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Abstract

We study the problem of obfuscation in the context of point functions (also known as delta functions).
A point function is a Boolean function that assumes the value 1 at exactly one point. Our main results
are as follows:

1. We provide a simple construction of efficient obfuscators for point functions for a slightly relaxed
notion of obfuscation - wherein the size of the simulator has an inverse polynomial dependency on
the distinguishing probability - which is nonetheless impossible for general circuits. This is the first
known construction of obfuscators for a non-trivial family of functions under general computational
assumptions. Our obfuscator is based on a probabilistic hash function constructed from a very
strong one-way permutation, and does not require any set-up assumptions. Our construction also
yields an obfuscator for point functions with multi-bit output.

2. We show that such a strong one-way permutation - wherein any polynomial-sized circuit inverts
the permutation on at most a polynomial number of inputs - can be realized using a random
permutation oracle. We prove the result by improving on the counting argument used in [GT00];
this result may be of independent interest. It follows that our construction yields obfuscators for
point functions in the non-programmable random permutation oracle model (in the sense of [N02]).
Furthermore, we prove that an assumption like the one we used is necessary for our obfuscator
construction.

3. Finally, we establish two impossibility results on obfuscating point functions which indicate that
the limitations on our construction (in simulating only adversaries with single-bit output and in
using non-uniform advice in our simulator) are in some sense inherent. The first of the two results
is a consequence of a simple characterization of functions that can be obfuscated against general
adversaries with multi-bit output as the class of functions that are efficiently and exactly learnable
using membership queries.

We stress that prior to this work, what is known about obfuscation are negative results for the general
class of circuits [BGI+01] and positive results in the random oracle model [LPS04] or under non-standard
number-theoretic assumptions [C97]. This work represents the first effort to bridge the gap between the
two for a natural class of functionalities.

∗hoeteck@cs.berkeley.edu. Work supported by US-Israel BSF Grant 2002246.
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1 Introduction

1.1 Background

The elegant cryptographic framework for obfuscation was established in the seminal work of Barak, et al. in
[BGI+01]. The heart of the framework is the definition of the virtual black-box property, which formalizes
the obfuscation requirement using the simulation paradigm: anything one can efficiently compute given an
obfuscated program (or circuit), one could also efficiently compute from observing the input/output behavior
of the program (or circuit). In addition, [BGI+01] also showed that efficient circuit obfuscators do not exist
(unconditionally). However, the work did not rule out the existence of efficient obfuscators for restricted but
nonetheless useful classes of circuits, nor did it provide any evidence of the existence of such obfuscators,
except for a remark that the constructions of Canetti et al. in [CMR98] can be viewed as some form of
obfuscators for point functions.

An obfuscator for point functions (which may also be viewed as obfuscating the equality functionality)
is exactly what we need for the Unix password hashing algorithm [WG00] – the virtual black-box property
guarantees that any adversary upon seeing the encrypted password cannot do much better than the dictionary
attack. Our work provides a means of understanding the security of the password hashing algorithm wherein
the underlying cryptographic hash function is only assumed to be a very strongly one-way permutation, and
not a random oracle. In fact, the recent work of Lynn, et al. in [LPS04] demonstrated that obfuscators for
point functions do exist in the random oracle model. The obfuscation algorithm applies the random oracle
to the secret value (namely the value at which the point function assumes the value 1) and stores the output
into a program. The program upon receiving an input applies the random oracle to the input and outputs
1 if the oracle output is equal to the value that is stored and 0 otherwise. Our approach is similar, except
that we replace the random oracle with a probabilistic hash function constructed from a very strong one-way
permutation.

1.2 Other Related Work

In work preceding [CMR98], Canetti [C97] presented several equivalent notions of obfuscation in the specific
context of point functions, one of which is the same as the relaxed notation of virtual black-box used in
this paper. In addition, Canetti constructed obfuscators for point functions based on a very strong variant
of the Decisional Diffie-Hellman problem, that the problem remains hard if one of the inputs comes from
any distribution of superlogarithmic min-entropy (instead of the uniform distribution)1. We note that this
assumption has a flavor of pseudorandomness, whereas we start with a hardness assumption from which we
derive pseudorandomness.

The paper of [CMR98] generalizes the work of [C97] to construct hash functions satisfying a different
notion of secrecy under standard cryptographic assumptions. Combined with the assumption and analysis
in this paper, the construction of [CMR98] would yield an obfuscator with a non-uniform simulator of super-
polynomial size (even for inverse polynomial distinguishing probability). Moreover, the hash function is only
computationally collision-resistant, thus the resulting obfuscator only achieves a weaker notion of “computa-
tional functionality” (which is weaker than approximate functionality). On the other hand, our construction
is simpler than that of [CMR98], and yields a hash function that is statistically collision-resistant, and an
obfuscator with a non-uniform simulator of polynomial size (for inverse polynomial distinguishing probabil-
ity).

1The precise assumption is as follows: for any well-spread distribution ensemble {Xq} with (superlogarithmic) min-entropy
ω(log log q) where the domain of Xq is Z∗

q , for a drawn from Xq and for b, c ∈R Z∗
q , we have {ga, gb, gab} and {ga, gb, gc}

computationally indistinguishable.
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1.3 Contributions and Perspective

On the whole, our work constitutes an effort towards bridging the gap between positive and negative results
for program obfuscation.

