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Abstract 
Server assisted one time signature scheme was recently presented as a non-

repudiation service for mobile and constrained devices. However, the scheme 

suffered with high storage requirements for the virtual server and high memory 

requirements for the mobile client. We improve the scheme by significantly 

reducing virtual server storage requirements as well as mobile client memory 

requirements. More precisely, the virtual server storage requirements in our 

scheme are reduced by a factor of more than 80 compared to the original scheme. 

Further, memory requirements for the mobile client are reduced by a factor of 

more than 130. This is done by generating various quantities pseudorandomly 

and storing just their cryptographic hash (instead of storing them fully) wherever 

possible, while still being able to perform dispute resolution. 

 
1 Introduction 
 

Electronic transactions are a reality in today’s world. To have some legal significance, these 

transactions should have some form of non-repudiation [7]. This is usually provided through a 

digital signature. However, digital signature generation and even verification are known to be 

computationally intensive processes. It is not always practical to implement public key 

cryptography and hence digital signatures on a mobile device having limited computational 

resources and memory. Hence the question arises: “how to provide a means of non-repudiation to 

such devices on which public key cryptography is not always practical?” Answering this question 

is very important in order realize the full potential of pervasive computing. 

 

One answer is to employ a third party. If unconditionally trusted, very efficient non-repudiation 

services may be provided by the third party. In a straightforward setting, the mobile user, also 

called the originator, and the trusted third party may share a secret key. The originator would 

supply the message to be signed encrypted with that key and the third party would sign that 

message on behalf of the originator. Clearly, it is easy for the third party to cheat in this setting 

since it could sign any message on behalf of the user. 

 

Such schemes are of limited usage since they require the originator to have unconditional trust in 

the third party. More practical, though less efficient, techniques are possible in which if the third 

party cheats, the originator is able to prove this cheating to an arbiter. The third party in this 

setting is called a verifiable server (VS). The first practical scheme under this category was 

devised by Asokan et al [7]. However, it suffered from several limitations as discussed in section 

3. This scheme was recently improved by Bicakci and Baykal [1] to propose server assisted one 

time signatures (SAOTS). SAOTS, although practical, suffered from storage problems. The 

storage requirements for the VS in this scheme were quite high and ever increasing. More 

precisely, for every signature generated, the VS was required to add approximately 5 KB to its 



 

 

storage. Assuming that a user signs just a single message per day and the VS supports just ten 

thousand users, the storage requirements for the VS start becoming prohibitive in just 1 year. 

Clearly, it is not desirable to use this scheme on a large scale in a commercial setting. 

Additionally, the mobile device was required to store about 2.7 KB of secret data in its memory 

in order to be able to use this scheme. For a device which cannot generate or verify signatures, 

storing this data in its memory could also be prohibitive. 

 

OUR CONTRIBUTION. We improve the SAOTS construction trying to decrease the storage 

requirements for the VS as well as the memory requirements for the mobile client. By generating 

one time signature keys pseudorandomly and introducing a new server storage and dispute 

resolution scheme, we are able to substantially reduce the VS storage requirements as well as the 

mobile client memory requirements. Only 60 bytes per signature generation are added to the VS 

storage instead of 5 KB in the previous scheme. Further, the memory requirements for the mobile 

client are reduced from 2.7 KB to just 20 bytes. The computational requirements in our scheme 

remain mostly the same as in the previous scheme [1]. 

 

Rest of the paper is organized as follows. Section 2 provides some background on one time 

signatures. Section 3 discusses the related work. Section 4 discusses the proposed construction of 

the SAOTS scheme and various issues involved in it. Section 5 concludes the paper. 

 
2 Background on One Time Signatures 
 

The Concept of One time signatures (OTS) has been known for over two decades. It was initially 

proposed by Lamport and was the first digital signatures scheme ever designed. Interestingly, 

OTS schemes employ nothing more than OWHFs. The concept of OTS was subsequently 

enhanced by Merkle [17-18], Winternitz [17] and Bicakci et al [22]. Bleichenbacher et al [19-21] 

formalized the concept of OTS using directed acyclic graphs (DAGs). 

 

Let h be a one way function. To sign a one bit message [16], the signer chooses as the secret key 

two values x1 and x2 (representing ‘0’ and ‘1’) and publishes their images under the one-way 

function, y1 = h(x1) and y2 = h(x2), as the public key. These x’s and y’s are called the secret key 

components and the public key components, respectively. To sign a single bit, reveal the pre-

image corresponding to the actual ‘0’ or ‘1’. That is, reveal either x1 or x2 based upon whether the 

message to be signed is 0 or 1. For signing longer messages, several instances of this basic 

scheme may be used. Thus we note that to sign an n bit message, 2n x’s and 2n y’s are required. 

This means that the size of signatures generated is equal to n x’s, i.e., n times the size of the secret 

values. 

 

There are several improvements to this basic scheme. Most notably, Merkle [17, 18] proposed an 

improvement which reduces the number of public and secret key components as well as the 

signature size in the Lamport method by almost a factor of two.  

