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Abstract. Garbled Circuits (GCs) represent fundamental and powerful tools in cryptography, and
many variants of GCs have been considered since their introduction. An important property of the
garbled circuits is that they can be evaluated securely if and only if exactly 1 key for each input wire
is obtained: no less and no more. In this work we study the case when: 1) some of the wire-keys are
missing, but we are still interested in computing the output of the garbled circuit and 2) the evaluator
of the GC might have both keys for a constant number of wires. We start to study this question in
terms of non-interactive multi-party computation (NIMPC) which is strongly connected with GCs. In
this notion there is a fixed number of parties (n) that can get correlated information from a trusted
setup. Then these parties can send an encoding of their input to an evaluator, which can compute the
output of the function. Similarly to the notion of ad hoc secure computation proposed by Beimel et
al. [ITCS 2016], we consider the case when less than n parties participate in the online phase, and in
addition we let these parties colluding with the evaluator. We refer to this notion as Threshold NIMPC.
In addition, we show that when the number of parties participating in the online phase is a fixed
threshold l ≤ n then it is possible to securely evaluate any l-input function. We build our result on top
of a new secret-sharing scheme (which can be of independent interest) and on the results proposed by
Benhamouda, Krawczyk and Rabin [Crypto 2017]. Our protocol can be used to compute any function
in NC1 in the information-theoretic setting and any function in P assuming one-way functions.
As a second (and main) contribution, we consider a slightly different notion of security in which the
number of parties that can participate in the online phase is not specified, and can be any number
c above the threshold l (in this case the evaluator cannot collude with the other parties). We solve
an open question left open by Beimel, Ishai and Kushilevitz [Eurocrypt 2017] showing how to build a
secure protocol for the case when c is constant, under the Learning with Errors assumption.

1 Introduction

Garbled Circuits (GCs) have played a central role in cryptography. The basic version of GCs
has been shown to be useful for secure computation as well as various other areas in cryptog-
raphy because of its non-interactive nature [Yao86,BMR90,FKN94,NPS99,IK00,LP09]. Various
GC variants with additional properties have also played an important role: e.g. GC with free-
XOR [KS08], adaptive GC [HJO+16,JSW17,JW16], information-theoretic GCs [Kol05], covert-
garbled circuit [CGOS07], and arithmetic GC [AIK11]. Moreover, in general, a garbled circuit can
be viewed as a randomized encoding which in turn has played an important role even beyond cryp-
tography in complexity theory [App17]. A key property of a garbled circuit is its “decomposability”,
i.e., different input wire keys can be computed independently based on the value on that wire (also
referred to as decomposable randomized encodings). This for example allows to use a separate 1-out-
of-2 Oblivious Transfer (OT) for each input wire. In various applications, this property has played
an important role, like in building functional encryption from attribute based encryption [GKP+13],
and in building Non-Interactive Multi-Party Computation (NIMPC) [BGI+14] where different par-
ties hold input values corresponding to different input wires. An important property of the garbled



circuits is that they can be evaluated securely if and only if exactly 1 key for each input wire is
obtained: no less and no more. Moreover, if the evaluator of the garbled circuit has more than one
keys (even for a single wire) the security of the garbled circuit is (in general) compromised.

In this work, we ask the following natural question: what if 1) the keys corresponding to some
of the input wires are missing and 2) more than one key for a subset of wires is leaked to the
adversary?

In particular, suppose that a function is well defined even if only a subset of the inputs are
present (e.g., the function simply computes the majority, some aggregate statistics like the median
or the sorting on the inputs). Furthermore, suppose we only have the wire keys exactly for say l
wires (less than the total number of wires n) and that more than one key for a constant number of
wires can be leaked to the adversary. Can we obtain a garbled circuit construction that still allows
one to securely compute the function output in this case?

Here l can be seen as a parameter for the GC construction. This notion, besides being intriguing
and interesting in its own right, can also be seen as having natural applications to NIMPC. In
NIMPC we can distinguish three main phases: setup, online and evaluation. In this, various parties
with inputs and auxiliary information obtained during the setup phase, can encode their inputs
and send this encoding to an evaluator during an online phase. The evaluator can then compute
the output of the function without further interaction with the other parties. Basic constructions
of NIMPC readily follows from GC. That is, the setup generates a garbled circuit with n input
wires for the function that needs to be computed. Each party pi receives two wire keys (one for the
input 0 and one for the input 1) for the i-th wire. During the online phase each party sends the
wire key which corresponds to its input to the evaluator. The evaluator, which now has n wire keys,
can evaluate the garbled circuit and obtain the output. Frequently cited example applications of
NIMPC are voting and auctions [BKR17,BGI+14]. However, in the case of voting, it is conceivable
that several voters might never show up. Can we obtain a system where if a threshold number
of voter votes, the result can be obtained? One could also even consider “attribute-based voting”
where your attributes determine whether or not you are eligible to vote. For example, in deciding a
tenure case, only voters having the attributes of “full professor” and “computer science department”
might be eligible. The number and identity of such voters may not necessarily be known at the
time of the NIMPC setup (and only an upper-bound on the number of voters is known). Let n be
total number of parties, the question we study in this paper is the following:

“Is it possible to obtain a construction of garbled circuits for a function having n input wires s.t.
if the wire keys corresponding of l ≤ n wires are available, then the output can be securely

computed even if both the keys for a constant number of wires are leaked to the adversary?”

A partial answer to the above question has been given in [BIK17], where the authors show how
to obtain such a NIMPC protocol under the assumption that the evaluator does not collude with
any of the other parties. Another partial answer has been given in [BKR17], where the authors
show how to obtain a NIMPC protocol that tolerates a constant number of corruption only for the
case where l = n, where n is the total number of parties involved in the protocol. However, to the
best of our knowledge, we are the first to study the combination of the two problems. In [BIK17]
the authors consider another interesting notion called (l, k)-secure ad hoc private simultaneous
messages (PSM). This notion is similar to the notion of NIMPC, with the difference that 1) the
parties cannot collude with the evaluator and 2) any number k of parties might participate in the
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online phase of the protocol, with k ≥ l. Beimel et al. [BIK17] proved that such a notion (for generic
values of l and k) would imply obfuscation4, and left open the following question:

“Is it possible to obtain (l, l + c)-secure ad hoc PSM protocol for a constant c?”.

1.1 Our Contributions

Our contribution lies in studying the above questions, providing a formal definition, and obtaining
various constructions. Our most basic result is the following:

Theorem 1 (informal). If there exists an l-party NIMPC protocol for the l-input function f
which tolerates up to t corruptions, then there exists an n-party Threshold NIMPC protocol that
tolerates up to t corruptions that can securely evaluate f when only l of the n parties participate in
the online phase.

This can also naturally be seen a threshold garbled circuit where the message received by the
evaluator during the setup phase corresponds to the garbled circuit, whereas the two messages
corresponding to two different possibilities of the input (i.e., either 0 or 1) for party pi can be seen
as the two possible wire-keys for the i-th input wire. Our construction also relies on a conceptual
tool which we call positional secret sharing (PoSS), which we instantiate information theoretically.
Please see the technical overview for more details. We note that our construction, additionally, has
the feature that it can handle up to a constant number of corruptions (assuming the input of each
player is a single bit). We build upon the construction of Benhamouda et al. [BKR17] with tolerates
up to a constant number of corruptions. Informally, this means that the evaluator may be able to
compute multiple outputs of the function by flipping the input of the corrupted parties (since the
corrupted parties can generate an encoding of both the inputs 0 and 1). However, the evaluator
learns no more than having access to an ideal functionality which allows for computing such multiple
outputs. As noted in [BKR17], a construction tolerating an arbitrary number of corruptions in this
setting implies indistinguishability obfuscation (iO) [BGI+01]. Our second (and main) technical
construction is a protocol that retains its security even if more than l input wire keys are given to
an evaluator. Going back to the example of voting, while one may have an estimate on how the
voter turnout will be (e.g., based on historical data), it might be hard to know the exact number
of voters in advance. If the actual number of voters turns out to be even l + 1 (as opposed to l),
all security guarantees cease to exist and our previous construction may become entirely insecure.
Towards that end, we ask the following question:

“Is it possible to design construction of garbled circuits where if anywhere between l and l + c
inputs wire keys are obtained, the function output can be securely computed?

In other words: can we have an (l, l+ c)-secure ad hoc PSM protocol? Note that in this setting,
the evaluator can compute multiple outputs by selecting any l-sized subset of the received inputs.
While ideally, we would like to have l+c = n (for a generic c), such a construction necessarily implies
iO and indeed, using iO, a construction where l+ c = n can be readily obtained (we recall that n is
the total number of parties). However, since our focus is on using standard falsifiable assumptions,
we restrict our attention to the case where c is a constant. In addition, our construction allows the
input of each party to be a string of arbitrary size. Our main theorem is the following:

4 The authors of [BIK17] propose inefficient constructions for general functions.
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Theorem 2 (informal). If the LWEs assumption holds, then there exists an n-party (l, l + c)-
secure ad hoc PSM protocol that can securely evaluate an l-input function f when N parties par-
ticipate in the online phase with N ≤ l + c ≤ n for a constant c.

We stress that N does not need to be known in the setup phase. The last notion that we consider
in this paper is adaptive-ad-hoc PSM. This notion, in addition to the notion of ad hoc PSM, gives to
the evaluator the possibility to evaluate an N -input function fN , where N is the number of parties
that participate in the online phase, with N ≤ l + c ≤ n. This notion gives the same security
guarantees as to the notion of (l, l + c)-secure ad hoc PSM, but it allows an honest evaluator to
evaluate a function even if more than l parties participate in the online phase. It should be easy
to see that such a notion can be easily realized using multiple instantiations of an ad hoc PSM
scheme. Even in this case, the input of each party can be a string of arbitrary (bounded) length.

2 Technical overview

We start illustrating a new secret sharing scheme which is instrumental for our constructions. Then
we show how to use such a secret sharing scheme to construct a threshold NIMPC and an (l, k)-Ad
Hoc PSM protocol.

2.1 Positional Secret Sharing (PoSS)

We consider the setting where there is a dealer, n non-colluding parties {p1, . . . .pn} and an evalua-
tor. A PoSS scheme allows a dealer to compute a secret sharing of l secrets x1, . . . , xl with respect
to a party index j and distribute these shares among the n parties. Let S = (s1, . . . , sn) be the
output shares computed by the dealer. Any subset of parties of size l can send their shares to an
evaluator, and if the j-th party has the α-th greatest index among these l parties, then the evaluator
can reconstruct the α-th secret. If the party pj does not send its share then none of the secrets can
be reconstructed (the j-th share goes always to the party pj). To construct such a scheme we use
a standard t-out-of-m secret sharing scheme. In more detail, the dealer computes 3-out-of-3 secret
sharing of xi obtaining x0i , x̃i and x1i . Then computes 1) an (i − 1)-out-of-(j − 1) secret sharing
of x1i thus obtaining the shares si,1, . . . , si,j−1, 2) an (l − i)-out-of-(n − j) secret sharing of x0i ob-
taining si,j+1, . . . , si,n and 3) defines si,i := x̃i. The output of the sharing algorithm corresponds to
(s1, . . . , sn) with si := (s1,i, . . . , sl,i) for each i ∈ [n]. Intuitively, if the evaluator receives the shares
S′ = (si1 , . . . , sil) with 0 ≤ i1 < · · · < il ≤ n where j = iα for some α, then she can reconstruct
x0α using the shares si1 , . . . , siα−1 , x1α using the shares siα+1 , . . . , sil and x̃α, which corresponds to
the share siα . Note that all the other secrets xj are protected since there are not enough shares
to either reconstruct x0k or x1k for each k ∈ [l] − {α}. In the case where there is no iα with α = j,
then none of the secrets can be reconstructed since one share of the 3-out-of-3 secret sharing will
be missing for each of the secrets.

2.2 Threshold NIMPC

Let f be an l-input function. To obtain a Threshold NIMPC for f that tolerates t corruptions we use
a PoSS scheme in combination with a standard NIMPC protocol that supports t corruptions and
that can be used to evaluate l-input functions. Let p1, . . . , pn be the parties that could participate an
execution of the protocol (we recall that a threshold NIMPC is parametrized by l, which represents
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the maximum number of parties that can participate in the online phase). The idea is to pre-
compute an encoding of the input 0 (that we denote with m0

j ) and of the input 1 (that we denote

with m1
j ) for each input slot j ∈ [l] of the NIMPC scheme. Then we run two instantiations of

a PoSS for each party pi. The first instantiation of the PoSS scheme is run on input the secrets
m0

1, . . . ,m
0
l (and the index i of the party) whereas the second is run using the secrets m1

1, . . . ,m
1
l

(and the index i of the party). Let (s0i,1, . . . , s
0
i,n) be the output shares of the first instantiation of

the PoSS scheme, and (s1i,1, . . . , s
1
i,n) be the output of the second instantiation for the party pi. All

these shares are then distributed among the n parties. During the online phase each party pi acts
as follows. If the input of pi is bi = 0 then pi sends all the shares but the one related to the second
instantiation of the PoSS scheme for the index i (i.e., pi does not send s1i,i), if bi = 1 then pi sends
all the shares but the one related to the first instantiation of the PoSS scheme for the index i (i.e., pi
does not send s0i,i). The security of the PoSS scheme guarantees that if a party pi does not send the
share for one instantiation of PoSS that is run with respect to i, then nothing can be learned about
the secrets encoded in that instantiation. In addition, for the case when piα sends the share sbiα,iα
(with b ∈ {0, 1}), the PoSS security guarantees that only the secret in position iα can be learned.

Hence, the evaluator can compute m
bi1
1 , . . . ,m

bil
l by running the reconstruction algorithms for the l

instantiations of the PoSS scheme for which at least l shares have been provided.5 These messages
then can be used to run the evaluation algorithm of NIMPC protocol to obtain the output of f .
In addition, if the NIMPC protocol used in the above construction supports up to t-corruption, so
does our scheme. We allow only the corruption of the parties that are participating in the protocol.
That is, if l parties provide an input then the corrupted parties belong to this set of parties. We give
no security guarantees in any other case (which would give to the colluding evaluator an additional
share for the PoSS scheme reaching the total of l + 1 shares, compromising the security of the
PoSS scheme, and in turn, the security of the underling NIMPC protocol). Given the implication
of NIMPC with iO, for our construction we consider only the case when the input of each party is
a bit, exactly as in [BKR17] (our other constructions do not have this limitation).

2.3 (l, k)-Secure Ad Hoc PSM

The notion of (l, k)-secure ad hoc PSM is similar to the notion of threshold NIMPC with the
following two differences: 1) provides the best possible security guarantees in the case when N
parties participate in the online phase for an unknown N with l ≤ N ≤ k and 2) the security holds
only if the evaluator does not collude with the other parties. In this work we want to construct a
(l, l+ c)-secure ad hoc PSM for a constant c. Moreover, we want to construct a scheme that allows
the input of each party being a bit-string (instead of one bit like in the previous construction).
One might think that a threshold NIMPC protocol already satisfies this security notion. We start
by describing what are the problems in trying to prove that our threshold NIMPC is an ad hoc
PSM, even considering the case when the input of each party is a bit, and then show how our
construction works in an incremental fashion. In the threshold NIMPC showed above, if more than
l parties are participating to the online phase then more than one secret from each instantiation
of the PoSS scheme would be leaked (by the definition of PoSS). Hence, it might be possible for a
corrupt evaluator to learn an encoding of different messages for the same input-slots of the NIMPC
protocol. Note that this problem could be mitigated if the underlying NIMPC protocol was secure

5 The shares of the PoSS scheme need to be opportunely permuted to not give a trivial advantage to the adversary.
We refer the reader to the technical part of the paper for more detail.
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against an arbitrary number of corruptions, but any such a scheme would imply iO. Luckily, we do
not really need a NIMPC protocol that supports an arbitrary number of corruptions, but we need a
protocol that remains secure in the case when an evaluator, given a set of input X := (xi1 , . . . , xil+c),
could run the NIMPC protocol on any subset of size l of X. This property is clearly not enjoyed by
a NIMPC protocol that supports a constant number of corruptions. Moreover, even if the problem
of corruption and the problem that we are describing here seem related, it looks like a completely
different technique is required. To see the problem from a different perspective, the issue of obtaining
a secure NIMPC protocol in the case of corruption is related to the fact that an adversary could
evaluate the function on strings that have hamming distance at most t from each other. That is, an
adversary can flip up to t-bits, obtaining up to 2t different inputs. In our case, even for c = 1, an
adversary obtains inputs that have hamming distance l (where l is a polynomial). This is because
the adversary, for example, could remove one input in the first position and add a new input in
the last position thus causing the shift of the inputs that have not been replaced. Therefore, if the
strings are close in terms of editing distance, they could have more than l hamming distance. For
this reason, it is not clear how the techniques used to achieve security against corrupted parties
(for example those used in [BKR17]) would be helpful in our case.

Quasi-secure ad hoc PSM. We now describe how, at a very high level, our protocol works.
We provide an incremental description, starting from a protocol that is not secure, and gradually
modifying it until we reach our final result. Let us consider the simplified scenario where we have
only four parties p1, p2, p3 and p4 and we want to construct a (3, 4)-Ad Hoc PSM protocol for
the 3-input function f . As a main tool, we consider two simple two-party NIMPC protocols (that
tolerate no corruption): Π1 that realizes the function g, Π2 that realizes the function gOUT. The
function g, on input two values (z1, z2) concatenates them and creates an encoding of z1||z2 for the
first input slot of Π2. The function gOUT takes the two inputs (z1||z2, z3) and outputs f(z1, z2, z3).

