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Abstract

We introduce a natural generalization of two-source non-malleable extractors (Cheragachi
and Guruswami, TCC 2014) called as multi-source non-malleable extractors. Multi-source non-
malleable extractors are special independent source extractors which satisfy an additional non-
malleability property. This property requires that the output of the extractor remains close to
uniform even conditioned on its output generated by tampering several sources together. We
formally define this primitive, give a construction that is secure against a wide class of tampering
functions, and provide applications. More specifically, we obtain the following results:

• For any s ≥ 2, we give an explicit construction of a s-source non-malleable extractor for

min-entropy Ω(n) and error 2−nΩ(1)

in the overlapping joint tampering model. This means
that each tampered source could depend on any strict subset of all the sources and the
sets corresponding to each tampered source could be overlapping in a way that we define.
Prior to our work, there were no known explicit constructions that were secure even against
disjoint tampering (where the sets are required to be disjoint without any overlap).

• We adapt the techniques used in the above construction to give a t-out-of-n non-malleable
secret sharing scheme (Goyal and Kumar, STOC 2018) for any t ≤ n in the disjoint
tampering model. This is the first general construction of a threshold non-malleable secret
sharing (NMSS) scheme in the disjoint tampering model. All prior constructions had a
restriction that the size of the tampered subsets could not be equal.

• We further adapt the techniques used in the above construction to give a t-out-of-n non-
malleable secret sharing scheme (Goyal and Kumar, STOC 2018) for any t ≤ n in the
overlapping joint tampering model. This is the first construction of a threshold NMSS in
the overlapping joint tampering model.

• We show that a stronger notion of s-source non-malleable extractor that is multi-tamperable
against disjoint tampering functions gives a single round network extractor protocol (Kalai
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et al., FOCS 2008) with attractive features. Plugging in with a new construction of multi-
tamperable, 2-source non-malleable extractors provided in our work, we get a network
extractor protocol for min-entropy Ω(n) that tolerates an optimum number (t = p− 2) of
faulty processors and extracts random bits for every honest processor. The prior network
extractor protocols could only tolerate t = Ω(p) faulty processors and failed to extract
uniform random bits for a fraction of the honest processors.

1 Introduction

Non-Malleable Extractors. Randomness extractors are fundamental objects in the study of
computer science and combinatorics. They allow to extract uniform random bits from a source
that has “some” randomness which may not necessarily be uniform. The amount of randomness in
a source X is captured by the notion of min-entropy defined as H∞(X) = mins∈sup(X){log 1

Pr[X=s]}.
It is well-known that if we only have a single source with min-entropy less than full, then it
is impossible to extract uniform random bits out of this source. One way to get around this
impossibility result is to assume that we have two or more sources that are independent and the
goal is to extract uniform random bits from these independent sources. Such extractors are called
as multi-source (or independent source) extractors. A long line of work starting from the seminal
work of Chor and Goldreich [CG88] have focused on constructing multi-source extractors for lower
min-entropy. This recently resulted in a breakthrough work of Chattopadhyay and Zuckerman
showing explicit constructions of two-source extractors for poly logarithmic min-entropy [CZ16].
See also the follow-up works of [Li16,Li17a,BDT17,GKK19].

A natural strengthening of multi-source extractors (that have also been used as a key tool in the
recent breakthroughs) is the notion of a non-malleable extractor [CG14]. Roughly speaking, non-
malleable extractors require that the output of the extractor (when run on independent sources)
to be statistically close to uniform even conditioned on the output of the extractor generated by
tampered version of the sources. Formally, we say that a s-source extractor is non-malleable against
a tampering function family F if for any set of s independent sources X1, . . . , Xs with sufficient
min-entropy and for any tampering function f ∈ F , there exists a distribution Df with support in
{0, 1}m ∪ {same∗} that is independent of X1, . . . , Xs such that:

|MNMExt(X1, . . . , Xs) ◦MNMExt(f(X1, . . . , Xs))− Um ◦ copy(Df , Um)| ≤ ε

Here, copy(x, y) = x if x 6= same∗; else, it is equal to y and |X − Y | denotes the statistical distance
between the random variables X and Y . Such extractors have wide applications in computer science
and specifically, in cryptography; in particular, they can be used to construct two-source extrac-
tors [CZ16], non-malleable codes [DPW18, CG14, CGL16], non-malleable secret sharing [GK18a],
round-optimal non-malleable commitments [GPR16, GKP+18] and cryptography with correlated
random tapes [GS19].

Almost all of the prior work in constructing non-malleable multi-source extractors have focused
on protecting against tampering functions that tamper each of the sources independently (aka
individual tampering family). In this work, we are interested in constructing multi-source extractors
that are secure against richer classes of tampering functions that could tamper several sources
together. For the case of two sources (that has been the focus of the majority of the prior work),
any tampering function that can tamper with both the sources can easily break the non-malleability
property and hence, the individual tampering is the best that one could hope for. However, this is
not the case for more than two sources.
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Non-Malleable Secret Sharing. Non-malleable secret sharing introduced in the work of Goyal-
Kumar [GK18a] strengthens the traditional secret sharing with an additional non-malleability prop-
erty. Specifically, in addition to the standard correctness and privacy properties, a non-malleable
secret sharing scheme requires that any tampering attack from a family of allowable tampering
functions either preserves the original secret that was shared or completely destroys it. Most of
the works in this area [BS19,SV19,ADN+19,KMS18,FV19] focused on constructing non-malleable
secret sharing against the individual tampering setting. Specifically, these constructions become
insecure even if a tampering function can tamper with two shares together. The work of Goyal
and Kumar [GK18a] gave a construction of t-out-of-n non-malleable secret sharing in a restricted
version of the disjoint tampering model. Here, the tampering function first chooses a set of t
shares, then partitions this share into two sets of unequal sizes and then tampers each partition
independently. It was crucial to their security analysis that the partitions are of unequal size and
this construction does not work for equal size partitions. In [GK18b], this assumption was removed
for the specific case of t = n and a construction that was secure in the overlapping joint tampering
model with cover-free subsets (the exact description of this model can be found in Section 1.1) was
given. However, the construction and the analysis crucially rely on the fact that t = n and does not
work for any t < n. Despite a number of follow up works, overcoming this restriction for threshold
NMSS has remained an open problem. This brings us to the following questions.

Can we construct a threshold non-malleable secret sharing scheme secure in the disjoint tampering
model (without restriction on the size of tampering sets)?

Can we construct a threshold non-malleable secret sharing scheme in the overlapping joint
tampering model?

Network Extractor Protocols. Network extractor [DO03,GSV05,KLRZ08,KLR09] is a proto-
col between p processors, each starting with an independent source Xi of length n with min-entropy
k. The processors exchange some messages during the protocol and these messages are sent over
public channels. At the end of the protocol, we require each (honest) processor to end up with an
independent (statistically close to) uniform string. We require this guarantee to hold even in the
face of a centralized adversary who can corrupt a set of processors and instruct these processors to
arbitrarily deviate from the protocol specification (byzantine corruptions). Such network extractor
protocols can be run prior to any secure multiparty computation protocol or distributed computa-
tion protocols where the honest parties necessarily require private uniform random bits but they
only start with independent sources with some min-entropy.

Formally, if B is the random variable denoting all the messages exchanged during the protocol
and Zi is the random variable denoting the output of the i-th processor, then the definition of a
network extractor protocol is as follows.

Definition 1.1 (Network Extractor Protocol [KLRZ08]) A protocol for p processors is a (t,
g, ε) network extractor for min-entropy k if for any (n, k) independent sources X1, . . . , Xp and any
choice T of t faulty processors, after running the protocol, there exists a set G ∈ [p] \ T of size at
least g such that

|B, {Xi}i 6∈G, {Zi}i∈G −B, {Xi}i 6∈G, Ugm| < ε

Here Ugm is the uniform distribution on gm bits, independent of B, and {Xi}i 6∈G.
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It is easy to see that if we allow the adversary to corrupt p − 1 processors then this task is
impossible as it amounts to extracting random bits from a single source. Kalai et al. [KLRZ08] gave

a (t = Ω(p), p− (1+O(1))t, 2−n
Ω(1)

)-network extractor protocol for min-entropy k = (1/2+O(1))n.
This protocol required a single round of interaction. They also showed another multi-round protocol
for lower min-entropy (specifically, k = 2logβ n for some β < 1) but in this protocol, a smaller
number of honest processors end up with a uniform string. Li [Li13] further improved this result
and gave a 2-round network extractor protocol for k ≥ logc n. However, all these protocols only
allow an adversary to corrupt Ω(p) processors and additionally, there exists a fraction of the honest
processors whose output is not statistically close to uniform. This brings us to the next question.

Can we construct a network extractor protocol where the adversary can corrupt upto p− 2
processors and the protocol ensures that every honest processor ends up with a uniform output?

We note that in the computational setting, the work of Kalai et al. [KLR09] gave a protocol
satisfying both the properties assuming sub-exponential hardness of one-way permutations.

Our work. In this work, we provide positive answers to the question on non-malleable secret
sharing as well as the network extractor protocols by viewing them through the lens of multi-
source non-malleable extractors. The details follow.

1.1 Our Results

In this work, we initiate the systematic study of multi-source non-malleable extractors and give
constructions that are secure against a wide class of tampering function families. We also show
applications of this primitive in constructing non-malleable codes [DPW18], non-malleable secret
sharing [GK18a], and network extractor protocols [DO03, GSV05, KLRZ08, KLR09]. Before we
state the formal theorem statements, we first describe the tampering functions of interest.

Overlapping Joint Tampering. For any s ∈ N, the overlapping joint tampering family is given
by a sequence of sets (T1, . . . , Ts) where Ts ⊂ [s] and the associated tampering functions (fT1 , . . . ,
fTs). The i-th tampered source X̃i is generated by applying fTi on the sources {Xj}j∈Ti . In other

words, the tampered source X̃i is generated by tampering all the sources indexed by the set Ti
using the function fTi .

We say that (T1, . . . , Ts) are cover-free, if for every i ∈ [s], the union of all Tj such that i ∈ Tj
has size at most s− 1. Some examples of cover-free subsets are:

• Individual Tampering: This is the setting where Ti = {i}.

• Disjoint Tampering: Here, (T1, . . . , Ts) are such that for each i, j ∈ [s], either Ti = Tj or
Ti ∩ Tj = ∅.

• Cycles of size at most bs/2c: Here, Ti = {i, i+ 1 mod s, . . . , i+ bs/2c − 1 mod s}.

Cover-free subsets include a rich class of joint tampering functions and it strictly generalizes
the individual tampering functions considered in the previous works. In this work, we focus on
constructing multi-source non-malleable extractors in the overlapping joint tampering model with
cover-free subsets (cover-free tampering, in short). We note that prior to our work, no construction
of non-malleable extractors was known even in the disjoint tampering model.
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Multi-source Non-malleable Extractors. Our first result in this paper is a construction of
multi-source non-malleable extractors that are secure against cover-free tampering. The formal
theorem statement appears below.

Theorem 1.2 For any s ≥ 2, there exists a constants γ > 0 and n0 such that for any n > n0,
there exists an efficient construction of a s-source, non-malleable extractor MNMExt : ({0, 1}n)s →
{0, 1}m against cover-free tampering at min-entropy n(1− γ) and error 2−n

Ω(1)
with output length

m = nΩ(1).

We note that extending the class of tampering functions beyond cover-free tampering requires
a new set of tools as there are sources which are tampered together with every other source. We
leave open the fascinating problem of constructing explicit extractors that are secure against a
generalization of cover-free tampering.

Split-state Non-malleable codes. We show that (a variant of) our multi-source extractor is
efficiently pre-image sampleable, meaning that there exists an efficient algorithm such that given
any string of length m, the algorithm outputs (except with negligible probability) an uniform pre-
image of this string. This feature combined with a straightforward generalization of the result of
Cheraghchi and Guruswami [CG14] gives the following theorem.

Theorem 1.3 For any s ≥ 2 and m ∈ N, there exists an efficient construction of s-split-state
non-malleable code for messages of length m that is secure against cover-free tampering with error
2−m

Ω(1)
.

This result is a conceptual contribution as we already know constructions of s-split state non-
malleable codes against cover-free tampering from the work of [GK18b]. However, as we will see
below this construction leads to a t-out-of-n non-malleable secret sharing in the overlapping joint
tampering model.

1.1.1 Non-malleable Secret Sharing

An interesting aspect of our construction of multi-source non-malleable extractor is that a minor
modification to this construction gives a t-out-of-n non-malleable secret sharing against t-cover-free
tampering. t-cover free tampering is the same as cover-free tampering defined above except that
we require that for every i, the union of all Tj ’s such that i ∈ Tj has size at most t− 1. As before,
t-cover-free tampering includes disjoint tampering where each partition is of size at most t− 1. We
note if any set of t or more shares are tampered together, then the tampering function can trivially
reconstruct the secret and hence, obtaining non-malleability is impossible. The formal statement
about our construction is given below.

Theorem 1.4 For every t ≥ 2, n ≥ t and m ∈ N, there exists an efficient construction of t-out-
of-n non-malleable secret sharing for secrets of length m against t-cover-free tampering with error
2−m

Ω(1)
.

As a corollary, we get a construction of t-out-of-n non-malleable secret sharing in the disjoint
tampering model.
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Corollary 1.5 For every t ≥ 2, n ≥ t and m ∈ N, there exists an efficient construction of t-out-
of-n non-malleable secret sharing for secrets of length m in the disjoint tampering model with error
2−m

Ω(1)
.

As mentioned before, this is the first construction of threshold NMSS in the disjoint tampering
model without restriction on the size of the tampering sets. This answers an explicit open problem
from the work of Goyal and Kumar [GK18a]. In addition, ours is also the first construction of
threshold NMSS in the overlapping joint tampering model. The only previous construction of
NMSS in the overlapping joint tampering model was for n-of-n secret sharing [GK18b].

1.1.2 Network Extractor Protocols

For any s ≥ 2, we show that a stronger notion of s-source non-malleable extractor that is multi-
tamperable and whose non-malleability property holds even conditioned on all but one of the
sources implies a single round network extractor protocol with at least s honest processors. It is
sufficient for such multi-source non-malleable extractors to be resilient against a weaker form of
disjoint tampering. For the case of 2 sources, we give a compiler that transforms a single tamperable
non-malleable extractor to a multi-tamperable non-malleable extractor by building on the ideas of
Cohen [Coh16a] who gave such a compiler for seeded non-malleable extractors. This result might
be of independent interest. We show that the resultant extractor is sufficient to instantiate the
network extractor protocol. This leads to a single round network extractor protocol that is resilient
against an optimum number of byzantine corruptions of p − 2 (where p is the total number of
processors) and ensures that all the honest processors end up with a string that is statistically close
to uniform. Specifcially, we show the following result.

Theorem 1.6 For any p ≥ 2, there exists constants γ > 0 and n0 such that for all n > n0 and
for any t ≤ p − 2, there exists a single-round, (t, p − t, 2−nΩ(1)

)-network extractor protocol for p
processors and (n, n(1− γ)) sources.

We note that all the prior information-theoretic network extractor protocols could only tolerate
Ω(p) number of byzantine corruptions and furthermore, these protocols could not extract uniform
randomness for a Ω(t) number of honest processors. Our protocol tolerates an optimum number of
corruptions and ensures that every honest processor outputs a string that is statistically close to
uniform. This matches the best protocols known in the computational setting [KLR09] that relied
on sub-exponential hardness assumptions but has weaker min-entropy requirements.

2 Technical Overview

In this section, we give a high-level overview of the techniques used in obtaining our main results.
We start our overview with the construction of multi-source non-malleable extractors. Then, we
will extend this result to obtain a non-malleable secret sharing. Finally, we give the description of
our network extractor protocol.

2.1 Multi-source Non-malleable Extractor

An s-source non-malleable extractor MNMExt : ({0, 1}n)s → {0, 1}m is just like any other inde-
pendent source extractor with an additional non-malleability property. Recall that an s-source
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extractor is said to be non-malleable against the tampering function family F if for any set of s
independent sources X1, . . . , Xs with sufficient min-entropy and for any tampering function f ∈ F ,
there exists a distribution Df with support in {0, 1}m ∪ {same∗} that is independent of X1, . . . , Xs

such that:

|MNMExt(X1, . . . , Xs) ◦MNMExt(f(X1, . . . , Xs))− Um ◦ copy(Df , Um)| ≤ ε

Here, copy(x, y) = x if x 6= same∗; else, it is equal to y. A standard two-source non-malleable
extractor is a special case of a multi-source extractor that is secure against the independent tam-
pering family. Furthermore, it can be shown that any two-source non-malleable extractor implies an
s-source non-malleable extractor for any s ≥ 2 where each of the s-sources are tampered indepen-
dently. However, in this work, we are interested in designing multi-source non-malleable extractors
that are secure against richer forms of tampering where several sources can potentially be tampered
together. In such a scenario, the trivial construction of extending any two-source extractor to an
s-source extractor is insecure.

To explain the key ideas behind our construction without getting bogged down with the details,
let us make the following simplifying assumptions. We stress that our actual construction does not
make any of the following assumptions.

• Let us assume that there are only 3 sources X1, X2 and X3 and each of the sources have full
min-entropy. Even when the sources have full entropy, non-malleable extractors are known
to imply non-malleable codes [CG14].

• We are interested in protecting against tampering functions that tamper two sources together
and tampers the other source independently. The identity of the two sources that are tam-
pered together is not fixed apriori. Specifically, we assume that the tampering functions are
given by (fij , gk) for distinct i, j, k ∈ [3] where fij takes in sources Xi, Xj and outputs X̃i, X̃j .

Similarly, gk takes in Xk and outputs X̃k.

A Simple construction. A natural attempt at constructing a multi-source non-malleable ex-
tractor is to take any 2 source non-malleable extractor 2NMExt and output 2NMExt(X1 ◦ 1,
X2 ◦ 2)⊕ 2NMExt(X2 ◦ 2, X3 ◦ 3)⊕ 2NMExt(X3 ◦ 3, X1 ◦ 1) where ◦ denotes concatenation. Recall
that our tampering functions satisfy the property that for every source there exists at least one
other source that is not tampered together with this source. Since the above construction applies
a non-malleable extractor for every pair of sources, we can hope to reduce the security of this
construction to the security of the underlying non-malleable extractor. However, proving this is
not straightforward as the tampering function may not modify these two sources and thus, proving
independence between the tampered output and the untampered output is tricky. Nevertheless,
with some non-trivial work, we can show using the techniques developed in [CGGL19] (for com-
pleteness, we provide a full proof in Appendix B) that this construction is indeed secure against
cover-free tampering if the underlying non-malleable extractor is multi-tamperable1 and is sym-
metric (meaning that 2NMExt(x, y) = 2NMExt(y, x) for every x, y). However, a major problem

1A multi-tamperable non-malleable extractor introduced in [CGL16] considers several sets of split-state tampering
functions and requires the output of the extractor to be random even conditioned on all the tampered outputs
generated by each split-state tampering function. An equivalent way to view the multi tamperable (or, t tamperable)
non-malleable extractor is to allow the split-state tampering functions to have t sets of outputs and we require the
real output to be close to random even conditioned on joint distribution of the t tampered outputs.
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with this simple construction is that it is not efficiently pre-image sampleable. Recall that for a
non-malleable extractor to be efficiently pre-image sampleable, we need an efficient algorithm that
given any output of the non-malleable extractor, samples an uniform pre-image of this output. This
property is crucially needed to construct a s-split state non-malleable code from non-malleable ex-
tractors using the approach of Cheraghchi and Guruswami [CG14]. To see why this construction
is not efficiently pre-image sampleable, consider any output s ∈ {0, 1}m of the extractor. Now,
we need to sample three sources, X1, X2, X3 such that 2NMExt(X1 ◦ 1, X2 ◦ 2) ⊕ 2NMExt(X2 ◦ 2,
X3 ◦ 3) ⊕ 2NMExt(X3 ◦ 3, X1 ◦ 1) = s. Even if we assume that 2NMExt is efficiently pre-image
sampleable, fixing any two sources, say X1, X2, requires the third source to satisfy the equation
2NMExt(X2 ◦ 2, X3 ◦ 3)⊕ 2NMExt(X3 ◦ 3, X1 ◦ 1) = s⊕ 2NMExt(X1 ◦ 1, X2 ◦ 2). Efficiently sampling
from the set of such X3’s seems highly non-trivial. This seems to be a major roadblock with this
simple construction (and is crucial to obtain our main application in constructing non-malleable
secret sharing) and hence, it calls for a more sophisticated construction that is efficiently pre-image
sampleable.

A Starting Point. In order to construct a multi-source non-malleable extractor with efficient
pre-image sampling, we could try to make the following generalization. We can parse the sources
X1 as (X(1), Y (3)), X2 as (X(2), Y (1)), X3 as (X(3), Y (2)) and output ⊕i2NMExt(X(i), Y (i)). This
construction is efficiently pre-image sampleable since the inputs to each invocation of the underlying
2NMExt is “non-overlapping”. Specifically, given any output s ∈ {0, 1}m, we can sample X(1),
Y (1), X(2), Y (2) uniformly at random and sample X(3), Y (3) such that 2NMExt(X(3), Y (3)) = s ⊕
2NMExt(X(2), Y (2)) ⊕ 2NMExt(X(2), Y (2)). This process is efficient if the underlying 2NMExt has
efficient pre-image sampling. This seems like progress but unfortunately, we prove this construction
is insecure. In particular, consider any tampering function that tampers X1, X2 together. Such
a tampering function takes as input (X(1), Y (3)) and (X(2), Y (1)), leaves X(2), Y (3) untampered,

but tampers X(1), Y (1) to X̃(1), Ỹ (1) such that 2NMExt(X̃(1), Ỹ (1)) = 2NMExt(X(1), Y (1)) (where z
denotes flipping each bit of z). If the tampering function against X3 is the identity function, then
we infer that the real output XORed with the tampered output will be the all 1s string.