 
3 Related Works 
 

Server assisted signatures could come in 3 varieties depending upon the trusted placed in the 

server. It is possible to obtain perfectly elegant schemes if the server is fully trusted. However for 

obvious reasons, these schemes are useful only in very limited environments. On the other 

extreme, the server could be completely untrusted. That is, it would assist the client only in non-

security sensitive computations. As noted by Bicakci et al [1], it turns out to be rather hard to 

design useful schemes utilizing a completely untrusted server. Indeed, most of the schemes 



 

 

suggested in this category have been broken. However, for DSA, a secure and still unbroken 

scheme was proposed by Jakobson and Wetzel [6]. They however compromise on efficiency. 

That is in their approach, to generate the signature, public key operations although in reduced 

amount are still needed to be performed on the constrained device [1]. 

 

The last alternative is to employ a semi-trusted server also called a verifiable server (VS). A VS 

can cheat at will, but then the user would have the ability to prove the cheating in a court of law. 

Thus, the protocols are designed so as to leave the user with a cryptographic proof against the VS 

in case it cheats. 

 

The first work in the category is the SAS protocol [7, 8]. Here, the basic idea is to employ hash 

chains [15] to gain efficiency. The server signs a message initially which the client verifies and 

releases a link of the hash chain to certify its validity. To ensure that the server is not signing 

multiple messages per hash chain link, the client should store all the signatures ever generated by 

the server on its behalf. Bicakci et al [1] observe several serious limitations of the SAS protocol. 

Firstly, for every signature request, the client is required to perform a signature verification which 

could be expensive (especially when employing schemes like DSS). Secondly, as noted above, 

the constrained client should store all the signatures VS generated on its behalf which may be 

impractical. Finally, SAS signatures are not ‘standard’ signatures and they are not compatible 

with existing applications. 

 

SAS was recently improved by Bicakci and Baykal [1] to propose server assisted one time 

signatures (SAOTS). SAOTS is the first VS based approach where the user does not need to 

perform any public key operation at all. It eliminates all the aforementioned problems with SAS. 

That is, it is compatible with existing applications, doesn’t require the client to store all the 

signatures and even reduces the number of rounds required from 3 to 2. The basic idea is that the 

user signs the message with a one time signature key pair and sends it to the VS. The VS in turn 

stores the user’s one time signature and signs the message with the traditional public key. More 

details follow. 

 

For system setup, every user registers to the VS and generates a one-time key pair by randomly 

generating secret key components. In a secure fashion, the user distributes the public key to the 

server. For getting a message signed by the VS, the user precomputes a second one-time key pair. 

When the message to be signed is ready, he concatenates the message with the new one-time 

public key and signs this by his previous one-time private key. He then sends the message and the 

new one-time public key as well as the one-time signature to VS. VS verifies the received one-

time signature using the one time public key received in the previous step. He stores the new one-

time public key the user has signed for the verification of next message. VS also stores the 

received signature. He is now ready to sign the message with the user’s private key. Finally, the 

signed message is transmitted to the intended receiver(s). 

 

The user can sign any further messages easily by repeating the above steps. Dispute resolution is 

straightforward since VS stores all the public keys and signatures received form the user. 

 

The main problems in this scheme are the high storage requirements for the VS and memory 

requirements for the user. Recall that for SHS and Merkle’s construction of one time signatures, 

the number of secret (or public) key components = 160 + log(160) = 168. For every signature, the 

VS is required to store: the message to be signed = 20 bytes, the public key = 168*20 = 3360 

bytes and the signature = (168/2)*20 = 1680 bytes. Hence, the total storage increase for every 

signature is 20 + 3360 + 1680 = 5060 bytes or approximately 5 KB. As explained in Section 1, 

even for the minimal parameters, the storage requirements for the VS start becoming prohibitive 



 

 

soon in such a setting. Further, the user is required to remember the last secret key components in 

order to be able to sign the next message. For 128 bit random numbers, the user memory 

requirements comes out to be approximately 168*16 = 2.7 KB. This can also be prohibitive for a 

device which cannot even generate or verify signatures. 

 
4 The Proposed Construction 
 

Before going further, we introduce some basic notations used in this section: 

 

U The mobile user or the originator 

VS Verifiable Server 

R Receiver of the signature 

L Length of the output of OWHF employed, e.g., 160 bit for SHS  

m Number of public/secret key components used in the OTS scheme. Equal to 

L+log2(L) for Merkle’s construction 

p Average number of components in a one time signature. Usually equal to m/2. 