Given Π1 and Π2, each party pi now prepares an encoding of its input xi for the first and the
second input slot of Π1 (let us call these encodings Msg0i and Msg1i ). In addition, each party pi
computes an encoding of xi for the second input slot of Π2 (let us call this Msg2i ). For each party
pi then we run an instantiations of a PoSS scheme with input (Msg1i ,Msg2i ,Msg3i , i). The security of
the PoSS schemes guarantees that if the parties that are participating in the online phase are, for
example, p1 p2 and p4, then the evaluator will be able to get (Msg11,Msg22,Msg34) only. The evaluator,
at this point can evaluate the function g with the inputs of p1 and p2 by running the evaluation
algorithm for Π1 on input Msg11 and Msg22. The output of Π1 can then be used in combination
with Msg34 to run the evaluation algorithm of Π2 to compute the final output. It should be easy to
see that this scheme is a threshold-NIMPC protocol that tolerates no corruption. But we are now
interested in the security of the protocol in the case when four parties participate in the online
phase. In this case, the PoSS scheme allows the evaluator to get, for example, (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) at the same time. This means that the evaluator can run the evaluation
algorithm of Π1 using (Msg11,Msg22) and (Msg12,Msg23) thus obtaining two different encodings for
different values for the first input slot of Π2 (assuming that the x1||x2 6= x2||x3). This corresponds
to the case in which the evaluator can collude with a party to generate encodings of multiple inputs
for the first input slot of Π2. Since we do not want to assume that Π2 is resilient against such an
attack6, we modify the protocol as follows:

6 We recall that we do not know any NIMPC protocol that is secure in this setting when the inputs of Π2 are bit
strings unless from assuming iO.
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– Instead of considering one protocol Π2 that realizes the function gOUT, we consider λ protocols7:
Π1

2 , . . . ,Π
λ
2 .

– Each input of g now comes with two random values v1 and v2 that each party samples. Hence,
the inputs of g now can be seen as (z1||v1, z2||v2).

– The function g, on input z1||v1 and z2||v2 computes y = z1||z2 and the hash H(v1 ⊕ v2) thus
obtaining sel ∈ [λ]. Then g encodes y accordingly to the protocol Πsel

2 .
– The party p3 and p4 now compute an encoding of their input for the second input slot for all

the protocols Π1
2 , . . . ,Π

λ
2 .

This mechanism now partially solves the problem of the previous protocol. This is because a
different combination of inputs for Π1 yields to an encoding for a different protocol Πsel

2 , with
sel ∈ [λ]. Indeed, if the Π1 is run using the input contributed by p1 and p2 then the output of
Π1 corresponds to an encoding of the concatenation of x1||x2 for the protocol Πsel

2 with sel =
H(v1 ⊕ v2). If instead Π1 is run using the input contributed by p1 and p3, then we have that
H(v1 ⊕ v2) 6= H(v1 ⊕ v3) = sel′ with some probability 1/p (that depends on the choice of λ and
on the random coins of the parties). Hence, the output of Π1 corresponds to an encoding for the
protocol Πsel′

2 . Clearly, λ needs to be polynomially related to the security parameter. This means
that the probability of founding a collision for H is non-negligible (and if there is a collision then the
security of this protocol collapses back to the security of the previous protocol). Later in this section
we show how to solve this problem using the LWE assumption. Before discussing that, we note that
this protocol has yet another issue. As we said, the evaluator can get the values (Msg11,Msg22,Msg34)
and (Msg12,Msg23,Msg34) when all the parties participate in the online phase. Given that Msg11 and
Msg12 represent the encoding of different values for the first input slot of Π1, then we have an issue
similar to the one that we have just discussed. This time, we can solve this problem easily. We
simply consider an instantiation of a NIMPC protocol that realizes the function g which we denote
with Π i,j

1 , which can be used only by the party i, j, with i ∈ {1, 2} and j ∈ {2, 3, 4}. Then, for

example, the party p1 will compute an encoding for the first input slot of Π1,2
1 , Π1,3

1 and Π1,4
1 , and

use all of them as the input of the first instantiation of the PoSS scheme. For the protocol that we
have just described, we can prove that for a suitable choice of λ (given that c is a constant value)
the probability that there are no collisions in H is 1/p where p is a polynomial. Hence, we can prove
that the execution of our protocol is secure with probability 1/p. We note that in this discussion
we have assumed that the security of the PoSS scheme is not compromised even when more than
l parties provide their shares. In the technical part of the paper we show that our construction of
PoSS enjoys a stronger notion, that is indeed sufficient to construct the protocol that we have just
described. To extend the above construction to the case when the number of party is more than 4,
and the threshold l is an arbitrary value, we just need to consider a longer chain of 2-party NIMPC
protocols. However, this generalization has to be done carefully to avoid an exponential blowup in
the size of the messages. For more details on that, we refer the reader to Sec. 5.

Fully Secure ad hoc PSM. We denote the protocol that we have just described with ΠPSM and
show how to use it to obtain an ad hoc PSM that is (l, l+c)-secure. To amplify the security of ΠPSM

we make use of a homomorphic secret sharing (HSS) scheme for the function f (we recall that f is
the l-input function that we want to evaluate). At a high level, a HSS allows each party i to compute
m shares of its input xi and distribute them among m servers using the algorithm ShareHSS so that
xi is hidden from any m− 1 colluding servers. Each server j can apply a local evaluation algorithm

7 We discuss the size of λ later in the paper.
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EvalHSS to its share of the l inputs, and obtain an output share yj . By combining all the output
shares it is possible to obtain the output of the function, that is y1 ⊕ · · · ⊕ ym = f(x1, . . . , xl).

8 At
a very high level, our protocol consists of m instantiations of ΠPSM where the e-th instantiation
evaluates the function Ge with e ∈ [m]. The Function Ge takes as input l shares of the HSS scheme,
and uses them as input of EvalHSS together with the server index e (see the bottom of Fig. 8 for
a formal specification of Ge). Each party pi that wants to participate in the protocol computes
a secret sharing of its input thus obtaining m shares (s1, . . . , sm). Then pi uses the e-th share as
input of the e-th instantiation of ΠPSM. The evaluator runs the evaluation algorithm of the e-th
instantiation of ΠPSM thus obtaining ye (which corresponds to the output of EvalHSS on input the
e-th shares of all the parties) for each e ∈ [m]. The output of the evaluation phase then corresponds
to y1 ⊕ · · · ⊕ ym. We show that this protocol is secure as long as there is at least one execution of
ΠPSM that is secure (i.e., simulatable). Moreover, by choosing m opportunely we can prove that at
least one execution of ΠPSM is secure with overwhelming probability. Hence, at least one share of
each of the inputs of the honest parties will be protected. Therefore, because of the security offered
by the HSS, also the input of the parties will be protected.

Adaptive-ad-hoc PSM. It is straightforward to construct an adaptive-ad-hoc PSM having a
(l, l + c) ad hoc PSM ΠAPSM. Indeed, we just need to run c instantiation of ΠAPSM, where each
instantiation computes a function fα with arity α for each α ∈ {l, . . . , l + c}.

2.4 Related work

The study of MPC protocols with restricted interaction was initiated by Halevi, Lindell, and
Pinkas [HLP11,HIJ+16]. We have mentioned the work of Benhamouda et al. [BKR17] which pro-
vides the first NIMPC protocol that tolerates up to a constant number of corruptions for all
functions in P under OWFs. In addition, the authors show how to obtain a more efficient NIMPC
protocol for symmetric functions. The work [BGIK16] introduces the notion of ad hoc PSM and
in [BIK17] the authors propose many instantiations of such a primitive in the information-theoretic
and computational setting. A result of [BIK17] that is very related to our first contribution, is the
construction of an ad hoc PSM protocol for a k-argument function f : Xk → Y from a NIMPC
protocol for a related n-argument function g : (X ∪ {⊥})n → Y . More precisely, the function g
outputs ⊥ if there are more than n − k inputs that are ⊥, it outputs the output of f if there are
exactly n− k inputs that are ⊥, in any other cases the output of g is undefined. The compiler that
we propose is more generic and it preserves its security against colluding parties (if any). Always
in [BIK17] the authors propose an (l, l + c)-secure ad hoc PSM protocol for symmetric functions
whose complexity is exponential in l, and prove that an (l, k)-ad hoc PSM protocols for simple
functions with generic (l, k) already implies obfuscation for interesting functions. In [BKN18] the
authors improve the efficiency of the protocols proposed in [BIK17]. The work [HIJ+16] try to make
reusable the setup assuming more interactions between the parties, or assuming specific graphs of
interaction patterns. In [HIJ+17] the authors successfully remove the need of the parties to obtain
correlated randomness from the setup phase via a PKI supplemented with a common random string
under the iO assumption. In addition, the construction proposed in [HIJ+17] tolerates arbitrary
many corruptions.

8 In our work we assume that the HSS is additive.
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3 Background

Preliminaries. We denote the security parameter by λ and use “||” as concatenation operator
(i.e., if a and b are two strings then by a||b we denote the concatenation of a and b). For a finite set

Q, x
$←− Q denotes a sampling of x from Q with uniform distribution. We use “=” to check equality

of two different elements (i.e. a = b then...), “←” as the assigning operator (e.g. to assign to a
the value of b we write a ← b). and := to define two elements as equal. We use the abbreviation
PPT that stands for probabilistic polynomial time. We use poly(·) to indicate a generic polynomial
function. We say a function ν is negligible if for every positive integer c there is an integer Nc such
that for all x > Nc, |ν(x)| < 1/xc. We denote with [n] the set {1, . . . , n}, N0 the set of non-negative
integers and with N the set of positive integer.

3.1 Secret Sharing

A secret sharing scheme allows a dealer to share a secret m among n parties P = {p1, . . . , pm} such
that any authorized subset (if any) of P can reconstruct the secret m, while the other parties learn
nothing about m.

We now give the definition of l-out-of-n secret sharing.

Definition 1 (l-out-of-n secret sharing). A l-out-of-n secret sharing scheme over a message
space M is a pair of PPT algorithms (Share, Reconstruct) where:

- Share on input x ∈M outputs n shares (s1, . . . , sn);
- Reconstruct on input l values (shares) outputs a message in M;

satisfying the following requirements.

- Correctness. ∀x ∈M, ∀S = {i1, . . . , il} ⊆ {1, . . . , n} of size l,
Prob [ x← Reconstruct(si1 , . . . , sil) : (s1, . . . , sn)← Share(x) ] = 1.

- Security. ∀x, x′ ∈ M, ∀S ⊆ {1, . . . , n} s.t. |S| < l, the following distributions are identical:
{(si)i∈S : (s1, . . . , sn)← Share(x)}
{(s′i)i∈S : (s′1, . . . , s

′
n)← Share(x′)}.

3.2 Homomorphic Secret Sharing (HSS)

We consider HSS scheme that supports the evaluation of a function f on shares of inputs x1, . . . xn
that are originated from different clients. In this notion each client i can compute m shares of its
input xi and distribute them between m servers using the algorithm ShareHSS so that xi is hidden
from any m− 1 colluding servers. Each server j can apply a local evaluation algorithm EvalHSS to
its share of the n inputs, and obtains an output share yj .

The output f(x1, . . . , xn) is reconstructed by applying a decoding algorithm DecHSS to the
output shares y1, . . . , ym.

Definition 2 (HSS [BGI+18]). An n-client, m-server, t-secure homomorphic secret sharing
scheme for a function f : ({0, 1}?)n+1 → {0, 1}?, or (n,m, t)-HHS for short, is a triple of PPT
algorithms (ShareHSS,EvalHSS,DecHSS) where:

– ShareHSS(1λ, i, x): On input 1λ (security parameter), i ∈ [n] (client index) and x ∈ {0, 1}? (client
input), the sharing algorithm ShareHSS outputs m input shares (x1, . . . , xm).
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– EvalHSS(j, x0, (x
j
1, . . . , x

j
n)): On input j ∈ [m] (server index), x0 ∈ {0, 1}? (common server

input), and xj1, . . . , x
j
n (j-th share of each client input), the evaluation algorithm EvalHSS outputs

yj ∈ {0, 1}?, corresponding to the server j’s share of f(x0;x1, . . . , xn).
– DecHSS(y1, . . . , ym): On input (y1, . . . , ym) (list of output shares), the decoding algorithm DecHSS

computes a final output y ∈ {0, 1}?.
The algorithm (ShareHSS,EvalHSS,DecHSS) should satisfy the following correctness and security

requirements:

– Correctness: For any n+ 1 inputs x0, . . . , xn ∈ {0, 1}?,
Prob[∀i ∈ [n](x1i , . . . x

m
i )

$←− ShareHSS(1λ, i, xi), ∀j ∈ [m] yj
$←− EvalHSS(j, x0, (x

j
1, . . . , x

j
n)) :

DecHSS(y1, . . . , ym) = f(x0;x1, . . . , xn)] = 1− ν(λ).
– Security: : Consider the following semantic security challenge experiment for corrupted set of

server T ⊂ [m]:
1. The stateful adversary gives challenge index and inputs (i, x0, x1)← A(1λ), with i ∈ [n] and
|x0| = |x1|.

2. The challenger samples b
$←− {0, 1} and (x1, . . . , xm)

$←− ShareHSS(1λ, i, xb).
3. The adversary outputs b′ ← A((xj)j∈T ) given the shares for corrupted T .
Denote by a := Prob [ b = b′ ]− 1/2 the advantage of A in guessing b in the above experiment,
where probability is taken over the randomness of the challenger and of A. For circuit size bound
S = S(λ) and advantage bound α = α(λ), we say that an (n,m, t)-HSS scheme Π is (S, α)-
secure if for all T ⊂ [m] of size |T | ≤ t, and all non-uniform adversaries A of size S(λ), we have
a ≤ α(λ). We say that Π is computationally secure if it is (S, 1/S)-secure for all polynomials
S.

In this work we consider only additive HSS schemes. An HHS scheme is additive if DecHSS

outputs the exclusive or of the m output shares. For our construction we make use of an ad-
ditive (n,m,m − 1)-HSS scheme. Such a scheme can be constructed from the LWEs assump-
tion [BGI+18,DHRW16].

4 Our Model

In this section we propose the formal definition of NIMPC. We give a more general definition that
captures the case when up to t parties can collude with the evaluator, and following [HLP11,HIJ+16,BKR17],
we refer to this notion as t-robust NIMPC. Then we give our new definition of threshold NIMPC
which can be seen as a combination of the notion of NIMPC with the notion of ad hoc PSM proposed
in [BGI+14]. Let X be non-empy sets and let X denote the Cartesian product X n := X × · · · × X .

Definition 3 (NIMPC Protocol. [BKR17]). Let F = (Fn)n∈N be an ensemble of sets Fn of
functions f : X → Y, where Y is a finite set. A non-interactive secure multiparty computation
(NIMPC) protocol for F is a tuple of three algorithms Π := (Setup,Msg,Eval), where:

- Setup takes as input unary representations of n and of the security parameter λ, and a represen-
tation of function f ∈ Fn and outputs a tuple (ρ0, ρ1, . . . , ρn);

- Msg takes as input a value ρi, and an input xi ∈ X , and deterministically outputs a message mi;
- Eval takes as input a value ρ0 and a tuple of n messages (m1, . . . ,mn) and outputs an element in
Y satisfying the following property:
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Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fn, x := (x1, . . . , xn) ∈ X , and

(ρ0, . . . , ρn)
$←− Setup(1n, 1λ, f),

Eval(ρ0,Msg(ρ1, x1), . . . ,Msg(ρn, xn)) = f(x).

While the previous definition is abstract, in the sequel, we will often see NIMPC protocols
as protocols with n parties p1, . . . , pn with respective inputs x1, . . . , xn and an evaluator p0. A
polynomial-time NIMPC protocol for F is an NIMPC protocol (Setup,Msg,Eval) where Setup, Msg,
and Eval run in polynomial time in n and λ. In particular, functions f ∈ F should be representable
by polynomial-size bit strings.

Robustness. For a subset T = {i1, . . . , it} ⊆ [n] and x = (x1, . . . , xn), we denote by xT the
t-coordinate projection vector (xi1 , . . . , xit). For a function f : X n → Y, we denote by f |T ,xT the

function f with the inputs corresponding to positions T fixed to the entries of the vector x.
We now recall the notions of robustness for NIMPC protocols. Informally, T -robustness T ⊆

{1, . . . , n} for a set T of colluding parties means that if xT represents the inputs of the honest
parties, then an evaluator colluding with the parties in set T can compute the residual function
f |T ,xT on any input xT but cannot learn anything else about the input of the honest parties. This

describes the best privacy guarantee attainable in this adversarial setting. The formal definition
is stated in terms of a simulator that can generate the view of the adversary (evaluator plus the
colluding parties in set T ) with sole oracle access to the residual function f |T ,xT .