Our Construction. If we look a little bit closely into the analysis of the above construction, we
realize that the main reason for the attack is that X(1), Y (1) was available in the clear to one of
the tampering functions. However, this attack could have been avoided if every tampering function
does not get hold of both X(i), Y (i) together. With this intuition, we are ready to describe our
extractor with efficient pre-image sampleability.

1. Parse Xi as (X
(1)
i , X

(2)
i , X

(3)
i , Y (i)).

2. Compute X(i) = X
(i)
1 ⊕X

(i)
2 ⊕X

(i)
3 for each i ∈ [3].

3. Output 2NMExt(X(1), Y (1))⊕ 2NMExt(X(2), Y (2))⊕ 2NMExt(X(3), Y (3)).

Notice that any tampering function that looks at any two sources Xi, Xj cannot determine X(i)

and X(j) since these are “secret shared” between all the three sources. Furthermore, we observe
that this construction has efficient pre-image sampling if the underlying 2NMExt is efficiently pre-
image sampleable. This is because for any image s ∈ {0, 1}m, we can sample X(2), Y (2) and
X(3), Y (3) uniformly at random and we sample X(1), Y (1) conditioned on its output being equal to
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2NMExt(X(2), Y (2)) ⊕ 2NMExt(X(3), Y (3)) ⊕ s. Then, for every i ∈ [3], we sample X
(1)
1 , X

(i)
2 , X

(i)
3

uniformly at random conditioned on its XOR being equal to X(i). This allows to efficiently find
the sources X1, X2, X3 such that applying the extractor on these sources yields s. Below, we give
the main ideas behind proving the non-malleability of this construction.

Proof Idea. The key technical component of our security proof is a way to reduce the tampering
of our extractor to a multi-tampering of the underlying non-malleable extractor 2NMExt. However,
unlike the simple construction, this reduction is highly non-trivial and it requires the underlying
extractor to satisfy a strong leakage-resilience property. The details follow.

Recall that in the tampering functions of our interest, for every source j, there exists at least
one other source j∗ that is not tampered together with this source. The main trick in the reduction

is that we view X
(j)
i for every i as a secret share of the source X(j). Viewing X

(j)
i as a secret share of

X(j) allows us to fix all the shares except X
(j)
j∗ . Hence, X

(j)
j∗ is completely determined by the source

X(j) and the fixed shares. Now, since j and j∗ are not tampered together, we infer that Y (j) and
X(j) are tampered independently! This allows us to reduce any tampering attack on our extractor
to a split-state tampering attack on 2NMExt. Thus, relying on this reduction, we can hope to make
the tampered output of our extractor to be “independent” of 2NMExt(X(j), Y (j)) and thus, conclude
that the real output is independent of the tampered output. However, arguing independence is not
as straightforward as it seems. Notice that nothing prevents a tampering function from leaving
X(j), Y (j) untampered. In this case, 2NMExt(X̃(j), Ỹ (j)) = 2NMExt(X(j), Y (j)) and hence, it is
impossible to argue that the tampered output is independent of 2NMExt(X(j), Y (j)).

To get around this problem, we prove a weaker property about our reduction to split-state
multi-tampering of 2NMExt. Specifically, we show that for every i, j ∈ [3], the tampered output
2NMExt(X̃(i), Ỹ (i)) is either independent of 2NMExt(X(j), Y (j)) (meaning that a non-trivial tam-
pering attack has taken place) or is the same as 2NMExt(X(j), Y (j)) (meaning that the tampering
function has just copied). This in fact allows us to argue (via a hybrid argument going over every
j ∈ [λ])2 that the tampered tuple (2NMExt(X̃(1), Ỹ (1)),
2NMExt(X̃(2), Ỹ (2)), 2NMExt(X̃(3), Ỹ (3))) is either a permutation of (2NMExt(X(1), Y (1)), 2NMExt(X(2),
Y (2)), 2NMExt(X(3), Y (3))) in which case the adversarial tampering functions have not changed the
output of the extractor or there exists at least one j such that the tampered tuple is independent
of 2NMExt(X(j), Y (j)). This allows us to argue that the real output is independent of the tampered
output and it is in fact, close to uniform since 2NMExt(X(j), Y (j)) is close to uniform.

Below, we show a sketch of a proof of this property. This is shown via a reduction to the
multi-tampering of the underlying 2-source non-malleable extractor. As mentioned before, for this
reduction to go through, we need the underlying non-malleable extractor to satisfy an additional
strong leakage resilience property.

The Main Reduction. Let us try to sketch the above reduction for j = 1 by considering
specific tampering functions f12, g3. Recall that f12 takes X1, X2 as input and outputs X̃1, X̃2

and g3 takes X3 as input and outputs X̃3. The goal here is to show that each entry of the
tampered tuple (2NMExt(X̃(1), Ỹ (1)), 2NMExt(X̃(2), Ỹ (2)), 2NMExt(X̃(3), Ỹ (3))) is either equal to
2NMExt(X(1), Y (1)) or independent of this value. As mentioned before, we prove this via a reduction

2This is where we need the stronger property that for every source j there exists at least one other source that is
not tampered together with this source.
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from any tampering attack against our extractor to a split-state tampering attack (f ′, g′) against
X(1), Y (1).

Towards this goal, we will fix X(2), Y (2), X(3), Y (3) and all the shares of X(2) and X(3). In

addition to this, we will fix the shares X
(1)
1 and X

(1)
2 . Notice that by the choice of our tampering

functions, X1 and X3 are tampered independently and thus, by fixing X
(1)
1 , X

(1)
2 , we have ensured

that X(1) and Y (1) are tampered independently. Let us additionally assume that there exists a
special string Y ∗ such that for every s ∈ {0, 1}m, there exists an x ∈ {0, 1}m such that 2NMExt(x,
Y ∗) = s (it will be clear on why this property is needed when we explain our reduction). We show
that for any non-malleable extractor with sufficiently low-error, there exists such an Y ∗.

Given the fixed values and the string Y ∗, designing the multi-tampering function g′ against Y (1)

is straightforward. On input Y (1), g′ uses the fixed values and the input Y (1) to reconstruct the
sources X1, X2. It then applies f12 on these two sources and obtains X̃1, X̃2. It now outputs (Ỹ (1),
Ỹ (2), Y ∗) (where Ỹ (1), Ỹ (2) are obtained from X̃1, X̃2) as the three tampered outputs. However,
constructing a tampering function against X(1) is not as straightforward. Notice that the tampering

function against X(1) must somehow get {X̃(i)
1 , X̃

(i)
2 , X̃

(i)
3 }i∈[3], XOR them together and finally

output the XORed value as the tampered source X̃(i). However, {X̃(i)
1 , X̃

(i)
2 }i∈[3] are generated by

the tampering function f12 that depends on Y (1). Hence, we cannot directly invoke the security of
2NMExt since the tampering against X(1) and Y (1) are not independent of each other. To solve this
issue, we rely on a “strong leakage-resilience” property of 2NMExt. Under this stronger property,
one of the tampering functions can get a leakage about the other source such that the amount
of leakage is an arbitrary polynomial in the length of the tampered source. If we have such an

extractor, we can view {X̃(i)
1 , X̃

(i)
2 }i∈[3] as leakage from the source Y (1) given to the tampering

function f ′ against X(1). Given this leakage and the input X(3), f ′ reconstructs the source X3

from the fixed values and the input X(3) and applies g3(X3) to obtain X̃3. Now, it can use

the leakage {X̃(i)
1 , X̃

(i)
2 }i∈[3] and {X̃(i)

3 }i∈[3] (obtained from X̃3) to obtain X̃(i) for every i ∈ [3].

Furthermore, f ′ also has Ỹ (3). It computes 2NMExt(X̃(3), Ỹ (3)) and samples a string x such that
2NMExt(x, Y ∗) = 2NMExt(X̃(3), Ỹ (3)). It outputs (X̃(1), X̃(2), x) as the tampered sources. Notice
that applying 2NMExt on the outputs of f ′, g′ precisely yields (2NMExt(X̃(1), Ỹ (1)), 2NMExt(X̃(2),
Ỹ (2)), 2NMExt(X̃(3), Ỹ (3))). Further, it now follows from the split-state non-malleability of 2NMExt
that each of these outputs is either independent of 2NMExt(X(1), Y (1)) or is exactly the same as
2NMExt(X(1), Y (1)). This shows the main claim of the proof.

In the next subsection, we show how to construct such a strong leakage-resilient non-malleable
extractor.

2.2 Strong Leakage-resilient Non-malleable Extractor

Recall that a (2, t)-non-malleable extractor 2NMExt : {0, 1}n × {0, 1}n → {0, 1}m (introduced
in [CG14,CGL16]) satisfies the following property: for any t split-state tampering functions F = (f1,
g1) . . . , (ft, gt) and independent sources X,Y with sufficient min-entropy, there exists a distribution
DF with support on {0, 1}m ∪ {same∗} that is independent of X,Y such that

|2NMExt(X,Y ), 2NMExt(f1(X), g1(Y )), . . . , 2NMExt(ft(X), gt(Y ))− Um, copy(t)(DF , Um)| < ε
(2.1)
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where both Um’s refer to the same uniform m-bit string. Here, copy(t)((x1, . . . , xt), y) = (z1, . . . , zt)

where zi =

{
xi if xi 6= same∗

y if xi = same∗
.

A leakage-resilient variant of such an extractor requires that even when one half of these tamper-
ing functions, say {fi}i∈[t] gets some bounded leakage on the other source Y , the non-malleability
property still holds. Specifically, for any leakage function h : {0, 1}n → {0, 1}µ, we require that

|2NMExt(X,Y ), {2NMExt(fi(X,h(Y )), gi(Y ))}i∈[t] − Um, copy(t)(DF,h, Um)| < ε (2.2)

It is not hard to see that if the underlying non-malleable extractor tolerates a min-entropy loss of
roughly µ, then such a non-malleable extractor can be shown to be leakage-resilient. Notice that
for this approach to work, the length of the source must be far greater than the amount of leakage
tolerated. However, for our application to constructing multi-source non-malleable extractor, we
require the amount of leakage from one of the sources to be an arbitrary polynomial in the length
of the other source. Of course, if we insist on both the sources to be of same length then it is easy
to see that such a primitive does not exist. Hence, this primitive necessarily requires uneven length
sources. We call such a non-malleable extractor as (2, t)-strong leakage-resilient non-malleable
extractor where we require the output length of h in Eqn 2.2 to be an arbitrary polynomial in the
length of X.

A similar primitive for the case of non-malleable codes was studied in the work of Goyal and
Kumar [GK18a]. They showed that the CGL construction [CGL16] of non-malleable code satisfies
this property. Unfortunately, they neither give a construction of a non-malleable extractor for
sufficiently low min-entropy nor do they give a multi-tamperable version of the result. Both of
these properties are crucial in obtaining our main results.

In this work, we show that any (2, t)-leakage-resilient non-malleable extractor (where the leakage
tolerated is only a fraction of the source length) can be bootstrapped to a (2, t)-strong leakage-
resilient non-malleable extractors (where the leakage tolerated is an arbitrary polynomial in the
length of the other source). This gives a modular approach of constructing such primitives and
additionally, simplifies the construction of strong leakage resilient non-malleable codes in the work
of [GK18a].

2.2.1 Our Compiler

To illustrate the main ideas behind our compiler, let us simplify the problem and assume that X
and Y are independent full entropy sources with length n1 and n2 respectively. Further, assume
that n2 >> p(n1) where p(·) is a polynomial denoting the amount of leakage tolerated.

Our compiler under these assumptions is extremely simple. We view the source X as (S,X ′)
where S is the seed of a strong extractor Ext. We apply Ext(Y, S) to obtain Y ′ where the length of
Y ′ is equal to the length of X ′. We finally apply 2NMExt(X ′, Y ′) and output the result. The main
intuition behind the compiler is that conditioned on the output of the leakage function, it can be
shown (via standard approaches [MW97,DORS08]) that Y has sufficient min-entropy. Hence, if we
apply a seeded extractor on this Y , the output is close to uniform.

While the main intuition is relatively straightforward, proving the non-malleability of this con-
struction requires new tricks. Notice that to prove the non-malleability of the compiled construction,
we need to invoke the non-malleability of the underlying 2NMExt. However, if we closely notice
the compiler, we see that the tampered version of the source Ỹ ′ that is fed as the second input to
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2NMExt is not only a function of Y but also a function of the other source X ′ via the tampered
seed S̃. In particular, S̃ could be a function of the source X ′ and hence, Ỹ ′ is a function of both X ′

and Y . This means that the tampering of the second source is not independent of the first source
and hence, we cannot directly invoke the security of 2NMExt. To solve this issue, we recall that
2NMExt is in fact, a leakage-resilient non-malleable extractor. In particular, we can fix the length
of the seed S to be small enough so that it is only a fraction of the length of X ′. We now view the
tampered seed S̃ as leakage from the source X ′ to the tampering function of Y . This allows us to
reduce the non-malleability of the compiled construction to the leakage-resilient, non-malleability
of 2NMExt.

Lower min-entropy case. Recall that the above construction crucially relied on the fact that
X is a full entropy source to make sure that the seed S has full-entropy. This compiler completely
breaks down if X didn’t have full entropy as otherwise, we cannot rely on the pseudorandomness
of Ext. Thus, we require a new approach to deal with the case where the entropy of the sources
are not full. In this setting, we modify our compiler as follows. We view X as (X ′, X1) and Y as
(Y1, Y2). We first apply a strong two-source extractor 2Ext(X1, Y1) to get a short seed S. We later
apply a strong seeded extractor Ext(Y2, S) to obtain Y ′. Finally, we output 2NMExt(X ′, Y ′).

As in the previous construction, we can show that conditioned on the leakage h(Y ), the source
Y has sufficient min-entropy. Now, since X1, Y1 are independent sources, it follows from the pseu-
dorandomness of 2Ext that the output S is close to uniform. Now, we can rely on the pseudoran-
domness of Ext to show that Y ′ is close to uniform. Again, as in the previous case, we can rely on
the leakage-resilience property of the underlying 2NMExt extractor to leak the tampered version
X̃1 to the tampering function of Y and this allows us to argue non-malleability of the compiled
construction. However, one subtlety that arises here is that we necessarily require the length of
Y1 to be much larger than the length of the other source X1 that is fed as input to the strong
two-source extractor. This is because we require Y1 to have sufficient min-entropy even conditioned
on the output of the leakage function h and the output of the leakage function is a polynomial in
the length of the other source. This means that the length of X1 is much smaller than the length
of Y1 and hence, we have to rely on the uneven length two-source extractor given by Raz [Raz05].

2.3 Non-Malleable Secret Sharing

A significant advantage of our construction of multi-source non-malleable extractor is its generality
to give other primitives. In particular, we show that a minor modification to our construction gives
a t-out-of-n non-malleable secret sharing scheme for every t and n against a family of t-cover-free
tampering functions. Roughly speaking, t-cover-free family requires that every share is tampered
with at most t − 2 other shares. This family includes disjoint tampering (as defined in [GK18a])
as a special case and gives the first construction of threshold non-malleable secret sharing scheme
that is secure against a strict super class of disjoint tampering.3

Our Construction. The construction we give for t-out-of-n non-malleable secret closely resem-
bles the construction of our n-source non-malleable extractor. Specifically, the i-th share of our

non-malleable secret sharing scheme is viewed as (X
(1)
i , X

(2)
i , . . . , X

(n)
i , Y (i)). The only difference

3We note that even for the case of disjoint tampering, the work of Goyal and Kumar [GK18a] assumes that the
partitioned subsets must be of unequal length.
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in the semantics is that instead of viewing (X
(i)
1 , . . . , X

(i)
n ) as an XOR (or equivalently, n-out-of-n)

secret sharing of the value X(i), we consider them to be a t-out-of-n secret sharing of X(i). Now,
given any t-shares, say corresponding to i1, . . . , it, we would be able to reconstruct X(1), . . . , X(n)

and compute 2NMExt(X(ij), Y (ij)) for every j ∈ [t]. We now interpret 2NMExt(X(ij), Y (ij)) as the
ij-th Shamir share of a secret message s ∈ {0, 1}m and these t Shamir shares can be put together
to reconstruct the secret s. Recall that in the case of multi-source non-malleable extractors, we
interpreted 2NMExt(X(ij), Y (ij)) as an n-out-of-n secret sharing of the output. Below, we give the
description of our sharing algorithm assuming that 2NMExt is efficiently pre-image sampleable.
Here, we use a t-out-of-n secret sharing scheme Share with perfect privacy.

To share a secret s ∈ {0, 1}m, we do the following:

1. (Sh1, . . . ,Shn)← Share(s).

2. For each i ∈ [n], compute (X(i), Y (i))← 2NMExt−1(Shi).

3. For each i ∈ [n], (X
(i)
1 , . . . , X

(i)
n )← Share(X(i)).

4. Set sharei = (X
(1)
i , . . . , X

(n)
i , Y (i)).

5. Output (share1, . . . , sharen).

We show via a similar argument to the proof of our multi-source non-malleable extractor that
if the underlying 2NMExt is strong leakage-resilient then the above non-malleable secret sharing
is secure against t-cover-free tampering. The complete analysis of the construction appears in
Section 8.

2.4 Network Extractor Protocol

Another application of our multi-source non-malleable extractors is to get improved results for
network extractor protocols [DO03, GSV05, KLRZ08, KLR09]. In the setting of network extrac-
tors, there are p processors, each with an independent source Xi having some min-entropy. The
processors exchange some messages and at the end of the protocol, we require that every honest
processor end up with an uniform random string independent of outputs of the other processors
and the transcript of the protocol. This property must hold even if a subset of the processors are
corrupted by a centralized adversary who can instruct the corrupted processors to deviate arbitrar-
ily from the protocol. It is easy to see that if the adversary controls p− 1 processors then this task
is impossible as it amounts to extracting random bits from a single source with min-entropy less
than full. However, if the adversary corrupts at most p − s processors, we show that a s-source
non-malleable extractor that is multi-tamperable can give a one-round protocol for this task. Ad-
ditionally, unlike the other prior works (except in the computational setting), this approach allows
every honest party to extract uniform random bits.

For simplicity, let us show a variant of our protocol from a multi-tamperable 2-source non-
malleable extractor 2NMExt. This allows us to obtain optimal results for the case of p− 2 corrup-
tions. We give the description of the protocol below.

1. Each processor parses Xi as X
(i)
1 , . . . , X

(i)
p .

2. It broadcast {X(i)
j }j 6=i.
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3. It receive {X(j)
i }j 6=i from all the processors. If some processor j does not send any message,

it replaces X
(j)
i with a default value.

4. For every j ⊆ [p] \ {i}, processor Pi

(a) Computes yj = 2NMExt(X
(i)
i , X

(j)
i ).

5. It removes the duplicates from the sequence (yj)j 6=i to get y′1, . . . , y
′
k.

6. It outputs zi = y′1 ⊕ . . .⊕ y′k.

The main intuition behind the proof of this network extractor protocol is that for every honest

processor i, the message X
(j)
i sent by every adversarial processor j can be viewed as a tampering

of the message X
(i∗)
i of one another honest processor i∗. Thus, it now follows from the multi-

tamperability of 2NMExt that the tampered output 2NMExt(X
(i)
i , X

(j)
i ) is independent of the real

output 2NMExt(X
(i)
i , X

(i∗)
i ) which in turn is close to uniform. However, for this argument to hold,

we require the non-malleability property to hold even conditioned on X
(i∗)
i , in other words, we

require 2NMExt to be a strong non-malleable extractor. Fortunately, Li [Li17a] showed that every
non-malleable extractor with sufficiently low min-entropy is also a strong non-malleable extractor
and this allows us to complete the proof.

The new constructions of multi-source extractors for s ≥ 3 given in this paper have the same
min-entropy requirement as that of the two source extractors and hence, do not provide any further
improvements over the above result. We leave open the fascinating problem of constructing multi-
source extractors for s ≥ 3 for lower min-entropy requirements.

3 Preliminaries

Notation. We use capital letters to denote distributions and their support, and the corresponding
lowercase letters to denote a sample from the same. x ∼ X is used to denote a sample x from
a distribution X. We will slightly abuse the notation and use X to denote a random variable as
well as a distribution. Let [n] denote the set {1, 2, . . . , n}, and Ur denote the uniform distribution
over {0, 1}r. For any finite set S, we use s ← S to denote the process of sampling s uniformly at
random from S. For any i ∈ [n], let xi denote the symbol at the i-th co-ordinate of x, and for any
T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to the co-ordinates indexed by T . We write ◦
to denote concatenation.

Standard Definitions and Results. Standard definitions of min-entropy and statistical dis-
tance are given below. We also recall some standard results about these notions.

Definition 3.1 (Min-entropy) The min-entropy of a source X is defined to be

H∞(X) = min
s∈support(X)

{log(1/Pr[X = s])}

A (n, k)-source is a distribution on {0, 1}n with min-entropy k. The entropy loss is given by (n−k).
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Lemma 3.2 ( [MW97]) Let X,Y be random variables such that the random variable Y takes at
` values. Then

Pr
y∼Y

[
H∞(X|Y = y) ≥ H∞(X)− log `− log

(
1

ε

)]
> 1− ε.

Definition 3.3 ( [DORS08]) The average conditional min-entropy is defined as

H̃∞(X|W ) = log
(
Ew←W

[
max
x

Pr[X = x|W = w]
])

= − logE
[
2−H∞(X|W=w)

]
We recall some results on conditional min-entropy from [DORS08].

Lemma 3.4 ( [DORS08]) If a random variable B can take at most ` values, then H̃∞(A|B) ≥
H∞(A)− log `.

Definition 3.5 (Statistical distance) Let D1 and D2 be two distributions on a set S. The sta-
tistical distance between D1 and D2 is defined to be:

|D1 −D2| = max
T⊆S
|D1(T )−D2(T )| = 1

2

∑
s∈S
|Pr[D1 = s]− Pr[D2 = s]|

D1 is ε-close to D2 if |D1 −D2| ≤ ε.

We will use the notation D1 ≈ε D2 to denote that the statistical distance between D1 and D2

is at most ε.

