. Afterwards, if necessary,
add other random strings or discard some of the picked random strings such that |R(j, g)| = 2

32
ℓ.

Note that

Pr[f(A2(y, J,G, 1n, δ;R)) = Xy | (J,G) ∈ E ′(y) ∧R ∈ R′(J,G)] (45)

≥ Pr[A(y, J,G, 1n, δ; ·) is 2
3 -correct. | (J,G) ∈ E ′(y)]

≥ 1− 8mdη(y).

Hence, Equation (41) yields that

Pr[f(A2(y, J,G, 1n, δ;R)) = Xy | (J,G) ∈ E ′(y) ∧R ∈ R′(J,G)] ≥ 1− ε (46)

for a (1− ε) fraction of the y’s in {0, 1}m.

It remains to show that no family of sets {L(y)}y∈{0,1}m can be used to show that A has (ε)2

50md -

accessible max-entropy at most E[log(|S(Y )|)]− 5εmd. Fix a family {L(y)} with E[log(|L(Y )|)] ≤
E[log(|S(Y )|)]− 5εmd. The following claim concludes the proof of the lemma.
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Claim 54. It holds that Pr [Γ(Y,A(Y, 1n, ε;R)) /∈ L(Y ) ∪ {⊥}] ≥ (ε)2

50md .

Proof. Note that log(|S(y)|)− log(|L(y)|) > 2εmd holds for at least 2ε fraction of the y’s in {0, 1}m
(otherwise, E

[
log(|S(Y )|)−log(|L(Y )|)

]
≤ (1−2ε)2εmd+2ε·(md+1) < 5εnd). Since Equation (46)

holds for a (1− ε) fraction of the y’s in {0, 1}m, there exists a set Good ⊆ {0, 1}m of density ε such
that both

log(|L(y)|) < log(|S(y)|)− 2εmd, and (47)

Pr[f(A2(y, J,G, 1n, ε;R)) = Xy | (J,G) ∈ E ′(y) ∧R ∈ R′(J,G)] ≥ 1− ε (48)

hold for every y ∈ Good. It follows that

|L(y)| < |S(y)| (1− 1.5ε) (49)

for every y ∈ Good; Equation (49) trivially holds in case L(y) = 0, where in case |L(y)| > 0, it
holds that

i. |L(y)| < |S(y)| · e−2ε·log|S(y)| (since |S(y)| > |L(y)| ≥ 1) and

ii. e−2ε·log|S(y)| ≤ |S(y)| · (1− 1.5ε) (since e−ϵκ ≤ e−ϵ < 1− 0.75ϵ for κ ≥ 1 and ϵ < 1
2).

Equation (49) yields that

Pr
[
Xy ∈ S(y) \ L(y)|(J,G) ∈ E ′(y) ∧R ∈ R′(J,G)

]
= Pr

[
Xy ∈ S(y) \ L(y)|(J,G) ∈ E ′(y)

]
(50)

≥ 1.5ε

for every y ∈ Good, and therefore Equation (48) yields that

Pr
[
f(A2(y, J,G, 1n, δ;R)) ∈ S(y) \ L(y)

∣∣∣ (J,G) ∈ E ′(y) ∧R ∈ R′(J,G)
]
≥ ε

2
(51)

for every y ∈ Good.
Since Pr[Y ∈ Good] ≥ ε and since Pr [(J,G) ∈ E ′(y) ∧R ∈ R′(J,G)] ≥ 2

3(1 − ε) 1
8md for every

y ∈ Good, it follows that

Pr[f(A2(Y, J,G, 1n, δ;R)) /∈ L(y) ∪ {⊥}] ≥ ε · 23 · (1− ε) · 1

8md
· ε
2
≥ (ε)2

50md
,

proving the claim and thus the lemma. □
□

6.2.5 Putting It Together

We now use Lemmas 48 and 53 to prove Lemma 43 (and as we have seen, this implies Theorem 39).

Proof of Lemma 43. Lemma 48 yields that (Q,U) has i.o. (ε/m)2d-accessible average max-entropy
at most v − 2d

√
ε ·m2d with respect to f , for v = EI,G[log(|SQ,f (I,G)|)]. It follows that (Q,U) has

i.o. ε
50md -accessible average max-entropy at most v− 5εmd with respect to f , and the proof follows

by Lemma 53. □

Remark 55. In the original argument by [12], the parameter j is set to n− i. While such a change
would have made the above reduction more efficient, for clarity of presentation we have chosen not
to use this optimization here.
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