Definition 4 (NIMPC Robustness [BKR17]). Let n ∈ N and T ⊆ {1, . . . , n}. A NIMPC pro-
tocol Π is perfectly (resp., statistically, computationally) T -robust if there exists a PPT algorithm
Sim (called simulator) such that for any f ∈ Fn and xT ∈ XT , the following distributions are per-

fectly (resp., statistically, computationally) indistinguishable: {Simf |T,x
T (1n, 1λ, T )}, {View(1n, 1λ, f, T, xT )},

where {View(1n, 1λ, f, T, xT )} is the view of the evaluator p0 and of the colluding parties pi (for i ∈
T ) from running Π := (Setup,Msg,Eval) on input xT for the honest parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T )

where (ρ0, . . . , ρn)
$←− Setup(1n, 1λ, f) and mi ← Msg(ρi, xi) for all i ∈ T where xT := (xi)i∈T .

Let t ∈ N0 be a function of n, then a NIMPC protocol Π is perfectly (resp., statistically,
computationally) t-robust if for any n ∈ N and any T ⊆ {1, . . . , n} of size at most t = t(n), Π is
perfectly (resp., statistically, computationally) T -robust.

Robustness does not necessarily imply that the simulator Sim is the same for any n and T . In this
and in the following notions we consider only PPT simulators since in this paper we focus only on
efficiently simulatable protocols.

4.1 Threshold NIMPC

We introduce the new notion of Threshold NIMPC. A Threshold NIMPC is parametrized by n and
l with 0 ≤ l ≤ n, where n denotes the number of parties and l represents a threshold. Given a
set of n parties P, any subset of P ′ ⊆ P of size l can evaluate the function f : X l → Y, where
Y is a finite set and X = {{0, 1}λ, {1, . . . n}}. In more details, we assume that any party in P
is univocally identified by an index i ∈ [n]. The setup algorithm and the algorithm used by the
parties to generate an encoding of their inputs have the same interface as the algorithms of a
NIMPC protocol. The difference is in the evaluation algorithm. In this notion we do not require
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all the n parties to participate in the protocol in order to evaluate a function. That is, any subsets
of P of size l would allow the evaluator to compute the function f . Without loss of generality, we
consider only functionalities whose output depends on the inputs of the parties, and on the indexes
of the parties that contributed with these inputs. Formally, the class of function supported by our
protocol is described in Fig. 1 (where g can be any function).

Input:
(
(xi1 , i1), . . . (xil , il)

)
where {i1, . . . , il} ⊆ [n], xi1 , . . . , xil ∈ X , l ≤ n and n ∈ N.

Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that 1 ≤ j1 < j2 < · · · < jl−1 <
jl ≤ n and output ⊥ if such a permutation does not exist, else, output g

(
xj1 , . . . , xjl

)

Fig. 1: Class of functionalities supported by our threshold NIMPC protocol.

Definition 5 (Threshold NIMPC Protocol). Let F = (Fl)l∈N be an ensemble of sets Fl
of functions f : X → Y, a Threshold NIMPC protocol for F is a tuple of three algorithms
(Setupth,Msgth,Evalth), where:

- Setupth takes as input unary representations of n, l and of the security parameter λ with 1 ≤ l ≤ n,
and a representation of function f ∈ Fl and outputs a tuple (ρ0, ρ1, . . . , ρn);

- Msgth takes as input a value ρi, and an input xi ∈ X , and deterministically outputs a message mi;
- Evalth takes as input a value ρ0 and a tuple of n messages (mj1 , . . . ,mjl) with 1 ≤ j1 < · · · < jl ≤ n

and outputs an element in Y;

satisfying the following property:

Correctness. For any n ∈ N, security parameter λ ∈ N0, f ∈ Fl, x :=
(
(xj1 , j1), . . . , (xjl , jl)

)
∈ X ,

with 1 ≤ j1 < · · · < jl ≤ n and (ρ0, . . . , ρn)
$←− Setupth(1n, 1l, 1λ, f),

Evalth(ρ0,Msgth(ρj1 , xj1), . . . ,Msgth(ρjl , xjl)) = f
(
(xj1 , j1), . . . , (xjl , jl)

)
.

Definition 6 (Threshold NIMPC Security). Let n ∈ N, K := {j1, . . . , jl} with 1 ≤ j1 < · · · <
jl ≤ n, T ⊆ K and T := K − T . A Threshold NIMPC protocol Π is perfectly (resp., statistically,
computationally) T -secure if there exists a PPT algorithm Sim (called simulator) such that for any
f ∈ Fl and xT ∈ XT , the following distributions are perfectly (resp., statistically, computationally)
indistinguishable:

{Simf |T,x
T (1n, 1l, 1λ, T,K)}, {View(1n, 1l, 1λ, f, T,K, xT )}

where {View(1n, 1l, 1λ, f, T,K, xT )} is the view of the evaluator p0 and of the colluding parties pi
(for i ∈ T ) from running Π on input xT for the honest parties: that is, ((mi)i∈T , ρ0, (ρi)i∈T ) where

(ρ0, . . . , ρn)
$←− Setup(1n, 1l, 1λ, f) and mi ← Msg(ρi, xi) for all i ∈ T .9 Let t, l, n ∈ N0 be such that

0 ≤ t ≤ l ≤ n, a Threshold NIMPC protocol Π is perfectly (resp., statistically, computationally)
t-secure if for any K ⊆ [n] with |K| ≤ l, and any T ⊆ K such that K = T ∪ T with |T | ≤ t, Π is
perfectly (resp., statistically, computationally) T -secure.

9 f |T,x
T

works as before, with the difference that it outputs ⊥ in the case where less than |K| < l.
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4.2 Ad Hoc PSM

An (l, t)-secure ad hoc PSM protocol Π is a 0-secure threshold NIMPC that remains secure even if
more than l (and less than t) parties participate in the online phase. In other words, the evaluator
cannot collude with any of the other parties, but the protocol remains secure for any number N of
parties participating in the protocol with N ≤ t. Moreover, the evaluator can compute the output if
N ≥ l. By secure here we mean that the adversary can evaluate the function f on any combination
of size l of the inputs provided by the honest parties and learns nothing more than that. More
formally, if x := ((xi1 , i1), . . . , (xifl , iN )) represents the inputs of the N parties participating in the
online phase, then a malicious party can compute f on any input xK where K := {j1, . . . , jl}
with 1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} but cannot learn anything else. This describes
the best privacy guarantee attainable in this setting. The formal definition is stated in terms of
a simulator that can generate the view of the adversary with sole oracle access to Of , where Of
takes as input a set K := {j1, . . . , jl} with 1 ≤ j1 < · · · < jl ≤ n, K ⊆ {i1, . . . , iN} and returns
f
(
(xj1 , j1), . . . , (xjl , jl)

)
.

The definition that we provide is essentially the same as the one provided in [BIK17], we just
use a different terminology to be consistent with our other definitions.

Definition 7 (Ad Hoc PSM). Let n, l, t, λ ∈ N0 and K := {j1, . . . , jN} with 0 ≤ j1 < · · · < jN ≤
n such that 0 ≤ N ≤ t. An ad hoc PSM protocol is perfectly (resp., statistically, computationally)
K-secure if there exists a PPT algorithm Sim (called simulator) such that for any f ∈ Fl, x :=(
xj1 , j1), . . . , (xjN , jN

)
, the following distributions are perfectly (resp., statistically, computationally)

indistinguishable:
{SimOf (1n, 1l, 1λ,K)}, {View(1n, 1l, 1λ, f,K, x)}

where {View(1n, 1l, 1λ, f,K, x)} is the view of the evaluator p0 from running Π on input x for

the honest parties: that is, ((mi)i∈K , ρ0) where mi ← Msg(ρi, xi) for all i ∈ K and (ρ0, . . . , ρn)
$←−

Setup(1n, 1l, 1λ, f). We say that an ad hoc PSM protocol Π is perfectly (resp., statistically, compu-
tationally) (l, t)-secure if for any N ≤ t, any K := {j1, . . . , jN}, Π is perfectly (resp., statistically,
computationally) K-secure.

4.3 Adaptive-ad-hoc PSM

An adaptive-ad-hoc PSM protocol is parametrized by the number of parties n, the threshold l,
an integer t with 0 ≤ t ≤ n and a set of functions fl, . . . , fβ, and allows an honest evaluator
to obtain the evaluation of a function fN if the number of parties that are participating in the
protocol is l ≤ N ≤ β, for any N ∈ {l, . . . , β}. Informally, an adaptive-ad-hoc PSM protocol
can be seen as a protocol that allows evaluating a function that accepts a variable number of
inputs. The formal definition is stated in terms of a simulator that can generate the view of the
adversary with sole oracle access to O, where O takes as input an index N ∈ {l, . . . , β} for the
function fN , a set K := {j1, . . . , jN} with 0 ≤ j1 < · · · < jN ≤ n, K ⊆ {i1, . . . , iN} and returns
fN
(
(xj1 , j1), . . . , (xjl , jN )

)
.10

Definition 8 (Adaptive-ad-hoc PSM Protocol). Let F = (Fn)n∈N be an ensemble of sets Fn
of functions f : X → Y, an adaptive-ad-hoc PSM protocol for F is a tuple of three algorithms
(SetupAdT,MsgAdT,EvalAdT), where:

10 Also in this case, the oracle outpus ⊥ in the case where N < l.
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- SetupAdT takes as input unary representations of n, l, t and of the security parameter λ with 0 ≤
t ≤ n, and a representation of the functions f := fl, . . . fβ with fα ∈ Fα for each α ∈ {l, . . . , β},
and outputs a tuple (ρ0, ρ1, . . . , ρn);

- MsgAdT takes as input a value ρi, and an input xi ∈ X , and deterministically outputs a message
mi;

- EvalAdT takes as input a value ρ0 and a tuple of N messages (mj1 , . . . ,mjN ) with l ≤ N ≤ t,
0 ≤ j1 < · · · < jN ≤ n, and outputs an element in Y;
satisfying the following property:

Correctness. For any n, t, l, N ∈ N, security parameter λ ∈ N0, f , x :=
(
(xj1 , j1), . . . , (xjN , jN )

)
∈

X , with l ≤ N ≤ β ≤ n, 0 ≤ j1 < · · · < jN ≤ n and (ρ0, . . . , ρn)
$←− Setup(1n, 1l, 1t, 1λ, f),

Eval(ρ0,Msg(ρj1 , xj1), . . . ,Msg(ρjN , xjN )) = fN
(
(xj1 , i1), . . . , (xjN , jN )

)
.

Definition 9 (Adaptive-ad-hoc PSM security). Let n, l, t, λ ∈ N, K := {j1, . . . , jN} with
0 ≤ j1 < · · · < jN ≤ n such that 0 ≤ N ≤ t ≤ n. An adaptive-ad-hoc PSM protocol is perfectly
(resp., statistically, computationally) K-secure if there exists a PPT algorithm Sim (called simula-
tor) such that for any f , x :=

(
xj1 , j1), . . . , (xjN , jN

)
, the following distributions are perfectly (resp.,

statistically, computationally) indistinguishable:

{SimO(1n, 1l, 1c, 1λ,K)}, {View(1n, 1l, 1c, 1λ, f ,K, x)}

where {View(1n, 1l, 1c, 1λ, f,K, x)} is the view of the evaluator p0 from running Π on input x for

the honest parties: that is, ((mi)i∈K , ρ0) where mi ← Msg(ρi, xi) for all i ∈ K and (ρ0, . . . , ρn)
$←−

Setup(1n, 1l, 1λ, f).
We say that an adaptive-ad-hoc PSM protocol Π is perfectly (resp., statistically, computation-

ally) (l, t)-secure if for any K := {j1, . . . , jN} Π is perfectly (resp., statistically, computationally)
K-secure with N ≤ t.

5 Positional Secret Sharing (PoSS)

In this section we propose new notions of secret sharing schemes, and provide an information
theoretical instantiation of them. These new definitions represent one of the main building block
of our NIMPC protocols. We now introduce the first notion that we call Positional Secret Sharing
(PoSS). Let P := {p1, . . . , pn} be a set of parties and X := (x1, . . . , xl) be a sequence of secrets.
A PoSS scheme is defined with respect to a party pj ∈ P. In a PoSS scheme a dealer can compute
a secret sharing of X thus obtaining s1, . . . , sn and distribute si to pi for all i ∈ {1, . . . , n}. Let
P ′ := {pj1 , . . . , pjl} be an arbitrary chosen set of l parties with 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n.
On input (sj1 , . . . , sjl) with jα = j for some α ∈ {1, . . . , l} an evaluator can compute xα and nothing
more. If there is no jα = j or less than l shares are available then all the secrets remain protected.
We now propose a formal definition of PoSS.

Definition 10 (Positional Secret Sharing). A PoSS scheme over a message space M is a pair
of PPT algorithms (SharePoSS, ReconstructPoSS) where:

– SharePoSS takes as input X := (x1, . . . , xl), the number of parties n and an index j ∈ [n], and
outputs n shares (s1, . . . , sn);

– ReconstructPoSS takes as input l values (shares), the index j and outputs a message inM (where
M denotes the message space);
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satisfying the following requirements.

Correctness. ∀x1, . . . , xl ∈ Ml, ∀S = {j1, . . . , jl} ⊆ {1, . . . , n} with j1 < j2 < · · · < jl−1 < jl,
if there exists α ∈ {1, . . . , l} such that jα = j then

Prob
[
xα ← ReconstructPoSS(sj1 , . . . , sjl , j) : (s1, . . . , sn)

$←− SharePoSS((x1, . . . , xl), j)
]

= 1.11

Standard security. ∀(x1, . . . , xl), (x′1, . . . , x′l) ∈Ml, ∀S ⊆ {1, . . . , n} s.t. |S| < l, the following
distributions are identical:
{(si)i∈S : (s1, . . . , sn)

$←− SharePoSS((x1, . . . , xl), j)}
{(s′i)i∈S : (s′1, . . . , s

′
n)

$←− SharePoSS((x′1, . . . , x
′
l), j)}

Positional security. ∀(x1, . . . , xl), (x′1, . . . , x′l) ∈ Ml, ∀S = {j1, . . . , jl} ⊆ {1, . . . , n} with
j1 < j2 < · · · < jl−1 < jl:
1. if there exists α ∈ {1, . . . , l} such that jα = j, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn)
$←− SharePoSS((x1, . . . , xα−1, xα, xα+1 . . . , xl), j)}

{(s′i)i∈S : (s′1, . . . , s
′
n)

$←− SharePoSS((x′1, . . . , x
′
α−1, xα, x

′
α+1, . . . , x

′
l), j)}.

2. if @α ∈ {1, . . . , l} such that jα = j, the following distributions are identical: {(si)i∈S :

(s1, . . . , sn)
$←− SharePoSS((x1, . . . , xl), j)}

{(s′i)i∈S : (s′1, . . . , s
′
n)

$←− SharePoSS((x′1, . . . , x
′
l), j)}

5.1 PoSS: Our Construction

We denote our scheme with (SharePoSS
?
,ReconstructPoSS

?
). SharePoSS

?
takes as inputX := (x1, . . . , xl)

and the index j and executes the following steps.

– Pick x̃1
$←− {0, 1}λ and set x11 ← x̃1 ⊕ x1.

– Construct an (l − 1)-out-of-(n− j) secret sharing for x11 thus obtaining s1,j+1, . . . , s1,n.
– Define s1,j := x̃1 and s1,1 := ⊥, ..., s1,j−1 := ⊥.

– Pick x̃l
$←− {0, 1}λ and set x0l ← x̃l ⊕ xl.

– Construct an (l − 1)-out-of-(j − 1) secret sharing for x0l thus obtaining si,1, . . . , si,j−1.
– Define sl,j := x̃1 and sl,j+1 := ⊥, ..., sl,n := ⊥.
– For i = 2, . . . , l − 1

1. Pick x0i , x
1
i

$←− {0, 1}λ and compute x̃i ← x0i ⊕ x1i ⊕ xi.
2. Construct an (i− 1)-out-of-(j − 1) secret sharing for x0i thus obtaining si,1, . . . , si,j−1.
3. Construct a (l − i)-out-of-(n− j) secret sharing for x1i thus obtaining si,j+1, . . . , si,n.
4. Define si,j := x̃i.

– For i = 1, . . . , n set si = (s1,i, . . . , sl,i).
– Output (s1, . . . , sn).

The algorithm ReconstructPoSS
?

takes as input (sj1 , . . . , sjl) and the index j, and executes the
following steps.

1. If there does not exist α such that jα = j then output ⊥ else continue as follows.
2. For i = 1, . . . , l parse sji as (s1,ji , . . . , sl,ji).
3. If α = 1 then use the shares s1,j2 , . . . , s1,jl to reconstruct x11 and output x11 ⊕ s1,j1 .
4. If α = l then use the shares sl,j1 , . . . , sl,jl−1

to reconstruct x01 and output x01 ⊕ s1,jl .
5. If α ∈ {2, . . . , l − 1} then use the shares sα,j1 , . . . , sα,jα−1 to reconstruct x0α.

11 We denote with Ml the l applications of the Cartesian product on M.
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6. Use the shares sα,jα+1 , . . . , sα,jl to reconstruct x1α.
7. Output xα ← x0α ⊕ x1α ⊕ sα,jα .

We note passing that a PoSS scheme could be constructed from monotone span programs [KW93].
However, for some of our applications we need a PoSS scheme that is also secure under a stronger
notion (enhanced PoSS ). For this reason we have provided one ad-hoc scheme that relies on stan-
dard k-out-of-m secret sharing and that can be proven secure under the notion of PoSS and its
stronger variant.