Lemma 3.6 (Triangle Inequality) If D1 ≈ε1 D2 and D2 ≈ε2 D3 then D1 ≈ε1+ε2 D3.

Lemma 3.7 ( [CG14]) Let D1 and D2 be two distribution on a finite set S and suppose they are
ε-close to each other. Let E be any event such that Pr(E) = p. Then, the condition distributions
D1|E and D2|E are (ε/p)-close.

Seeded Extractors. We now recall the definition of a strong seeded extractor.

Definition 3.8 (Strong seeded extractor) A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is
called a strong seeded extractor for min-entropy k and error ε if for any (n, k)-source X and an
independent uniformly random string Ud, we have

|Ext(X,Ud) ◦ Ud − Um ◦ Ud| < ε,

where Um is independent of Ud. Further if the function Ext(·, u) is a linear function over F2 for
every u ∈ {0, 1}d, then Ext is called a linear seeded extractor.

Theorem 3.9 ( [GUV09]) For every constant α > 0, and any n, k, ε > 0, there exists a strong
seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m for min-entropy k and error ε with d = O(log n+
log 1/ε) and m = (1− α)k.

We will also use the explicit constructions of strong linear seeded extractors [Tre01] [RRV02].
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Theorem 3.10 ( [Tre01] [RRV02]) For every n, k,m ∈ N and ε > 0 such that m ≤ k ≤ n, there
exists an explicit linear strong seeded extractor LSExt : {0, 1}n×{0, 1}d → {0, 1}m for min-entropy

k, error ε, and d = O
(

log2(n/ε)
log(k/m)

)
.

An average case seeded extractor requires that if a source X has average case conditional min-
entropy H̃∞(X|Z) ≥ k then the output of the extractor is uniform even when Z is given. We
recall the following lemma from [DORS08] which states that every strong seeded extractor is also
an average-case strong extractor.

Lemma 3.11 ( [DORS08]) For any δ > 0, if Ext is a (k, ε)-strong seeded extractor then it is
also a (k + log

(
1
δ

)
, ε+ δ) average case strong extractor.

3.1 Strong Seedless Extractors

We now recall the definition of 2-source extractors and strong 2-source extractors.

Definition 3.12 (2-source extractor) A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is called
a two sources extractor for min-entropy (k1, k2) and error ε if for any independent (n1, k1)-source
X and (n2, k2)-source Y , we have

|NMExt(X,Y )− Um| ≤ ε.

where Um is independent of X,Y .

Theorem 3.13 ( [CG85]) For all integers n,m, k1, k2 > 0, there exists an efficient 2-source ex-
tractor IP : {0, 1}n × {0, 1}n → {0, 1}m with min-entropy (k1, k2) and error ε = 2−(k1+k2−n−m)/2.

Definition 3.14 (Strong extractor) A function 2Ext : {0, 1}n1 × {0, 1}n2 → {0, 1}m is called a
strong two sources extractor for min-entropy (k1, k2) and error ε if for any independent (n1, k1)-
source X and (n2, k2)-source Y , we have

|X ◦ 2Ext(X,Y )−X ◦ Um| < ε and |Y ◦ 2Ext(X,Y )− Y ◦ Um| < ε,

where Um is independent of X,Y .

Theorem 3.15 ( [Raz05]) For all integers n1, n2, k1,m and for any ε > 0 such that n2 =
Ω(log(n1/ε)), k1 = Ω(n2) and m = O(n2), there exists an efficient-computable strong 2-source
extractor Raz : {0, 1}n1 × {0, 1}n2 → {0, 1}m with min-entropy (k1, 0.6n2) and error ε.

3.2 Seedless Non-Malleable Extractors

We now give the definition of 2-source, non-malleable extractors that are tamperable t times [CGL16].
Such an extractor is called as (2, t)-non-malleable extractors.

Definition 3.16 ((2,t)-Non-Malleable Extractor) A function 2NMExt : {0, 1}n × {0, 1}n →
{0, 1}m is a (2, t)-non-malleable extractor at min-entropy k and error ε if it satisfies the fol-
lowing property: if X and Y are independent (n, k)-sources and A1 = (f1, g1), . . . ,At = (ft, gt)
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are t arbitrary 2-split-state tampering functions, then there exists a random variable D−→
f ,−→g on

({0, 1}m ∪ {same∗})t which is independent of the random variables X and Y , such that

|2NMExt(X,Y ), 2NMExt(f1(X), g1(Y )), . . . , 2NMExt(ft(X), gt(Y ))− Um, copy(t)(D−→
f ,−→g , Um)| < ε

where both Um’s refer to the same uniform m-bit string. Here, copy(t)((x1, . . . , xt), y) = (z1, . . . , zt)

where zi =

{
xi if xi 6= same∗

y if xi = same∗
.

For t = 1, we call 2NMExt a non-malleable 2-source extractor.

Theorem 3.17 ( [CGL16]) There exists a constant γ > 0 such that for all n > 0 and t < nγ,

there exists a (2, t)-non-malleable extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}nΩ(1)
at min-entropy

n− nγ with error 2−n
γ
.

Theorem 3.18 ( [Li17b]) For any n > 0, there exists a constant γ such that there exists a
non-malleable 2-source extractor NMExt : {0, 1}n × {0, 1}n → {0, 1}m with min-entropy (1 − γ)n,
m = Ω(k) and error ε = 2−Ω(n/ log(n)).

3.3 Non-Malleable Codes

We start with the definition of a coding scheme.

Definition 3.19 (Coding scheme) Let Enc : {0, 1}m → {0, 1}n be a randomized algorithm and
Dec : {0, 1}n → {0, 1}m ∪ {⊥} be a deterministic function. We say that (Enc,Dec) is a coding
scheme with code length n and message length m if for all s ∈ {0, 1}m, Pr[Dec(Enc(s)) = s] = 1,
where the probability is taken over the randomness of Enc. The rate of the coding scheme is m

n .

Dziembowski, Pietrzak and Wichs [DPW18] introduced the notion of non-malleable codes which
generalizes the usual notion of error correction. In particular, it guarantees that when a codeword
is subject to tampering attack, the reconstructed message is either the original one or something
that is independent of the original message.

Definition 3.20 (Non-Malleable Codes [DPW18]) Let Enc : {0, 1}m → {0, 1}n and Dec : {0,
1}n → {0, 1}m∪{⊥} be (possibly randomized) functions, such that Dec

(
Enc(s)

)
= s with probability

1 for all s ∈ {0, 1}m. Let F be a family of tampering functions and fix ε > 0. We say that
(Enc,Dec) is ε−non-malleable w.r.t. F if for every f ∈ F , there exists a random variable Df on
{0, 1}m ∪ {same}, such that for all s ∈ {0, 1}m,

|Dec(f(Xs))− copy(Df , s)| ≤ ε

where Xs ← Enc(s) and copy is defined by copy(x, y) =

{
x if x 6= same

y if x = same
. We call n the length of

the code and m/n the rate.

Chattopadhyay, Goyal and Li [CGL16] defined a stronger notion of non-malleability against multiple
tampering and we now recall this definition.
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Definition 3.21 (Non-Malleable Codes against Multiple Tampering [CGL16]) A coding
scheme (Enc,Dec) with code length n and message length m is a non-malleable code with tampering
degree t w.r.t. a family of tampering functions F ⊂ (Fn)t and error ε if for every (f1, . . . , ft) ∈ F ,
there exists a random variable D−→

f
on ({0, 1}m ∪ {same})t such that for all messages s ∈ {0, 1}m,

it holds that
|(Dec(f1(X)), . . . ,Dec(ft(X)))− copy(t)(D−→

f
, s)| ≤ ε

where X = Enc(s). We refer to t as the tampering degree of the code.

4 (2, t)-Non-Malleable Randomness Extractors

In this section, we give a construction of (2, t)-Non-malleable extractors for min-entropy Ω(n). We
achieve this by giving a generic transformation from (2, 1)-non-malleable extractor to (2, t)-non-
malleable randomness extractor. This follows a similar approach given in [Coh16b] for the case
of seeded non-malleable extractors. We start with a slightly stronger definition of non-malleable
extractors given in [CGL16] that is shown to imply the standard definition.

Definition 4.1 (t-non-malleable 2-source extractor) For an integer t ≥ 1, a t-non-malleable
2-source extractor for min-entropy k and error ε is a function NMExt : {0, 1}n×{0, 1}n → {0, 1}m
with the following property. Let f1, g1, . . . , fn, gn be arbitrary function from {0, 1}n to {0, 1}n such
that at least one of fi, gi has no fixed point for all i ∈ [t]. Let X,Y be independent (n, k)-sources.
Let X(i) = fi(X) and Y (i) = gi(Y ) for i ∈ [t]. Then, it holds that

|NMExt(X,Y ), {NMExt(X(i), Y (i))}i∈[t] − Um, {NMExt(X(i), Y (i))}i∈[t]| ≤ ε.

For t = 1, we call NMExt a non-malleable 2-source extractor.

One of the main tools used in this transformation is a correlation breaker with advice and we
start by recalling this definition.

Definition 4.2 (t-correlation-breaker with advice [Coh16a]) For an integer t ≥ 1 a t-correlation-
breaker with advice for min-entropy k and error ε is a function AdvBC : {0, 1}w × {0, 1}l × {0,
1}a → {0, 1}m with the following property. Let X,X(1), . . . , X(t) be random variables distributed
over {0, 1}w such that X has min-entropy k. Let Y, Y (1), . . . , Y (t) be random variables distributed
over {0, 1}l that are jointly independent of (X,X(1), . . . , X(t)) such that Y is uniform. Then, for
any string s, s(1), . . . , s(t) ∈ {0, 1}a such that s 6∈ {s(1), . . . , s(t)}, it holds that

|AdvBC(X,Y, s), {AdvBC(X(i), Y (i), s(i))}i∈[t] − Um, {AdvBC(X(i), Y (i), s(i))}i∈[t]| ≤ ε.

Theorem 4.3 ( [CGL16]) For all integers `, w, a, t and for any ε ∈ (0, 1) such that

` = Ω(at · log(aw/ε)),

there exists a poly(`, w)-time computable t-correlation-breaker with advice AdvBC : {0, 1}w × {0,
1}` × {0, 1}a → {0, 1}m, for entropy

k = Ω(at · log(a`/ε)),

with error ε and m = Ω(`/(at)) output bits.

18



4.1 Transformation

Building blocks and parameters

1. Let NMExt : {0, 1}d1 × {0, 1}d1 → {0, 1}l1 be a non-malleable 2-source extractor with min-
entropy d1 −∆ and error ε, where l1 = Ω(log(1/ε)).

2. Let ECC : {0, 1}d2 → {0, 1}D2 be an error correcting code with D2 = O(d2) and relative
distance 1/4.

3. Let IP : {0, 1}d1 × {0, 1}d1 → {0, 1}l′2 be a strong 2-source extractor with error ε and min-
entropy d1 −∆, where l′2 = l2 log(D2) and l2 = Ω(log(1/ε)).

4. Let Raz : {0, 1}n × {0, 1}d2 → {0, 1}l3 be a strong 2-source extractor with error ε, where the
min-entropy requirement for the first source is n −∆ − (1 + t)(d1 + l2) − log(1/ε) and that
for the second source is d2 −∆− (1 + t)(d1 + l2)− log(1/ε).

5. Let AdvBC : {0, 1}d3 × {0, 1}l3 × {0, 1}a → {0, 1}m be an efficient t-correlation-breaker with
advice for error ε and min-entropy d3−∆− (1 + t)(d1 + l2 +d2)− log(1/ε), where a = l1 + 2l2

Construction On the input sources X,Y , NMExt′ is computed as follows.

1. Let X = X1 ◦X2, Y = Y1 ◦ Y2, where |X1| = |Y1| = d1.

2. Let AdvGen(X,Y ) = NMExt(X1, Y1) ◦ ECC(X2)IP(X1,Y1) ◦ ECC(Y2)IP(X1,Y1), where SIP(X1,Y1)

means to take the bits from S with indexes represented by IP(X1, Y1).

3. Let Y2 = Y3 ◦ Y4, where |Y3| = d2 and |Y4| = d3.

4. Return AdvBC(Y4,Raz(X,Y3),AdvGen(X,Y )).

Theorem 4.4 In the above construction, NMExt′ is a t-non-malleable 2-source extractor with min-
entropy n−∆ and error O(t

√
ε).

Proof Denote the tampering function as f1, g1, . . . , ft, gt such that at least one of fi, gi has no
fixed point for all i ∈ [t]. Let X(i) = fi(X) and Y (i) = gi(Y ). Let Z = AdvGen(X,Y ) and
Z(i) = AdvGen(X(i), Y (i)).

Claim 4.5 With high probability, Z is not equal to all Z(1), . . . , Z(t).

Proof Denote a tampered version of X,Y as X ′, Y ′. Assume without loss of generality that
X 6= X ′ always holds. Let X̃1 = X ′1 if X1 6= X ′1 and X̃1 be an arbitrary value not equal to X1 if
X1 = X ′1. Also, since X1 and Y1 are independent (d1, d1 −∆) source, it holds that

|NMExt(X1, Y1),NMExt(X̃1, Y
′

1)− Ul1 ,NMExt(X̃1, Y
′

1)| ≤ ε,

Pr[NMExt(X1, Y1) = NMExt(X̃1, Y
′

1)] ≤ Pr[Ul1 = NMExt(X̃1, Y
′

1)] + ε ≤ 2−l1 + ε ≤ 2ε.

Since X1 and Y1 are independent (d1, d1 −∆) source, it holds that

|IP(X1, Y1), X1 − Ul2 , X1| ≤ ε.
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Denote x1 is good if |IP(x1, Y1), x1 − Ul′2 , x1| ≤
√
ε and we have

Pr[X1 ∈ good] ≥ 1−
√
ε.

Now consider a fixed x = (x1, x2) and x′2 such that x1 is good and x2 6= x′2. It holds that

Pr[ECC(x2)IP(x1,Y1) = ECC(x′2)IP(x1,Y1)] ≤ Pr[ECC(x2)Ul′2
= ECC(x′2)Ul′2

]+
√
ε ≤ (3/4)l2+

√
ε = ε+

√
ε.

Thus, it holds that

Pr[AdvGen(X,Y ) = AdvGen(X ′, Y ′)]

≤
∑

(x1,x2)∈{0,1}n
Pr[X = (x1, x2) ∧X ′1 = x1] Pr[Y1 = Y ′1 ∧ ECC(x2)IP(x1,Y1) = ECC(x′2)IP(x1,Y1)]

+ Pr[X = (x1, x2) ∧ (X ′1, Y
′

1) 6= (x1, Y1) ∧ NMExt(X1, Y1) = NMExt(X ′1, Y
′

1)]

≤ Pr[NMExt(X1, Y1) = NMExt(X̃1, Y
′

1)]

+
∑

(x1,x2)∈{0,1}n
Pr[X = (x1, x2) ∧X ′1 = x1 ∧ x1 ∈ good](ε+

√
ε)

+ Pr[X1 6∈ good]

≤ 3ε+ 2
√
ε.

By union bound, the probability that one of Z(1), . . . , Z(t) is equal to Z is O(t
√
ε).

Now we fix Z,X1, Y1, Z
(1), X

(1)
1 , Y

(1)
1 , . . . , Z(t), X

(t)
1 , Y

(t)
1 and then X, (Y3, Y4) are independent.

By Theorem 3.2, with probability 1−ε, X has min-entropy at least n−∆−(1+t)(d1+l2)−log(1/ε).
Similarly, with probability 1− ε, Y3 has min-entropy at least d2 −∆− (1 + t)(d1 + l2)− log(1/ε).
Assume X has min-entropy n−∆− (1+ t)(d1 + l2)− log(1/ε) and Y3 has min-entropy d2−∆− (1+
t)(d1 + l2)− log(1/ε). Let S = Raz(X,Y3). Since Raz is a strong 2-source non-malleable extractor
and (X,Y3) satisfies the min-entropy requirement, we have

|S, Y3 − Um, Y3| ≤ ε.

Since S and Y is independent given Y3, we have

|S, Y − Um, Y | ≤ ε,

|S, Y3, Y
(1)

3 , . . . , Y
(t)

3 − Um, Y3, Y
(1)

3 , . . . , Y
(t)

3 | ≤ ε.

Now fix Y3, Y
(1)

3 , . . . , Y
(t)

3 . With probability at least 1−
√
ε, |S−Ul3 | ≤

√
ε and with probability at

least 1− ε, Y4 has min-entropy d3 −∆− (1 + t)(d1 + l2 + d2)− log(1/ε). Also, (Y4, Y
(1)

4 , . . . , Y
(t)

4 )
is independent of (S, S(1), . . . , S(t)).

To summarize, denote the value we so far by τ = (Z,Z(1), . . . , Z(t), X1, X
(1)
1 , . . . , X

(t)
1 , Y1, Y

(1)
1 ,

. . . , Y
(t)

1 , Y3, Y
(1)

3 , . . . , Y
(t)

3 ). Define τ is good if given τ the following holds.

1. Z is not equal to Z(i) for all i.

2. |S − Ul3 | ≤
√
ε.
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3. Y4 has min-entropy d3 −∆− (1 + t)(d1 + l2 + d2)− log(1/ε).

4. (S, S(1), . . . , S(t)) is independent of (Y4, Y
(1)

4 , . . . , Y
(t)

4 ).

From above, the probability that τ is not good is O(t
√
ε). For a good τ , consider the following

hybrids.

D0: Given τ , sample X and Y . Output AdvBC(Y4, S, Z),AdvBC(Y
(1)

4 , S(1), Z(1)), . . . ,AdvBC(Y
(t)

4 ,

S(t), Z(t)).
D1: Given τ , sample Y and sample X as the source X. Compute S with τ and X and then sample

X given τ and S. Output AdvBC(Y4, S, Z),AdvBC(Y
(1)

4 , S(1), Z(1)), . . . ,AdvBC(Y
(t)

4 , S(t), Z(t)).
D2: Given τ , sample Y and sample S uniformly from {0, 1}l3 . Sample X given τ and S. Output

AdvBC(Y4, S, Z),AdvBC(Y
(1)

4 , S(1), Z(1)), . . . ,AdvBC(Y
(t)

4 , S(t), Z(t)).

D3: Given τ , sample Y and sample S uniformly from {0, 1}l3 . Sample X given τ and S. Output

Um,AdvBC(Y
(1)

4 , S(1), Z(1)), . . . ,AdvBC(Y
(t)

4 , S(t), Z(t)).

D4: Given τ , sample X and Y . Output Um,AdvBC(Y
(1)

4 , S(1), Z(1)), . . . ,AdvBC(Y
(t)

4 , S(t), Z(t)).
The distribution D0 should be the same as D1. The distribution D1 is

√
ε close to D2 since S

in D1 is
√
ε close to Ul3 . For distribution D2 and D3, since τ is good, the followings hold.

1. Z is not equal to Z(i) for all i.

2. S is uniform.

3. Y4 has min-entropy d3 −∆− (1 + t)(d1 + l2 + d2)− log(1/ε).

4. (S, S(1), . . . , S(t)) is independent of (Y4, Y
(1)

4 , . . . , Y t
4 ).

Therefore, by the security of AdvBC, the distribution D2 is ε close to D3. Similar to the argument
for the transformation from D0 to D2, it holds that |D3 −D4| ≤

√
ε. Thus, we have

|NMExt(X,Y ),NMExt(X(1), Y (1)), . . . ,NMExt(X(t), Y (t))− Um,NMExt(X(1), Y (1)), . . . ,NMExt(X(t), Y (t))|
≤ Pr[τ 6∈ good] + Pr[τ ∈ good] · |D0 −D4| ≤ O(t

√
ε).

Instantiation

1. Let d1 = C1n/t
2, d2 = C2n/t, l2 = C3n

β/t2, l1 = log(1/ε) = C4n
β/t2,∆ = C5n/t

2 and
l3 = C6n/t, where 0 ≤ C1, C2, C3, C4, C5, C6, β < 1.

2. Also, a = l1 + 2l2 ≤ (C4 + 2C3)nβ/t2.

3. Instantiate NMExt from Theorem 3.18 with min-entropy (1− γ)d1 and error 2−Ω(d1/ log(d1)).

4. Instantiate IP from Theorem 3.13 with error 2−
d1−2∆−l′2−1

2 .

21



5. Instantiate Raz from Theorem 3.15 with d2 = Ω(log(n/ε)), the min-entropy requirement for
the first source is kR = Ω(d2), the min-entropy requirement for the second source is 0.6d2 and
l3 = O(d2).

6. Instantiate AdvBC from Theorem 4.3 with l3 = Ω (at log(ad3/ε)), min-entropy Ω(at log(al3/ε))
and m = Ω(l3/(at)).

7. Set C1 ≥ 1/γC5 and for n such that n1−βC1 ≥ C4 log(C1n/t
2), the error and min-entropy

requirements for NMExt are satisfied.

8. Set C1 ≥ 2C5 + 3C4 so that the error requirement for IP is satisfied.

9. Set 0.4C2 ≥ C5 + 2C1 + 2C3 +C4 so that the min-entropy requirement for the second source
of Raz is satisfied.

10. Set 1 ≥ C5 + 2C1 + 2C3 +C4 so that the min-entropy requirements for the first source of Raz
are satisfied.

11. Set C6 ≥ 2C3 +C4 and 1 ≥ 2C1 + 2C2 + 3C3 + 4C4 +C5 so that the requirements for AdvBC
are satisfied.

For any constant t ≥ 1, the error of NMExt′ is O(t
√
ε) = 2−Ω(nβ/2) = 2−n

Ω(1)
, the output length

m is Ω(l3/(at)) = Ω(n1−β) = nΩ(1) and ∆ = C5n/t
2 = O(n). Thus, we have the following corollary.

Corollary 4.6 For any t ≥ 1, there exists constant n0, γ > 0 such that for any n > n0 there exists
a t-non-malleable 2-source extractor 2NMExt : {0, 1}n × {0, 1}n → {0, 1}m satisfying definition 4.1

with error 2−n
Ω(1)

, min-entropy (1− γ)n and output length m = nΩ(1).