1.3.1 Positive results for obfuscation

Our main positive result (Theorem 3.5) is a new construction of a probabilistic hash function starting from
a very strong one-way permutation π as follows:

h(x; τ1, . . . , τ3n) = (τ1, . . . , τ3n, 〈x, τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

This hash function simultaneously achieves statistical collision-resistance and very strong pseudorandom
properties, and can be used to replace the random oracle in the work of [LPS04] to yield the first construction
of obfuscators under general computational assumptions. This is also one of the few instances in cryptography
(another bring [GHR99]) where a random oracle can be replaced by a cryptographic construction. Both the
construction and the analysis are largely inspired by the techniques used in [BM84, GL89, C97, CMR98,
F99], but is much simpler and self-contained than [CMR98, F99] in that we do not require the [GGM84]
construction of pseudorandom functions. Unlike [BM84, GL89], we do not append π3n(x) to the output of
our hash function; the reason will be clear from examining the hybrid argument used in the proof for proving
pseudorandomness.

The weak simulator for our obfuscator construction works as follows: it has as non-uniform advice a set L
that depends on the adversary and specifies the point functions for which the obfuscation reveals “too much”
information to the adversary. On oracle access to a point function, the simulator checks if it corresponds to a
function in L, and if so, it can simulate the adversary on a random obfuscation of that function. Otherwise,
it simulates the adversary on a random string (which may not even correspond to a valid hash), and this
works because the hash function satisfies a very strong pseudorandomness property. The construction of the
simulator and L is inspired by ideas from [C97], but the analysis is much simpler.

1.3.2 The one-way permutation assumption

Our construction uses a non-standard assumption: that there exists a strong one-way permutation wherein
any polynomial-sized circuit inverts the permutation on at most a polynomial number of inputs (Assumption
3.1). Standard cryptographic assumptions assert hardness with respect to “work” (i.e., time over success
probability) nω(1). Here, we require “work” 2n−O(log n), whereas each function can be inverted with work 2n.
We stress that we do not have a strong intuition about whether this assumption holds. However, that we do
not know any algorithm that does better than brute force for the circuit satisfiability problem (CSAT) (i.e.,
a probabilistic 2n−ω(log n) · poly(circuitsize)-time algorithm where n is the number of variables)2 and that
even a collapse of BQP to BPP only offers a quadratic speed-up (i.e., a 2n/2 · poly(circuitsize) running time
due to Grovers) offer some evidence that the assumption is not entirely unreasonable. We also show that an
assumption of this kind is in fact necessary for the public-coin obfuscators that we construct (Theorem 4.4),
and that such a strong one-way permutation can be realized with random permutation oracle (Theorem 4.1).
The latter yields an obfuscator construction in the non-programmable random permutation oracle model.

Our positive results suggest that it may in fact be possible to modify existing cryptographic constructions
and protocols proven secure in the random oracle model to obtain new ones that are provably secure under
an assumption similar to the one we made. While our assumption may not be deemed reasonable and has the
“flavor” of a random oracle, it is still weaker as we only assume for that a specific task - that of inverting the
given permutation at a random input - no adversary can do much better than treating the permutation as
a black-box. Note that we could potentially provide empirical observations supporting the existence of such

2Note that reducing the CSAT instance to a 3SAT instance and then running Schöning’s algorithm does not help, since the
number of variables in the 3SAT instance depends on the circuit size.
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a strong one-way permutation, unlike a random oracle, which in itself already constitutes an obfuscation of
a non-trivial and extremely powerful functionality. In fact, it is not even clear what it means to provide
empirical evidence for the existence of a function that behaves like a random oracle [CGH98].

1.3.3 Limitations of our simulator construction

1. (weak simulator) We allow the size of the simulator to have an inverse polynomial dependency on the
distinguishing probability, as in the definition of ε-knowledge in [DNS98]. We argue that this is sufficient
to capture an intuitive and appealing notion of obfuscation: an adversary can approximate whatever he
learns from seeing an obfuscated circuit by any inverse polynomial function with a polynomial blow-up
in its running time and advice. Furthermore, we note that [BGI+01] rules out obfuscation of general
circuits even under this weaker simulator requirement.

2. (simulator with non-uniform advice) Note that most cryptographic works use uniformly black-box
reductions in their proof of security, so that the proof yields a uniform simulator for uniform adversaries.
This is not the case in our work. Our simulator is inherently non-uniform, as we hard-wire into it non-
uniform advice about the adversary which we do not know how to efficiently compute even given the
description of the circuit A; instead, we know that such advice exists and has a succinct description
based on our assumption about the underlying one-way permutation. We feel that the use of non-
uniformity is not a major short-coming in our simulator, since we can interpret our obfuscator as
having the property that “anything an adversary can efficiently compute given the obfuscated circuit,
he could also efficiently compute from observing the input/output behavior of the circuit, when given
a small amount of help”. We also prove that using non-uniform advice (about the adversary) is in fact
necessary for constructions using black-box access to the adversary. Unfortunately, the state-of-the-art
non-black-box techniques [B01] require interaction with the adversary.

3. (general adversaries) Our simulator only applies to an adversary that computes a {0, 1}-valued function
on its input; that is, an adversary that is trying to decide some property of the original circuit. Note that
simulating such an adversary already encapsulates semantic security. As pointed out in [BGI+01], we
would like (for positive results) for the simulator to satisfy a stronger requirement, namely to simulate
the view of the adversaries. We show that this is impossible to achieve for point functions via a
relativizing argument. In fact, we show a stronger result, that every family of circuits that can be
obfuscated against general adversaries is efficiently and exactly learnable using membership queries.
Note that this does not contradict [LPS04] which constructs obfuscators for point functions satisfying
this stronger requirement, because they allow the simulator to choose the coin tosses of the random
oracle (refer to [P03] for a more extensive discussion of the issues associated with simulation in the
random oracle model).