Theorem 1. (SharePoSS
?
,ReconstructPoSS

?
) is a PoSS scheme.

We refer the reader to App. A.1 for a formal proof of the theorem. We now present the notion of
Enhanced Positional Secret Sharing (ePoSS). An ePoSS scheme is a PoSS scheme with an additional
security property that guarantees the protection of some of the secret inputs even when an adversary
obtains more than l shares. In more detail, the notion of PoSS guarantees that when l shares are
available one of the l secret can be reconstructed, and nothing about the other l − 1 secrets is
leaked. The notion of ePoSS guarantees that even if an adversary has l + c shares, then at least
l − c − 1 secrets remain protected. In the same spirit as in the definition of PoSS, the notion of
ePoSS specifies also which secrets remain protected depending on the indexes of the dealer (the
second input of the sharing algorithm). We show that the construction provided in the previous
section already satisfies this additional security property. The formal definition follows.

Definition 11 (Enhanced Positional Secret Sharing). An Enhanced Positional Secret Shar-
ing scheme over a message spaceM is a PoSS scheme described by the PPT algorithms (ShareePoSS,
ReconstructePoSS) which satisfies the following additional property.
Enhanced positional security. ∀(x1, . . . , xl), (x′1, . . . , x′l) ∈Ml, ∀S = {j1, . . . , jl+c} ⊆ {1, . . . , n}
with j1 < j2 < · · · < jl−1 < jl < · · · < jl+c:
1. If there exists α ∈ {1, . . . , l + c} such that jα = j, and c ≤ l then

1.1. If α ≤ l then the following distributions are identical (where γ = min{c, α− 1}):
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−γ−1, xα−γ , . . . , xα−1, xα, . . . , xl), j)}
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′1, . . . , x

′
α−γ−1, xα−γ , . . . , xα, x

′
α+1, . . . , x

′
l), j)}.

1.2. If α > l the following distributions are identical:
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xα−c−1, xα−c, . . . , xl−1, xl), j)}
{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x′1, . . . , x

′
α−c−1, xα−c, . . . , xl−1, xl), j)}

2. if @α ∈ {1, . . . , l + c} such that jα = j, the following distributions are identical:

{(si)i∈S : (s1, . . . , sn)
$←− ShareePoSS((x1, . . . , xl), j)}

{(s′i)i∈S : (s′1, . . . , s
′
n)

$←− ShareePoSS((x′1, . . . , x
′
l), j)}

It is easy to see that for c = 0 the properties of enhanced positional and positional security are
equivalent and that for c ≥ l − 1 none of the secrets is protected. We refer to App. A.2 for the
formal proof of the following theorem.

Theorem 2. (SharePoSS
?
,ReconstructPoSS

?
) is an Enhanced Positional Secret Sharing scheme
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6 Threshold NIMPC

In this section we show how to construct a t-secure NIMPC NIMPCth := (Setupth,Msgth,Evalth).
That is, a threshold NIMPC protocol for n parties, with threshold l that supports up to t corrup-
tions. For our construction we make use of the following tools.

- A t-robust NIMPC protocol NIMPC := (Setup,Msg,Eval).
- A PoSS scheme PSS := (SharePoSS,ReconstructPoSS).

At a high level our protocol NIMPCth works as follows.

Setup: The algorithm Setupth runs the setup algorithm of the t-robust NIMPC protocol on input
the unary representation of l (the number of parties that will participate in the computation)
and the unary representation of the security parameter λ thus obtaining ρ̃0, . . . , ρ̃l. Then, for each
i ∈ {1, . . . , l}, Setupth computes an encoding of the input 0 and of the input 1 using NIMPC:
m̃0
i ← Msg(ρ̃i, 0), m̃1

i ← Msg(ρ̃i, 1). As a final step, for all i ∈ {1, . . . , l}, Setupth computes a
positional secret sharing of the messages (m̃0

1, . . . , m̃
0
k) using index i thus obtaining (s0i,1, . . . , s

0
i,n),

and a positional secret sharing of the messages (m̃1
1, . . . , m̃

1
k), always for the index i, obtaining

(s1i,1, . . . , s
1
i,n). The output of Setupth corresponds to (ρ̃0, ρ1, . . . , ρn) where ρi := (s0j,i, s

1
j,i)j∈{1,...,n}

for all i ∈ {1, . . . , n}.
Online messages. The party pi with input ρi := (s0j,i, s

1
j,i)j∈{1,...,n} and the input xi ∈ {0, 1} sends

mi := (s01,i, s
1
1,i), . . . , s

xi
i,i, . . . , (s

0
n,i, s

1
n,i)

Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl with 0 ≤ j1 < · · · < jl ≤ n, performs the

following steps. For all i ∈ {1, . . . , l}, let bi ∈ {0, 1} be such that m̃i
$←− ReconstructPoSS(sbiji,j1 , . . . , s

bi
ji,ji

,

. . . , sbiji,jl , ji) and m̃i 6= ⊥.12 Then p0 computes and outputs Eval(ρ̃0, m̃1, . . . , m̃l).

It is easy to see that in the above construction a malicious evaluator can learn the input of the
honest party pi by only inspecting the bit bi. To avoid this trivial attack we just need to permute
the shares sent by the parties to the evaluator. We decided to not include this additional step
into the informal description of the protocol to make it easier to read. We show how the complete
scheme works in the formal description of the protocol proposed Fig. 2. Intuitively, the scheme is
secure because of the following reasons:

1. The standard security property of the PoSS scheme exposes only one between Msg(ρ̃j , 0) and
Msg(ρ̃j , 1) for all j ∈ [l] when ij ∈ [n] is the index of an honest party pij . Indeed, an honest

party pij will not send the share s1−xiij ,ij
where xij denotes the input bit of pij . Hence, there would

not be enough shares to reconstruct Msg(ρ̃i, 1− xij ).
2. The positional security guarantees that the adversary, with respect to a corrupted party pik ,

can obtain only the two messages Msg(ρ̃k, 0) and Msg(ρ̃k, 1) (where ik ∈ [n] and k ∈ [l]).
3. The security of the t-robust NIMPC guarantees that even if for the corrupted parties pc1 , . . . , pct

the adversary obtains Msg(ρ̃i, 0) and Msg(ρ̃i, 1) for each i ∈ [t] this does not represent a problem.

Theorem 3. If NIMPC is a t-robust NIMPC protocol, then NIMPCth is a t-secure Threshold
NIMPC protocol.

We refer to App. A.3 for the proof of the theorem.

12 In this informal description of the protocol we assume that the algorithm ReconstructPoSS outputs ⊥ in the case
that some of the input shares are ill formed (e.g., the input shares are the combination of different execution of
the algorithm SharePoSS).
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Setup
1. Run Setup(1l, 1λ, f) obtaining ρ̃0, . . . , ρ̃l.
2. For i = 1, . . . , l compute m̃0

i ← Msg(ρ̃i, 0), m̃1
i ← Msg(ρ̃i, 1)

3. For i = 1, . . . , n pick the permutation bit bi
$←− {0, 1}, run

1. PSS(m̃0
1, . . . , m̃

0
l , i) thus obtaining (sbii,1, . . . , s

bi
i,n) and run

2. PSS(m̃1
1, . . . , m̃

1
l , i) obtaining (s1−bi

i,1 , . . . , s1−bi
i,n ).

4. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ρ̃0 and for i = 1, . . . , n, ρi := (bi, (s
0
j,i, s

1
j,i)j∈{1,...,n}).

Online messages
1. On input xi ∈ {0, 1} and ρi the party pi does the following.

1.1 If bi = 0 then set si,i ← sxii,i and di ← xi else set si,i ← s1−xi
i,i and di ← 1− xi.

1.2 Sends mi := ((s0
1,i, s

1
1,i), . . . , si,i, . . . , (s

0
n,i, s

1
n,i), di).

Evaluation
1. On input ρ0,mj1 , . . . ,mjl with 0 ≤ j1 < · · · < jl ≤ n, for i = 1, . . . , l compute m̃i ←

ReconstructPoSS(s
dji
ji,j1

, . . . , sji,ji , . . . , s
dji
ji,jl

, ji)
2. Compute and output Eval(ρ0, m̃1, . . . , m̃l).

Fig. 2: Our t-secure NIMPC

7 Ad Hoc PSM

We start by showing how to construct an (l, l + c)-secure ad hoc PSM protocol, for an arbitrary
non-negative integer c, for a very simple functionality that we call message selector and denote with
fmsg sel. fmsg sel takes l inputs, and each input i ∈ [l] consists of 1) a list of size l of λ-bit strings and
2) and integer io with io ∈ [n] (this will represent the index of the party that is contributing to the
input). The output of fmsg sel corresponds to the concatenation of l messages, where the message
in position j corresponds to the j−th message in the input list of the party with the j-th greatest
index that is participating in the online phase. We propose a formal description of the function in
Fig. 3. We denote our protocol with Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel) and provide an
informal description of it for the simplified case in which the input of each party is a list of bits
(instead of list of λ-bit strings). In the formal description we consider the generic case where the
input of each party is a list of λ-bit strings. At a very high level, the protocol Πmsg sel works as
follows.

Setup: For each party indexed by i ∈ {1, . . . , n}, Setupmsg sel generates l random bits b1, . . . , bl that
we call permutation bits. Then Setupmsg sel computes an enhanced PoSS of (b1, . . . , bl) for the index
i, and an enhanced PoSS of (1− b1, . . . , 1− bl) for the index i thus obtaining (s0i,1, . . . , s

0
i,n) and

(s1i,1, . . . , s
1
i,n) respectively. Intuitively, the party i will receive as a part of ρi the permutation bits,

and depending on his inputs he will send the corresponding permutation bits. For example, if the
first input in the list of pi is 0 then pi: 1) takes the permutation bit b1 (if the input of pi is 1 then
p1 picks as the permutation bit 1− bi) 2) and sends the permutation bit together with other pieces
of information (more details will follow). The output of Setupmsg sel corresponds to (ρ0, ρ1, . . . , ρn)
where ρi := (s0j,i, s

1
j,i, bj)j∈{1,...,n} for all i ∈ {1, . . . , n} and ρ0 := ⊥.

Online messages. The party pi on input ρi := (s0j,i, s
1
j,i, bj)j∈{1,...,n} and the input bits x1, . . . xl

computes d1 ← b1 if x1 = b1 and d1 ← 1 − b1 otherwise. Repeat the same for x2 . . . xl and sends
mi :=

(
(s01,i, s

1
1,i), . . . , (s

0
n,i, s

1
n,i), (d1, . . . , dl)

)
.
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Evaluation. The evaluator p0, on input ρ̃0,mj1 , . . . ,mjl with 0 ≤ j1 < · · · < jl ≤ n, does the
following steps. For all i ∈ {1, . . . , l} compute

y0i ←ReconstructPoSS(s0ji,j1 , . . . , s
0
ji,jl

, ji), y
1
i ← ReconstructPoSS(s0ji,j1 , . . . , s

0
ji,jl

, ji) and x̃i ← y
dji
i .

The output of the evaluator then corresponds to (x̃1, . . . , x̃l).

The security of our protocol relies on the security of the enhanced PoSS scheme. Informally,
let X := ((xi1 , i1), . . . , (xiN , iN )) with N ≤ l + c be the inputs of the parties participating in the
protocol (recall that each input represents a list of l bits). The notion of ad hoc PSM guarantees
that a malicious evaluator can learn only the output of fmsg sel on input any possible set S where
S := ((xj1 , j1), . . . , (xjl , jl)) ⊆ X. Hence, the adversary can evaluate fmsg sel on up to

(
l+c
l

)
possible

sets of inputs. Consider now the input of the party piα be xiα and let c < l, then we have the two
possible cases (when c ≥ l then the evaluator can obtain all the inputs).

– If α ≤ l then xiα can be placed in the α-th input slot of fmsg sel, or in any other position
iα−1, . . . , iα−γ with γ = min{c, α− 1}.

– If α > l then xiα can be place in l-th input slot of fmsg sel, or in any other position il−1, . . . , iα−c
given that N = l + c.

Any other value in the input list xiα of piα has to be protected. We note that this is exactly the
security that an ePoSS scheme can guarantee.

Input:
(
(xi1k )k∈[l], i1

)
, . . .

(
(x
il
k )k∈[l], il

)
where {i1, . . . , il} ⊆ [n], xi1k , . . . , x

il
k ∈ {0, 1}

λ, l ≤ n and n, λ ∈ N.
Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that 0 ≤ j1 < j2 < · · · < jl−1 <
jl ≤ n, output xj11 || . . . ||x

jl
l

Fig. 3: fmsg sel

Theorem 4. Πmsg sel is a (l, l + c)-secure ad hoc PSM protocol.

We refer the reader to App. A.4 for the formal proof.

7.1 Ad Hoc PSM for all Functions

In this section we show how to construct a (l, l + c)-secure ad hoc PSM for any function f and
any constant c, which has a simulator that is successful with probability at least p = e−1 (where
e is the Euler number). We denote this scheme with ΠPSM := (SetupPSM,MsgPSM,EvalPSM) and to
construct it we make use of the following tools.

- An (l, l + c)-secure ad hoc PSM Πmsg sel := (Setupmsg sel,Msgmsg sel,Evalmsg sel) for the message
selector function described in the previous section.

- A hash function H with range size λ′ = λ2c+2 (this function is defined as the hash function that
on input x outputs x mod λ′).

- A 2-party 0-robust NIMPC scheme Π2PC := (Setup,Msg,Eval) for the funciton gk (which will
be specified later) with the following additional properties:
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Common input: Input length: λ, number of parties n, threshold l and c.
Setup:
1. For i = 1, . . . , n

1.1. For each k = 1, . . . l, For each j = 1, . . . , λ Pick bkj
$←− {0, 1}.

1.2. Run PSS(b11|| . . . ||b1λ, b21|| . . . ||b2λ, . . . , bl1|| . . . ||blλ, i) thus obtaining (s0
i,1, . . . , s

0
i,n).

1.3. Run PSS(1− b11|| . . . ||1− b1λ, 1− b21|| . . . ||1− b2λ, . . . , 1− bl1|| . . . ||1− blλ, i) thus obtaining
(s1
i,1, . . . , s

1
i,n).

1.4. Set Bi = (bk1 , . . . , b
k
λ)k∈[l].

2. Output (ρ0, ρ1, . . . , ρn) where ρ0 := ⊥ and for i = 1, . . . , n, ρi := (Bi, (s
0
j,i, s

1
j,i)j∈{1,...,n}).

Online messages
1. On input xi1, . . . , x

i
l ∈ {0, 1}λ and ρi the party pi acts as follows.

1.1. For each k ∈ [l] parse xik as a λ bit string xk,1, . . . , xk,λ.
1.2. For each k ∈ [l], j ∈ [λ] if xk,j = bkj then set dkj = bkj else set dkj = 1− bkj .
1.3. Set Di ← (dk1 , . . . , d

k
λ)k∈[l].

1.4. Send mi := (Di, (s
0
1,i, s

1
1,i), . . . , (s

0
n,i, s

1
n,i)).

Evaluation
1. On input ρ0,mk1 , . . . ,mkl with 0 ≤ k1 < · · · < kl ≤ n, for i = 1, . . . , l do the following

1.1. Compute y1,0|| . . . ||yλ,0 ← ReconstructPoSS(s0
ki,k1

, . . . , s0
ki,kl

, ki),

1.2. Compute y1,1|| . . . ||yλ,1 ← ReconstructPoSS(s1
ki,k1

, . . . , s1
ki,kl

, ki)
1.3. For j = 1, . . . , λ

i. c← dij
ii. xi,j ← yj,c

2. Compute and output x1,1|| . . . ||x1,λ, . . . , xl,1|| . . . ||xl,λ.

Fig. 4: Our (l, l + c)-secure ad hoc PSM for the message selector function fmsg sel.
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1. It accepts inputs of size δ = 2λn+ nλλ′, where n represents the number of parties and λ is
the input size allowed by ΠPSM (it also represents the security parameter);13 and λ′ is the
range size of H.

2. The size of the output of Msg depends only on poly(λ, δ) and it is independent from the
function that Π2PC is computing (whereas the output of Setup can grow with the size of the
function being computed;

3. The randomness required to run Setup is κ := poly(λ).
- A PRG PRG : {0, 1}λ → {0, 1}κ where κ := poly(λ) represents the size of the randomness

required to run Setup.

We start by giving a high level idea of how our construction works starting from a scheme that
does not provide security but contains most of intuitions. Then we gradually modify it until we get
our final scheme.

First attempt. Let ρ be the output of the setup phase of Πmsg sel and consider (l−1) instantiations
of Π2PC which we denote with Π2PC

2 , . . . ,Π2PC
l . We denote with Ri, ρ

0
i , ρ

1
i the output of the setup

phase of Π2PC
i for each i ∈ {2, . . . , l}.

For each i ∈ {2, . . . , l − 1}, an instantiation Π2PC
i will be used to evaluate the function gi. The

function gi takes two inputs x0 ∈ {0, 1}λ, x1 ∈ {0, 1}λ and outputs Msg(ρ0i+1, x
0||x1). That is, gi

outputs an encoding of the message x0||x1 for Π2PC
i+1 . The instantiation Π2PC

l is used to evaluate
the function gl, which takes as input x1||x2|| . . . ||xl−1 and xl and outputs f(x1, x2, . . . , xl−1, xl).