We now show that (2, t)-non-malleable extractors satisfying Definition 4.1 implies standard
definition (see Definition 3.16) using the ideas developed in [CGL16]. Large parts of the following
proof is taken verbatim from [CGL16].

Lemma 4.7 Let 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m be a (2, t) non-malleable extractor for (n, k)
sources with error ε satisfying definition 4.1. Then, for any k′ ≥ k, 2NMExt is (2, t) non-malleable
extractor for (n, k′) sources with error 22t(ε+ 2k−k

′
)

Proof Let adv1 = (f1, g1), . . . , advt = (ft, gt) be arbitrary 2-split-state tampering functions. We
partition {0, 1}n in two different ways based on the fixed points of the tampering functions.

For any R ⊆ [t], define

W (R) = {x ∈ {0, 1}n : fi(x) = x for i ∈ R, and fi(x) 6= x for i ∈ [t] \R}.

Similarly, for any S ⊆ [t], define

V (S) = {x ∈ {0, 1}n : gi(x) = x for i ∈ S, and gi(x) 6= x for i ∈ [t] \ S}.

For any R ⊆ [t], let X(R) be the conditional distribution of the random variable X conditioned
on X ∈ W (R). Similarly, define Y (S) to be the conditional distribution of the random variable Y
conditioned on Y ∈ V (S). Define

D
(R,S)
adv = (Um, copy

(t)(Z
(R,S)
1 , . . . , Z

(R,S)
t , Um))
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where Z(R,S)i = 2NMExt(X(R), Y (S)) if i ∈ [t] \ (R ∩ S); else, it is equal to same∗. We define the
distribution

Dadv =
∑
R,S

α(R,S)D
(R,S)

where α(R,S) = Pr[X ∈W (R)] Pr[Y ∈ V (S)].

Claim 4.8 Let

∆(R,S) = α(R,S)|2NMExt(X(R), Y (S)), 2NMExt(adv1(X(R), Y (S))), . . . , 2NMExt(advt(X
(R), Y (S)))−D(R,S)

adv |

For any R,S ⊆ [t], ∆(R,S) ≤ 2k−k
′
+ ε.

Proof If either Pr[X ∈ W (R)] ≤ 2k−k
′

or Pr[Y ∈ V (S)] ≤ 2k−k
′

then ∆(R,S) ≤ 2k−k
′

and we are

done. So, let us assume that Pr[X ∈ W (R)] ≥ 2k−k
′

and Pr[Y ∈ V (S)] ≥ 2k−k
′
. This implies that

H∞(X(R)) and H∞(Y (S)) is at least k.
Now, let T = [t] \ (R∩ S). Then for every element i ∈ T , either fi has no fixed points or gi has

no fixed points. Then, from definition 4.1, we infer that:

|2NMExt(X(R), Y (S)), 2NMExt(advT (X(R), Y (S)))− Um, 2NMExt(advT (X(R), Y (S)))| ≤ ε

Now, the claim follows from the observation that for every i ∈ R ∩ S, both fi and gi are identity
functions on W (R) and V (S) respectively.

Now, if X and Y are sources with min-entropy at least k′, we have

|2NMExt(X,Y ), 2NMExt(adv1(X,Y )), . . . , 2NMExt(advt(X,Y ))

− Um, copy(t)(Dadv, Um)| ≤
∑
R,S

∆(R,S) ≤ 22t(ε+ 2k−k
′
).

Instantiating with the extractor from Corollary 4.6 and setting n′0 = max(n0, t
O(1)) and k′ =

(1− γ′)n for some γ′ < γ, we get the following corollary.

Corollary 4.9 For any t ≥ 1, there exists constant n′0, γ
′ > 0 such that for any n > n′0 there exists

a t-non-malleable 2-source extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m satisfying definition 3.16

with error 2−n
Ω(1)

, min-entropy (1− γ′)n and output length m = nΩ(1).

5 Strong Leakage-Resilient Non-Malleable Extractor

In this section, we give a construction of a (2, t)-non-malleable extractor where one of the tampering
functions, say g, that is tampering the source Y , can get leakage about the other source X. The
crucial property we will need is that the amount of leakage can be an arbitrary polynomial in
the length of the source Y . We call such non-malleable extractors as strong leakage-resilient non-
malleable extractors. This, in particular would require that the length of the source X to be much
larger than the length of the other source Y .
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Definition. We now define a strong leakage-resilient non-malleable extractor.

Definition 5.1 (Strong Leakage-Resilient Non-Malleable Extractor) For any polynomial
p(·), a (2, t) non-malleable extractor 2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is said to be p-
strong leakage resilient if it satisfies the following property: if X and Y are independent (n1, k1)
and (n2, k2) sources, A1 = (f1, g1), . . . ,At = (ft, gt) are t arbitrary 2-split-state tampering functions
and h : {0, 1}n1 → {0, 1}p(n2) is an arbitrary leakage function, then there exists a random variable
D−→
f ,−→g ,h on ({0, 1}m ∪ {same∗})t which is independent of the random variables X and Y , such that

|2SLNMExt(X,Y ), 2SLNMExt(f1(X), g1(h(X), Y )), . . . , 2SLNMExt(ft(X), gt(h(X), Y ))

−Um, copy(t)(D−→
f ,−→g ,h, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

Organization. This section is organized as follows. In Section 5.1, we define a weaker variant
called as leakage resilient non-malleable extractor. The main difference between this variant and
our strong leakage-resilience is that here, the sources are of same length but one of the tampering
functions can get some fractional leakage about the other source. We show that any non-malleable
extractors that works for sufficiently small min-entropy already satisfies this property. Next, in
Section 5.2, we show how to bootstrap leakage-resilience to strong leakage-resilience with the help
of a strong seeded extractor and strong two-source extractors. In Section 5.4, we give a variant of
our extractor that is additionally preimage sampleable. Finally, in section 5.5, we give a couple of
useful lemmas that will be used in the subsequent sections.

5.1 Leakage-Resilient Non-Malleable Extractors

We now give the definition of a (2, t)-leakage resilient non-malleable extractor.

Definition 5.2 (Leakage-Resilient Non-Malleable Extractor) For some µ ∈ N, a (2, t) non-
malleable extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m is said to be µ-leakage resilient if it satisfies
the following property: if X and Y are independent (n, k)-sources, A1 = (f1, g1), . . . ,At = (ft, gt)
are t arbitrary 2-split-state tampering functions and h : {0, 1}n → {0, 1}µ is an arbitrary leakage
function, then there exists a random variable D−→

f ,−→g ,h on ({0, 1}m ∪ {same∗})t which is independent

of the random variables X and Y , such that

|2NMExt(X,Y ), 2NMExt(f1(X,h(Y )), g1(Y )), . . . , 2NMExt(ft(X,h(Y )), gt(Y ))−Um, copy(t)(D−→
f ,−→g ,h, Um)| < ε

where both Um’s refer to the same uniform m-bit string.

We now prove the following lemma which states that any (2, t)-non-malleable extractor is also
a leakage-resilient non-malleable extractor. A similar result was also shown in [GKP+18] and we
include it here for the sake of completeness.

Lemma 5.3 ( [GKP+18]) Let 2NMExt : {0, 1}n × {0, 1}n → {0, 1}m be a (2, t)-non-malleable
extractor at min-entropy k and error ε. For any function h : {0, 1}n → {0, 1}µ, 2NMExt is µ-
leakage resilient at min-entropy k′ and error 2ε for any n ≥ k′ ≥ k + µ+ log 1/ε.

24



Proof Let us fix the t tampering functions A1 = (f1, g1), . . . ,At = (ft, gt) and the leakage func-
tion h. For any τ ∈ {0, 1}µ, let h−1(τ) be the set of all y ∈ {0, 1}n such that h(y) = τ . Let X,Y
be independent (n, k′) sources. Consider the following random variable D0.

D0 : Sample x ∼ X and y ∼ Y and compute τ = h(y). Output 2NMExt(x, y), 2NMExt(f1(x,
τ), g1(y)), . . . , 2NMExt(ft(x, τ), gt(y)).

Now, we will define another random variable D1 and argue that it is identically distributed to
D0.

D1 : Sample x ∼ X, y′ ∼ Y and compute τ = h(y′). Sample y ∼ Y |h(Y ) = τ and output
2NMExt(x, y), 2NMExt(f1(x, τ), g1(y)), . . . , 2NMExt(ft(x, τ), gt(y)).

D1 is identical to D0 since sampling from Y and computing τ is equivalent to first sampling τ
randomly (from the correct distribution) and then sampling Y conditioned on h(Y ) = τ .

We define a τ ∈ {0, 1}µ to be good if H∞(Y |h(Y ) = τ) ≥ k and bad otherwise. Now, from
Lemma 3.2, we infer that Prτ [τ is bad] ≤ ε and hence, Prτ [τ is good] ≥ 1 − ε. Conditioned on τ
being good, the random variables X and Y |h(Y ) = τ (denoted by the distribution Y ) in D1 are
independent (n, k)-sources. Further, if we define the left source tampering functions f τ1 , . . . , f

τ
t as

f τi (X) = f(X, τ) then (f τ1 , g1), . . . , (f τt , gt) are split-state tampering functions. This means that
there exists a random variable D−→

fτ ,−→g such that

|2NMExt(X,Y ), 2NMExt(f τ1 (X), g1(Y )), . . . , 2NMExt(f τt (X), gt(Y ))− Um, copy(t)(D−→
fτ ,−→g , Um)| < ε

We now define the random variable D−→
f ,−→g ,h as follows. Sample an independent y′ ∼ Y and compute

τ = h(y′). Now, output D−→
fτ ,−→g .

|D1 −D−→f ,−→g ,h| =
∑
τ

Pr[h(Y ) = τ ]
∣∣∣D1|τ −D−→fτ ,−→g

∣∣∣
≤

∑
τ

Pr[h(Y ) = τ ∧ τ ∈ good]
∣∣∣D1|τ −D−→fτ ,−→g

∣∣∣+
∑
τ

Pr[h(Y ) = τ ∧ τ ∈ bad]

≤ 2ε

5.2 Bootstrapping

We will now show how to bootstrap a leakage-resilient non-malleable extractor to a strong leakage-
resilient non-malleable extractor.

Building Blocks and Parameters. Let n1, n2 ∈ N and let ∆ be another parameter that will
denote the entropy loss. Let ε denote the error parameter and p(·) be any polynomial. In our
construction, we will use the following building blocks and set the parameters as shown below.

• Let 2Ext : {0, 1}n′1 × {0, 1}n′2 → {0, 1}d be a a strong two sources extractor at min-entropy
(n′1 −∆− p(n2)− log(1/ε), n′2 −∆− log(1/ε)) and error ε.
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• Let Ext : {0, 1}n1−n′1 × {0, 1}d → {0, 1}n2−n′2 be a strong seeded extractor at min-entropy
n1 − n′1 −∆− p(n2)− log(1/ε) and error ε.

• Fix µ = n′2t. Let 2NMExt : {0, 1}n2−n′2 × {0, 1}n2−n′2 → {0, 1}m be a (2, t)-non-malleable
extractor at min-entropy n2 − n′2 −∆− µ− 2 log(1/ε) and error ε. By Lemma 5.3, we infer
that 2NMExt is µ-leakage-resilient for min-entropy n2 − n′2 −∆− log(1/ε) and error 2ε.

• We set n′1 = n2 + p(n2), n′2 = 3∆, and n1 ≥ 4n2 + 2p(n2).

Construction 1. On input ((x1, x2), (y1, y)) where x1 ∈ {0, 1}n
′
1 , y1 ∈ {0, 1}n

′
2 , x2 ∈ {0, 1}n1−n′1 ,

and y ∈ {0, 1}n2−n′2 , the function 2SLNMExt is computed as follows:

1. Compute s = 2Ext(x1, y1).

2. Compute x = Ext(x2, s).

3. Output 2NMExt(x, y).

Theorem 5.4 For any polynomial p(·), 2SLNMExt described in construction 1 is a p-strong leakage-
resilient, (2, t)-non-malleable extractor at min-entropy (n1 −∆, n2 −∆) with error 8ε.

Proof Let us fix the t tampering functions A1 = (f1, g1), . . . ,At = (ft, gt) and the leakage func-
tion h. For any τ ∈ {0, 1}µ, let h−1(τ) be the set of all y ∈ {0, 1}n such that h(y) = τ . Let (X1, X2)
and (Y1, Y ) be two independent (n1, n1 − ∆) and (n2, n2 − ∆) sources. Consider the following
random variable D0.

D0 : Sample (x1, x2) ∼ (X1, X2), (y1, y) ∼ (Y1, Y ), and compute τ = h(x1, x2). Output 2SLNMExt((x1,
x2), (y1, y)), 2SLNMExt(f1(x1, x2), g1((y1, y), τ)), . . . , 2SLNMExt(ft(x1, x2), gt((y1, y), τ)).

Now, we will define another random variable D1 and argue that it is identically distributed to
D0.

D1 : Sample (x′1, x
′
2) ∼ (X1, X2), (y1, y) ∼ (Y1, Y ) and compute τ = h(x′1, x

′
2), s = 2Ext(x′1,

y1), x = Ext(x2, s). Sample (x1, x2) ∼ (X1, X2)|(h(X1, X2) = τ ∧ 2Ext(X1, y1) = s ∧ Ext(X2, s) =
x). Output 2SLNMExt((x1, x2), (y1, y)), 2SLNMExt(f1(x1, x2), g1((y1, y), τ)), . . . , 2SLNMExt(ft(x1,
x2), gt((y1, y), τ)).

The only difference between D0 and D1 is the way we sample (x1, x2). Notice that in D1, for
any y1, y, the samples (x1, x2) and (x′1, x

′
2) are from the same distribution. Also, notice that the

sample (x′1, x
′
2) in D1 and the sample (x1, x2) in D0 are from identical distributions. Therefore, D0

and D1 are identical. We now define another distribution D2.

D2 : Sample (x′1, x
′
2) ∼ (X1, X2), (y1, y) ∼ (Y1, Y ) and compute τ = h(x′1, x

′
2). Sample s ←

{0, 1}d and compute x = Ext(x′2, s). Sample (x1, x2) ∼ (X1, X2)|(h(X1, X2) = τ ∧ 2Ext(X1,
y1) = s ∧ Ext(X2, s) = x). Output 2NMExt((x1, x2), (y1, y)), 2SLNMExt(f1(x1, x2), g1((y1, y), τ)),
. . . , 2SLNMExt(ft(x1, x2), gt((y1, y), τ)).
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The only difference between D1 and D2 is that in D1, s is computed as 2Ext(x′1, y1) whereas in
D2 it is sampled uniformly at random. Now, from Lemma 3.2, we infer the following:

Pr
h(X1,X2),X2

[H∞(X1|h(X1, X2), X2) ≥ n′1 −∆− p(n2)− log(1/ε)] ≥ 1− ε (5.1)

and,
Pr
Y

[H∞(Y1|Y ) ≥ n′2 −∆− log(1/ε)] ≥ 1− ε (5.2)

It now follows that with probability at least 1 − 2ε over the randomness of sampling τ, y, and
x2, that X1|τ, x2 and Y1|y are independent random variables with min-entropy at least (n′1 −∆−
p(n2)− log(1/ε), n′2−∆− log(1/ε)). It now follows that since 2Ext is a strong two-source extractor
that D1 and D2 are ε-close when τ, y, x2 satisfy the above property. Hence, D1,D2 are 3ε-close.

D3 : Sample (x′1, x
′
2) ∼ (X1, X2), (y1, y) ∼ (Y1, Y ) and compute τ = h(x′1, x

′
2). Sample s ← {0,

1}d and sample x ∼ Un2−n′2 . Sample (x1, x2) ∼ (X1, X2)|(h(X1, X2) = τ ∧ 2Ext(X1, y1) =
s ∧ Ext(X2, s) = x). Output 2SLNMExt((x1, x2), (y1, y)), 2SLNMExt(f1(x1, x2), g1((y1, y), τ)), . . . ,
2SLNMExt(ft(x1, x2), gt((y1, y), τ)).

The only difference between D2 and D3 is in the way we sample x. In D2, x is set as Ext(x2, s) but
in D2 it sampled uniformly at random from Un2−n′2 . We define a (τ, x1) ∈ {0, 1}p(n2)×{0, 1}n′1 to be
good if H∞(X2|h(x1, X2) = τ,X1 = x1) ≥ n1−n′1−∆−p(n2)− log 1/ε. Otherwise, we call a (τ, x1)
to be bad. Now, from Lemma 3.2, we infer that Prτ,x1 [(τ, x1) is bad] ≤ ε. Conditioned on (τ, x1)
being good, X2|h(x1, X2) = τ,X1 = x1) is a (n1−n′1, n1−n′1−∆−p(n2)−log 1/ε)-source independent
of the seed s. Since Ext is a strong seeded extractor at min-entropy n1−n′1−∆− p(n2)− log(1/ε),
we have the sample Ext(x2, s) in D2 is from a distribution that is ε-close to the uniform distribution
even given the seed s. Thus, when (τ, x1) is good, D2 is ε-close to D3. Hence,

|D2 −D3| =
∑
τ,x1

Pr[h(X1, X2) = τ,X1 = x1]
∣∣∣D2|(τ, x1)−D3|(τ, x1)

∣∣∣
≤

∑
τ,x1

Pr[(h(X1, X2) = τ,X1 = x1) ∧ (τ, x1) ∈ good]
∣∣∣D2|(τ, x1)−D3|(τ, x1)

∣∣∣+∑
τ,x1

Pr[(h(X1, X2) = τ,X1 = x1) ∧ (τ, x1) ∈ bad]

< 2ε.

We now show that D3 is 3ε-close to the simulated distribution. Towards this, we define a split-

state tampering function family
−→
f ′,−→g ′ and a leakage function L′ against the underlying 2NMExt.

• Shared Randomness. Sample (x′1, x
′
2) ∼ (X1, X2) and compute τ = h(x′1, x

′
2). Sample

y1 ← Y1, s ← {0, 1}d. Sample an uniform random tape r for sampling from the distribution
(X1, X2)|h(X1, X2) = τ ∧ 2Ext(X1, y1) = s ∧ Ext(X2, s) = z for any z ∈ {0, 1}n2−n′2 . The
shared randomness includes (s, y1, τ, r).
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• L′. On input y ∈ {0, 1}n2−n′2 , L computes gi(y1, y) for every i ∈ [t] to obtain (ỹi1, ỹ
i). It

outputs (ỹ1
1, . . . , ỹ

t
1).

• g′i: g′i on input y ∈ {0, 1}n2−n′2 computes gi(y1, y) to obtain (ỹi1, ỹ
i). It outputs ỹi.

• f ′i : On input x ∈ {0, 1}n2−n′2 and the leakage (ỹi1, . . . , ỹ
t
1), f ′i uses the random tape r to sample

(x1, x2) from the distribution (X1, X2)|h(X1, X2) = τ ∧ 2Ext(X1, y1) = s ∧ Ext(X2, s) = x.4

It computes fi(x1, x2) = (x̃i1, x̃
i
2), and outputs Ext(x̃i2, 2Ext(x̃

i
1, ỹ

i
1)).

We now define D4 as follows.

D4 : Sample the shared randomness (s, y1, τ, r) as described above. Use (s, y1, τ, r) as the shared

randomness and define
−→
f ′,−→g ′, L′ as above. Sample x ∼ Un2−n′2 and y ∼ Y |Y1 = y1 and output

2NMExt(x, y), 2NMExt(f ′1(x, L′(y)), g′1(y)), . . . , 2NMExt(f ′t(x, L
′(y)), g′t(y)).

It can be easily seen that D4 is identical to D3. Further from Lemma 3.2, we infer that with
probability at least 1 − ε over the randomness of y1, Y |Y1 = y1 (denoted by Y ) is a (n2 − n′2,
n2−n′2−∆− log(1/ε)) source. Since 2NMExt is a µ-leakage-resilient (2, t)-non-malleable extractor
for min-entropy n2−n′2−∆− log(1/ε), it follows that with probability at least 1−ε over the shared
randomness (y1, s, τ, r), there exists a distribution D−→

f ′,−→g ′,L′ such that

|2NMExt(X,Y ), 2NMExt(f ′1(X,L′(Y )), g′1(Y )), . . . , 2NMExt(f ′t(X,L
′(Y )), g′t(Y ))

−Um, copy(t)(D−→
f ′,−→g ′,L′ , Um)| < 2ε.

We now define the random variable D−→
f ,−→g ,h as follows. Sample (s, y1, τ, r) as above and define

−→
f ′,−→g ′, L′ as described. Now, output D−→

f ′,−→g ′,L′ . It is easy to see from the above equation that

D−→
f ,−→g ,h and D4 are 3ε-close.

5.3 Instantiation

We now instantiate the above result with explicit protocols mentioned in section 3.

Parameters For any polynomial p and tampering degree t, the parameters can be set as follows.

1. Let ∆ = γ1n2 and log(1/ε) = C1n
γ2
2 where 0 < C1, γ1, γ2 < 1.

2. Let n′1 = n2 + p(n2), n′2 = 3∆, n1 = 4n2 + 2p(n2) and n′′2 = n2 − n′2.

3. Since n′2 = Ω(n2) = Ω(log(n1/ε)), we can instantiate 2Ext from Theorem 3.15 at min-entropy
(C2n

′
2, 0.6n

′
2) and error ε with output length d = C3n

′
2 for some constant C2, C3.

4. Instantiate Ext from Theorem 3.9 at min-entropy 2n2 and error ε.

5. Instantiate 2NMExt from Corollary 4.9 at min-entropy n′′2(1− γ) and error ε and m = n
′′Ω(1)
2 .

4Since each f ′i uses the same random tape r, it follows that each f ′i will compute the same (x1, x2) on the same
input x.
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6. Set γ1, C1 such that γ1(1 + 3C2) + C1 ≤ 1 and γ1 + C1 ≤ 0.4. Then, the min-entropy
requirements for 2Ext and Ext are satisfied.