2 Preliminaries

We will adopt the standard way of modeling efficient adversary strategies as a family of probabilistic
polynomial-sized circuits. Therefore, a polynomial-sized adversary A or a PPT A will in fact refer to a
family of probabilistic polynomial-sized circuits. Similarly, computationally indistinguishable refers to indis-
tinguishability by non-uniform polynomial-sized adversaries.

2.1 Notation and definitions

We write Un to denote the uniform distribution over {0, 1}n, and neg(n) to denote a function of the form
n−ω(1). In the context of describing probability distributions, we write x ∈ Un to denote choosing x at
random from Un; we also use x ∈ L to denote choosing an element x from the set L uniformly at random.
For a probabilistic function f , we use f(x;R) to denote the output of f on input x and internal coin tosses
R, and we say that f is public-coin [L96] if it publishes its internal coin tosses as part of its output.
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• A point function Ix : {0, 1}n → {0, 1}, where |x| = n, is defined by Ix(y) = 1 if y = x and 0 otherwise.
We would also use Ix to denote a circuit that hardwires the value x and computes Ix.

• Two distributions X and Y over {0, 1}n are (s, ε)-indistinguishable if for all probabilistic circuits A of
size s, |Pr[A(X) = 1]− Pr[A(Y ) = 1]| < ε.

• A function f : {0, 1}n → {0, 1}∗ is (s, ε)-one-way if f is efficiently computable and Prx∈Un
[A(f(x)) ∈

f−1(f(x))] < ε(n) for all circuits A of size s.

• A probabilistic function h : {0, 1}n → {0, 1}∗ is statistically collision-resistant if

Pr
R∈Ur(n)

[
∃x 6= y ∈ {0, 1}n : h(x;R) = h(y;R)

]
≤ 2−n

2.2 Obfuscation

Definition 2.1. [BGI+01, LPS04] A probabilistic polynomial-time algorithm O is an obfuscator for the
family of circuits C = ∪n Cn (where Cn is the subset of circuits in C that take inputs of length n) if the
following three conditions hold:

• (approximate functionality) There exists a negligible function α such that for all n, for all C ∈ Cn,
with probability 1− α(n) over the internal coin tosses of the obfuscator, O(C) describes a circuit that
computes the same function as C.

• (polynomial slowdown) There is a polynomial p such that for every circuit C ∈ C, |O(C)| ≤ p(|C|).

• (“virtual black-box” property) For any PPT A, there is a PPT SA and a negligible function α such that
for all circuits C ∈ C, ∣∣∣ Pr

[
A(O(C)) = 1

]
− Pr

[
SC

A (1|C|) = 1
] ∣∣∣ ≤ α(|C|)

The obfuscators that we construct satisfy a weaker variant of the “virtual black-box” property (similar
to the notion ε-knowledge in [DNS98]):

(“virtual black-box” property with a weak simulator) For every family of polynomial-sized circuits
{An} and every function ε(n) = 1/nO(1), there exists a family of probabilistic circuits {Sn} of
size poly(n, 1/ε) such that for all sufficiently large n, for all circuits C ∈ Cn:∣∣∣ Pr

[
An(O(C)) = 1

]
− Pr

[
SC

n (1|C|) = 1
] ∣∣∣ ≤ ε(n)

We stress that [BGI+01] also rules out obfuscation for general circuits under this definition. In addition,
as pointed out in [BGI+01], this definition is equivalent to that which asks that for every predicate P (not
necessarily efficiently computable), the probability that An(O(C)) = P (C) is at most the probability that
SC

n (1|C|) = P (C) plus ε. In the rest of this paper, we will use this notion of “virtual black-box”, unless
otherwise specified. In particular, our results in Sections 4 and 5 pertain to this weaker notion of obfuscation.
For concrete parameters, we have the following definition:

Definition 2.2. An obfuscator O for a set of circuits Cn is (K, s, ε)-virtual black-box if it satisfies the
following: for any probabilistic circuit A of size s, there exists a probabilistic circuit SA of size K such that
for all circuits C ∈ Cn, ∣∣∣Pr

[
A(O(C)) = 1

]
− Pr

[
SC

A (1|C|) = 1
]∣∣∣ < ε
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3 Constructing Obfuscators for Point Functions

A natural approach would be to replace the oracle hash function used in [LPS04] with a standard crypto-
graphic primitive; we begin by explaining why two such primitives do not work. The first is a non-interactive
perfectly (or statistically) binding and computationally hiding commitment scheme. The main problem here
is that there is no efficient procedure to verify the secret value without revealing the randomness used in
the commitment scheme. The same problem arises if we were to use a public-key encryption scheme secure
against plain-text attacks. Another approach is to use the secret value as the seed to a pseudorandom
generator and storing the output of the generator. This does not work because pseudorandomness is only
guaranteed when the secret value underlying the point function is randomly chosen from the uniform distri-
bution, whereas we require security for every possible point function in the obfuscation setting. We begin
by presenting the assumption we use for our construction, along with the underlying hash function.

Assumption 3.1. There exists an efficiently computable permutation {πn : {0, 1}n → {0, 1}n}n∈N such that
for every polynomial p(n) and every family of circuits {An} of size p(n), there exists a polynomial q such
that: Prx∈Un

[An(π(x)) = x] ≤ q(n)/2n.

Construction 3.2. Let π : {0, 1}n → {0, 1}n be a permutation. We define a (public-coin) probabilistic
function h : {0, 1}n × {0, 1}3n2 → {0, 1}3n2+3n as follows:

h(x; τ1, . . . , τ3n) = (τ1, . . . , τ3n, 〈x, τ1〉, 〈π(x), τ2〉, . . . , 〈π3n−1(x), τ3n〉)

Proposition 3.3. Suppose there exists a
(
poly(n, 1/ε)s, εK

16n ·
1
2n )

)
-one-way permutation, then there exists a

public-coin obfuscator for the family of point function {Ix}x∈{0,1}n which is (K poly(n), s, ε)-virtual black-box.