Each party pi on input x ∈ {0, 1}λ, ρ, ρ12, . . . ρ
1
l and ρ02 does the following.

1. Encode the input x for Π2PC
2 by running Msg(ρ02, x) thus obtaining m0

1.
2. For each j ∈ {2, . . . , l}

2.1. Encode the input x for Π2PC
j by running Msg(ρ1j , x) thus obtaining m1

j

3. Run Msgmsg sel(ρ,m0
2||m1

2||m1
3||m1

4|| . . . ||m1
l ) thus obtaining m̃i

4. Output mi.

The evaluation algorithm works as follows

1. Run Evalmsg sel on input (m̃k1 , . . . , m̃kl) thus obtaining m0
1,m

1
2, . . . ,m

1
l (we denote with k1, . . . , kl

the indexes of the parties that are participating in the online phase).
2. Run Eval(R2,m

0
1,m

1
2) thus obtaining m0

3.
3. For each j ∈ {3, . . . , l − 1}

3.1. Run Eval(Rj ,m
0
j ,m

1
j ) thus obtaining m0

j+1.

4. Output Eval(Rl,m
0
l ,m

1
l )

Despite being correct, the above protocol suffers of a security issue. If more than l parties
participate to the protocol, then a corrupted evaluator could be able to obtain the encoding of two
different messages with respect to the same ρ1j for some j ∈ {2, . . . , l}, and this could harm the

security of Π2PC
j .

Second attempt. To solve this problem we give a different ρ1j to each party. In this way, even

if two different parties encode different messages we can still rely on the security of Π2PC. This
approach requires a more sophisticated function gj , since now the output of gj should contain an
encoding of the previous inputs under Π2PC which can be combined the with the next party’s
encoded message, whoever she is. Hence, we modify gj (for any j) to output multiple encodings,
one for each party with index greater than j. Even if this approach never causes the same ρ1j to

13 Our construction would work for inputs of size poly(λ), but to not overburden the notation we consider only inputs
of size λ only.
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be used twice on different inputs, now multiple encodings of different inputs under ρ0j might be
computed by a malicious evaluator. For example, an evaluator could construct the first input for
gj using two different sequences on inputs (this is possible only if the evaluator has access to more
than l messages sent from the honest parties).

Our approach. To mitigate (but not completely solve) the above problem, we modify the above
protocol as follows.

1. From the setup phase each party pi receives ρsel,0j,i for each sel ∈ [λ′] and each j ∈ [l] (note that

we need to run the setup of Π2PC λ′ times more in this protocol).
2. Each party pi picks a random value vi, and encodes this value together with its input by running

Msg(ρsel,0j,i , xi||vi) for each sel ∈ λ′ and j ∈ {2, . . . , l}.
3. The function gj now takes as input v0||x0 and v1||x1, computes sel′ ← H(v0 ⊕ v1) and outputs

Msg(ρsel
′,0

j+1,i, x
0||x1||v0 ⊕ v1) for each i where H is an hash function with range size λ′.

This protocol remains secure as long the adversary is not able to find a combination of the
messages received from the honest parties that yields to a collision in the hash function. This
means that an execution of this protocol could be insecure with probability 1/poly(λ) given that
λ′ is a polynomial. On the other hand, we can prove that a run of the protocol is secure with
probability e−1. Intuitively, this holds because each hash function can be evaluated at most on(
l+c
l

)
different random values. Give that c is a constant value we obtain that the number of possible

inputs of H is at most nc. Hence, for a suitable choice of λ′ we can show that our protocol is secure
with probability e−1. In the next section we show how to amplify the security of this protocol to
obtain a secure ad hoc PSM . Note that to amplify the security of the protocol we cannot just
simply take a hash function with an exponentially large range. We propose a formal description of
the function gk in Fig. 5 and a formal description of our protocol ΠPSM in Fig. 6. For the formal
proof of our scheme we refer to App. A.5.

gk(x||v1, j||y||v2||{rselk+1,i>j}j∈[n],sel∈[λ′])
v ← v1 ⊕ v2, sel′ ← H(v)
For each i ∈ {j + 1, . . . , n} compute

r ← PRG(rselk+1,i), (Rsel′
k+1,i, ρ

sel′,0
k+1,i, ρ

sel′,1
k+1,i)← Setup(1n, 1λ, gk+1; r).

µsel′,0
k+1,i ← Msg(ρsel

′,0
k+1,i, x||y||v).

Return {µsel′,0
k+1,i}i∈{j+1,...,n}

gl(x, y)
Parse x as l bit-strings of λ bits x1, . . . , xl−1.
Compute and output f(x1, . . . , xl−1, y).

Fig. 5: Specification of the functions gk with k ∈ {2, . . . , l − 1} and gl.

Theorem 5. There exists a simulator that successfully satisfies the definition of (l, l+ c)-secure ad
hoc PSM with probability at least e−1, for any constant c.

How to instantiate the 2-party 0-robust NIMPC scheme Π2PC. Our compiler requires non-standard
requirement on the size of the messages of the protocol Π2PC. As also noted in [BKR17], 0-robust
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:
1. For each i, j ∈ [n] with i 6= j do the following.

- Run Setup(12, g2, 1
λ) thus obtaining (Rj2,i, ρ

j,0
2,i , ρ

j,1
2,i).

2. For each k ∈ {3, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.

- Pick rselk,i
$←− {0, 1}λ.

- Compute PRG(rselk,i) thus obtaining r.

- Run Setup(12, gk, 1
λ; r) thus obtaining (Rsel

k,i, ρ
sel,0
k,i , ρ

sel,1
k,i ).

3. For each sel ∈ [λ′] i ∈ [n] run Setup(12, gl, 1
λ) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

4. Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

5. For i← 1, . . . , n pick vi
$←− {0, 1}λ and set

ρi := (vi, (r
sel
k,j>i)j∈[n]sel∈[λ′],k∈{3,...,l}, (ρ

sel,1
k,i )sel∈[λ′],k∈{3,...,l}, (ρ

i,0
2,j , ρ

j,1
2,i)j∈[n]−{i}, ρ

th
i ) and

ρ0 := ρth0 , {Rsel
k,i}sel∈[λ′],i∈[n],k∈[l]

Online messages
1. On input xi ∈ {0, 1}λ and ρi the party pi does the following.

- For each j ∈ [n]− {i} compute mi,0
1,j ← Msg(ρi,02,j , (xi, vi)).

- For each j ∈ [n]− {i} compute mj,1
2,i ← Msg(ρj,12,i , i||xi||vi||{r

sel,0
3,c>i}c∈[n]).

- For each k ∈ {3, . . . , l − 2}, sel ∈ [λ′] compute
msel,1
k,i ← Msg(ρsel,1k,i , i||xi||vi||{r

sel,0
k+1,j>i}j∈[n],sel∈[λ′])

- For each sel ∈ [λ′] compute msel,1
l,i ← Msg(ρsel,1l,i , xi)

- Compute and send
mi ← Msgmsg sel(ρthi , ({mi,0

1,j}j∈[n]−{i}, {mj,1
2,i}j∈[n]−{i}, . . . , {msel,1

l,i }sel∈[λ′], i))
Evaluation
1. On input ρ0,mk1 , . . . ,mkl with 0 ≤ k1 < · · · < kl ≤ n the evaluator does the following.

- Run Eval(ρth0 ,mk1 , . . . ,mkl) thus obtaining {mk1,0
1,sel }sel∈[n]−{k1}, {m

sel,1
2,k2
}sel∈[n]−{k2}, . . . ,

{msel,1
l−1,kl−1

}sel∈[λ′], {msel,1
l,kl
}sel∈[λ′].

- Run Eval(Rk12,k2
,mk1,0

1,k2
,mk1,1

2,k2
) thus obtaining {µsel′,0

3,i }i∈[n].
- For j ← 3, . . . , l − 1

- Run Eval(Rsel′
j,kj

, µsel′,0
j,kj

,msel′,1
j,kj

) thus obtaining {µsel′′,0
j+1,i}i∈[n].

- Set sel′ ← sel′′.
- Compute y ← Eval(Rsel′

l,kl
, µsel′,0
l,kl

,msel′,1
l,kl

) and output y.

Fig. 6: Our ad hoc PSM for all functions that is secure with probability e−1.

NIMPC protocol can be constructed from garbled circuits. And this construction would have all
the properties that we need. At a high level the construction works as follows. Let g be a two-
input function where each input is of size M . In the setup phase a garbled circuit C̃ for the
function g and the corresponding wire keys L0,1, L1,1, . . . L0,M , L1,M , R0,1, R1,1, . . . R0,M , R1,M are
computed. Then ρ = C̃ is given to the evaluator, the keys ρ0 = L0,1, L1,1, . . . L0,M , L1,M are given
to to the party p0 and the keys ρ1 = R0,1, R1,1, . . . R0,M , R1,M are given to the party p1. For
the evaluation, the party p0 on input x ∈ {0, 1}M parses it as a bit string x1, . . . , xM and sends
to the evaluator Lx1,1, . . . LxM ,M . The party p1 does the same for its input y but using the keys
ρ1 = R0,1, R1,1, . . . R0,M , R1,M . The evaluator then uses the received keys and C̃ to compute g(x, y).
This construction is provided in [FKN94], the only difference is that in their protocol the C̃ is sent



by one of the parties instead in our case we assume that C̃ is already given to the evaluator from
the setup phase. This construction has the property that we need since the size of the keys of the
garbled circuit depends only on the security parameter and on the size of the inputs and does not
depend on the size of the function g [AIK11]. Then we have the following corollary.

Corollary 1. If one-way functions exists then there exists a simulator that successfully satisfies
the definition of (l, l + c)-secure ad hoc PSM with probability at least e−1, for any constant c.

7.2 Fully Secure Ad Hoc PSM

We are now ready to provide a fully-secure ad hoc PSM ΠAPSM := (SetupAPSM,MsgAPSM,EvalAPSM)
that realizes any function f . To construct our protocol we use the following tools.

– An (l, l + c)-secure ad hoc PSM protocol ΠPSM := (SetupPSM,MsgPSM,EvalPSM) that supports
up to a n parties and that is simulatable with probability 1

p with p ≤ e (where e is the Euler
number).

– An additive (l,m,m − 1)-HSS Scheme for the function f HSS := (ShareHSS,EvalHSS,DecHSS)
where m := pλ.

At a very high level our protocol consists of m instantiations of the ΠPSM where the j-th
instantiation evaluates the function Gj with j ∈ [m]. The Function Gj takes as input l shares of
the HSS scheme, and uses them as input of EvalHSS together with the server index j (see Fig. 7
for a formal specification of Gj). Each party pi that wants to participate in the protocol computes
a secret sharing of his input thus obtaining m shares. Then pi encodes each share by running
MsgPSM (one execution of MsgPSM per share). The evaluator runs the evaluation algorithm of the
j-th instantiation of ΠPSM thus obtaining yj (which corresponds to the output of EvalHSS) for each
j ∈ [m]. The output of the evaluation phase then corresponds to y1 ⊕ · · · ⊕ ym. We show that this
protocol is secure as long as there is at least one execution of ΠPSM that simulatable. Moreover,
by choosing m opportunely we can prove that at least for one instantiation of ΠPSM the simulator
is successful with overwhelming probability. Hence, at least one share of each of the inputs of the
honest parties will be protected. Therefore, because of the security offered by the HSS, also the
entire input of the parties will be protected.

We refer to Fig. 8 for the formal description of ΠAPSM.

Input:
(
(xki1)k∈[l], i1

)
, . . .

(
(xkil)k∈[l], il

)
where {i1, . . . , il} ⊆ [n], xki1 , . . . , x

k
il
∈ {0, 1}λ, l ≤ n and n, λ ∈ N.

Output: Let (j1, . . . , jl) be a permutation of the values (i1, . . . , il) such that 0 ≤ j1 < j2 < · · · < jl−1 <
jl ≤ n, output EvalHSS(j, x1

j1 , . . . , x
l
jl

)

Fig. 7: Gj with j ∈ [m].
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Common parameters: Security parameter λ, maximum number of parties n, threshold l, and c where
l + c denotes the maximum number of active parties supported by the protocol and m = pλ.
Setup:
1. For each j ∈ m

1.1. Run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj0, ρ
j
1, . . . , ρ

j
n.

2. Output ρ0, ρ1, . . . , ρn where ρ0 := (ρj0)j∈[m], ρ1 := (ρj1)j∈[m], . . . ρn := (ρjn)j∈[m]

Online messages
1. On input xi ∈ {0, 1}λ and ρi the party pi does the following.

1.1. For each k ∈ [l]
i. Run ShareHSS(1λ, k, x) thus obtaining x1,k

i , . . . xm,ki .
1.2. For each j ∈ m

i. Run MsgPSM(ρji , ((x
j,k
i )k∈[l], i)) thus obtaining mj

i .

1.3. Send mi := (mj
i )j∈[m]

Evaluation
1. On input ρ0,mk1 := (mj

k1
)j∈[m], . . . ,mkl := (mj

kl
)j∈[m] with 0 ≤ k1 < · · · < kl ≤ n the evaluator does

the following.
2. For each j ∈ m

2.1. Run EvalPSM(ρj0,m
j
k1
, . . . ,mj

kl
) thus obtaining yj .

3. Output y1 ⊕ · · · ⊕ ym

Fig. 8: Our fully secure ad hoc PSM for all functions

Theorem 6. ΠAPSM is a (l, l + c)-secure ad hoc PSM protocol for any constant c.

We refer to App. A.6 for the formal proof. Since ΠPSM can be constructed from OWFs and since
the HSS scheme that we need can be instantiated from the LWEs assumption [BGI+18,DHRW16]
we have the following corollary.

Corollary 2. Assuming the hardness LWE, then ΠAPSM is a (l, l+ c)-secure ad hoc PSM protocol
for any constant c.

8 Our adaptive-ad-hoc PSM protocol

As we have anticipated in the introduction, it is straightforward to construct a (l, t)-secure adaptive-
ad-hoc PSM from a (l, t)-secure Ad Hoc PSM protocol. We now provide a forma description of the
protocol.

Let F = (Fn)n∈N be an ensemble of sets Fn of functions f : X n → Y, in this section we want
to construct an adaptive-ad-hoc PSM for f := fl, . . . fl+c where fα ∈ Fα. It is straightforward
to construct an adaptive-ad-hoc PSM having an (l, l + c)-secure ad hoc PSMscheme ΠAPSM :=
(SetupAPSM,MsgAPSM,EvalAPSM). Indeed, we just need to run c instantiation of ΠAPSM, where each
instantiation computes a function fα with α ∈ [l+ c]. For sake of completeness we propose a formal
description of the protocol in Fig. 9.
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Common parameters: Security parameter λ, maximum number of parties n, threshold l, and c where
l + c denotes the maximum number of active parties supported by the protocol.
Setup:
1. For each α ∈ {l, . . . , l + c}

1.1. Run SetupAPSM(1n, 1l, 1c, 1λ, fα) thus obtaining ρα0 , ρ
α
1 , . . . , ρ

α
n.

2. Output ρ0, ρ1, . . . , ρn where ρ0 := (ρj0)j∈{l,...,l+c}, ρ1 := (ρα1 )α∈{l,...,l+c}, . . . ρn := (ραn)α∈{l,...,l+c}
Online messages
1. On input xi ∈ {0, 1} and ρi the party pi does the following.

1.1. For each α ∈ {l, . . . , l + c}
i. Run MsgAPSM(ραi , (xi, i)) thus obtaining mα

i .
1.2. Send mi := (mα

i )α∈{l,...,l+c}
Evaluation
1. On input ρ0,mk1 , . . . ,mkN with 0 ≤ k1 < · · · < kN ≤ n the evaluator does the following.

1.1. If l ≤ N ≤ l + c then run y ← EvalAPSM(ρN0 ,mk1 , . . . ,mkN ) and output y, output ⊥ otherwise.

Fig. 9: Our adaptive-ad-hoc PSM for all functions
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A Security Proofs

A.1 Proof of Theorem 1

Proof. Correctness. The correctness of the protocol follows from the correctness of the standard
secret sharing schemes used in the protocol.

Standard security. In this case the proof relies on the observation that, to reconstruct a value
xi = x0i ⊕ x1i ⊕ x̃i with i ∈ {1, . . . , l} are required at least (i− 1) shares of the (i− 1)-out-of-(j − 1)
secret sharing scheme (to compute x0i ), l− i shares of the (l− i)-out-of-(n−j) secret sharing scheme
(to compute x1i ) and the share x̃i. If only l′ < l shares of the PoSS scheme are available then either
the number of shares to reconstruct x0i is insufficient, or the number of shares to reconstruct x1i is
insufficient or the share x̃i is missing. More formally, if by contradiction our scheme is not secure
then we can construct a reduction that, for some i ∈ {1, . . . , l}, breaks the security of either the
(i − 1)-out-of-(j − 1) or the (l − i)-out-of-(n − j) secret sharing or the 3-out-of-3 secret sharing
scheme used to compute (x0i , x

1
i , x̃i).