7. Set γ1, C1 such that (3t+3γ+1)γ1+2C1 ≤ γ. Then, the min-entropy requirement for 2NMExt
is satisfied.

8. Set γ1 ≤ 1
6 so that n′′2 ≥ 1

2n2 and m = n
Ω(1)
2 .

We summarize the instantiation with the following corollary.

Corollary 5.5 For any polynomial p and constant t, there exists constants γ, n0 > 0 such that for
any n2 > n0, there exists an p-strong leakage-resilient (2, t)-non-malleable extractor 2SLNMExt : {0,
1}n1 × {0, 1}n2 → {0, 1}m with min-entropy (n1 − γn2, n2 − γn2) and error 2−n

Ω(1)
2 , where n1 =

4n2 + 2p(n2).

5.4 Efficient Pre-image Sampleability

In this subsection, we give a construction of strong leakage-resilient non-malleable extractor with
efficient pre-image sampleability. However, if we rely on the construction in section 5, the instanti-
ation discussed in section 5.3 is not efficiently preimage-sampleable since the underlying strong two
sources extractor from [Raz05] is not known to be efficiently preimage-sampleable. To solve this
problem, we modify the construction of the strong leakage-resilient (2, t)-non-malleable extractors,
which has efficient preimage sampleability but only works for the case when the sources have full
min-entropy.

Building Blocks and Parameters. In our construction, we will use the following building
blocks and set the parameters as shown below.

• Let Ext : {0, 1}n1 ×{0, 1}d → {0, 1}n2−d be a strong seeded extractor at min-entropy 2n2 and
error ε.

• Fix µ = dt. Let 2NMExt : {0, 1}n2−d×{0, 1}n2−d → {0, 1}m be a (2, t)-non-malleable extractor
at min-entropy n2 − d − dt − log(1/ε) and error ε. By Lemma 5.3, we infer that 2NMExt is
µ-leakage-resilient at min-entropy n2 − d and error 2ε.

• We set n1 > p(n2) + 2n2 + log(1/ε).

Construction 2. On input (x′, (y, s)) ∈ {0, 1}n1×{0, 1}n2 , the function 2SLNMExt is computed
as follows:

1. Compute x = Ext(x′, s).

2. Output 2NMExt(x, y).

Theorem 5.6 In the above construction, 2SLNMExt is a p-strong leakage-resilient, (2, t)-non-
malleable extractor at full with error 4ε.
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Proof Let us fix the t tampering functions A1 = (f1, g1), . . . ,At = (ft, gt) and the leakage func-
tion h. For any τ ∈ {0, 1}µ, let h−1(τ) be the set of all x ∈ {0, 1}n1 such that h(x) = τ . Let X ′, Y
be two independent sources with full entropy. Consider the following random variable D0.

D0 : Sample x′ ∼ X ′, y ∼ Y , s ← {0, 1}d and compute τ = h(x′). Output 2SLNMExt(x′, (y,
s)), 2SLNMExt(f1(x′), g1((y, s), τ)), . . . , 2SLNMExt(ft(x

′), gt((y, s), τ)).

Now, we will define another random variable D1 and argue that it is identically distributed to
D0.

D1 : Sample x ∼ X ′, y ∼ Y , s ← {0, 1}d and compute τ = h(x), x = Ext(x, s). Sample
x′ ∼ X ′|h(X ′) = τ ∧ Ext(X ′, s) = x. Output 2SLNMExt(x′, (y, s)), 2SLNMExt(f1(x′), g1((y, s),
τ)), . . . , 2SLNMExt(ft(x

′), gt((y, s), τ)).

The only difference between D0 and D1 is the way we sample x′. Notice that in D1, for any
y, s, the samples x′ and x are from the same distribution. Also, notice that the sample x in D1 and
the sample x′ in D0 are from identical distributions. Therefore, D0 and D1 are identical. We now
define another distribution D2.

D2 : Sample x ∼ X ′, x ∼ Un2−d, y ∼ Y , s ← {0, 1}d and compute τ = h(x). Sample
x′ ∼ X ′|h(X ′) = τ ∧ Ext(X ′, s) = x. Output 2SLNMExt(x′, (y, s)), 2SLNMExt(f1(x′), g1((y, s),
τ)), . . . , 2SLNMExt(ft(x

′), gt((y, s), τ)).

The only difference between D1 and D2 is in the way we sample x. In D1, x is set as Ext(x, s)
but in D2 it sampled uniformly at random from Un2 . We define a τ ∈ {0, 1}p(n) to be good if
H∞(X ′|h(X ′) = τ) ≥ 2n2. Otherwise, we call a τ to be bad. Now, from Lemma 3.2, we infer that
Prτ [τ is bad] ≤ ε. Conditioned on τ being good, X ′|h(X ′) = τ is a (n1, 2n2)-source independent of
the seed s. Since Ext is a strong seeded extractor at min-entropy 2n2, we have the sample Ext(x, s)
in D1 is from a distribution that is ε-close to the uniform distribution even given the seed s. Thus,
when τ is good, D1 is ε-close to D2. Hence,

|D1 −D2| =
∑
τ

Pr[h(X ′) = τ ]
∣∣∣D1|τ −D2|τ

∣∣∣
≤

∑
τ

Pr[h(X ′) = τ ∧ τ ∈ good]
∣∣∣D1|τ −D2|τ

∣∣∣+
∑
τ

Pr[h(X ′) = τ ∧ τ ∈ bad]

< 2ε.

We now show that D2 is ε-close to the simulated distribution. Towards this, we define a split-

state tampering function family
−→
f ′,−→g ′ and a leakage function L′ against the underlying 2NMExt.

• Shared Randomness. Sample x ∼ X ′ and compute τ = h(x). Sample s← {0, 1}d. Sample
an uniform random tape r for sampling from the distribution X ′|h(X ′) = τ ∧ Ext(X ′, s) = z
for any z ∈ {0, 1}n2−d. The shared randomness includes (s, τ, r).

• L′. On input y ∈ {0, 1}n2−d, L computes gi(y, s) for every i ∈ [t] to obtain (ỹi, s̃i). It outputs
(s̃1, . . . , s̃t).
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• g′i: For every i ∈ [t], g′i on input y ∈ {0, 1}n2−d computes gi(y, s) to obtain (ỹi, s̃i). It outputs
ỹi.

• f ′i : For every i ∈ [t], on input x ∈ {0, 1}n2−d and the leakage (s̃1, . . . , s̃t), f
′
i uses the random

tape r to sample x′ from the distributionX ′|h(X ′) = τ∧Ext(X ′, s) = x.5 It outputs Ext(fi(x
′),

s̃i).

We now define D3 as follows.

D3 : Sample x ← X ′, x ∼ Un2−d, y ∼ Y , s ← {0, 1}d and compute τ = h(x). Sample an
uniform random tape r for sampling from the distribution X ′|h(X ′) = τ ∧ Ext(X ′, s) = z for any

z ∈ {0, 1}n2−d. Use (s, τ, r) as the shared randomness and define
−→
f ′,−→g ′, L′ as above. Output

2NMExt(x, y), 2NMExt(f ′1(x, L′(y)), g′1(y)), . . . , 2NMExt(f ′t(x, L
′(y)), g′t(y)).

It can be easily seen that D2 is identical to D3. Since 2NMExt is a dt-leakage-resilient (2, t)-
non-malleable extractor at full min-entropy, it follows that for any choice of the shared randomness
(s, τ, r), there exists a distribution D−→

f ′,−→g ′,L′ such that

|2NMExt(X,Y ), 2NMExt(f ′1(X,L′(Y )), g′1(Y )), . . . , 2NMExt(f ′t(X,L
′(Y )), g′t(Y ))

−Um, copy(t)(D−→
f ′,−→g ′,L′ , Um)| < ε.

We now define the random variable D−→
f ,−→g ,h as follows. Sample independent x ∼ X ′, s ← {0, 1}d

and compute τ = h(x). Sample an uniform random tape r for sampling from the distribution
X ′|h(X ′) = τ ∧ Ext(X ′, s) = z for any z ∈ {0, 1}n2−d. Use (s, τ, r) as the shared randomness and

define
−→
f ′,−→g ′, L′ as above. Now, output D−→

f ′,−→g ′,L′ . Then, we have

|D3 − Um, copy
(t)(D−→

f ,−→g ,h, Um)|

=
∑
s,τ,r

Pr[h(X ′) = τ ∧ Ud = s ∧R = r]
∣∣∣D3|s,τ,r − Um, copy(t)(D−→

f ′,−→g ′,L′ , Um)
∣∣∣

< ε.

5.4.1 Instantiation

We now instantiate the above construction in a similar way as section 5.3 and show that the
instantiation is efficiently preimage-sampleable.

Parameters

1. Let n1 = p(n2) + 4n2.

2. Let Ext : {0, 1}n1 ×{0, 1}d → {0, 1}n2−d be the linear strong seeded extractor at min-entropy
2n2 with d = O(log2 (n/ε)) from Theorem 3.10.

5Since each f ′i uses the same random tape r, it follows that each f ′i will compute the same x′ on the same input x.
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3. Let γ be the constant in Theorem 3.17. Let 0 < γ1, γ2, γ3 < 1 be small constants such that
γ2 + 2γ3 < γ. Let t = C2n

γ2
2 and log(1/ε) = C3n

γ3
2 and d = O(log2(n/ε)) = C1n

γ1
2 for some

constants 0 < C1, C2, C3 < 1/2 such that (C1C2 + C3)1/γ < 1/2.

4. Let n′2 = n2 − d > n2/2. Let 2NMExt : {0, 1}n′2 × {0, 1}n′2 → {0, 1}n
′Ω(1)
2 be a (2, t)-non-

malleable extractor at min-entropy n′2 − n
′γ
2 with error ε from the Theorem 3.17, where we

use the fact that t < C2n
γ2
2 < n′γ2 and ε > 2−C3n

γ
2 > 2−n

′γ
2 .

Since (dt+ log(1/ε))1/γ ≤ (C1C2 + C3)1/γn2 ≤ n2/2 < n′2 and thus

n2 − d− dt− log(1/ε) > n′2 − n
′γ
2 ,

2NMExt satisfies the min-entropy requirement. We now show that the above instantiation also make
2SLNMExt efficiently pre-image sampleable. Given s ∈ {0, 1}m, pre-image sampling procedure is
stated as follows:

1. Sample (x, y) uniformly from the preimage of s in 2NMExt.

2. Sample (x′, s) uniformly from the preimage of x in Ext. Output (x′, (y, s)).

Since Ext from [Tre01, RRV02] are linear and hence efficiently pre-image sampleable and 2NMExt
from [CGL16] is efficiently pre-image sampleable, our construction is also efficiently pre-image
sampleable.

Corollary 5.7 For any polynomial p and n2, there exists an efficiently pre-image sampleable p-

strong leakage-resilient (2, n
Ω(1)
2 )-non-malleable extractor 2SLNMExt : {0, 1}n1 ×{0, 1}n2 → {0, 1}m

with min-entropy (n1, n2) and error 2−n
Ω(1)
2 , where n1 = 4n2 + p(n2) and m = n

Ω(1)
2 .

5.5 Some Useful Lemmas

In this subsection, we will give a couple of useful lemmas about p-strong leakage resilient non-
malleable extractor. These lemmas will be used in the subsequent sections for constructing multi-
source non-malleable extractors and non-malleable secret sharing. Before we give the lemmas, we
define a function Sanitize below.

Definition 5.8 The function Sanitize on input α, (x1, . . . , xs) outputs (y1, . . . , ys) where yi = same∗

if xi = α; else, yi = xi.

Lemma 5.9 For some polynomial p(·), let 2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a p-strong
leakage-resilient, (2, t)-non-malleable extractor at min-entropy (n1−∆, n2−∆) and error ε. Then,

(n1, n1−∆) and (n2, n2−∆) independent sources X,Y and for any set of tampering functions
−→
f ,

−→g and a leakage function h : {0, 1}n1 → {0, 1}p(n2), the following two distributions are O(ε+t2−m).

D0: Sample independent x, x′ ∼ X and y, y′ ∼ Y . Output 2SLNMExt(x, y) ◦ 2SLNMExt(x′, y′) ◦
Sanitize(2SLNMExt(x, y), {2SLNMExt(fi(x), gi(y, h(x)))}i∈[s]).

D1: Sample independent x, x′ ∼ X and y, y′ ∼ Y . Output 2SLNMExt(x, y) ◦ 2SLNMExt(x′, y′) ◦
Sanitize(2SLNMExt(x′, y′), {2SLNMExt(fi(x

′), gi(y
′, h(x′)))}i∈[s]).
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Proof

D0 ≈ε Um ◦ 2SLNMExt(x′, y′) ◦ Sanitize(Um, copy(t)(D−→
f ,−→g ,h, Um))

≈t2−m Um ◦ 2SLNMExt(x′, y′) ◦D−→
f ,−→g ,h

≈ε 2SLNMExt(x, y) ◦ 2SLNMExt(x′, y′) ◦D−→
f ,−→g ,h

≈ε 2SLNMExt(x, y) ◦ Um ◦D−→f ,−→g ,h
≈t2−m 2SLNMExt(x, y) ◦ Um ◦ Sanitize(Um, copy(t)(D−→

f ,−→g ,h, Um))

≈ε D1

Here, the first and the last equations follow from the security of 2SLNMExt. The second and the fifth
equations follow from the fact that D−→

f ,−→g ,h = Sanitize(Um, copy
(t)(D−→

f ,−→g ,h, Um)) with probability

1 − t2−m. The third and fourth equations follow from the fact that 2SLNMExt is a two-source
extractor.

Lemma 5.10 ( [ADKO15]) Let 2SLNMExt : {0, 1}n1 ×{0, 1}n2 → {0, 1}m be a strong p-leakage-
resilient (2, t)-non-malleable extractors with error ε. Construct (SEnc,SDec) as following: For any
pair s0, s1 ∈ {0, 1}m, let (X0, Y0) ← 2SLNMExt−1(s0) and (X1, Y1) ← 2SLNMExt−1(s1). Then,
|X0 −X1| < 2ε(2m+1 + 1) and |Y − Y ′| < 2ε(2m+1 + 1).

Proof We show that a 2SLNMExt implies a non-malleable code (via a reduction given by [CG14])
and this is sufficient to show the above lemma using [ADKO15] who showed that for any 2-split
state non-malleable code (Enc,Dec) with error ε′ and for any two messages s0, s1 ∈ {0, 1}m, it holds
that,

|L0 − L1| < 2ε′, |R0 −R1| < 2ε′

where (L0, R0)← Enc(s0) and (L1, R1)← Enc(s1).
Towards this goal, we construct (SEnc,SDec) as following:

• SEnc : {0, 1}m → {0, 1}n1 × {0, 1}n2 such that SEnc(s) outputs a uniform sample from
2SLNMExt−1(s).

• SDec : {0, 1}n1 × {0, 1}n2 → {0, 1}m such that SDec(x, y) = 2SLNMExt(x, y) for any (x,
y) ∈ {0, 1}n1 × {0, 1}n2 .

It is clear that for any s ∈ {0, 1}m, SDec(SEnc(s)) = s with probability 1, so (SEnc,SDec) is a
valid coding scheme. To prove its non-malleability, let us fix the t tampering functions A1 = (f1,
g1), . . . ,At = (ft, gt) and the leakage function h (we show that such an extractor implies a strong
form of leakage-resilient non-malleable codes). Since the 2SLNMExt is a strong p-leakage-resilient
(2, t)-non-malleable extractor with error ε, by definition 5.1, there exists a distribution D−→

f ,−→g ,h such

that for independent uniform random variables X ∈ {0, 1}n1 and Y ∈ {0, 1}n2 , it holds that

|2SLNMExt(X,Y ), 2SLNMExt(f1(X), g1(h(X), Y )), . . . , 2SLNMExt(ft(X), gt(h(X), Y ))

−2SLNMExt(X,Y ), copy(t)(D−→
f ,−→g ,h, 2SLNMExt(X,Y ))| < 2ε.
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For s ∼ Um, we note that 2SLNMExt(x, y) where (x, y) ← SEnc(s) is ε-close to 2SLNMExt(x′, y′)
where x′ ∼ Un1 and y′ ∼ Un2 . Thus, for any s ∈ {0, 1}m, by Lemma 3.7, it holds that

|2SLNMExt(f1(X), g1(h(X), Y )), . . . , 2SLNMExt(ft(X), gt(h(X), Y ))

−copy(t)(D−→
f ,−→g ,h, s)| < ε(2m+1 + 1),

where X,Y is uniformly sample from the preimage of s in 2SLNMExt. Therefore, by the definition
of SEnc and SDec we have

|SDec(f1(X), g1(h(X), Y )), . . . ,SDec(ft(X), gt(h(X), Y ))− copy(t)(D−→
f ,−→g ,h, s)| < ε(2m+1 + 1),

where X,Y = Enc(s).

6 Multi-Source Non-Malleable Extractors

In this section, we will define and construct multi-source non-malleable extractors against a wide
class of tampering function families.

6.1 Definition

Definition 6.1 (Multi-Source Non-Malleable Extractors) A function MNMExt : {0, 1}n ×
{0, 1}n . . .× {0, 1}n → {0, 1}m is a s-source non-malleable extractor against a tampering family F
at min-entropy k and error ε if it satisfies the following property: If X1, . . . , Xs are independent (n,
k)-sources and for any f ∈ F , there exists a random variable Df with support on {0, 1}m∪{same∗}
that is independent of (X1, . . . , Xs) such that

|MNMExt(X1, . . . , Xs) ◦MNMExt(f(X1, . . . , Xs))− Um ◦ copy(Df , Um)| ≤ ε

where both Um’s refer to the same uniform m-bit string and copy(x, y) =

{
x if x 6= same∗

y if x = same∗
.

Tampering Function Family. We are interested in constructing multi-source non-malleable
extractors that are secure against the tampering function families of the following form. Let T1,
. . . , Ts ⊂ [s]. The tampering family FT1,...,Ts consists of the set of all functions f = (fT1 , . . . , fTs)

such that on input (X1, . . . , Xs), f outputs (X̃1, . . . , X̃s) where for every i ∈ [s], fTi({Xj}j∈Ti) = X̃i.

In other words, X̃i is generated by applying fTi on the set of sources {Xj}j∈Ti . Depending on the
properties required from the sets {T1, . . . , Ts}, we get two interesting classes of tampering functions.

• Disjoint Tampering Family. The disjoint tampering family Fdis is the set of all FT1,...,Ts

for every possible T1, . . . , Ts such that each Ti is non-empty, |Ti| ≤ s − 1, and if x ∈ Ti, Tj
then Ti = Tj .

• Cover-free Tampering Family. For every i ∈ [s], let us define Cover(i) w.r.t. T1, . . . , Ts
to be the union of all the sets Tj where i ∈ Tj . The cover-free tampering family Fcover−free is
the set of all FT1,...,Ts for all possible T1, . . . , Ts ⊂ [s] such that for every i ∈ [s], the size of
Cover(i) w.r.t. T1, . . . , Ts is at most s− 1.

Observe that Fdis ⊂ Fcover−free and hence in the rest of the section, we will focus on constructing
non-malleable extractors that are secure against Fcover−free.
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6.2 Construction

In this subsection, we will give a construction of s-source non-malleable extractor that is secure
against Fcover−free.

Building Blocks and Parameters. In our construction, we will use the following building
blocks and set the parameters as shown below. Let n1, n2 ∈ N and let ε denote the error and ∆
denote the entropy loss parameter.

• Define the polynomial p(·) as p(x) = xs2. Let 2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m
be a p-strong leakage-resilient, (2, s)-non-malleable extractor (see Definition 5.1). Let the
min-entropy requirement of the extractor be (n1 −∆, n2 −∆) and error be ε.

• We set n = n1 + sn2.

• We set ε < 1/2m.

Construction 3. On input strings (x1, . . . , xs) where each xi ∈ {0, 1}n, the function MNMExt
is computed as follows:

1. For each i ∈ [s], partition xi into (s + 1) blocks (x(i), y
(1)
i , . . . , y

(s)
i ) where x(i) has length n1

and each y
(j)
i has length n2.

2. For each i ∈ [s], compute y(i) = y
(i)
1 ⊕ y

(i)
2 . . .⊕ y(i)

s .

3. Output 2SLNMExt(x(1), y(1))⊕ 2SLNMExt(x(2), y(2)) . . .⊕ 2SLNMExt(x(s), y(s)).

Theorem 6.2 Assume that 2SLNMExt is a p-strong leakage resilient (2, s)-non-malleable extractor
with error ε. Then, construction 2 is a s-source, non-malleable extractor against Fcover−free at min-
entropy n−∆ + log(1/ε) and error O(s(ε+ s2−m)).

Proof Let us fix a tampering function f = (fT1 , . . . , fTs) ∈ Fcover−free. Recall that by definition,
for every i ∈ [s], the size of Cover(i) w.r.t. T1, . . . , Ts is at most s−1. To prove the non-malleability
of construction 2, we need to show the existence of a distribution Df such that:

|MNMExt(X1, . . . , Xs) ◦MNMExt(f(X1, . . . , Xs))− Um ◦ copy(Df , Um)| ≤ O(s · ε+ s22−m) (6.1)

where X1, . . . , Xs are independent (n, n − ∆ + log(1/ε)). We will show equation 6.1 through a
hybrid argument where the final hybrid will give the description of the distribution Df . Before we
go to the hybrid argument, we define the following useful function.

Definition 6.3 The function split takes as input x1, . . . , xs and does the following:

• Parses xi as (x(i), y
(1)
i , . . . , y

(s)
i ) where x(i) has length n1 and each y

(j)
i has length n2.

• For each i ∈ [s], computes y(i) = y
(i)
1 ⊕ y

(i)
2 . . .⊕ y(i)

s .

• It outputs 2SLNMExt(x(1), y(1)), 2SLNMExt(x(2), y(2)) . . . , 2SLNMExt(x(s), y(s)).
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Notice that the only difference between split and MNMExt is in the last step where instead of
XORing 2SLNMExt(x(1), y(1)), 2SLNMExt(x(2), y(2)) . . . , 2SLNMExt(x(s), y(s)), split outputs these s
values.
We are ready to give the description of Hybj .