Proof. Let π be a
(
poly(n, 1/ε)s, εK

16n ·
1
2n )

)
-one-way permutation, and h be the hash function from Construc-

tion 3.2 based on π. Then, define O(Ix;R) to be the circuit that stores the value h(x;R) (which contains R
as a substring), and on input y, checks whether h(y;R) = h(x;R). If so, output 1, and 0 otherwise. Clearly,
O satisfies polynomial slow-down and public-coin.

Approximate functionality: Fix x 6= y ∈ {0, 1}n. Then,

Pr
τ1,...,τ3n

[h(x; τ1, . . . , τ3n) = h(y; τ1, . . . , τ3n)]

= Pr
τ1,...,τ3n

[∀ j = 1, 2, . . . , 3n : 〈πj−1(x), τj〉 = 〈πj−1(y), τj〉] =
1

23n

because π is a permutation, so πj−1(x) 6= πj−1(y) for all j = 1, 2, . . . , 3n. Taking a union bound over all
x, y ∈ {0, 1}n shows that h is statistically collision-resistant, from which approximate functionality follows.

“Virtual black-box”: Let A be a probabilistic circuit of size s, and define

L = {x ∈ {0, 1}n :
∣∣ Pr

R
[A(h(x;R)) = 1]− Pr[A(U3n2+3n) = 1]

∣∣ ≥ ε}

Claim 3.4. |L| ≤ K − 1.

Note that the “virtual black-box” property follows readily from Claim 3.4 as follows: consider the simu-
lator SA (a probabilistic circuit of of size K poly(n)) that has L hardwired into it. On input 1n and oracle
access to Ix, SA queries Ix on each element of L. If x ∈ L, SA picks R′ at random and outputs A(h(x;R′)).
Otherwise (that is, x /∈ L), SA picks a random string R′′ ∈ {0, 1}`(n) and outputs A(R′′).

Now, suppose Claim 3.4 does not hold, namely that |L| ≥ K. We show how to construct from A a circuit
of size poly(n, 1/ε)s that inverts π on εK/16n inputs, which contradicts our assumption about π. We may
assume (by replacing A with its negation if necessary) that there exists a subset L′ of L of size at least K/2
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such that for all x ∈ L′:

Pr
R

[A(h(x;R)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε

Averaging over x ∈ L′, we have

Pr
x∈L′,R

[A(h(x;R)) = 1]− Pr[A(U3n2+3n) = 1] ≥ ε

Consider the following 3n+1 hybrid distributions: where x ∈ L′, τ1, . . . , τ3n ∈ Un and b1, . . . , b3n ∈ {0, 1}:

D0 = {π3n(x), τ1, . . . , τ3n, 〈π3n−1(x), τ3n〉, . . . , 〈x, τ1〉}
D1 = {π3n(x), τ1, . . . , τ3n, 〈π3n−1(x), τ3n〉, . . . , b1}

...
... · · ·

... · · ·
...

D3n = {π3n(x), τ1, . . . , τ3n, b3n, . . . , b1}

A standard hybrid argument yields some j ∈ {1, 2, . . . , 3n − 1} and a next-bit predictor that on input
π3n(x), τ1, . . . , τ3n and 〈π3n−1(x), τ3n〉, . . . , 〈πj(x), τj+1〉, guesses 〈πj−1(x), τj〉 with probability 1/2 + ε/3n,
where the probability is taken over x ∈ L′, τ1, . . . , τ3n and the coin tosses of P . We can then fix τj′ , for all
j′ 6= j as well as the coin tosses of the predictor to obtain a deterministic predictor P ′ of size O(s) satisfying:

Pr
x∈L′,τj

[P ′(πj(x), τj) = 〈πj−1(x), τj〉] ≥ 1/2 + ε/3n

since P ′ can on input πj(x), τj compute πj+1(x), . . . , π3n(x). By an averaging argument, it follows that for
a ε/6n fraction of x in L′ (and call such x “good”):

Pr
τj

[P ′(πj(x), τj) = 〈πj−1(x), τj〉] ≥ 1/2 + ε/6n

We can then apply the list-decoding algorithm for Hadamard code from [GL89] to recover “good” x’s.
Now, we have a probabilistic circuit of size poly(n, 1/ε)s that recovers each “good” x with probability 3/4.
We can then hardwire the randomness into the circuit to obtain one of size poly(n, 1/ε)s that inverts π on
a ε/16n fraction of the values in πj(L′), which contradicts the

(
poly(n, 1/ε)s, εK

16n · 1
2n

)
-one-way property of

π.

The following follows readily from Proposition 3.3:

Theorem 3.5. Under Assumption 3.1, Construction 3.2 applied to π yields an efficient public-coin obfus-
cator with a weak simulator for the family of point functions.

We may in fact relax the assumption in Theorem 3.5 to requiring a strongly one-way permutation en-
semble, instead of a specific permutation. Roughly speaking, a strongly one-way permutation ensemble is a
family of permutations indexed by strings, where most permutations are strongly one-way (in the sense of
Assumption 3.1) with respect to non-uniform adversaries that get its index as an additional input. Unlike the
setting of standard one-way permutations, Assumption 3.1 is not an immediate consequence of Assumption
3.6.