Positional security. We first prove that the first condition of Definition 10 holds and then we
show that also the second condition holds. The proof proceeds via hybrid arguments. Let S =
{j1, . . . , jl} ⊆ {1, . . . , n} with 0 ≤ j1 < j2 < · · · < jl−1 < jl ≤ n with jα = j be an arbitrarily
chosen set.

We denote with H0
` , with ` ∈ {0, . . . , α− 1}, the hybrid experiment that acts as follows.

Compute (s1, . . . , sn)
$←− SharePoSS

?
((x′1, . . . , x

′
`, x`+1, . . . , xα, . . . , xl), j).

Output (sj1 , . . . , sjl).

We denote with H1
` , with ` ∈ {α+ 1, . . . , l}, the hybrid experiment that acts as follows.

Compute (s1, . . . , sn)
$←− SharePoSS

?
((x′1, . . . , x

′
α−1, xα, x

′
α+1, . . . , x

′
`, x`+1, . . . , xl), j).

Output (sj1 , . . . , sjl).

We now show that H0
0 ≡ · · · ≡ H0

α−1 ≡ H1
α+1 ≡ · · · ≡ H1

l .

Lemma 1. The output distribution of H0
i−1 is identical to the output distribution of H0

i for all
i ∈ {1, . . . , α− 1}.

Proof. We assume by contradiction that the lemma does not hold and we show how to do a reduction
to the security of the underlying secret sharing scheme.

In the output of H0
i (and H0

i−1) there are shares of a secret sharing scheme run x0i and x1i where
x0i ⊕ x1i = x′i ⊕ x̃i (x0i ⊕ x1i = xi ⊕ x̃i in the case of H0

i−1). In more details we have:

an (i− 1)-out-of-(j − 1) secret sharing of x0i : (si,1, . . . , si,j−1);
a (l − i)-out-of-(n− j) secret sharing of x1i : (si,j+1, . . . , si,n);
and si,j = x̃i.

Given the output of H0
i (and H0

i−1) be (sj1 , . . . , sjl) with sj1 = (s1,j1 , . . . , sl,j1), . . . , sjl =
(s1,jl , . . . , sl,jl), jα = j and i < α then it is possible to reconstruct xi0 (since the output of the
experiment contains (α − 1) shares of a (i − 1)-out-of-(j − 1) secret sharing scheme run on input
x0i ). However, given that i < α, then there are (l−α) < (l−i) shares of the (l−i)-out-of(n−j) secret
sharing scheme run on input x1i in the output of H0

i (and H0
i−1), which are insufficient to reconstruct

xi1. More formally, in this case we can make a reduction to the security of the (l− i)-out-of-(n− j)
secret sharing scheme. The reduction acts exactly as H0

i (and H0
i−1) with the exception that the

shares for the (l− i)-out-of-(n−j) are computed by an external challenger. The external challenger,
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on input (y0, y1) such that x0i ⊕ x̃i⊕y0 = xi and x0i ⊕ x̃i⊕y1 = x′i, tosses a coin b ∈ {0, 1}, computes
a secret sharing of yb and sends (l− i−1) shares to the reduction. The reduction then pick a subset
of size (l − j) of the received shares and uses them to complete the experiment accordingly to H0

i

(and H0
i−1). Note that if b = 0 then the output of the experiment corresponds to the output of

H0
i−1 and to the output of H0

i otherwise.

An argument similar to the one used in the proof of the Lemma 1 can be used to show prove
the following lemma (the main difference is that in this case we rely on the security of the (i− 1)-
out-of-(j − 1) secret sharing sheme).

Lemma 2. The output distribution of H1
i−1 is identical to the output distribution of H1

i for all
i ∈ {α+ 1, . . . , l}.

To prove the second property we just need to observe that when @α ∈ {1, . . . , l} such that
jα = j then the share si,j = x̃i does not appear in the output of the experiment for all i ∈ {1, . . . , l}.
Therefore we can make a reduction to the 3-out-of-3 secret sharing scheme.

A.2 Proof of Theorem 2

Proof. We have already shown in Theorem 1 that SharePoSS
?
,ReconstructPoSS

?
is an ePoSS scheme,

here we just prove that the scheme satisfies the property of Enhanced positional security.

Enhanced positional security. The proof that the second property holds follows from the same
arguments showed above. We prove that the security holds for the case c ≤ l, the proof for the
case where c > l follows by similar arguments. The proof proceeds via hybrid arguments. Let S =
{j1, . . . , jl+c} ⊆ {1, . . . , n} be an arbitrarily chosen set with 0 ≤ j1 < j2 < · · · < jl+c−1 < jl+c ≤ n
and jα = j.

We denote with H0
` , with ` ∈ {0, . . . , α− γ − 1}, the hybrid experiment that acts as follows.

Compute (s1, . . . , sn)
$←− SharePoSS

?
((x′1, . . . , x

′
`, x`+1, . . . , xα−γ , . . . , xα, xα+1, . . . , xl), j)}

Output (sj1 , . . . , sjl).

We denote with H1
` , with ` ∈ {1, . . . , l − α}, the hybrid experiment that acts as follows.

Compute (s1, . . . , sn)
$←−

SharePoSS
?
((x′1, . . . , x

′
α−γ−1, xα−γ , . . . , xα, x

′
α+1, . . . , x

′
α+`, xα+`+1, . . . , xl), j)}

Output (sj1 , . . . , sjl+c).

We now show that H0
0 ≡ · · · ≡ H0

α−γ−1 ≡ H1
α+1 ≡ · · · ≡ H1

l .

Lemma 3. The output distribution of H0
i−1 is identical to the output distribution of H0

i for all
i ∈ {1, . . . , α− γ − 1}.

Proof. We assume by contradiction that the lemma does not hold and we show how to do a reduction
to the security of the underlying secret sharing scheme.

In the output of H0
i (and H0

i−1) there are shares of a secret sharing scheme run on input x0i and
x1i where x0i ⊕ x1i = x′i ⊕ x̃i (x0i ⊕ x1i = xi ⊕ x̃i in the case of H0

i−1). In more detail, we have:

an (i− 1)-out-of-(j − 1) secret sharing of x0i : (si,1, . . . , si,j−1);
a (l − i)-out-of-(n− j) secret sharing of x1i : (si,j+1, . . . , si,n);
and si,j = x̃i.
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Given the output of H0
i (and H0

i−1) be (sj1 , . . . , sjl+c) with sj1 = (s1,j1 , . . . , sl+c,j1), . . . , sjl+c =
(s1,jl , . . . , sl+c,jl+c), jα = j and i < α − γ then it is possible to reconstruct xi0 (since the output
of the experiment contains (α − γ) shares of a (i − 1)-out-of-(j − 1) secret sharing scheme run
on input x0i ). However, given that i < α − γ, then there are at most (l − α + γ) shares of a the
(l − i)-out-of(n− j) secret sharing scheme run on input x1i in the output of H0

i (and H0
i−1). Given

that (l− i) > (l− α+ γ) then there is an insufficient to reconstruct xi1. More formally, in this case
we can make a reduction to the security of the (l − i)-out-of-(n− j) secret sharing scheme.

The reduction acts exactly as H0
i (and H0

i−1) with the exception that the shares for the (l− i)-
out-of-(n − j) are computed by an external challenger. The external challenger, on input (y0, y1)
such that x0i ⊕ x̃i ⊕ y0 = xi and x0i ⊕ x̃i ⊕ y1 = x′i, tosses a coin b ∈ {0, 1}, computes a secret
sharing of yb and sends (l− i− 1) shares to the reduction. The reduction then pick a subset of size
(l−α+γ) of the received shares and uses them to complete the experiment accordingly to H0

i (and
H0
i−1). Note that if b = 0 then the output of the experiment corresponds to the output of H0

i−1 and
to the output of H0

i otherwise.
An argument similar to the one used in the proof of the Lemma 3 can be used to show prove

the following lemma (the main difference is that in this case we rely on the security of the (i− 1)-
out-of-(j − 1) secret sharing sheme).

Lemma 4. The output distribution of H1
i−1 is identical to the output distribution of H1

i for all
i ∈ {1, . . . , l − α}

A.3 Proof of Theorem 3

Proof. To prove the theorem we need to show a simulator Sim such that for any f ∈ Fl and xT ∈ X lT ,
the following distributions are perfectly (resp., statistically, computationally) indistinguishable:

{Simf |T,x
T (1n, 1l, 1λ, T,K)}, {View(1n, 1l, 1λ, f, T,K, xT )}

where{View(1n, 1l, 1λ, f, T,K, xT )} is the view of the evaluator p0 and of the colluding parties pi
(for i ∈ T ) from running NIMPCth on input xT for the honest parties.

By assumption we know that there exists a simulator Sim1 such that for any f ∈ Fn and xT ∈
XT , the following distributions are perfectly (resp., statistically, computationally) indistinguishable:

{Sim
f |T,x

T
1 (1n, 1λ, T )}, {View(1n, 1λ, f, T, xT )}

where {View(1n, 1λ, f, T, xT )} is the view of the evaluator p0 and of the colluding parties pi (for
i ∈ T ) from running NIMPC.

Let T = {c1, . . . , ct} be the set containing the indexes of the corrupted parties and T =
{1, . . . , n} − T = {h1, . . . , hl−t} be the indexes of the honest parties participating in the execu-
tion of NIMPCth. Sim works as follows.

Run Sim1, and when Sim1 queries f |T ,xT forward the query to f |T ,xT . When an answer is received

from f |T ,xT forward it to Sim1. Let ρ̃0, m̃h1 , . . . , m̃hl−t , ρ̃c1 , . . . ρ̃ct be the output do Sim1

For each i ∈ [t] compute m̃0
ci ← Msg(ρ̃ci , 0) and m̃1

ci ← Msg(ρ̃ci , 1)

For i = 1, . . . , n pick bi
$←− {0, 1}

If i ∈ T then run PSS(0λ, . . . , 0λ, m̃i, 0
λ, . . . , 0λ, i) thus obtaining (sbii,1, . . . , s

bi
i,n) and run

PSS(0λ, . . . , 0λ, 0λ, 0λ, . . . , 0λ, i) obtaining (s1−bii,1 , . . . , s1−bii,n ).
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If i ∈ T then run PSS(0λ, . . . , 0λ, m̃0
i , 0

λ, . . . , 0λ, i) obtaining (sbii,1, . . . , s
bi
i,n) and run PSS(0λ, . . . , 0λ,

m̃1
i , 0

λ, . . . , 0λ, i) thus obtaining (s1−bii,1 , . . . , s1−bii,n ).

If i /∈ T ∪ T then run PSS(0λ, . . . , 0λ, 0λ, 0λ, . . . , 0λ, i) obtaining (sbii,1, . . . , s
bi
i,n) and run

PSS(0λ, . . . , 0λ, 0λ, 0λ, . . . , 0λ, i) thus obtaining (s1−bii,1 , . . . , s1−bii,n ).

Define (ρ0, ρ1, . . . , ρn) where ρ0 := ρ̃0 and for i = 1, . . . , n, ρi := (bi, (s
0
j,i, s

1
j,i)j∈{1,...,n}).

For each i ∈ T
Set si,i ← sbii,i and di ← bi.

Set mi := ((s01,i, s
1
1,i), . . . , si,i, . . . , (s

0
n,i, s

1
n,i), di).

Output (mi)i∈T , ρ̃0, (ρi)i∈T .

Let i1, . . . , il be the index of the parties participating in the execution of NIMPCth. To show
that the output distribution of the simulator is indistinguishable from the real world experiment we
can consider a sequence of hybrid experiments H1, . . . ,Hl where H1 corresponds to the real world
experiment. The hybrid experiment H` with ` ∈ [l− 1] is identical to H`−1 with the difference that
the inputs of the PoSS scheme in position ` becomes 0 for all the executions of PoSS with respect
to the index i 6= i`.

If there exists `′ ∈ [l− 1] such that the output distribution of H` and H`+1 are distinguishable,
then we can make a reduction to the positional security property of the PoSS scheme.

We now consider the sequence of hybrids experiments H′1, . . . ,H′l−t where H′1 corresponds to
H`. The hybrid experiment H′` with ` ∈ [l − t] is identical to H′`−1 with the difference that the
inputs of the PoSS scheme in position ` becomes 0 for all the executions of PoSS of step 3.1 with
respect to the index i = h` of Fig. 2.

If there exists `′ ∈ [l − t − 1] such that the output output distributions of H′` and H′`+1 are
distinguishable, then we can make a reduction to the standard security property of the PoSS scheme.

The last hybrid that we consider H? is equal to H′l−t with the only difference that the messages
of NIMPC are replaced with the output of the simulator Sim1

The proof ends with the observation that H? corresponds to Sim.

A.4 Proof of Theorem 4

Proof. Correctness follows by inspection. We start the proof of security by observing that if less
than l parties are active then the adversary learns nothing due to the property of standard security
offered by the PoSS scheme. We now prove our theorem for the case where c = 1. The proof then
can be generalized for any constant c. That is, we assume that the number of active parties is just
l + 1.

For simplicity, let us assume that 1, . . . , l+1 are the indexes of the active parties. Let S1, . . . , Sl+1

be all the possible subsets of size l of {1, . . . , l + 1}. Then the possible output that can be computed
are OUT1, . . . ,OUTl+1 where for each i ∈ {1, . . . , l+1} OUTi ← fmsg sel

(
(xj1 , j1), . . . , (xjl , jl)

)
with

Si := {j1, . . . , jl}.
This means that each output of fmsg sel is obtained by constructing the concatenation of l values

sorted in non-decreasing order with respect to their indexes taken fromA = (x11, x
2
1, x

2
2, x

3
2, x

3
3, . . . , x

l
l−1, x

l
l, x

l+1
l ).

The simulator can compute all these values by querying Of using the subsets S1, . . . , Sl+1. In the
description of the simulator we assume that the simulator knows A (obtained by querying Of as
described above).

Simulation for the setup
For each j = 1, . . . , λ //Simulation for the party p1
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Pick b1j
$←− {0, 1}.

Set y1j,0 := 0 and y1j,1 := 1.
For each k = 2, . . . l

For each j = 1, . . . , λ

Pick bkj
$←− {0, 1}.

Set ykj,0 := 0 and ykj,1 := 0.

Run PSS(y1
1,b11
|| . . . ||y1

λ,b1λ
, y2

1,b2λ+1
|| . . . ||y2

λ,b2λ
, . . . , yl

1,bl1
|| . . . ||yl

λ,blλ
, 1) thus obtaining (s0i,1, . . . , s

0
i,n).

Run PSS(y1
1,1−b11

|| . . . ||y1
λ,1−b1λ

, y2
1,1−b2λ+1

|| . . . ||y2
λ,1−b2λ

, . . . , yl
1,1−bl1

|| . . . ||yl
λ,1−blλ

, 1) thus obtaining

(s1i,1, . . . , s
1
i,n).

Set B1 = (bk1, . . . , b
k
λ)k∈[l].

For each j = 1, . . . , λ //Simulation for the party pl+1

Pick b1j
$←− {0, 1}.

Set ylj,0 := 0 and ylj,1 := 1.
For each k = 1 . . . l − 1

For each j = 1, . . . , λ

Pick bkj
$←− {0, 1}.

Set ykj,0 := 0 and ykj,1 := 0.

Run PSS(y1
1,b11
|| . . . ||y1

λ,b1λ
, y2

1,b2λ+1
|| . . . ||y2

λ,b2λ
, . . . , yl

1,bl1
|| . . . ||yl

λ,blλ
, 1) thus obtaining (s0i,1, . . . , s

0
i,n).

Run PSS(y1
1,1−b11

|| . . . ||y1
λ,1−b1λ

, y2
1,1−b2λ+1

|| . . . ||y2
λ,1−b2λ

, . . . , yl
1,1−bl1

|| . . . ||yl
λ,1−blλ

, 1) thus obtaining

(s1i,1, . . . , s
1
i,n).

Set B1 = (bk1, . . . , b
k
λ)k∈[l].

For i = 2, . . . , l //Simulation for the parties p2, . . . , pl
For each k = 1, . . . i− 2, i+ 1, . . . l

For each j = 1, . . . , λ

Pick bkj
$←− {0, 1}.

Set ykj,0 := 0 and ykj,1 := 0.
For each k = i− 1, . . . i

For each j = 1, . . . , λ

Pick bkj
$←− {0, 1}.

Set ykj,0 := 0 and ykj,1 := 1.

Run PSS(y1
1,b11
|| . . . ||y1

λ,b1λ
, y2

1,b2λ+1
|| . . . ||y2

λ,b2λ
, . . . , yl

1,bl1
|| . . . ||yl

λ,blλ
, i) thus obtaining (s0i,1, . . . , s

0
i,n).

Run PSS(y1
1,1−b11

|| . . . ||y1
λ,1−b1λ

, y2
1,1−b2λ+1

|| . . . ||y2
λ,1−b2λ

, . . . , yl
1,1−bl1

|| . . . ||yl
λ,1−blλ

, i) thus obtain-

ing (s1i,1, . . . , s
1
i,n).

Set Bi = (bk1, . . . , b
k
λ)k∈[l].

Simulation for the online messages

Simulation for the party p1
Parse x11 as a λ bit string x1,1, . . . , x1,λ.
For each j ∈ [λ] if x1,j = b1j then set d1j = b1j else set d1j = 1− b1j .

For each k ∈ {2, . . . , l}, j ∈ [λ] set dkj
$←− {0, 1}.