Hybj :

1. Uniformly sample b1, . . . , bj from {0, 1}m.

2. Sample (x1, . . . , xs) ∼ (X1, . . . , Xs).

3. Parse xi as (x(i), y
(1)
i , . . . , y

(s)
i ) where x(i) has length n1 and each y

(j)
i has length n2.

4. For each i ∈ [s], define y(i) = y
(i)
1 ⊕ y

(i)
2 . . .⊕ y(i)

s .

5. Run f(x1, . . . , xn) to obtain (x̃1, . . . , x̃s).

6. Let (a1, . . . , as) := split(x̃1, . . . , x̃s).

7. For i > j, let bi = 2SLNMExt(x(i), y(i)).

8. If for any i ∈ [s], ai = 2SLNMExt(x(k), y(k)) for some k ∈ [s], then replace ai with bk.

9. Output (b1 ⊕ . . .⊕ bs) ◦ (a1 ⊕ . . .⊕ as).

Notice that the output of Hyb0 is identically distributed to the first distribution in Equation 6.1.
We now show that for every j ∈ [s], Hybj ≈O(ε+s2−m) Hybj−1.

Claim 6.4 For every j ∈ [s], Hybj ≈O(ε+s2−m) Hybj−1.

Proof We will prove this claim via a reduction to the security of underlying 2SLNMExt. Towards

this goal, we will define tampering functions
−→
f ′,−→g ′ and a leakage function h′. But before we give

the description of these functions, we introduce some notation. Let Tj1 , . . . , Tjk be all the sets
among T1, . . . , Ts that contain j. We notice that by the cover-freeness property, |Cover(j)| =
|Tj1 ∪ Tj2 ∪ . . . Tjk | ≤ s− 1. In other words, there exists some j∗ such that j∗ 6∈ Cover(j).

Intuition. To give the main intuition behind the proof, assume for the sake of simplicity that
the sources X1, . . . , Xs have full min-entropy. Notice that the only difference between Hybj and

Hybj−1 is that in Hybj−1, bj is set to 2SLNMExt(x(j), y(j)) whereas in Hybj , is sampled from {0, 1}m
uniformly. Also, notice that conditioned on fixing all the values in (x1, x2, . . . , xs) in the description

of Hybj and Hybj−1 except x(j) and y
(j)
j∗ , X(j) and Y

(j)
j∗ are independent sources with full min-entropy

and further, these two sources have the same distribution in both Hybj and Hybj−1. Thus, we use
the Lemma 5.9 and argue that Hybj is statistically close to Hybj−1 by designing suitable tampering
and leakage functions.
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Description of
−→
f ′,−→g ′, h′.

• Shared Randomness. Sample (x1, . . . , xs) ∼ (X1, . . . , Xs) and fix all the values except x(j)

and y
(j)
j∗ . Let x∗ be a string of length n1 bits such that for every a ∈ {0, 1}m, there exists

some ya such that 2SLNMExt(x∗, ya) = a.6

• Description of f ′i . On input x(j), f ′i does the following:

1. If i 6∈ {j1, . . . , jk}, output x∗.

2. Else, set xj = (x(j), y
(1)
j , . . . , y

(s)
j ).

3. Apply fTi(xTi) to obtain x̃i.

4. Parse x̃i as x̃(i), ỹ
(1)
i . . . , ỹ

(s)
i and output x̃(i).

• Description of h′. On input x(j), h′ does the following.

1. Set xj = (x(j), y
(1)
j , . . . , y

(s)
j ).

2. For every i ∈ {j1, . . . , jk}, apply fTi(xTi) to obtain x̃i.

3. Parse every x̃i as x̃(i), ỹ
(1)
i . . . , ỹ

(s)
i and output {ỹ(1)

i . . . , ỹ
(s)
i }i∈{j1,...,jk}.

• Description of g′i. On input y(j) and {ỹ(1)
i . . . , ỹ

(s)
i }i∈{j1,...,jk}, g

′
i does the following.

1. Set y
(j)
j∗ = y(j) ⊕ (⊕ 6̀=j∗y

(j)
` ).

2. For every ` 6∈ {Tj1 , . . . , Tjk}, run fT`(xT`) to obtain x̃`.

3. Parse every such x̃` as x̃(`), ỹ
(1)
` . . . , ỹ

(s)
` .

4. Using the above obtained values and the output of the leakage function, compute ỹ(`) =

ỹ
(`)
1 ⊕ . . .⊕ ỹ

(`)
s for every ` ∈ [s].

5. If i ∈ {j1, . . . , jk}, output ỹ(i).

6. Else, compute zi = 2SLNMExt(x̃(i), ỹ(i)). Let y∗i be the value such that 2NMExt(x∗,
y∗i ) = zi. Output y∗i .

Analysis. Notice that the only difference between Hybj and Hybj−1 is that in Hybj−1, bj is set to

2SLNMExt(x(i), y(j)) whereas in Hybj , this value is sampled from {0, 1}m uniformly. Let us fix all

the values in x1, . . . , xs except x(j) and y
(j)
j∗ in two distributions. Let us collectively call the fixed

values as τ . Note that with probability at least 1− 2ε over sampling τ , the random variables X(j)

and Y
(j)
j∗ ⊕ (⊕ 6̀=j∗y

(j)
` ) conditioned on fixing τ are independent and have min-entropy n1 −∆ and

n2 −∆ respectively (follows from Lemma 3.2). To show that, Hybj−1 and Hybj are O(ε + s2−m)-
close to each other, we consider the following algorithm B that on input the fixed values τ and
(z, z′, a1, . . . , as) ∈ {0, 1}m × {0, 1}m × ({0, 1}m ∪ {same∗})s that does the following.

6We now argue that since ε < 1/2m such an x∗ always exists. Assume for the sake of contradiction that for every
x ∈ {0, 1}n1 , there exists some ax such that for every y ∈ {0, 1}n2 , 2SLNMExt(x, y) 6= ax. Then, for an uniform
choice of X and Y , Pr[2SLNMExt(X,Y ) = aX ] = 0 and hence the statistical distance between 2SLNMExt(X,Y ) and
Um is at least 1/2m.
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1. Uniformly sample b1, . . . , bj−1 from {0, 1}m.

2. For i > j, set bi = 2SLNMExt(x(i), y(i)).

3. If for any i ∈ [s], ai = same∗, replace ai with z′.

4. If for any i ∈ [s], ai = z′, replace ai with z.

5. If for any i ∈ [s], ai = 2SLNMExt(x(k), y(k)) for some k ∈ [s] \ {j} (obtained from τ), then
replace ai with bk.

6. Output (b1 ⊕ . . .⊕ bs) ◦ (a1 ⊕ . . .⊕ as).

We now consider a sequence of distributions D0,D1,D2 that serve as inputs to B.

D0: Let τ denote the set of all fixed values. Sample (x, y), (x′, y′) ∼ (X(j), Y
(j)
j∗ ⊕(⊕`6=j∗y

(j)
` ))|τ inde-

pendently. Output 2SLNMExt(x, y)◦2SLNMExt(x′, y′)◦Sanitize(2SLNMExt(x, y), {2SLNMExt(f ′i(x),
g′i(y, h(x)))}i∈[s])

D1: Let τ denote the set of all fixed values. Sample (x, y), (x′, y′) ∼ (X(j), Y
(j)
j∗ ⊕(⊕`6=j∗y

(j)
` ))|τ inde-

pendently. Output 2SLNMExt(x, y)◦2SLNMExt(x′, y′)◦Sanitize(2SLNMExt(x′, y′), {2SLNMExt(f ′i(x
′),

g′i(y
′, h(x′)))}i∈[s]).

D2: Let τ denote the set of all fixed values. Sample (x′, y′) ∼ (X(j), Y
(j)
j∗ ⊕ (⊕`6=j∗y

(j)
` ))|τ in-

dependently. Output Um ◦ 2SLNMExt(x′, y′) ◦ Sanitize(2SLNMExt(x′, y′), {2SLNMExt(f ′i(x
′), g′i(y

′,
h(x′)))}i∈[s]).

Notice that if B was given a sample from D0 then the output of B is O(ε+ s2−m)-close to Hybj−1

since 2SLNMExt(x′(j), y′(j)) is ε-close to Um and the probability in that any aj = Um is at most
2−m.
Since, the random variables X(j) and Y

(j)
j∗ ⊕ (⊕`6=j∗y

(j)
` ) conditioned on fixing τ are independent

and have min-entropy n1−∆ and n2−∆ with probability 1−2ε (from Lemma 3.2), it follows from
Lemma 5.9 that B(D0) and B(D1) defined above are O(ε+ s2−m)-close.

Further, notice that if B was given a sample from D2, its output is identical to Hybj . Now,

since (X(j), Y (j) ⊕ (⊕ 6̀=j∗y
(j)
` ))|τ is a source with min-entropy (n1 −∆, n2 −∆) (with probability

at least 1 − 2ε), the distribution 2SLNMExt(x, y) in D1 is ε close to Um and thus D1 is ε close to
D2. Therefore, B(D1) is O(ε) close to B(D2). This completes the proof of the claim.

We are now ready to define our simulator Df .

Df : The input to the simulator is b1, . . . , bs where each bi is m-bits long and chosen uniformly at
random. The output of this hybrid is generated as follows.

1. Sample (x1, . . . , xs) ∼ (X1, . . . , Xs)

2. Run f(x1, . . . , xn) to obtain (x̃1, . . . , x̃s).

3. Let (a1, . . . , as) := split(x̃1, . . . , x̃s).
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4. If for any i ∈ [s], ai = 2SLNMExt(x(k), y(k)) where y(k) = y
(k)
1 ⊕y

(k)
2 . . .⊕y(k)

s for some k ∈ [s],
then replace ai with bk.

5. If (a1, . . . , as) is a permutation of (b1, . . . , bs) output same∗.

6. Else, output (a1 ⊕ . . .⊕ as).

It now follows that since Df uses at most s− 1 of the values b1, . . . , bs, we get

Hybs ≡ (b1 ⊕ . . .⊕ bs) ◦ copy(Df , b1 ⊕ . . .⊕ bs) ≡ (Um, copy(Df , Um)).

This completes the proof of the theorem.

6.3 Instantiation

We now instantiate construction 3 with the strong leakage-resilient non-malleable extractors from
section 5.3.

From Theorem ?? (see also Corollary 5.5), by setting p(n2) = s2n2, there exists n0 such that for
any n2 > n0, we get could a p-strong leakage-resilient (2, s)-non-malleable extractor 2NMExt : {0,
1}n1 ×{0, 1}n2 → {0, 1}m with min-entropy (n1−∆, n2−∆) and error ε, where n1 = 4n2 + 2p(n2),

m = n
Ω(1)
2 , ∆ = γn2, ε = 2−n

Ω(1)
2 for some constant γ. We can assume m < log 1/ε since we can

cut any number of bits from the output of 2SLNMExt while the error bound ε still holds. We can
also let ∆ > 2 log 1/ε by enlarging ε.

Let n = (2s2 + s + 4)n2 and γ′ = γ/(2s2 + s + 4). From theorem 6.2, we get a s-source,

non-malleable extractor against Fcover−free at min-entropy (1− γ′)n and error 2−n
Ω(1)

with output
length nΩ(1). We summarize the instantiation with the following corollary.

Corollary 6.5 For any s ≥ 2, there exists a constant n0 and γ such that for any n > n0, there
exists a s-source, non-malleable extractor against Fcover−free at min-entropy (1 − γ)n and error

2−n
Ω(1)

with output length nΩ(1).

6.4 Efficient Pre-image sampleability

We now show that if the underlying 2SLNMExt is efficiently pre-image sampeable, then our con-
struction of multi-source non-malleable extractor is also efficiently pre-image sampleable.

Pre-image Sampling Procedure Given any msg ∈ {0, 1}m, the pre-image sampling procedure
does the following:

1. Sample msg1, . . . ,msgs−1 uniformly from {0, 1}m.

2. Set msgs = msg ⊕msg1 ⊕msg2 . . .⊕msgs−1.

3. Sample (x(i), y(i))← 2SLNMExt−1(msgi) for all 1 ≤ i ≤ s.

4. Sample y
(i)
1 , . . . , y

(i)
s−1 from {0, 1}n2 for all 1 ≤ i ≤ s.

5. Set y
(i)
s = y(i) ⊕ y(i)

1 ⊕ y
(i)
2 . . .⊕ y(i)

s−1 for all 1 ≤ i ≤ s.
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6. Output (x1, y
(1)
1 , . . . , y

(s)
1 ) ◦ (x2, y

(1)
2 , . . . , y

(s)
2 ) . . . ◦ (xs, y

(1)
s , . . . , y

(s)
s ).

It is clear that the above procedure give an uniform sample from MNMExt−1(msg), and if the step 3
can be done efficiently, which means the underlying 2SLNMExt is efficiently pre-image sampleable,
then the whole sampling procedure is also efficient.

6.4.1 Instantiation

We now instantiate 2SLNMExt from section 5.4.1. Recall that this extractor has efficient pre-image
sampleability.

From Corollary 5.7, by setting p(n2) = s2n2, we get could a p-strong leakage-resilient (2, s)-non-
malleable extractor 2SLNMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m with min-entropy (n1, n2) and error

ε, where n1 = 4n2 + p(n2), m = n
Ω(1)
2 , ε = 2−n

Ω(1)
2 and s < nγ2 for some constant γ. We assume

m < log 1/ε as above.
Let n = (s2 + s+ 4)n2, which implies n2 = nΩ(1). Let γ′ > 0 be constant such that γ′ < γ

2γ+1 .

From theorem 6.2, for any s ≤ nγ
′
, we get a s-source, non-malleable extractor against Fcover−free

at min-entropy n and error 2−n
Ω(1)

with output length nΩ(1), which is also efficiently pre-image
sampleable.

Corollary 6.6 For any s ≥ 2 and n ≥ s1/γ′, there exists an efficiently pre-image sampleable s-
source, non-malleable extractor against Fcover−free at min-entropy n and error 2−n

Ω(1)
with output

length nΩ(1).

7 Multi-Split-State Non-malleable Codes

In this section, we will define multi-split-state non-malleable codes and show how to construct the
multi-split-state non-malleable codes against a certain tampering function families, such as Fdis

or Fcover−free, from a multi-source non-malleable extractor against the same tampering function
families. The construction follows the same paradigm as in [CG14].

7.1 Definition

In this subsection, we define multi-split-state non-malleable codes, which is similar to multi-source
non-malleable extractor. The codeword is split into s states, where the tampering function for each
state takes some but not all states as input and outputs the tampered version of that state.

Definition 7.1 (Multi-Split-State Non-Malleable Codes) A coding scheme MNMEnc : {0,
1}m → {0, 1}n × {0, 1}n . . . × {0, 1}n, MNMDec : {0, 1}n × {0, 1}n . . . × {0, 1}n → {0, 1}m is a
s-split-state non-malleable code with error ε against a family of tampering functions F if for every
f ∈ F , there exists a random variable Df on {0, 1}m∪{same}t such that for all messages msg ∈ {0,
1}m, it holds that

|MNMDec(f(X1, . . . , Xs))− copy(Df ,msg)| ≤ ε
where X1, . . . , Xt = MNMEnc(msg).

Note the tampering function families Fdis and Fcover−free defined in 6.1 are also the tampering
function families for multi-split-state codes. Therefore, we could use them to define s-split-state
non-malleable codes against Fdis or Fcover−free.
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7.2 Construction

We now recall the result of [CG14] and generalize it to s-independent sources.

Theorem 7.2 ( [CG14]) Let MNMExt : {0, 1}n × {0, 1}n · · · × {0, 1}n → {0, 1}m be a s-source
non-malleable extractor against a tampering function family F with error ε. Construct (MNMEnc,
MNMDec) as following:

• MNMEnc : {0, 1}m → {0, 1}n×{0, 1}n . . .×{0, 1}n such that MNMEnc(msg) outputs a uniform
sample from MNMExt−1(msg).

• MNMDec : {0, 1}n × {0, 1}n . . . × {0, 1}n → {0, 1}m such that MNMDec(x1, . . . , xs) outputs
MNMExt(x1, . . . , xs).

Then, the above construction is a s-split-state non-malleable against F with error ε(2(m+1) + 1).

Proof It is clear that for any msg ∈ {0, 1}m, MNMDec(MNMEnc(s)) = s with probability 1,
so (MNMEnc,MNMDec) is a valid coding scheme. To prove its non-malleability, let us fix the
tampering functions f ∈ F . Since the MNMExt is a s-source non-malleable extractor against F
with error ε, by definition 6.1, there exists a distribution Df such that for independent uniform
random variables X1, . . . , Xs ∈ {0, 1}n, it holds that

|MNMExt(X1, . . . , Xs),MNMExt(f(X1, . . . , Xs))

−MNMExt(X1, . . . , Xs), copy(Df ,MNMExt(X1, . . . , Xs))| < 2ε.

For msg ∼ Um, we note that MNMExt(x1, . . . , xs) where (x1, . . . , xs) ← SEnc(M) is ε-close to
MNMExt(x′1, . . . , x

′
s) where x′1, . . . , x

′
s ∼ Un. Thus, for any msg ∈ {0, 1}m, by Lemma 3.7, it holds

that

|MNMExt(f(X1, . . . , Xs))− copy(Df ,msg)| < ε(2m+1 + 1),

where X1, . . . , Xs ← MNMExt−1(msg). Therefore, by the definition of MNMEnc and MNMDec we
have

|MNMDec(f(X1, . . . , Xs))− copy(Df ,msg)| < ε(2m+1 + 1),

where (X1, . . . , Xs) = MNMEnc(msg). This completes the proof of the theorem.

From Corollary 6.6, there exists a constant γ > 0 such that for any s ≥ 2 and n ≥ sγ ,
there exists an efficiently pre-image sampleable s-source non-malleable extractor MNMExt against
Fcover−free with error ε = 2−n

Ω(1)
and output length m = nΩ(1). We can assume m < 1/2 log(1/ε)

since we can cut any number of bits from the output of MNMExt while the error bound ε still holds.
Therefore, by the above theorem, we have the following corollary.

Corollary 7.3 For any s ≥ 2 and for all m ∈ N, there exists an efficient construction of s-split-
state non-malleable code for messages of length m that is secure against cover-free tampering with
error 2−m

Ω(1)
and codeword length (m+ s)O(1).
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8 Non-Malleable Secret Sharing

In this section, we give a construction of threshold non-malleable secret sharing schemes with
security against t-cover-free tampering.

8.1 Definition

We first give the definition of a sharing function, then define a threshold secret sharing scheme and
finally give the definition of a threshold non-malleable secret sharing. These three definitions are
taken verbatim from [GK18a].

Definition 8.1 (Sharing Function) Let [n] = {1, 2, . . . , n} be a set of identities of n parties.
Let M be the domain of secrets. A sharing function Share is a randomized mapping from M to
S1×S2×. . .×Sn, where Si is called the domain of shares of party with identity i. A dealer distributes
a secret m ∈ M by computing the vector Share(m) = (S1, . . . ,Sn), and privately communicating
each share Si to the party i. For a set T ⊆ [n], we denote Share(m)T to be a restriction of Share(m)
to its T entries.

Definition 8.2 ((t, n, εc, εs)-Secret Sharing Scheme) Let M be a finite set of secrets, where
|M| ≥ 2. Let [n] = {1, 2, . . . , n} be a set of identities (indices) of n parties. A sharing function
Share with domain of secretsM is a (t, n, εc, εs)-secret sharing scheme if the following two properties
hold :

• Correctness: The secret can be reconstructed by any t-out-of-n parties. That is, for any set
T ⊆ [n] such that |T | ≥ t, there exists a deterministic reconstruction function Rec : ⊗i∈TSi →
M such that for every m ∈M,

Pr[Rec(Share(m)T ) = m] = 1− εc

where the probability is over the randomness of the Share function. We will slightly abuse the
notation and denote Rec as the reconstruction procedure that takes in T and Share(m)T where
T is of size at least t and outputs the secret.

• Statistical Privacy: Any collusion of less than t parties should have “almost” no informa-
tion about the underlying secret. More formally, for any unauthorized set U ⊆ [n] such that
|U | < t, and for every pair of secrets m0,m1 ∈ M , for any distinguisher D with output in
{0, 1}, the following holds :

|Pr[D(Share(m0)U ) = 1]− Pr[D(Share(m1)U ) = 1]| ≤ εs

We define the rate of the secret sharing scheme as

lim
|m|→∞

|m|
maxi∈[n] |Share(m)i|

Definition 8.3 (Threshold Non-Malleable Secret Sharing [GK18a]) Let (Share,Rec) be a
(t, n, εc, εs)-secret sharing scheme for message space M. Let F be some family of tampering func-
tions. For each f ∈ F , m ∈M and authorized set T ⊆ [n] containing t indices, define the tampered
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distribution Tamperf,Tm as Rec(f(Share(m))T ) where the randomness is over the sharing function
Share. We say that the (t, n, εc, εs)-secret sharing scheme, (Share,Rec) is ε′-non-malleable w.r.t. F
if for each f ∈ F and any authorized set T consisting of t indices, there exists a distribution Df,T

over M∪ {same} such that for every m ∈M:

|Tamperf,Tm − copy(Df,T ,m)| ≤ ε′

where copy is defined by copy(x, y) =

{
x if x 6= same

y if x = same
.

Tampering Function Family. Like in the case of multi-source non-malleable extractors, we will
be interested in constructing non-malleable secret sharing against the following class of tampering
functions. Let T1, . . . , Tn ⊂ [n]. The tampering family FT1,...,Tn consists of the set of all functions
f = (fT1 , . . . , fTn) such that on input (Sh1, . . . ,Shn) (where Sh1, . . . ,Shn are the n shares output

by the Share algorithm), f outputs (S̃h1, . . . , S̃hn) where for every i ∈ [n], fTi({Shj}j∈Ti) = S̃hi. In

other words, S̃hi is generated by applying fTi on the set of shares {Shj}j∈Ti . Depending on the
properties required from the sets {T1, . . . , Tn}, we get two interesting classes of tampering functions.