Assumption 3.6. There exists a collection of efficiently computable permutation ensemble F = {Fn}n∈N
such that for every polynomial p(n) and every family of circuits {An} of size p(n), there exists a polynomial
q and a negligible function α such that for all sufficiently large n, with probability 1 − α(n) over π ∈ Fn,
Prx∈Un

[An(π, π(x)) = x] ≤ q(n)/2n.
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Theorem 3.7. Under Assumption 3.1, there exists an efficient public-coin obfuscator with a weak simulator
for the family of point functions with multi-bit output, namely Ix,β : {0, 1}n → {0, 1}3n, where |x| = n and
|β| = m = poly(n) is defined by Ix(y) = β if y = x and 0m otherwise.

Proof. (sketch) We use the obfuscator construction from [LPS04], but replacing the oracle with a general-
ization of the hash function from Construction 3.2, namely: hn,m : {0, 1}n × {0, 1}3n2+n → {0, 1}3n2+6n+m

as follows:

h(x; τ1, . . . , τ3n+1) = (τ1, . . . , τ3n, 〈x, τ1〉, . . . , 〈π3n−1(x), τ3n〉, 〈π3n(x), τ3n+1〉, . . . , 〈π3n+m−1, τ3n+1〉)

Specifically, O(Ix,β ;R) is the circuit that stores the value z = h(x;R)⊕ (03n2+6n ◦β), and on input y, checks
whether the first 3n2 + 6n bits of h(y;R) and z agree. If so, output the last m bits of z⊕h(y;R); otherwise,
output 0m.

4 On the One-Way Permutation Assumption

In the previous section, we provide a construction of obfuscators under a very strong assumption. Here,
we show that the assumption is plausible, and can be realized with random permutation oracle, and that a
similar assumption is also necessary.

4.1 Very strongly one-way permutation from a random permutation

Gennaro and Trevisan proved that a random permutation is one-way against nonuniform adversaries [GT00].
We extend their argument to show that a random permutation is also very strongly one-way in the sense of
Assumption 3.1 (slightly stronger in fact, as q(n) here is bounded by a fixed polynomial in p(n)). Clearly,
our analysis is tight up to polynomial factors. To simplify the exposition, we include the input gates in
determining the size of a circuit, so that any circuit has size at least that of its input. We use Πn to denote
the set of all permutations over {0, 1}n.

Theorem 4.1. For all sufficiently large n, a random π ∈ Πn is (s, s4/2n)-one-way for all n ≤ s ≤ 2n/5 with
probability at least 1− 2−n3

.

The approach is the same as that in [GT00]: showing that any permutation π for which there is a circuit
A such that A inverts π on “many” inputs has a “short” description (given A). Hence there cannot be too
many such permutations. Refer to Appendix A for the proofs of the theorem and the following claim.

Claim 4.2. Let A be a circuit that makes (at most) s − 1 queries to a permutation π : {0, 1}n → {0, 1}n,
and for which Pry[Aπ(y) = π−1(y)] ≥ s4/2n. Then, π can be described using at most

log
(

2n

s3

)
+ s3 log s + log[2n]s4−s3 + log(2n − s4)!

bits given A (where [n]k denotes the quantity n(n− 1) · · · (n− k + 1)).

Remark(s): The main quantitative difference between the analysis in [GT00] and our analysis is in the
length of the description in Claim 4.2: the former would yield 2 log

(
2n

s3

)
+log(2n−s3)! ≈ 2nn+s3n−θ(s3 log n)

bits whereas our analysis yields approximately 2nn − Ω(s3 log s) bits. In terms of “work” (discussed in
Section 1.3.2), the analysis in [GT00] cannot provide a lower bound better than 2n/2 whereas our analysis
yields a lower bound of 2n−θ(log n).

Consider a relativization of Definition 2.1 wherein all parties (the obfuscation algorithm, the adversary
and the simulator) have access to a random permutation oracle, and the simulator must simulate the adver-
sary’s (single-bit) output with respect to the same oracle. We refer to this as the non-programmable random
permutation oracle model [N02]:
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(“virtual black-box” property with a non-programmable random permutation oracle) With prob-
ability 1 − neg(n) over π ∈ Πn, for every family of probabilistic polynomial-sized circuits {An}
and every function ε(n) = 1/nO(1), there exists a family of probabilistic circuits {Sn} of size
poly(n, 1/ε) such that for all sufficiently large n, for all circuits C ∈ Cn:∣∣∣ Pr

[
Aπ

n(Oπ(C)) = 1
]
− Pr

[
SC,π

n (1|C|) = 1
] ∣∣∣ ≤ ε(n)

Corollary 4.3. There exists an efficient public-coin obfuscator for point functions in the non-programmable
random permutation oracle model.

Our obfuscator here differs from the obfuscator for point functions in [LPS04] in that the simulator for latter
gets to choose the coin tosses of the random oracle and therefore simulates the view of the adversary with
respect to a possibly different (random) oracle. However, the [LPS04] construction does not have any of the
limitations described in Section 1.3.3.

4.2 The necessity of strong computational assumptions

In this section, we explore the necessity of Assumptions 3.1 and 3.6.

Proposition 4.4. Suppose that public-coin obfuscators exist. Then, there exists an efficiently computable
function ensemble F = {Fn} satisfying the following properties:

• (mostly injective) With probability 1− neg(n) over f ∈ Fn, f is injective.

• (somewhat strongly one-way) For all polynomials p(n), for all family of circuits {An} of size p(n),
there exists a constant c > 0 such that for all sufficiently large n, |Qn| < nc, where Qn is the set:

{x ∈ {0, 1}n | Pr
f∈Fn

[An(f, f(x)) ∈ f−1(f(x))] ≥ 1/p(n)}

Note that the main qualitative differences between the function ensemble herein and that stipulated in
Assumption 3.6 are mostly injective functions vs permutations and a reversal of quantifiers between x and
f in the specification of the one-wayness property.