Set Di ← (dk1, . . . , d
k
λ)k∈[l].
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Set mi := (Di, (s
0
1,i, s

1
1,i), . . . , (s

0
n,i, s

1
n,i)).

Simulation for the party pl+1

Parse xl+1
l as a λ bit string xl,1, . . . , xl,λ.

For each j ∈ [λ] if xl+1,j = b1j then set dl+1
j = bl+1

j else set dl+1
j = 1− bl+1

j .

For each k ∈ {1, . . . , l − 1}, j ∈ [λ] set dkj
$←− {0, 1}.

Set Di ← (dk1, . . . , d
k
λ)k∈[l].

Set mi := (Di,Wi, (s
0
1,i, s

1
1,i), . . . , (s

0
n,i, s

1
n,i)).

For i = 2, . . . , l //Simulation for the parties p2, . . . , pl
For each k ∈ [l] parse xik as a λ bit string xk,1, . . . , xk,λ.
For each k ∈ {i− 1, i}, j ∈ [λ] if xk,j = bkj then set dkj = bkj else set dkj = 1− bkj .

For each k ∈ {1, . . . , i− 2, i+ 1, . . . , l}, j ∈ [λ] set dkj
$←− {0, 1}.

Set Di ← (dk1, . . . , d
k
λ).

Set mi := (Di, (s
0
1,i, s

1
1,i), . . . , (s

0
n,i, s

1
n,i)).

The enhanced security of the PoSS scheme guarantees that for each active party pki the only mes-
sages that can be reconstructed are the messages given as input by pki in the positions i− γ, . . . , i
with γ := min{α− 1, c} if i ≤ l or the messages in positions i− c, . . . l if i > l. In the specific case
that we are describing we have that for p1 only x11 can be reconstructed, for pi only xii−1 and xii
(with i ∈ {2, . . . , l}) can be reconstructed and for pl+1 only xl+1

l .

Hence, we can replace the input of the honest parties in any other position with 0λ and rely on
the enhanced security of the ePoSS scheme.

A.5 Proof of Theorem 5

Proof. Let N ≤ l + c be the number of parties participating in the execution of the protocol. Let
K = (k1, . . . , kN ) be the indexes of the the active parties, X = (xk1 , . . . , xkN ) be the respective
inputs and V = (vk1 , . . . , vkN ) be the random values chosen by the parties in the step 1.1. of the
online phase. Let S1, . . . , Sinputs be all the possible subset of K of size l where inputs =

(
N
l

)
. We

denote with OUTi the output of f evaluated on the inputs of the parties indexed by the elements
of Si for all i ∈ [inputs].

We say that in an execution of ΠPSM there is a collision if and only there are four (or more)
indexes α, β, γ, a, b with α 6= β, α, β ∈ [inputs], a, b ∈ [l] such that H(A) = H(B) where Sα =
{vα1 , . . . , vαl}, Sβ = {vβ1 , . . . , vβl} and A← vα1 ⊕ · · · ⊕ vαa , B ← vβ1 ⊕ · · · ⊕ vβb .

We now prove that if there are no collisions then ΠPSM is secure. In the case that there is a
collision then ΠPSM becomes insecure. This come from the fact that an adversary can obtain two
(or more) outputs of the function gk′ for some k′ for the same value sel′ but with respect to two

different couple of inputs (x, y) 6= (x′, y′). Hence, the adversary gets µsel
′,0

k+1,i ← Msg(ρsel
′,0

k′+1,i, x||y||·)
and µsel

′,0
k+1,i ← Msg(ρsel

′,0
k′+1,i, x

′||y′||·) for all i ∈ [n] where sel′ = H(A) = H(B) (i.e., the adversary gets

two evaluations of Msg on two different inputs using the same randomness). The protocol Π2PC

gives no security guarantees in such a situation and any attempts of simulation would fail.

We denote the event of collision in an execution with Exp collision and prove the following lemma

Lemma 5. Prob [ Exp collision ] ≤ 1− e−1.
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Proof. For the Birthday Paradox we have that, given a set Q of q element chosen independently
and uniformly at random the probability that there exists a couple (y1, y2) ∈ Q such that y1 6= y2

and H(y1) = H(y2) is at most pHcoll = q2

2λ′ .

In our case we consider q =
(
l+c
l

)
≤
(
λ+c
λ

)
≤ λc since in gk, for each k ∈ [l], the hash function H

can be evaluated on at most N ≤
(
l+c
l

)
values. We note that we are guaranteed that the elements

on which the hash function is evaluated are independent and uniformly random because of the step
4 of the setup phase. Therefore, we have that pHcoll = λ2c

2λ′ = λ2c

2λ2c+2 ≤ 1
λ2 .

Then we have that Prob [ Exp collision ] = 1−(1−pHcoll)l ≤ 1−(1− 1
λ2 )l ≤ 1−(1− 1

l )
l ≤ 1−e−1

since λ2 > l.

To complete the proof we need to show that in the case that the event Exp collision does no
occur then our protocol is secure. More formally, we prove the following lemma.

Lemma 6. If the event Exp collision does not occur, the ΠPSM is a c-secure ad hoc PSM protocol
for any constant c.

Since Π2PC is 0-robust, by assumption we know that there exists a randomized algorithm Sim
such that for any gk with k ∈ [l] and xT ∈ XT , the following distributions are perfectly (resp.,
statistically, computationally) indistinguishable:

{Simgk
1 (1n, 1λ, T )}, {View(1n, 1λ, f, T, xT )}

where T is an empy set and {View(1n, 1λ, gj ,K, x)} is the view of the evaluator from running
Π2PC.

Moreover, by assumption we have that for any K = {j1, . . . , jN} there exists a randomized
algorithm Sim (called simulator) such that for any x = xj1 , . . . , xjN ∈ {{0, 1}λ}N , the following
distributions are perfectly (resp., statistically, computationally) indistinguishable:

{Sim
O
fmsg sel

2 (1n, 1λ,K)}, {View(1n, 1λ, fmsg sel,K, x)}

{View(1n, 1λ, fmsg sel,K, x)} is the view of the evaluator from running Πmsg sel.

The simulator Sim works as described in Fig. 10.
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Parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties n, threshold
l, and c where l + c ≤ n denotes the maximum number of active parties supported by the protocol.
Setup simulation:

1. Pick V = (vk1 , . . . , vkN ) such that there are no indexes α, β, γ, a, b with α 6= β, α, β ∈ [inputs], a, b ∈ [l]
such that H(A) = H(B) where Sα = {vα1 , . . . , vαl}, Sβ = {vβ1 , . . . , vβl} and A ← vα1 ⊕ · · · ⊕ vαa ,
B ← vβ1 ⊕ · · · ⊕ vβb .

- For each i ∈ [inputs], let s1, . . . , sl be the elements of Si
v ← vs1 ⊕ · · · ⊕ vsl .
sel′ ← H(v)
w ← vs1 ⊕ · · · ⊕ vsl−1 .
sel′′ ← H(w)

Run Sim1 and when Sim1 queries gl answer with OUTi thus obtaining (Rsel′′
l,sl

, µsel′′,0
l,sl

,msel′′,1
l,sl

).
- For each c ∈ [n]

If (Rsel′′
l,c , µ

sel′′,0
l,c ,msel′′,1

l,c ) has not been defined then run Sim1 and when Sim1 queries gk answer with

0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).
- For each k ∈ {l − 1, . . . , 3}

For each i ∈ [inputs], let s1, . . . , sl be the elements of Si
v ← vs1 ⊕ · · · ⊕ vsk .
sel′ ← H(v)
w ← vs1 ⊕ · · · ⊕ vsk−1 .
sel′′ ← H(w)

Run Sim1 and when Sim1 queries gk answer with {µsel′,0
k+1,c}c∈{k+2,...,n} thus obtaining

(Rsel′′
k,sk

, µsel′′,0
k,sk

,msel′′,1
k,sk

).
For each c ∈ [n]

If (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ) has not been defined then run Sim1 and when Sim1 queries gk answer

with 0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).

- Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n} thus obtaining (Rs22,s1

,ms1,0
1,s2

,ms2,1
2,s1

).

- For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not been defined then run Sim1, and when Sim1

queries g2 answer with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Simulation of the online messages
Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 10: Our simulator Sim.

To prove our theorem we need to show that a set K = {j1, . . . , jN} and the inputs x =
xj1 , . . . , xjN ∈ {{0, 1}λ}N , the following distributions are perfectly (resp., statistically, computa-
tionally) indistinguishable:

{Simf (1n, 1`, 1λ,K)}, {View(1n, 1`, 1λ, f,K, x)}

The only difference between the two distributions is that in the first experiment all the all the
messages of Π2PC and the messages of Πmsg sel are computed using, respectively, the simulators
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Sim1 and Sim2, whereas in the second experiment the messages of Π2PC and Πmsg sel are computed
using honest algorithms defined by their respective setup and the online procedures.

More formally, we show that the following holds.

View(1n, 1`, 1λ, f,K, x) ≈ H0 ≈ H1 ≈ H2 ≈ H3
a ≈ H3

b ≈ H4
a ≈ H4

b ≈ · · · ≈ Hl−2a ≈ Hl−2b ≈ H4 ≈
Simf (1n, 1`, 1λ,K), where the formal description of H0 is provided in Fig. 11, the description of H1

in Fig. 12, the description of H2 in Fig. 13, the description of Hia with i ∈ {3, . . . l − 1} in Fig. 14,
the description of Hib with i ∈ {3, . . . l − 1} in Fig. 15 and the description of H4 in Fig. 16.

To prove that View(1n, 1`, 1λ, f,K, x) ≈ H0 we rely on the security of ΠPSM since the only
difference between the real world experiment and H0 is that in H0 we use Sim2 instead of running
the algorithms of ΠPSM.

The difference between H0 and H1 is that the messages for the instantiations of Π2PC used to
evaluate the function g2 are simulated. In this case we can rely on the security of Π2PC to argue
that H0 ≈ H1.

The difference between H2 and H1 is that the randomness used to run the setup for the Π2PC

instantiations used to evaluate g3 is randomly sampled from {0, 1}κ instead of being computed
using the PRG. So, in this case we can rely on the security of the PRG to prove that H1 ≈ H2.

The difference between H2 and H3
a is that the messages for the execution of Π2PC used to

evaluate the function g3 are simulated. In this case we can rely on the security of Π2PC to argue
that H3 ≈ H3

a.

For each ` ∈ {4, . . . l − 2}, the difference between H`a and H`b is that the randomnesses used to
run the setup for the Π2PC instantiations used to evaluate g` is randomly sampled from {0, 1}κ
instead of being computed using the PRG. So, in this case we can rely on the security of the PRG
to prove that H`a ≈ H`b for each ` ∈ {4, . . . l − 2}.

For each ` ∈ {4, . . . l − 2}, the difference between H`−1b and H`a is that the messages for the
executions of Π2PC used to evaluate the function g` are simulated. In this case we can rely on the
security of Π2PC to argue that H`a ≈ H`b for each ` ∈ {4, . . . l − 2}.

The difference between H`−2b and H4 is that the messages for the executions of Π2PC used to
evaluate the function gl are simulated. In this case we can rely on the security of Π2PC to argue
that H`−2b ≈ H4

The proof ends with the observation that H4 corresponds to Sim.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

For each i, j ∈ [n] with i 6= j do the following.
Run Setup(12, g2, 1

λ) thus obtaining (Rj2,i, ρ
j,0
2,i , ρ

j,1
2,i).

For each k ∈ {3, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.

Pick rselk,i
$←− {0, 1}λ.

Compute PRG(rselk,i) thus obtaining r.

Run Setup(12, gk, 1
λ; r) thus obtaining (Rsel

k,i, ρ
sel,0
k,i , ρ

sel,1
k,i ).

For each sel ∈ [λ′] i ∈ [n] run Setup(12, gl, 1
λ) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

For i← 1, . . . , n pick vi
$←− {0, 1}λ and set

ρi := (vi, (r
sel
k,j>i)j∈[n]sel∈[λ′],k∈{3,...,l}, (ρ

sel,1
k,i )sel∈[λ′],k∈{3,...,l}, (ρ

i,0
2,j , ρ

j,1
2,i)j∈[n]−{i}, ρ

th
i ) and

ρ0 := ρth0 , {Rsel
k,i}sel∈[λ′],i∈[n],k∈[l]

Online messages
On input xi ∈ {0, 1}λ and ρi the party pi does the following.

For each j ∈ [n]− {i} compute mi,0
1,j ← Msg(ρi,02,j , (xi, vi)).

For each j ∈ [n]− {i} compute mj,1
2,i ← Msg(ρj,12,i , xi||vi||{r

sel,0
3,c>i}c∈[n]).

For each k ∈ {3, . . . , l − 2}, sel ∈ [λ′] compute
msel,1
k,i ← Msg(ρsel,1k,i , xi||vi||{r

sel,0
k+1,j>i}j∈[n],sel∈[λ′])

For each sel ∈ [λ′] compute msel,1
l,i ← Msg(ρsel,1l,i , xi||vi)

Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.

Output ρ0 := (ρth0 , {Rsel
k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 11: H0. The parts that differs from the previous hybrid are underlined. We follow the same
approach also in the description of the next hybrid.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

For each i ∈ [n], sel ∈ [λ′], k ∈ {3, . . . , l}
Pick rselk,i

$←− {0, 1}λ.

Compute PRG(rselk,i) thus obtaining rselk,i.
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si.

v ← vs1 ⊕ vs2 .

sel′ ← H(v)
For each i ∈ {4, . . . , n} compute

(Rsel′
3,i , ρ

sel′,0
3,i , ρsel

′,1
3,i )← Setup(12, 1λ, g3; rsel

′
3,i ).

µsel′,0
3,i ← Msg(ρsel

′,0
3,i , xs1 ||xs2 ||v).

Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n}

thus obtaining (Rs22,s1
,ms1,0

1,s2
,ms2,1

2,s1
).

For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not ben defined then run

Sim1, and when Sim1 queries g2 answer with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

For each i ∈ [n] with and sel ∈ [λ′], if µsel,1
3,i has not ben defined then run

Setup(12, g3, 1
λ; rsel3,i) thus obtaining (Rsel

3,i, ρ
sel,0
3,i , ρ

sel,1
3,i )

For each k ∈ {4, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.
Run Setup(12, gk, 1

λ; rselk,i) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρ

sel,1
k,i ).

For each sel ∈ [λ′] i ∈ [n] run Setup(12, gl, 1
λ; rsell,i) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Online messages
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

For each k ∈ {3, . . . , l − 2}, sel ∈ [λ′]− {sel′} compute
msel,1
k,sk
← Msg(ρsel,1k,sk

, xsk ||vsk ||{r
sel,0
k+1,j>i}j∈[n],sel∈[λ′])

For each sel ∈ [λ′] compute msel,1
l,sl
← Msg(ρsel,1l,sl

, xsl ||vsl)
Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 12: H1.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

For each i ∈ [n], sel ∈ [λ], k = 3

Pick rselk,i
$←− {0, 1}κ.

For each i ∈ [n], sel ∈ [λ], k ∈ {4, . . . , l}
Pick rselk,i

$←− {0, 1}λ.

Compute PRG(rselk,i) thus obtaining rselk,i.
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si.

v ← vs1 ⊕ vs2 .
sel′ ← H(v)
For each i ∈ {4, . . . , n} compute

(Rsel′
3,i , ρ

sel′,0
3,i , ρsel

′,1
3,i )← Setup(12, 1λ, g3; rsel

′
3,i ).

µsel′,0
3,i ← Msg(ρsel

′,0
3,i , xs1 ||xs2 ||v).

Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n} thus obtaining

(Rs22,s1
,ms1,0

1,s2
,ms2,1

2,s1
).

For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not ben defined then run Sim1 queries g2 answer

with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

For each i ∈ [n] with and sel ∈ [λ′], if µsel,1
3,i has not ben defined then run run Setup(12, g3, 1

λ) thus

obtaining (Rsel
3,i, ρ

sel,0
3,i , ρ

sel,1
3,i )

For each k ∈ {4, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.
Run Setup(12, gk, 1

λ; r) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρ

sel,1
k,i ).

For each sel ∈ [λ′] i ∈ [n] run Setup(12, gl, 1
λ) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Online messages
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

For each k ∈ {3, . . . , l − 2}, sel ∈ [λ′]− {sel′} compute
msel,1
k,sk
← Msg(ρsel,1k,sk

, xsk ||vsk ||{r
sel,0
k+1,j>i}j∈[n],sel∈[λ′])

For each sel ∈ [λ′] compute msel,1
l,sl
← Msg(ρsel,1l,sl

, xsl ||vsl)
Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 13: H2.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

For each i ∈ [n], sel ∈ [λ], k ∈ {3, . . . , `}

Pick rselk,i
$←− {0, 1}κ.

- For each i ∈ [n], sel ∈ [λ], k ∈ {`+ 1, . . . , l}

Pick rselk,i
$←− {0, 1}λ.

Compute PRG(rselk,i) thus obtaining rselk,i.
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

v ← vs1 ⊕ · · · ⊕ vs` sel′ ← H(v).

For each c ∈ {`+ 1, . . . , n} compute

(Rsel′
`+1,c, ρ

sel′,0
`+1,c, ρ

sel′,1
`+1,c)← Setup(12, 1λ, g`+1; rsel

′
`+1,c).