• t-disjoint Tampering Family. The disjoint tampering family Ft−dis is the set of all FT1,...,Tn

for every possible T1, . . . , Tn such that each Ti is non-empty, |Ti| ≤ t − 1, and if x ∈ Ti, Tj
then Ti = Tj .

• t-cover-free Tampering Family. For every i ∈ [n], let us define Cover(i) w.r.t. T1, . . . , Tn
to be the union of all the sets Tj where i ∈ Tj . The t-cover-free tampering family Ft−cover−free
is the set of all FT1,...,Tn for all possible T1, . . . , Tn ⊂ [n] such that for every i ∈ [n], the size
of Cover(i) w.r.t. T1, . . . , Tn is at most t− 1.

Observe that Ft−dis ⊂ Ft−cover−free and hence in the rest of the paper, we will focus on con-
structing non-malleable extractors that are secure against Ft−cover−free.

8.2 Construction

In this subsection, we will give a construction of t-out-of-n non-malleable secret sharing scheme
that is secure against Ft−cover−free.

Building Blocks. In our construction, we will use the following building blocks.

• Let (Share,Rec) be a t-out-of-n Shamir secret sharing scheme. The length of each share is
same as the length of the message.

• Define the polynomial p(·) as p(x) = xn2. Let 2SLNMExt : {0, 1}n1×{0, 1}n2 → {0, 1}3m be a
p-strong leakage-resilient, (2, t)-non-malleable extractor with efficient pre-image sampleability
and error ε.

• We set ε < 1/23m.7

7Similar to the construction of multi-source non-malleable extractor in section 6.2, we need this condition since
in proof, we need the fact that there exists L∗ such that for every s ∈ {0, 1}3m there exists an Rs such that
2SLNMExt(L∗, Rs) = s.
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Construction 4. We give the description of (NMShare,NMRec).

• NMShare(s) : On input a message s ∈ {0, 1}m, do:

1. (Sh1, . . . ,Shn)← Share(s).

2. For each i ∈ [n], compute (L(i),R(i))← 2SLNMExt−1(Shi ◦ U2m).

3. For each i ∈ [n], (R
(i)
1 , . . . ,R

(i)
n )← Share(R(i)).

4. Set sharei = (L(i),R
(1)
i , . . . ,R

(n)
i ).

5. Output (share1, . . . , sharen).

• NMRec(sharei1 , . . . , sharei`) : On input (sharei1 , . . . , shareit) for distinct i1, . . . , it:

1. For each i ∈ {i1, . . . , it},

(a) Parse sharei as (L(i),R
(1)
i , . . . ,R

(n)
i ).

(b) Compute R(i) := Rec(R
(i)
i1
, . . . ,R

(i)
it

).

(c) Set Shi := 2SLNMExt(L(i),R(i))[m].

2. Output s := Rec(Shi1 , . . . ,Shit).

Theorem 8.4 For any t ≥ 2, (NMShare,NMRec) described above is a (t, n, 0, 0) secret sharing
scheme that is O(n(ε · 23m + t2−m))-non-malleable against Ft−cover−free.

Proof Correctness is easy to observe and we start with proving privacy.

Perfect Privacy. Let A = {j1, . . . , jt−1} be a set of size t − 1. It is easy to observe from the
perfect privacy of Shamir secret sharing that (R(1), . . . ,R(n)) is perfectly hidden given shareA. It
now follows that since shareA is independent of {L(i)}i∈[n]\A, shareA provides no information about
Sh[n]\A. Hence, it follows from the privacy of Shamir secret sharing that shareA perfectly hides m.

Non-Malleability. Let us fix a tampering function f = (fT1 , . . . , fTn) ∈ Ft−cover−free. Recall
that by definition, for every i ∈ [n], the size of Cover(i) w.r.t. T1, . . . , Tn is at most t− 1. To prove
the non-malleability of (NMShare,NMRec), we need to show that for every T ⊆ [n] of size t, the
existence of a distribution Df,T such that for every s ∈ {0, 1}m:

|Tamperf,Ts − copy(Df,T , s)| ≤ ε′ (8.1)

where ε′ = O(n(ε · 23m + t2−m)).
Let T = {i1, . . . , it} and let Ti1 ∪ Ti2 ∪ . . . ∪ Tit = {j1, . . . , jk} where j1 < j2 < . . . < jk. We

only consider the case where k ≥ t as otherwise, it follows from the perfect privacy that Tamperf,Ts
is independent of s. As before, we define the function split as follows.

Definition 8.5 The function split takes as input sharei1 , . . . , shareit and does the following:

1. For each i ∈ {i1, . . . , it},

(a) Parse sharei as (L(i),R
(1)
i , . . . ,R

(n)
i ).
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(b) Compute R(i) := Rec(R
(i)
i1
, . . . ,R

(i)
it

).

(c) Set Shi = 2SLNMExt(L(i),R(i))[m].

2. Output (Shi1 , . . . ,Shit).

For every ` ∈ [n+ 1], we define a hybrid Hyb` as follows.

Hyb`.

1. Compute (Sh1, . . . ,Shn)← Share(s).

2. For each i < `, set Sh′i ← {0, 1}m. For i ≥ `, set Sh′i = Shi.

3. For each i ∈ [n], compute (L(i),R(i))← 2SLNMExt−1(Sh′i ◦ U2m).

4. For each i ∈ [n], (R
(i)
1 , . . . ,R

(i)
n )← Share(R(i)).

5. Set sharei = (L(i),R
(1)
i , . . . ,R

(n)
i ).

6. For each i ∈ {i1, . . . , it}, compute fTi(shareTi) = s̃harei.

7. Compute (S̃hi1 , . . . , S̃hit) := split(s̃harei1 , . . . , s̃hareit).

8. If for any j ∈ {i1, . . . , it}, S̃hj = Sh′i for some i ∈ [n], reset S̃hj with Shi.

9. Output Rec(S̃hi1 , . . . , S̃hit).

Observe that Hyb1 is identical to Tamperf,Ts . We now show that from the p-strong leakage resilience
property of 2SLNMExt, Hyb` ≈O(ε·23m+t·2−m) Hyb`+1 for every ` ∈ [n].

Claim 8.6 For every ` ∈ [n], Hyb` ≈O(ε·23m+t·2−m) Hyb`+1.

Proof Notice that the only difference between Hyb` and Hyb`+1 is that in Hyb`+1, Sh′` is chosen
uniformly at random independent of all other values, whereas in Hyb`, it is set to Sh`. Observe that
if ` 6∈ {j1, . . . , jk} then it follows from Lemma 5.10) that Hyb` ≈O(ε·23m) Hyb`+1. We now consider
the case when ` ∈ {j1, . . . , jk}.

Recall the definition of Cover. Notice that by t-cover-freeness property of T1, . . . , Tn, |Cover(`)∩
{j1, . . . , jk}| ≤ |Cover(`)| ≤ t−1. We will now design tampering functions (f ′i1 , . . . , f

′
it

), (g′i1 , . . . , g
′
it

)
and a leakage function h′ against 2SLNMExt. Let us denote T`1 , . . . , T`c to be all the sets among
Ti1 , . . . , Tit that contain `.

Description of (f ′i1 , . . . , f
′
it

), (g′i1 , . . . , g
′
it

), h′.

• Shared Randomness. For every i ∈ [n] \ {`}, sample L(i),R(i) according to Hyb`. Sample

the Shamir shares of R(i) for every i ∈ [n]\{`} as per Hyb`. For every i ∈ Cover(`), sample R
(`)
i

as an uniformly chosen element. Let L∗ be a special string such that for every s′ ∈ {0, 1}3m,
there exists an Rs′ such that 2SLNMExt(L∗,Rs′) = s′.

• Description of f ′i . On input L(`),
−→
f ′i does the following.
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1. If i 6∈ {`1, . . . , `c}, output L∗.

2. Else, set share` = (L(`),R
(1)
` , . . . ,R

(n)
` ).

3. Apply fTi(shareTi) to obtain s̃harei.

4. Parse s̃harei as L̃(i), R̃
(1)
i . . . , R̃

(n)
i and output L̃(i).

• Description of h′. On input L(`), h′ does the following.

1. Set share` = (L(`),R
(1)
` , . . . ,R

(n)
` ).

2. For each i ∈ {`1, . . . , `c}, apply fTi(shareTi) to obtain s̃harei.

3. Parse s̃harei as L̃(i), R̃
(1)
i . . . , R̃

(n)
i .

4. Output {R̃(1)
i . . . , R̃

(n)
i }i∈{`1,...,`c}.

• Description of g′i. On input R(`) and the output of the leakage function {R̃(1)
i . . . , R̃

(n)
i }i∈{`1,...,`c},

g′i does the following.

1. Sample the Shamir shares R
(`)
1 , . . . ,R

(`)
n as shares of R(`) such that these are consistent

with the fixed values as part of shared randomness.

2. For every i 6∈ {`1, . . . , `c}, run fTi(shareTi) to obtain s̃harei.

3. Parse every such s̃harei as L̃(i), R̃
(1)
i . . . , R̃

(n)
i .

4. Using the above obtained values and the output of the leakage function, compute for

every j ∈ {i1, . . . , it}, R̃(j) = Rec(R̃
(j)
i1
, . . . , R̃

(j)
it

).

5. If i ∈ {`1, . . . , `c}, output R̃(i).

6. Else, compute zi = 2SLNMExt(L̃(i), R̃(i)). Let R∗i be the value such that 2SLNMExt(L∗,
R∗i ) = zi. Output R∗i .

Analysis. Observe that (f ′i1 , . . . , f
′
it

), (g′i1 , . . . , g
′
it

), h′ are valid tampering functions against the
p-strong leakage-resilient non-malleable extractor 2SLNMExt.We infer from Lemma 5.9 that the
following two distributions are O(ε+ t2−3m) close.

D0: Sample independent x, x′ ∼ Un1 and y, y′ ∼ Un2 . Output 2SLNMExt(x, y) ◦ 2SLNMExt(x′,
y′) ◦ Sanitize(2SLNMExt(x, y), {2SLNMExt(fi(x), gi(y, h(x)))}i∈{i1,...,it}).

D1: Sample independent x, x′ ∼ Un1 and y, y′ ∼ Un2 . Output 2SLNMExt(x, y) ◦ 2SLNMExt(x′,
y′) ◦ Sanitize(2SLNMExt(x′, y′), {2SLNMExt(fi(x

′), gi(y
′, h(x′)))}i∈{i1,...,it}).

Given a sample from D0 or D1, we first give an algorithm A that processes the sample as fol-
lows:

1. Parse the sample as 2SLNMExt(x, y) ◦ 2SLNMExt(x′, y′) ◦ (ai1 , . . . , ait).

2. Define the function Truncate that takes in (c1, . . . , ct) and outputs b1, . . . , bt where bi = same∗

if ci = same∗; else, bi = (ci)[m].
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3. Let (bi1 , . . . , bit) := Truncate(ai1 , . . . , ait).

4. Output 2SLNMExt(x, y)[m] ◦ 2SLNMExt(x′, y′)[m] ◦ (bi1 , . . . , bit).

Since D0 and D1 are O(ε+ t2−3m)-close, it follows that

A(D0) ≈O(ε+t2−3m) A(D1)

Now, 2SLNMExt(x, y) and 2SLNMExt(x′, y′) are ε-close to the uniform distribution, and hence, it
follows from Lemma 3.7 that for any Sh` in {0, 1}m,

(Sh`,Sh
′
`,Truncate(Sanitize(2SLNMExt(x, y), {2SLNMExt(fi(x), gi(y, h(x)))}i∈{i1,...,it})))

≈O(ε2m+t2−2m) (Sh`, Sh
′
`,Truncate(Sanitize(2SLNMExt(x′, y′), {2SLNMExt(fi(x

′), gi(y
′, h(x′)))}i∈{i1,...,it})))

where (x, y)← 2SLNMExt−1(Sh`‖U2m), Sh′` ∼ Um and (x′, y′)← 2SLNMExt−1(Sh′`‖U ′2m).
We now describe an algorithm B that simulates the output of Hyb` or Hyb`+1 when given a

sample from the first distribution or the second distribution of the above equation. B on input
Sh`, Sh

′
`, bi1 , . . . , bit where Sh′` does the following:

1. If for any j ∈ {i1, . . . , it}, bj = same∗, replace bj with Sh′`.

2. For every j ∈ {i1, . . . , it} such that bj = Sh′`, replace bj with Sh`.

3. For every j ∈ {i1, . . . , it} such that bj = Sh′i for some i ∈ [n] \ {`}, replace bj with Shi.

4. Output Rec(bi1 , . . . , bit).

If B was given a sample from the first distribution then the output of B is O(t2−m)-close to Hyb`
since in this case, the probability that some bj = Sh′` is 2−m; else, it is identical to Hyb`+1. This
completes the proof of the claim.

By repeated application of Claim 8.6, we infer that Hyb1 ≈O(n(ε·23m+t·2−m)) Hybn+1. We now
define another hybrid Hybn+2 and observe that Hybn+1 is identical to Hybn+2.

Hybn+2.

1. Compute (Sh1, . . . ,Shn)← Share(s).

2. For each i ≤ n, sample Sh′i ← {0, 1}m.

3. For each i ∈ [n], compute (L(i),R(i))← 2SLNMExt−1(Sh′i ◦ U2m).

4. For each i ∈ [n], (R
(i)
1 , . . . ,R

(i)
n )← Share(R(i)).

5. Set sharei = (L(i),R
(1)
i , . . . ,R

(n)
i ).

6. For each i ∈ {i1, . . . , it}, compute fTi(shareTi) = s̃harei.

7. Compute (S̃hi1 , . . . , S̃hit) := split(s̃harei1 , . . . , s̃hareit).

8. If for any j ∈ {i1, . . . , it}, S̃hj = Sh′i for some i ∈ [n], reset S̃hj with Shi.
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9. Output Rec(S̃hi1 , . . . , S̃hit).

We are now ready to define our simulator Df,T .

Df,T .

1. For each i ≤ n, sample Sh′i ← {0, 1}m.

2. For each i ∈ [n], compute (L(i),R(i))← SEnc(Sh′i ◦ U2m).

3. For each i ∈ [n], (R
(i)
1 , . . . ,R

(i)
n )← Share(R(i)).

4. Set sharei = (L(i),R
(1)
i , . . . ,R

(n)
i ).

5. For each i ∈ {i1, . . . , it}, compute fTi(shareTi) = s̃harei.

6. Compute (S̃hi1 , . . . , S̃hit) := split(s̃harei1 , . . . , s̃hareit).

7. If for any j ∈ {i1, . . . , it}, S̃hj = Sh′i for some i ∈ [n], reset S̃hj with same∗i .

8. If (S̃hi1 , . . . , S̃hit) is of the form {same∗k1
, . . . , same∗kt} for distinct k1, . . . , kt, then output same∗.

9. Sample Sh1, . . . ,Shn ← Share(0m).

10. Replace each same∗i in (S̃hi1 , . . . , S̃hit) with Shi.

11. Output Rec(S̃hi1 , . . . , S̃hit).

It now follows from the perfect privacy of Shamir secret sharing that:

Hybn+2 ≡ copy(Df,T , s)

8.3 Instantiation

From Corollary 5.7, by setting p(x) = n2x, for some γ > 0 and any n2, there exists a (2, nγ2)-
non-malleable extractor 2NMExt : {0, 1}n1 × {0, 1}n2 → {0, 1}3m at min-entropy (n1, n2) and error

ε = 2−n
γ
2 , where n1 = 4n2 + p(n2) and m = n

Ω(1)
2 . Let n = nγ2 ,m = C1n

γ1
2 , ε

′ = 2−C2n
γ2
2 , such that

0 < γ2 < γ1 < γ, 0 < C1 < C2,

0 < 3C1 + C2 < 1.

Then we have O(n(ε23m + t2−m)) < ε′, ε < 1/23m and t ≤ n = nγ2 . Therefore, from Theorem 8.4,
we could construct a (t, n, 0, 0) secret sharing scheme that is ε′-non-malleable against Ft−cover−free
with message length m. The length of each share is w = n1 + nn2 = n

O(1)
2 . Therefore, we have the

following corollary.

Corollary 8.7 For every t ≥ 2, n ≥ t and any m ∈ N, there exists an efficient construction of
t-out-of-n non-malleable secret sharing for secrets of length m against t-cover-free tampering with
error 2−m

Ω(1)
.
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9 Network Extractor Protocol

In this section, we show that a strong version of s-source non-malleable extractors give rise to a net-
work extractor protocol. We start with the definition of a network extractor protocol from [KLRZ08].

Notation. We follow the same notation that was used in [KLRZ08]. Processor i begins with
a sample from a weak source xi ∈ {0, 1}n and ends in possession of a hopefully uniform sample
zi ∈ {0, 1}m. Let b be the concatenation of all the messages that were sent during the protocol.
Capital letters such as Xi, Zi and B denote these strings viewed as random variables.

Definition 9.1 (Network Extractor Protocol [KLRZ08]) A protocol for p processors is a (t,
g, ε) network extractor for min-entropy k if for any (n, k) independent sources X1, . . . , Xp and any
choice T of t faulty processors, after running the protocol, there exists a set G ∈ [p] \ T of size at
least g such that

|B, {Xi}i 6∈G, {Zi}i∈G −B, {Xi}i 6∈G, Ugm| < ε

Here Ugm is the uniform distribution on gm bits, independent of B, and {Xi}i 6∈G.

9.1 Building Block

In this subsection, we give a building block that will be used in the construction of network extractor
protocols.

Weak Disjoint Tampering function family. The weak disjoint tampering function family
FwDis is the set of all functions given by f = (i, g). Given (x1, . . . , xs), f outputs x̃1, . . . , x̃s where
x̃i = xi and g(x[s]\{i}) = x̃[s]\{i}. In other words, the tampering function leaves the i-th source as
it is, and for the rest of the sources, it applies the tampering function g to generate their tampered
version.

Below, we give an useful definition.

Definition 9.2 The function Deduplicate takes in a1, . . . , at and removes all the duplicates in the
input. That is, if for any i ∈ [s], ai = ai1 = . . . = ai` where i < i1 < . . . < i`, then Deduplicate
removes ai1 , . . . , ai`.

We are now ready to give the definition of the building block.

Definition 9.3 ((s, t)-Strong Multi-Source Non-Malleable Extractors) A function MNMExt :
{0, 1}n×{0, 1}n . . .×{0, 1}n → {0, 1}m is a (s, t)-strong non-malleable extractor against the tamper-
ing family FwDis at min-entropy k and error ε if it satisfies the following property: If X1, . . . , Xs are
independent (n, k)-sources and for any f1 = (i, g1), . . . , ft = (i, gt) ∈ FwDis, there exists a random
variable D−→

f
with support on ({0, 1}m)t which is independent of the random variables X1, . . . , Xs,

such that

|X[s]\{i},Deduplicate(MNMExt(X),MNMExt(f1(X)), . . . ,MNMExt(ft(X)))

−X ′[s]\{i}, Um, Z| < ε

where X = (X1, . . . , Xs), Um refers to an uniform m-bit string and (X ′[s]\{i}, Z) ∼ D−→
f

.

We show in Appendix A that the construction from Section 4 satisfies this definition for s = 2.
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9.2 The protocol

In this subsection, we give the description of our network extractor protocol. Let p be the number
of processors and ∆ denote the entropy loss parameter. We use a (s,

(
p
s−1

)
)-strong non-malleable

extractor MNMExt : ({0, 1}n/p)s → {0, 1}m for min-entropy n/p−∆ and error ε against tampering
family FwDis.

Protocol 1. On input xi ∈ {0, 1}n, processor i does the following.

1. Parse xi as x
(i)
1 , . . . , x

(i)
p .

2. Broadcast {x(i)
j }j 6=i.

3. Receive {x(j)
i }j 6=i from all the processors. If some processor j does not send any message,

replace x
(j)
i with a default value.

4. For every set {i1, . . . , is−1} ⊆ [p] of size s− 1,

(a) Compute yi1,...,is−1 = MNMExt(x
(i)
i , x

(i1)
i , . . . , x

(is−1)
i ).

5. Remove the duplicates from the sequence (yi1,...,is−1)i1,...,is−1 to get y′1, . . . , y
′
k.

6. Output zi = y′1 ⊕ . . .⊕ y′k.

Theorem 9.4 For any p, s, n ∈ N, assume (s,
(
p
s−1

)
)-strong non-malleable extractor MNMExt : ({0,

1}n/p)s → {0, 1}m for min-entropy n/p−∆ and error ε against tampering family FwDis. Then, for
any t ≤ p− s and g = p− t, protocol 1 is a (t, g, 2g · ε) network extractor protocol for min-entropy
n−∆ + log(1/ε). When s = O(1), the running time of the protocol is poly(n, p).

Proof Let us denote T of size of at most t as the set of faulty processors and let G = [p] \T and
let g = p− t. We are required to show that

|B, {Xi}i 6∈G, {Zi}i∈G −B, {Xi}i 6∈G, Ugm| < 2g · ε (9.1)

Let G = {i1, . . . , ip−t}. We prove equation 9.1 via a hybrid argument. For every j ∈ [p− t+ 1],
we define Hybj as the distribution B, {Xi}i 6∈G, U(j−1)m, Zij , . . . , Zip−t . Notice that Hyb1 is identical
to the first distribution in equation 9.1 and Hybp−t+1 is identical to the second distribution in
equation 9.1. We now show the following claim which directly proves equation 9.1.

Claim 9.5 For every j ∈ [p− t], Hybj ≈2ε Hybj+1.

Proof Let us fix {Xi}i 6∈G and for every i ∈ G, fix all the values in Xi except X
(i)
ij

. Now, it follows

from Lemma 3.2 that with probability at least 1− ε, conditioned on all the fixed values, {X(i)
ij
}i∈G

are independent sources with min-entropy at least n/p−∆.
Let us consider the honest processor ij . Let us assume without loss of generality that t = p− s.