Proof. Let O be a public-coin obfuscator for point functions using r(·) random bits. We define

Fn = {f | (f(x); f) = O(x;R), R ∈ {0, 1}r(n)}

that is, every R ∈ {0, 1}r(n) is the index3 of a function f ∈ Fn, and f(x) is the string O(x;R), excluding
R (which is part of O(x;R) since O is public-coin). It is clear that functionality for O implies F is mostly
injective.

Next, for each n, let xn denote the lexicographic mid-point of Qn, and let Pn denote the predicate “� xn”.
Consider the family of (probabilistic) circuits {Bn}, where Bn is the circuit that on input (f, y)

i. Compute x′ = An(f, y).

ii. If f(x) = f(x′), output Pn(x′); otherwise, output a random bit.

It is easy to see that
Pr

f∈Fn

[Bn(f, f(x)) = Pn(x)] ≥ 1
2 + 1

2p(n) − neg(n)

3To avoid introducing additional notation, we use f to denote both the function and its index.
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where the neg(n) term captures the fraction of f which is not injective. Let {Sn} be the weak simulator for
{Bn} with distinguishing probability 1/4p(n) given by the “virtual black-box” property of O. Therefore, for
all sufficiently large n, for all x ∈ Qn, we have:∣∣∣ Pr

f∈Fn

[
Bn(f, f(x)) = Pn(x)

]
− Pr

[
SIx

n (1n) = Pn(x)
] ∣∣∣ ≤ 1/4p(n)

On the other hand, since Sn is polynomial-size, we have:

Pr
x∈Qn

[SIx
n (1n) = Pn(x)] ≤ 1

2 + poly(n)
|Qn|

Combining the 3 inequalities yields polynomial bound on |Qn|.

Next, we consider a complexity assumption about circuit satisfiability that is necessary for the existence
of obfuscators for point functions (not necessarily public-coin ones); it follows that some sort of exponential
lower bound is indeed necessary to obtain any kind of positive results for obfuscating point functions. We
defer the proof to Appendix A.

Proposition 4.5. [Tre04] If there exists a nontrivial (i.e., a probabilistic 2o(#variables) ·poly(circuitsize)-time)
algorithm for the CSAT problem, then obfuscating point functions is impossible.

It is generally believed that there is no nontrivial algorithm for CSAT. It would be interesting to
find out if we could rule out obfuscating point functions assuming just the existence of a probabilistic
2#variables−ω(log #variables) · poly(circuitsize)-time algorithm for CSAT.

5 Impossibility Results for Obfuscating Point Functions

Here, we outline two impossibility results relating to uniformly black-box simulators and simulators for
general adversaries. Refer to Appendix B for the (omitted) proofs.

5.1 Ruling out obfuscators with uniformly black-box simulators

Recall that in the proof that indistinguishability implies semantic security for public-key encryptions schemes,
the simulator picks a random encryption c of a random bit, and runs the adversary on c. Note that the
simulator is uniform and uses only black-box access to the adversary. This is often the case for proving
equivalence between a simulator-based and a distinguisher-based characterizations of cryptographic notions.
Here, we rule out obfuscators with such uniformly black-box simulators for point functions.

(“virtual black-box” property with a uniformly black-box simulator) For every function ε(n) =
1/nO(1) and every polynomial p(n), there exists an oracle PPT S such that for every family of
circuits {An} of size p(n), we have: for all sufficiently large n, for all circuits C ∈ Cn∣∣∣Pr

[
A(O(C)) = 1

]
− Pr

[
SA,C(1|C|) = 1

]∣∣∣ ≤ α(|C|)

The motivation for this result comes from the following simple observation: Fix a uniformly black-box
simulator S of size s, and consider an adversary AL that has hardwired into it a random subset L of {0, 1}n

of size s2. On input an obfuscated circuit C of a point function, A outputs 1 if C(x) = 1 for any x ∈ L
and 0 otherwise. Intuitively, S given oracle access to AL cannot learn more than s elements of L by simply
evaluating AL on obfuscations of different point functions. This naive argument fails precisely because S
may evaluate AL on circuits that do not correspond to valid obfuscations of point functions. In fact, the
queries S may correspond to arbitrary subset membership queries, and for the case |L| = 1, it is plausible
that S learns the single element of L using n non-adaptive queries, one to learn each bit of the n-bit string.
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Theorem 5.1. Uniformly black-box obfuscators for point functions do not exist.

5.2 Ruling out obfuscators for general adversaries

As pointed out in [BGI+01], we may want to consider a stronger notion of “virtual black-box”, where we
do not restrict the nature of what the adversary is trying to compute. Informally, we require that the
simulator, given just oracle access to a circuit C, produce an output distribution that is computationally
indistinguishable from what the adversary computes when given O(C). In this setting, it suffices to consider
adversary that computes the identity function, that is, output O(C).

(“virtual black-box” property with a general adversary) For every polynomial s(n) and every
function ε(n) = 1/nO(1), there exists a (possibly uniform) family of probabilistic circuits {Sn}
of size poly(s, n, 1/ε) such that for all sufficiently large n, for all circuits C ∈ Cn: {O(C)} and
{SC

n (1|C|)} are (s, ε)-indistinguishable.

Note that in this definition, we allow the size of the simulator S to depend on the size of the distinguisher.
The difference between this definition and that with a weak simulator presented in Section 2.2 is the order
of quantifiers (so that the simulator Sn may or may not depend on the distinguisher An): informally, upon
fixing n, s, ε,

• (weak simulator) for all An of size s, there exists Sn of size poly(s, n, 1/ε) such that for all C ∈ Cn:
|Pr[An(O(C)) = 1]− Pr[SC

n (1|C|) = 1] | ≤ ε.