µsel′,0
`+1,c ← Msg(ρsel

′,0
`+1,c, xs1 ||xs2 || . . . ||xs` ||v).

For each k ∈ {`, . . . , 3}
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

v ← vs1 ⊕ · · · ⊕ vsk , sel′ ← H(v), w ← vs1 ⊕ · · · ⊕ vsk−1 , sel′′ ← H(w)

Run Sim1 and when Sim1 queries gk answer with {µsel′,0
k+1,c}c∈{k+2,...,n}

thus obtaining (Rsel′′
k,sk

, µsel′′,0
k,sk

,msel′′,1
k,sk

).

For each c ∈ [n]

If (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ) has not been defined then run Sim1 and when

Sim1 queries gk answer with 0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).

For each i ∈ [inputs], let s1, . . . , sl be the elements of Si
v ← vs1 ⊕ vs2 , sel′ ← H(v)

Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n} thus obtaining

(Rs22,s1
,ms1,0

1,s2
,ms2,1

2,s1
).

- For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not been defined then run Sim1, and when Sim1

queries g2 answer with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

- For each k ∈ {`+ 1, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.
Run Setup(12, gk, 1

λ; rselk,i) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρ

sel,1
k,i ).

- For each i ∈ [n] sel ∈ [λ′] run Setup(12, gl, 1
λ) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Online messages
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

For each k ∈ {`+ 1, . . . , l − 2}, sel ∈ [λ′]− {sel′} compute

msel,1
k,sk
← Msg(ρsel,1k,sk

, xsk ||vsk ||{r
sel
k+1,j>sk

}j∈[n],sel∈[λ′])

For each sel ∈ [λ′] compute msel,1
l,sl
← Msg(ρsel,1l,sl

, xsl ||vsl)
Run Sim2, and when Sim2 queries fmsg sel with Si answer with
{ms1,0

1,sel}sel∈[n]−{s1}, {m
sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′]. Let ρth0 , (mk1 , . . . ,mkN ) be

the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 14: H`a.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

For each i ∈ [n], sel ∈ [λ], k ∈ {3, . . . , `+ 1}

Pick rselk,i
$←− {0, 1}κ.

- For each i ∈ [n], sel ∈ [λ], k ∈ {`+ 2, . . . , l}

Pick rselk,i
$←− {0, 1}λ.

Compute PRG(rselk,i) thus obtaining rselk,i.
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

v ← vs1 ⊕ · · · ⊕ vs` .
sel′ ← H(v)
For each c ∈ {`+ 1, . . . , n} compute

(Rsel′
`+1,c, ρ

sel′,0
`+1,c, ρ

sel′,1
`+1,c)← Setup(12, 1λ, g`+1; rsel

′
`+1,c).

µsel′,0
`+1,c ← Msg(ρsel

′,0
`+1,c, xs1 ||xs2 || . . . ||xs` ||v).

For each k ∈ {`, . . . , 3}
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

v ← vs1 ⊕ · · · ⊕ vsk , sel′ ← H(v), w ← vs1 ⊕ · · · ⊕ vsk−1 , sel′′ ← H(w)

Run Sim1 and when Sim1 queries gk answer with {µsel′,0
k+1,c}c∈{k+2,...,n} thus obtaining

(Rsel′′
k,sk

, µsel′′,0
k,sk

,msel′′,1
k,sk

).
For each c ∈ [n]

If (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ) has not been defined then run Sim1 and when Sim1 queries gk answer

with 0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).

Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n} thus obtaining (Rs22,s1

,ms1,0
1,s2

,ms2,1
2,s1

).

- For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not been defined then run Sim1, and when Sim1

queries g2 answer with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

- For each k ∈ {`+ 1, . . . , l − 1}, i ∈ [n], sel ∈ [λ′] do the following.
Run Setup(12, gk, 1

λ; rselk,i) thus obtaining (Rsel
k,i, ρ

sel,0
k,i , ρ

sel,1
k,i ).

- For each i ∈ [n] sel ∈ [λ′] run Setup(12, gl, 1
λ; rsell,i) thus obtaining (Rsel

l,i, ρ
sel,0
l,i , ρ

sel,1
l,i )

- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Online messages
For each i ∈ [inputs], let s1, . . . , sl be the elements of Si

For each k ∈ {`+ 1, . . . , l − 2}, sel ∈ [λ′]− {sel′} compute
msel,1
k,sk
← Msg(ρsel,1k,sk

, xsk ||vsk ||{r
sel
k+1,j>sk

}j∈[n],sel∈[λ′])

For each sel ∈ [λ′] compute msel,1
l,sl
← Msg(ρsel,1l,sl

, xsl ||vsl)
Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 15: H`b.
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Common parameters: Security parameter λ, range-size of H λ′ = λ2c+1, maximum number of parties
n, threshold l, and c where l + c ≤ n denotes the maximum number of active parties supported by the
protocol.
Setup:

- For each i ∈ [inputs], let s1, . . . , sl be the elements of Si
v ← vs1 ⊕ · · · ⊕ vsl .
sel′ ← H(v)
w ← vs1 ⊕ · · · ⊕ vsl−1 .
sel′′ ← H(w)

Run Sim1 and when Sim1 queries gl answer with OUTi thus obtaining (Rsel′′
l,sl

, µsel′′,0
l,sl

,msel′′,1
l,sl

).
- For each c ∈ [n]

If (Rsel′′
l,c , µ

sel′′,0
l,c ,msel′′,1

l,c ) has not been defined then run Sim1 and when Sim1 queries gk answer with

0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).
- For each k ∈ {l − 1, . . . , 3}

For each i ∈ [inputs], let s1, . . . , sl be the elements of Si
v ← vs1 ⊕ · · · ⊕ vsk .
sel′ ← H(v)
w ← vs1 ⊕ · · · ⊕ vsk−1 .
sel′′ ← H(w)

Run Sim1 and when Sim1 queries gk answer with {µsel′,0
k+1,c}c∈{k+2,...,n} thus obtaining

(Rsel′′
k,sk

, µsel′′,0
k,sk

,msel′′,1
k,sk

).
For each c ∈ [n]

If (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ) has not been defined then run Sim1 and when Sim1 queries gk answer

with 0λ obtaining (Rsel′′
k,c , µ

sel′′,0
k,c ,msel′′,1

k,c ).

- Run Sim1 and when Sim1 queries g2 answer with {µsel′,0
3,i }i∈{3,...,n} thus obtaining (Rs22,s1

,ms1,0
1,s2

,ms2,1
2,s1

).

- For each i, j ∈ [n] with i 6= j, if (Rj2,i,m
i,0
1,j ,m

j,1
2,i) has not been defined then run Sim1, and when Sim1

queries g2 answer with 0λ thus obtaining (Rj2,i,m
i,0
1,j ,m

j,1
2,i).

- Run Setupmsg sel(1n, 1l, 1λ, fmsg sel) thus obtaining (ρth0 , ρ
th
1 , . . . , ρ

th
n ).

Online messages
Run Sim2, and when Sim2 queries fmsg sel with Si answer with

{ms1,0
1,sel}sel∈[n]−{s1}, {m

sel,1
2,s2
}sel∈[λ′], . . . , {msel,1

l−1,sl−1
}sel∈[λ′], {msel,1

l,sl
}sel∈[λ′].

Let ρth0 , (mk1 , . . . ,mkN ) be the output of Sim2.
Output ρ0 := (ρth0 , {Rsel

k,i}sel∈[λ′],i∈[n],k∈[l]), (mk1 , . . . ,mkN ).

Fig. 16: H4.
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A.6 Proof of Theorem 6

Proof. By assumption we have that for any K = {k1, . . . , kN} there exists a randomized algo-
rithm Sime such that for any x = xk1 , . . . , xkN ∈ {{0, 1}λ}N , with probability e−1 the following
distributions are indistinguishable:

{SimGe
e (1n, 1λ, 1l,K)}, {View(1n, 1λ, 1l, Ge,K, x)}

where {View(1n, 1λ, Ge,K, x)} is the view of the evaluator from running ΠPSM.

By definition then we know that an execution of ΠPSM is secure with probability 1/p for a
constant p ≤ e. This implies that in one execution of ΠAPSM there is, with overwhelming probability,
at least one execution of ΠPSM that is secure. That is, the probability that there exists at least one
secure execution of ΠPSM is given by 1− (1− 1/p)m ≤ 1− e−λ since m = pλ.

We recall that it is possible to check whether an execution of ΠPSM is secure (i.e., simulatable)
by having access to the randomness used in the setup (the v values). We use this property to make
sure that in the simulated execution of ΠAPSM the number of insecure executions of ΠPSM are the
same (in expectation) as in the real world. In more detail, our simulator Sim samples m random
coins r1, . . . , rm and checks if there exists one randomness rα (with α ∈ [m]) such that the setup off
ΠPSM would yield to a secure execution of ΠPSM. If there is no such a randomness then Sim aborts,
otherwise it runs the simulator Simα using fresh randomness. Above we have showed that with
overwhelming probability such rα is sampled by Sim. In the description of Sim that we propose, we
assume that α has been already computed following this strategy. We now provide more details on
how the simulation works.

Let N ≤ l + c be the number of parties participating in the execution of the protocol. Let
K = (k1, . . . , kN ) be the indexes of the the active parties, X = (xk1 , . . . , xkN ) be the respective
inputs.

Let S1, . . . , Sinputs be all the possible subset of K of size l where inputs =
(
N
l

)
. We denote with

OUTi the output of f evaluated on the inputs of the parties indexed by the elements of Si for all
i ∈ [inputs].

Our simulator Sim works as follows.

Sample the randomnesses r1, . . . rm and compute α as described earlier
For each j ∈ m− {α}

Run SetupPSM(1n, 1l, 1λ, Gj) on input rj thus obtaining ρj0, ρ
j
1, . . . , ρ

j
n.

Set ρ0 := (ρj0)j∈[m]−{j}, ρ1 := (ρj1)j∈[m]−{j}, . . . ρn := (ρjn)j∈[m]−{j}
For each k ∈ l, i ∈ K

Run ShareHSS(1λ, k, 0λ) thus obtaining x1,ki , . . . xm,ki .
For each j ∈ [m]− {α}

For each i ∈ K
Run MsgPSM(ρji , ((x

j,k
i )k∈[l], i)) thus obtaining mj

i .
For each j ∈ [m]− {α}

For each i ∈ [N ]

Compute yji = EvalHSS(j, xj,1si1 , . . . , x
j,l
sil

) where Si = (si1 , . . . , sil)

Run Simα and when Simα queries gα with the indexes Si return yαi ← OUTi⊕y1i⊕, . . . ,⊕y
α−1
i ⊕

yα+1
i ⊕ · · · ⊕ ymi .

Parse the output Simα as ρα0 , {mα
i }i∈K and add ρα0 to the list ρ0

Output mi := (mj
i )i∈K,j∈[m]
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We now show that Sim is a valid simulator via hybrid arguments. The first hybrid that we
consider is H? and is described as follows.

For each j ∈ m− {α}
Run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj0, ρ

j
1, . . . , ρ

j
n.

Set ρ0 := (ρj0)j∈[m]−{j}, ρ1 := (ρj1)j∈[m]−{j}, . . . ρn := (ρjn)j∈[m]−{j}
For each k ∈ l, i ∈ K

Run ShareHSS(1λ, k, xi) thus obtaining x1,ki , . . . xm,ki .
For each j ∈ [m]− {α}

For each i ∈ K
Run MsgPSM(ρji , ((x

j,k
i )k∈[l], i)) thus obtaining mj

i .
For each j ∈ [m]− {α}

For each i ∈ [N ]

Compute yji = EvalHSS(j, xj,1si1 , . . . , x
j,l
sil

) where Si = (si1 , . . . , sil)

Run Simα and when Simα queries gα with the indexes Si return yαi ← OUTi⊕y1i⊕, . . . ,⊕y
α−1
i ⊕

yα+1
i ⊕ · · · ⊕ ymi .

Parse the output Simα as ρα0 , {mα
i }i∈K and add ρα0 to the list ρ0

Output mi := (mj
i )i∈K,j∈[m]

The only difference between this hybrid and the real world experiment is that one execution
of ΠPSM is executed by using the simulator instead of the honest procedure. In the case that
there exists and adversary that distinguishes between H1 and the real world experiment we can
construct an adversary A′ that breaks the security of ΠPSM with probability q′ greater than 1/2.
The adversary A′ works as follows.

In this security game the challenger picks a random bit b and if b = 0 it generates a real world
transcript for ΠPSM and check if the transcript would be simulatable. If it is not then it aborts,
otherwise A′ sends the transcript to A′. If b = 1 then the challenger generates a simulated transcript
and sends it to A′

The adversary A′ works as follows
If the challenger aborts, then A′ outputs 0 (i.e. the transcript would have been a real world
transcript).
If the challenger sends ρ̃, {m̃i}i∈K then A′ acts exactly as in H1 but he uses ρ̃, {m̃i}i∈K in the
place of ρα0 , {mα

i }i∈K in the step 7.
A′ then outputs what A outputs.

Let q = 1− p−1. The success probability of A′ is given by q+(1−q)q′
2 + q′

2 ≥
q+2q′

2 = q′+ q
2 >

1+q
2 .

Given that that the probability of distinguishing between the real and the simulated execution of
ΠPSM is at most 1

2 + q
2 and that q′ > 1/2 we have reached a contradiction.

Next we consider a sequence of hybrids H`1 for each ` ∈ n. The hybrid H` is described as follows.
Let L be the set containing the first ` smaller values contained in K.
For each j ∈ m− {α}

Run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj0, ρ
j
1, . . . , ρ

j
n.

Set ρ0 := (ρj0)j∈[m]−{j}, ρ1 := (ρj1)j∈[m]−{j}, . . . ρn := (ρjn)j∈[m]−{j}
For each k ∈ l

For each i ∈ L
Run ShareHSS(1λ, k, 0λ) thus obtaining x1,ki , . . . xm,ki .

For each i ∈ K − L
Run ShareHSS(1λ, k, xi) thus obtaining x1,ki , . . . xm,ki .
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For each j ∈ [m]− {α}
For each i ∈ K

Run MsgPSM(ρji , ((x
j,k
i )k∈[l], i)) thus obtaining mj

i .
For each j ∈ [m]− {α}

For each i ∈ [N ]

Compute yji = EvalHSS(j, xj,1si1 , . . . , x
j,l
sil

) where Si = (si1 , . . . , sil)

Run Simα and when Simα queries gα with the indexes Si return yαi ← OUTi⊕y1i⊕, . . . ,⊕y
α−1
i ⊕

yα+1
i ⊕ · · · ⊕ ymi .

Parse the output Simα as ρα0 , {mα
i }i∈K and add ρα0 to the list ρ0

Output mi := (mj
i )i∈K,j∈[m]

We now prove the following lemma

Lemma 7. If HSS is a secure HSS scheme then the output distributions of H` is indistinguishable
from the output distributions of H` for each ` ∈ {0, . . . n− 1}.

Proof. If by contradiction the lemma does not hold then there exists `′ ∈ {1, . . . n} such that the
output distributions of H`′−1 and H`′ are distinguishable. Let A be adversary that distinguishes
the two hybrids, then we show an adversary A′ for the HSS scheme. A works as follows.

Let L be the set containing the first ` − 1 smaller elements of K, and x be the `-th smaller
values contained in K.
Send (x, 0λ) as challenge messages to the challenger of the HSS security game.

Upon receiving the sharers {x1,k`′ , . . . , x
α−1,k
`′ , xα+1,k

`′ , . . . xm,k`′ }k∈[l] does the following14.
For each j ∈ m− {α}

Run SetupPSM(1n, 1l, 1λ, Gj) thus obtaining ρj0, ρ
j
1, . . . , ρ

j
n.

Set ρ0 := (ρj0)j∈[m]−{j}, ρ1 := (ρj1)j∈[m]−{j}, . . . ρn := (ρjn)j∈[m]−{j}
For each k ∈ l

For each i ∈ L− {x}
Run ShareHSS(1λ, k, 0λ) thus obtaining x1,ki , . . . xm,ki .

For each i ∈ K − L− {x}
Run ShareHSS(1λ, k, xi) thus obtaining x1,ki , . . . xm,ki .

For each j ∈ [m]− {α}
For each i ∈ K

Run MsgPSM(ρji , ((x
j,k
i )k∈[l], i)) thus obtaining mj

i .
For each j ∈ [m]− {α}

For each i ∈ [N ]

Compute yji = EvalHSS(j, xj,1si1 , . . . , x
j,l
sil

) where Si = (si1 , . . . , sil)

Run Simα and when Simα queries gα with the indexes Si return yαi ← OUTi⊕y1i⊕, . . . ,⊕y
α−1
i ⊕

yα+1
i ⊕ · · · ⊕ ymi .

Parse the output Simα as ρα0 , {mα
i }i∈K and add ρα0 to the list ρ0

Send mi := (mj
i )i∈K,j∈[m] to A and output what A outputs

The proof ends with the observation that if the challenger has encrypted 0 then the output of
A′ corresponds to the output of A in H`′ , and to the output of A in H`−1 otherwise.

14 Without loss of generality in the reduction assume that the security of the HSS scheme is maintained under parallel
composition.
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The proof of the theorem instead ends with the observation that the output distribution of H`
is identical to the output distribution of the simulated experiment.
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