This means that |G| = s, and hence, there are s − 1 honest processors other than ij . For every
set i′1, . . . , i

′
s−1, that contains at least one faulty processor, we can view the random variables
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X
(i′1)
ij

, . . . , X
(i′s−1)

ij
in the transcript B and X

(ij)
ij

as a tampering of the sources {X(i)
ij
}i∈G using a

tampering function fi′1,...,i′s−1] ∈ FwDis (we associate each set {i′1, . . . , i′s−1} with a canonical number

from [
(
p
s−1

)
]). Thus, it follows from property of (s, t) strong non-malleable extractor that,

|{X(i)
ij
}i∈G\{ij},Deduplicate(MNMExt(X),MNMExt(f1(X)), . . . ,MNMExt(ft(X)))−{X(i)

ij }i∈G\{ij}, Um, Z| < ε

where X = (X
(ij)
ij

, {X(i)
ij
}i∈G\{ij}) and ({X(i)

ij }i∈G\{ij}, Z) ∼ D−→
f

. Notice that the first distribution

in the above equation can be used to generate B,{Zi}i 6=ij , Zij as in Hybj and the second distribution
can be used to generate B, {Zi}i 6=ij , Um as in Hybj+1.

Instantiation Let s = 2. Instantiate MNMExt from Corollary A.3 with min-entropy (1− γ)n/p
and error ε = (n/p)γ1 for some 0 < γ, γ1 < 1. By Theorem 9.4, for any t ≤ p − 2 and g = p − t,
we get a (t, g, 2g · ε) network extractor protocol at min-entropy n(1 − γ′) for some γ′ < γ/p. We
summarize the instantiation with the following corollary.

Corollary 9.6 For any p ≥ 2, there exists constants γ, n0 > 0 and γ such that for all n > n0 and
for any t ≤ p − 2, there exists a single-round, (t, p − t, 2−nΩ(1)

)-network extractor protocol for p
processors and (n, n(1− γ)) sources.
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A (2, t)-Strong Non-Malleable Extractors

In this section, we give a proof that a (2, t)-non-malleable extractor against the tampering family
FwDis is also a (2, t)-strong non-malleable extractor against FwDis (see Definition 9.3). The high
level ideas are from [Li17a] and [CGL16].

To apply the argument in [Li17a], we use the stronger definition of (2, t)-non-malleable ran-
domness extractors given in Definition 4.1. Using similar ideasn as in [Li17a], we can show the
(2, t)-non-malleable extractor is also a strong extractor, which is formalized in the following lemma.
We include the proof for the sake of completeness.
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Lemma A.1 ( [Li17a]) Let NMExt : {0, 1}n × {0, 1}n → {0, 1}m be a (2, t)-non-malleable extrac-
tor at min-entropy k and error ε against FwDis which satisfies the Definition 4.1. Then NMExt is
also a (2, t)-non-malleable extractor at min-entropy k′ and error ε′ = 2m(t+1)(ε+ 2k+1−k′) with the
following property: if X1 and X2 are independent (n, k)-sources and A1 = (f1, g1), . . . ,At = (ft, gt)
are t arbitrary 2-split-state tampering functions such that for all i ∈ [t], fi or gi has no fixed points,
then it holds that

|X1, 2NMExt(X1, X2), 2NMExt(f1(X1), g1(X2)), . . . , 2NMExt(ft(X1), gt(X2))

−X1, Um, 2NMExt(f1(X1), g1(X2)), . . . , 2NMExt(ft(X1), gt(X2))| < ε′.

Proof Let (X1, X2) be independent (n, k) sources. Fix the tampering function A1 = (f1, g1),
. . . ,At = (ft, gt) such that for all i ∈ [t], fi or gi has no fixed points.

Since NMExt is a (2, t)-non-malleable extractor at min-entropy k and error ε, it holds that

|NMExt(X1, X2),NMExt(A1(X1, X2)), . . . ,NMExt(At(X1, X2))

−Um,NMExt(A1(X1, X2)), . . . ,NMExt(At(X1, X2))| ≤ ε.

For each z, z1, . . . , zt ∈ {0, 1}m, let −→z = (z1, . . . , zt) and define the two sets as follows.

B+
z,−→z = {y : Pr[NMExt(y,X2),NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

−Pr[(Um,NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2))) = (z,−→z )] > ε},

B−
z,−→z = {y : Pr[NMExt(y,X2),NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

−Pr[(Um,NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2))) = (z,−→z )] < −ε},

We will then prove that |B+
z,−→z | ≤ 2k and |B−

z,−→z | ≤ 2k. If not, without loss of generality assume

|B+
z,−→z | > 2k. Define random variable Y as uniformly sampling y from B+

z,−→z . Then, Y is a (n, k)-
source.

Pr[NMExt(Y,X2),NMExt(A1(Y,X2)), . . . ,NMExt(At(Y,X2)) = (z,−→z )]

−Pr[Um,NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

=
∑

y∈B+
z,−→z

Pr[Y = y] Pr[NMExt(y,X2),NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

−Pr[(Um,NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

> ε,

which contradicts with the fact that NMExt is a (2, t)-non-malleable extractor with error ε. There-
fore, we have |B+

z,−→z ∪ B
−
z,−→z | ≤ 2k+1. Define B = ∪z,z1,...,zt∈{0,1}m(B+

z,−→z ∪ B
−
z,−→z ). Then we have

|B| ≤ 2m(t+1)+(k+1). Therefore, it holds that

55



|X1,NMExt(X1, X2),NMExt(A1(X1, X2)), . . . ,NMExt(At(X1, X2))

−X1, Um,NMExt(X1, X2),NMExt(A1(X1, X2)), . . . ,NMExt(At(X1, X2))|

=
∑

z,z1,...,zt∈{0,1}m

∣∣∣ ∑
y∈{0,1}n

Pr[X1 = y]
(

Pr[NMExt(y,X2),NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]

−Pr[(Um,NMExt(A1(y,X2)), . . . ,NMExt(At(y,X2)) = (z,−→z )]
)∣∣∣

≤ Pr[X1 ∈ B] + Pr[X1 6∈ B]2m(t+1)ε

≤ 2m(t+1)(ε+ 2k+1−k′).

We now show the above strong extractor satisfies security guarantees of (2, t)-strong non-
malleable extractor defined in the Definition 9.3 using the idea in [CGL16].

Theorem A.2 ( [CGL16]) Let NMExt : {0, 1}n × {0, 1}n → {0, 1}m be a (2, t)-non-malleable
extractor at min-entropy k and error ε against the tampering family FwDis which satisfies the Defi-
nition 4.1). Then, it is also a (2, t)-strong non-malleable extractor (see Definition 9.3) against the
tampering family FwDis at min-entropy k′ and error 2m(t+1)+t(ε+ 2k+2−k′) + t2t−m.

Proof Let (X1, X2) be independent (n, k) sources. Without loss of generality assume the tam-
pering function is f1 = (1, g1), . . . , ft = (1, gt) ∈ FwDis. Let ε′ = 2m(t+1)(ε + 2k+1−k′). For any
R ∈ [t], define an event

E(R) = {x2 ∈ {0, 1}n : gi(x2) 6= x2 if i ∈ R and gi(x2) = x2 if i 6∈ R}.

Let X
(R)
2 be the random variable X2 conditioned on E(R) and αR = Pr[X2 ∈ E(R)]. Let R = {i1,

..., ir} and denote the tampering results as

Z = NMExt(fi1(X1, X
(R)
2 )), . . . ,NMExt(fir(X1, X

(R)
2 )).

Define D
(R)
−→
f

= (X
(R)
2 ,Deduplicate(Z)).

We say R ∈ [t] is good if αR ≥ 2k−k
′
. For a good R, we have the entropy of X

(R)
2 is at least k.

Since gik doesn’t have fixed points on X
(R)
2 for 1 ≤ k ≤ r, by Lemma A.1 we have

|X(R)
2 ,NMExt(X1, X

(R)
2 ),NMExt(fi1(X1, X

(R)
2 )), . . . ,NMExt(fir(X1, X

(R)
2 ))−X(R)

2 , Um, Z| ≤ ε′.

Therefore, we have

|X(R)
2 ,Deduplicate(NMExt(X1, X

(R)
2 ),NMExt(fi1(X1, X

(R)
2 )), . . . ,NMExt(fir(X1, X

(R)
2 )))

−X(R)
2

′
,Deduplicate(Um, Z)| ≤ ε′

Since

X
(R)
2 ,Deduplicate(NMExt(X1, X

(R)
2 ),NMExt(f1(X1, X

(R)
2 )), . . . ,NMExt(fs(X1, X

(R)
2 ))

= X
(R)
2 ,Deduplicate(NMExt(X1, X

(R)
2 ),NMExt(fi1(X1, X

(R)
2 )), . . . ,NMExt(fir(X1, X

(R)
2 ))
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and

|X(R)
2 ,Deduplicate(Um, Z)−X(R)

2 , Um,Deduplicate(Z)| ≤ t2−m,

we have

|X(R)
2 ,Deduplicate(NMExt(X1, X

(R)
2 ),NMExt(f1(X1, X

(R)
2 )), . . . ,NMExt(fs(X1, X

(R)
2 )))

−X(R)
2

′
, Um, Z

′| ≤ ε′ + t2−m,

where (X
(R)
2

′
, Z ′) = D

(R)
−→
f

.

We now combine all the D
(R)
−→
f

as

D−→
f

=
∑
R∈[t]

αRD
(R)
−→
f
.

Let (X
(R)
2

′
, Z) = D−→

f
and (X

(R)
2
′, Z(R)) = D

(R)
−→
f

. From the above equation, it holds that

|X2,Deduplicate(NMExt(X1, X2),NMExt(f1(X1, X2)), . . . ,NMExt(fs(X1, X2)))−X ′2, Um, Z|
≤

∑
R∈[t]

αR|X(R)
2 ,Deduplicate(NMExt(X1, X

(R)
2 ),NMExt(f1(X1, X

(R)
2 )), . . . ,NMExt(fs(X1, X

(R)
2 )))

−X ′2(R), Um, Z
(R)|

≤
∑

R∈[t],R is good

αR

∣∣∣X2,Deduplicate(NMExt(X1, X
(R)
2 ),NMExt(f1(X1, X

(R)
2 )), . . . ,NMExt(fs(X1, X

(R)
2 )))

−X ′2(R), Um, Z
(R)
∣∣∣+

∑
R∈[t],R is bad

αR

≤ 2t(2k−k
′
+ ε′ + t2−m)

≤ 2m(t+1)+t(ε+ 2k+2−k′) + t2t−m.

A.1 Instantiation

By Corollary 4.6, there exists a (2, t)-non-malleable extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m
at min-entropy k = n − γn and error ε = 2−C1n

γ
1 for some constant γ,C1, γ1, where m = nΩ(1)

satisfying Definition 4.1. Let k′ = n− γ2n, ε
′ = C2n

γ3 ,m = C3n
γ4 , such that

0 < γ3 < γ4 < 1,

C2 + C3(t+ 1) + γ2 < γ + C1,

C2 > C3.

Then for large enough n, we have 2m(t+1)+t(ε+2k+2−k′)+t2t−m < ε′. Therefore, from Theorem A.2,
we have the following corollary.

Corollary A.3 For any t ≥ 1, there exists constant n0, γ > 0 such that for any n > n0 there
exists a (2, t)-strong non-malleable extractor 2NMExt : {0, 1}n×{0, 1}n → {0, 1}m against FwDis at

min-entropy n(1− γ) and error 2−n
Ω(1)

with output length m = nΩ(1).
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B A Simple Construction of Multi-Source Non-Malleable Extrac-
tors

In this part, we give an alternative construction of multi-source non-malleable extractor against
Fcover−free tampering, which is simpler, but is not efficiently pre-image sampleable.

Building Blocks and Parameters. We will use the following building blocks and set the pa-
rameters as shown below.

• Let 2NMExt : {0, 1}n′×{0, 1}n′ → {0, 1}m be a (2, s2)-non-malleable extractor at min-entropy
k and error ε in Definition 4.1.

• 2NMExt is also symmetric, which means 2NMExt(x, y) = 2NMExt(y, x) for all x, y.

• We set n′ = n+ log(s).

Construction 5. On input strings (x1, . . . , xs) where each xi ∈ {0, 1}n, the function MNMExt
is computed as follows:

1. For i ∈ [s], let Ni ∈ {0, 1}log(s) be the binary representation of number i.

2. Output ⊕i<j2NMExt(xi ◦Ni, xj ◦Nj)

Theorem B.1 MNMExt described above is a s-source non-malleable extractor against Fcover−free
at min-entropy n and error 3ε+ (s+ 1)2k

′−n, where k′ = k + log(s2n) + log(1/ε).

The theorem could extend to the case that the sources do not have full entropy, but for the sake
of simplicity here we only consider the case that all the sources have full entropy. The basic idea of
the proof is to divide the source space {(x1, . . . , xs) ∈ {0, 1}ns} according to the tampering result
(x̃1, . . . , x̃s). If (x̃1, . . . , x̃s) is the same as (x1, . . . , xs), then the tampering output is the same as
the correct output. Otherwise, there exists x̃i that is not equal to xi. Since the tampering function
is cover-free, there exists i∗ such that xi∗ is not tampered together with xi, which means xi and
xi∗ are tampered independently. Then, we could show that the tampered output is independent of
the correct output via a reduction to the multi-tampering of the underlying 2-source non-malleable
extractor.
Proof Let us fix a tampering function f = (fT1 , . . . , fTs) ∈ Fcover−free. For any x1, . . . , xs ∈ {0,
1}n, let (x̃1, . . . , x̃s) = f(x1, . . . , xs).
Define

B0 = {(x1, . . . , xs) ∈ {0, 1}ns : (x̃1, . . . , x̃s) = (x1, . . . , xs)}

and
Bi = {(x1, . . . , xs) ∈ {0, 1}ns : (x̃1, . . . , x̃i−1) = (x1, . . . , xi−1) and x̃i 6= xi}.

Then, the set {(x1, . . . , xs) ∈ {0, 1}sn} is divided into B0, B1, . . . , Bs.
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Claim B.2 For each subset Bi, there exists a distribution Di
f and a good subset B′i of Bi such that

|MNMExt(X1, . . . , Xs),MNMExt(X̃1, . . . , X̃s)− Um, copy(Di
f , Um)| < 3ε,

where X1, . . . , Xs are uniformly sampled from B′i. Also, |Bi \ B′i| < 2k
′+n(s−1), where k′ = k +

log(s2n) + log(1/ε).

Proof For Bi where i = 1, . . . , s, since f is in Fcover−free, there exists i∗ such that i and i∗ are
not tampering together. Let xJ = ({xj}j∈[s]\{i,i∗}).

Define Bi(aJ) to be the number of elements (b1, . . . , bs) in Bi such that bJ = aJ .
Define B′i = {(x1, . . . , xs) ∈ Bi : Bi(xJ) ≥ 2k

′+n}. Therefore, we have

|Bi \B′i| =
∑

xJ∈{0,1}n(s−2)

Bi(xJ)−B′i(xJ)

=
∑

xJ∈{0,1}n(s−2),Bi(xJ )<2k′+n

Bi(xJ)−B′i(xJ)

< 2k
′+n(s−1).

Let (X1, . . . , Xs) be random variables sampled uniformly from B′i. Let Ti1 , . . . , Tir be all the
sets among T1, . . . , Ts that contain i and Ri = {i1, . . . , ir}. Let us first fix XJ = xJ . Since Xi

and Xi∗ are not tampering together, Xi and Xi∗ are still independent and both sources must have
entropy at least k′. Let

τ1 = {2NMExt(Xi ◦Ni, Xj ◦Nj)}j∈J ∪ {2NMExt(X̃j1 ◦Nj1 , X̃j2 ◦Nj2)}j1,j2∈Ri,j1<j2

and

τ2 = {2NMExt(Xi∗ ◦Ni∗ , Xj ◦Nj)}j∈J ∪ {2NMExt(X̃j1 ◦Nj1 , X̃j2 ◦Nj2)}j1,j2∈[s]\Ri,j1<j2 .

Now we also fixed τ1 and τ2. Define τ1 to be good if H∞(Xi|τ1) ≥ k and bad otherwise.
Since the length of τ1 is less than s2n, by Lemma 3.2, Pr[τ1 ∈ bad] < ε. Similarly, define τ2

to be good if H∞(Xi∗ |τ2) ≥ k and bad otherwise. By Lemma 3.2, Pr[τ2 ∈ bad] < ε. Thus,

Pr[τ1 ∈ bad ∨ τ2 ∈ bad] < 2ε. Define split-state tampering functions
−→
f ′ and −→g ′ against the

underlying 2NMExt as follows.

• f ′j : For every j ∈ Ri, f ′j on input x ◦ N ∈ {0, 1}n′ , where N ∈ {0, 1}log(s), sets xi = x and
computes fTj (xTj ) to obtain x̃j . It outputs x̃j ◦Nj .

• g′j : For every j ∈ [s] \ Ri, g′j on input x ◦ N ∈ {0, 1}n′ , where N ∈ {0, 1}log(s), sets xi∗ = x
and computes fTj (xTj ) to obtain x̃j . It outputs x̃j ◦Nj .

Assume τ1 and τ2 are good. Since τ1 is independent of Xi∗ and τ2 is independent of Xi, we have
Xi and Xi∗ are independent (n, k)-sources after fixing τ1, τ2 and XJ = xJ . Also, it is easy to see
that f ′j does not have fixed point over Xi ◦ Ni for any j ∈ Ri. Since the underlying 2NMExt is a

(2, s2)-non-malleable extractor at min-entropy k and error ε which satisfies Definition ??, it holds
that

|2NMExt(Xi ◦Ni, Xi∗ ◦Ni∗), {2NMExt(f ′j1(Xi ◦Ni), g
′
j2(Xi∗ ◦Ni∗))}j1∈Ri,j2∈[s]\Ri

−Um, {2NMExt(f ′j1(Xi ◦Ni), g
′
j2(Xi∗ ◦Ni∗))}j1∈Ri,j2∈[s]\Ri | ≤ ε.
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Let
C1 = ⊕j1,j2∈[s],j1<j2,(j1,j2)6∈{(i∗,i),(i,i∗)}NMExt(Xj1 ◦Nj1 , Xj2 ◦Nj2)

and

C2 = (⊕j1,j2∈Ri,j1<j2NMExt(Xj1 ◦Nj1 , Xj2 ◦Nj2))⊕ (⊕j1,j2∈[s]\Ri,j1<j2NMExt(Xj1 ◦Nj1 , Xj2 ◦Nj2)).

Since we fix τ1, τ2 and XJ , C1 and C2 are constants. Define a distribution

D−→
f ′,−→g ′ = (⊕j1∈Ri,j2∈[s]\Ri2NMExt(f ′j1(Xi ◦Ni), g

′
j2(Xi∗ ◦Ni∗)))⊕ C2.

Then, it holds that

|MNMExt(X1, . . . , Xs),MNMExt(f(X1, . . . , Xs))− Um, D−→f ′,−→g ′ |

= |C1 ⊕ 2NMExt(Xi ◦Ni, Xi∗ ◦Ni∗), (⊕j1∈Ri,j2∈[s]\Ri2NMExt(f ′j1(Xi ◦Ni), g
′
j2(Xi∗ ◦Ni∗)))⊕ C2

−C1 ⊕ Um, D−→f ′,−→g ′ |
< ε.

Now we construct Di
f as follows.

Di
f : Sample (x1, . . . , xs) from B′i. Condition on XJ = xJ , if τ1 and τ2 are good, outputs D−→

f ′,−→g ′ .

Otherwise, outputs 0.

Then, if (X1, . . . , Xs) are random variables uniformly sampled from B′i, it holds that

|MNMExt(X1, . . . , Xs),MNMExt(f(X1, . . . , Xs))− Um, Di
f |

≤
∑

xJ∈{0,1}n(s−2)

Pr[XJ = xJ ]
∑
τ1,τ2

Pr[τ1, τ2 ∈ good|XJ = xJ ]ε+ Pr[τ1 ∈ bad ∨ τ2 ∈ bad|XJ = xJ ]

< 3ε.

Finally, for B0, we set D0
f = same∗. Since for inputs in B0 the tampered output is always equal

to the correct output, it is only left to show that MNMExt(X1, . . . , Xs) is close to Um. We pick
an arbitrary pair of sources (xi, xi∗) that is not tampering together and set xJ = ({xj}j∈[s]\{i,i∗}).

Then, we define B′0 and τ1, τ2, C1 in the same way as above. Similarly, we have |B0\B′0| < 2k
′+n(s−1)

and for a fixed xJ and fixed good τ1, τ2, Xi and Xi∗ are independent (n, k)-sources and C1 is
constant. Therefore, conditioned on xJ and good τ1, τ2, it holds that

|MNMExt(X1, . . . , Xs)− Um| = |C1 ⊕ 2NMExt(Xi ◦Ni, Xi∗ ◦Ni∗)− C1 ⊕ Um| ≤ ε.

Then using the similar argument as above, we have |MNMExt(X1, . . . , Xs) − Um| ≤ 3ε, where
(X1, . . . , Xs) are random variables uniformly sampled from B′0.

Now we combine all the Di
f together to get a distribution Df as follows.

Df : Sample (x1, . . . , xs) uniformly from {0, 1}ns. If (x1, . . . , xs) in B′i, outputs Di
f . Otherwise,

outputs 0.
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Then, it holds that

|MNMExt(X1, . . . , Xs),MNMExt(f(X1, . . . , Xs))− Um, copy(Df , Um)|

< Pr[(X1, . . . , Xs) 6∈ ∪si=0B
′
i] +

s∑
i=0

Pr[(X1, . . . , Xs) ∈ B′i]3ε

≤ 3ε+ (s+ 1)2k
′−n,

where X1, . . . , Xs are uniformly samped from {0, 1}n and k′ = k + log(s2n) + log(ε).
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