• (general adversary) there exists Sn of size poly(s, n, 1/ε) such that for all An of size s, for all C ∈ Cn:
|Pr[An(O(C)) = 1]− Pr[An(SC

n (1|C|)) = 1] | ≤ ε.

Proposition 5.2. A family of circuits C = ∪n Cn is efficiently obfuscatable against general adversaries iff C
is efficiently and exactly learnable using membership queries (and possibly non-uniformity).

The learning algorithm for an efficiently obfuscatable against general adversaries merely outputs a circuit
computing the majority of n2 independent copies of the simulator. Note that the learning algorithm will be
non-uniform if the simulator is non-uniform; however, the non-uniformity only depends on the input length
n. Moreover, many lower bounds for learnability are lower bounds on query complexity and may there-
fore be used to rule out non-uniform learning algorithms and thus obfuscation against general adversaries.
Obfuscating exactly learnable functions against general adversaries is straight-forward and was observed in
[LPS04]: the obfuscator simply takes the input circuit C and outputs the circuit produced by the learning
algorithm given oracle access to C; the simulator does essentially the same thing and thus its size will not
in fact depend on the size of the distinguisher, even though we allow for that in the definition. In fact, the
result relativizes in the sense that if we allow the obfuscation algorithm, the obfuscated circuit, the simulator
and the distinguisher access to some oracle, we obtain an efficient and exact learning algorithm with respect
to the same oracle.

The next result follows from the fact that point functions are not exactly learnable (since a uniformly
chosen point function is statistically indistinguishable from the all-zeroes function given polynomially many
membership queries).

Theorem 5.3. Obfuscating point functions against general adversaries is impossible. Furthermore, the proof
relativizes and hence the result extends to the non-programmable random oracle model.

6 Conclusion

We presented a positive result for program obfuscation in this paper under a very strong but nonetheless
plausible assumption, along with some evidence that the assumption we used and the limitations of our
construction are in fact inherent. We point out several interesting directions for future work:
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• Obfuscating point functions in the original [BGI+01] definition (with negligible distinguishing proba-
bility): is that possible?

• Obfuscating multi-point functions (or self-composability [LPS04]): a natural extension of function
points are multi-point functions {Ix1,...,xk

: {0, 1}n → {0, 1}k}, for (x1, . . . , xk) ∈ ({0, 1}n)k where
Ix1,...,xk

(y) = (Ix1(y), . . . , Ixk
(y)). Simply hard-writing h(x1), . . . , h(xk) into the obfuscated circuit and

trying to establish that there is only a small subset L ⊆ ({0, 1}n)k such that {h(x1), . . . , h(xk)}(x1,...,xk)∈L

is computationally indistinguishable from (U`)k runs into problems.

• Obfuscating AC0: obfuscating TC0 is impossible [BGI+01], whereas we can obfuscate NC0 against
general adversaries (since NC0 is exactly learnable). Note that the techniques of [BGI+01] do not
extend to AC0 since pseudorandom functions do not exist in AC0 [LMN93]. In addition, AC0 can
implement point functions, so the results of Section 4 do apply in this setting.

• Explore the possibility of replacing constructions in the random oracle model with a real-world con-
struction under Assumption 3.6.
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A Omitted proofs from Section 4

A.1 Proof of Claim 4.2

Proof. Let N = 2n. WLOG, assume that A makes distinct queries to π, and always queries π on the value
it is going to output. Consider the set I of s4 points on which A inverts π, after making s queries to π. We
define a set Y and another set W via the following process: initially W is {0, 1}n whereas Y is empty, and
all the elements of I are candidates for inclusion in Y . Take the lexicographically first element y from I, and
place it in Y . Next, simulate the computation of Aπ(y) and let x1, . . . , xq(y) be the distinct queries made by
A to π, with q(y) ≤ s and π(xq(y)) = y. Let y1, . . . , yq(y) be the corresponding answers (that is, yi = π(xi)).
We add the answers y1, . . . , yq(y)−1 (in order) and the number q(y) to our description of π, and remove the
strings x1, . . . , xq(y) from I. In addition, we remove the strings x1, . . . , xq(y) from W . At any step of the
construction, one element is added to Y and at most s − 1 elements is removed from I. Since I initially
contains s4 elements, in the end, we have |Y | ≥ s3. In fact, we will stop the process when Y reaches exactly
s3 elements.

We claim that given the set Y , the descriptions y1, . . . , yq(y)−1 and the number q(y) for each y ∈ Y , the
values of π on W and the circuit A, it is possible to compute π everywhere. The values of π−1 on Y can be
reconstructed sequentially for all y ∈ Y , taken in lexicographic order, as follows: Simulate the computation
of Aπ(y). Our description allows us to answer the first q(y) − 1 queries, and the q(y)th query is exactly
π−1(y). Note that while reconstructing π−1 on Y , we have also reconstructed the set W and π on all of
{0, 1}n −W .

Let Q =
∑

y∈Y q(y), so Q ≤ s3(s− 1) and |W | ≤ 2n −Q− s3. Describing Y requires log
(

N
s3

)
bits. The

descriptions y1, . . . , yq(y)−1 and the number q(y) for all y ∈ Y require at most s3 log s +
∑Q

i=1 log(N − i +
1) = s3 log s + log[N ]Q. Once we have constructed the set W , π on {0, 1}n − W can be described using
log(N − |W |)! bits. The total description requires at most log

(
N
s3

)
+ s3 log s + log[N ]Q + log(N − |W |)! ≤

log
(

N
s3

)
+ s3 log s + log[2n]s4−s3 + log(N − s4)! bits.

A.2 Proof of Theorem 4.1

Proof. Fix a circuit A of size s, where s ≤ 2(n−1)/4. It follows from the above claim that the fraction of
permutations π ∈ Πn such that Prx[Aπ(π(x)) = x] ≥ s4/2n is at most(

N

s3

)
· ss3

· [N ]s4−s3 · (N − s4)! · 1
N !

=
ss3

s3!
· [N ]s4−s3

[N − s3]s4−s3

which is upper bounded by

(es

s3

)s3

· exp
(

s3

N − s3
+ . . . +

s3

N − s4

)
<

(
e2

s2

)s3

Since there are at most 2sn log s circuits of size s, a union bound shows that the probability over a
random choice of π ∈ Πn that there exists a circuit A of size s, for some s satisfying n ≤ s ≤ 2n/5, where
Prx[Aπ(π(x)) = x] ≥ s4/2n is at most

2n/5∑
s=n

sns

(
e2

s2

)s3

< 2n/5

(
e2

n

)n3

< 2−n3

A.3 Proof of Prop 4.5

Proof. Let t(#variables, circuitsize) denote the running time of the CSAT algorithm, and suppose on the con-
trary that there exists an obfuscator O for point functions. Let `(n) = ω(log n) such that t(`(n),poly(n)) =
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poly(n), and let L denote the set of strings {0, 1}n whose last n− `(n) bits are 0’s (so that |L| = nω(1)). Let
A denote the polynomial-time algorithm that uses the CSAT algorithm to decide on input a circuit C of size
poly(n) on `(n) variables, whether there is a satisfying assignment for C whose first bit is 1. Then,

Pr
x∈L

[A(O(Ix)) = x1] ≥ 1− neg(n)

(where x1 denotes the first bit of x) whereas for any probabilistic polynomial-time algorithm S, possibly
non-uniform,

Pr
x∈L

[SIx(1n) = x1] ≤ 1/2 + neg(n)

This yields the required contradiction to the “virtual black-box” property.

B Omitted proofs from Section 5

B.1 Proof of Theorem 5.1

Proof. Suppose on the contrary that there exists an obfuscator O for point functions with a uniformly black-
box obfuscator S of size s = poly(n) for a fixed value of ε, say 1/2. For any L ⊆ {0, 1}n, AL to be the
adversary that has L hardwired into it, and on input a circuit C, and outputs

∨
z∈L C(z). Now, fix L to be a

subset containing exactly s2 elements (and since the result holds for each such set L, we can pick a random
set L if we want a PPT adversary). We want to show that:

Ey∈L

[
|Pr[SAL,Iy = 1]− Pr[SAL\y,Iy = 1]|

]
≤ 1

s− 1
(B.1)

By Yao’s minimax theorem, it suffices to prove this for deterministic S.4 Pick a y at random in L and fix y.
Consider the first oracle query q1 that S makes, and we have two cases:

1. q1 is a circuit C to the adversary oracle. Let ΓC = {z ∈ {0, 1}n | C(z) = 1}. If ΓC ∩ L = ∅, then the
answer from both adversaries AL and AL\y would be 0, independent of y. Similarly, if |ΓC ∩ L| ≥ 2,
then the answer from both adversaries would be 1, also independent of y. For the case |ΓC ∩ L| = 1
(and in fact, we may assume WLOG that all simulator queries to the adversary oracle are of this form),
then the answer from both adversaries would be 1, unless ΓC ∩ L = {y}.

2. q1 is a string to the point function oracle. Then, if the query is not y, then the answer is always 0.

We define query to be “useful” if it is either the query y to the point function oracle, or a circuit C to the
adversary oracle satisfying ΓC ∩ L = {y}. Observe that for a random y, the first query is “useful” with
probability 1/s2. For each i ≥ 1, it is easy to see that conditioned upon the first i queries of S being not
useful, y is equally likely to be any string in a set of size at least s2− i, so the probability that the (i + 1)-th
query is useful is at most 1/(s2 − i). This is true even if the queries are adaptive. Then, (B.1) follows from:

Pr
y∈L

[
at least one of s queries is useful

]
≤

s∑
i=1

1
s2 − i + 1

<
1

s− 1

On the other hand, Pr[AL(O(Iy)) = 1] ≥ 1 − neg(s) and Pr[AL\y(O(Iy)) = 1] ≤ neg(s) which together
with (B.1) contradict the fact that O is a uniformly black-box obfuscator.

4Once we fix the random coin tosses of S, both Pr[SAL,Iy = 1] and Pr[SAL,Iy = 1] are 0, 1 values.
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B.2 Proof of Prop 5.2

Proof. (sketch) For completeness, we outline the analysis of the learning algorithm for a family of circuits
obfuscatable against general adversaries. Let s(n) denote an upper bound of the size of the circuits produced
by the obfuscator, and S the simulator for distinguishers of size s and ε = 1/4. For each y ∈ {0, 1}n, consider
the non-uniform distinguisher evaly of size s that evaluates its input (which is a circuit) on y. Then, we
have: for all C ∈ Cn and for all y ∈ {0, 1}n:

Pr[evaly(SC(1n)) = (O(C))(y) and (O(C))(y) = C(y)] ≥ 3/4− neg(n)

Taking the majority of n2 independent evaluations of S allows us to take union over all y ∈ {0, 1}n so that
for all C ∈ Cn, with overwhelming probability, the learning algorithm produces a circuit that agrees with C
everywhere on {0, 1}n.
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