PU
i
 i

th
 one time public key of user U. Equal to the collection (or Concatenation) of m 

public key components 

SU
i
 i

th
 one time secret key of user U. Equal to the collection (or Concatenation) of m 

secret key components 

SU
i
(M) The message M signed with the one time secret key SU

i
. Equal to the collection (or 

Concatenation) of the relevant secret key components required to sign M 

PU Traditional public key of the user U 

SU(M) Message M signed with the traditional secret key of the user U 

 

4.1 Setup 
 

In order to initialize the system, the mobile user U initiates a counter i = 1 and generates the 

following- 

1) A secret key K 

2) A one time key pair as follows- 

SU
i
 = {h(K, i, 1), h(K, i, 2), … , h(K, i, m)} 

PU
i
 = {h

2
(K, i, 1), h

2
(K, i, 2), … , h

2
(K, i, m)} 

 

Now, the user securely stores K and i and transfers PU
1
 to the VS in a non-repudiable manner.  

 

U ���� VS: PU
1
 

 

In addition, to produce traditional public key signatures on behalf of the user, the VS generates a 

public/secret key pair i.e. PU/SU on behalf of the user and obtains a certificate from the CA 

specifying the public key PU. Note that the secret key SU is not revealed even to U itself. 

 

 

 

 

 

 

 

 

 

 



 

 

4.2 Operation 
 

 
 

Figure 1: Operation of the Proposed Scheme 

 

 

For generating the i
th
 signature, the protocol works as follows- 

 

1) The user precomputes the next i.e. (i+1)
th
 one time public/secret key pair (see section 

4.1). When the message to be signed is ready, he concatenates the hash of the message 

with the hash of the computed one-time public key and signs the resulting quantity with 

his current i.e. i
th
 one time secret key. He then sends this signature along with the hash of 

the message and the computed public key to VS. 

 

U ���� VS: SU
i
(h(Mi), h(PU

i+1
)), h(Mi), PU

i+1 

 

2) VS checks the validity of the received signature using the stored PU
i
. It then stores the 

following- 

a) h(Mi) 

b) h(SU
i
(h(Mi), h(PU

i+1
)))

 

c) h(PU
i
)
 

 

VS then replaces the stored PU
i
 with the received PU

i+1
. Now, VS produces a traditional 

public key digital signature to sign the message h(Mi) using user’s secret key SU. This 

signature is then directly sent to the receiver R if specified in the user’s request. 

Alternatively, the signature may also be returned to the user. 

 

VS ���� R: SU(h(Mi))
 

 

This completes our description of the proposed scheme. Observer that as with SAOTS, the 

scheme is fully transparent to the receiver since the signature is a standard signature. The 

certificate of the user specifying PU may be supplied along with the signature if required. The 

receiver does not need to have a custom built software to check the validity of the signature. This 

User Server 

Receiver 

SU
i
(h(Mi), h(PU

i+1
)) 

h(Mi), PU
i+1
 

SU(h(Mi)) 



 

 

is in contrast to SAS. Further, the user is not required to perform any public key operations 

whereas in SAS, digital signature verification was required by the user. 

 

4.3 Analysis 
 

First observe that for every signature generated, the VS has to add 3 hash values to its storage, 

i.e., for the i
th
 signature, the VS has to store the following: 1) h(Mi), 2) h(SU

i
(h(Mi), h(PU

i+1
))), and 

3) h(PU
i
). Thus, a signature costs only 60 bytes to the VS. Clearly, this is a significant 

improvement over [1] in which the VS had to add about 5 KB to its storage as explained in 

section 3. After generating i signatures for the user U, the VS stores the following- 

 

{h(M1), h(SU
1
(h(M1), h(PU

2
))), h(PU

1
)}, {h(M2), h(SU

2
(h(M2), h(PU

3
))), h(PU

2
)}, … , {h(Mi), 

h(SU
i
(h(Mi), h(PU

i+1
))), h(PU

i
)}, PU

i+1
 

 

Now, consider memory requirements for the mobile user. In our scheme, the user is only required 

to store the 128 bit secret key K along with the counter i. Assuming a 32 bit counter, the memory 

requirements for the user comes out to be 20 bytes. This is about 135 times less than that in the 

original scheme [1] for which the requirements are about 2.7 KB as explained previously. 

 

4.4 Dispute Resolution 
 

A dispute arises in case a user U claims that the VS has signed a message M on his behalf which 

he did not request the VS to sign. The prerequisite for this claim is that U should produce the 

signature on M generated by the VS on his behalf. Now, the arbiter asks VS to prove that the 

message M was indeed requested by U to be signed. Additionally, since in our scheme the VS 

does not store full one time signatures and public keys, the arbiter also asks U to cooperate in the 

process (although U may not do so honestly). 

 

At this point, assume that VS has generated n signatures on behalf of the user U. Thus, VS stores 

the following: 

 

{h(M1), h(SU
1
(h(M1), h(PU

2
))), h(PU

1
)}, {h(M2), h(SU

2
(h(M2), h(PU

3
))), h(PU

2
)}, … , {h(Mn), 

h(SU
n
(h(Mn), h(PU

n+1
))), h(PU

n
)}, PU

n+1 

 

The dispute resolution protocol proceeds in n steps. The i
th
 step of the process takes place as 

follows for 1 ≤ i ≤ n 

 

(1) The VS submits the stored h(SU
i
(h(Mi), h(PU

i+1
))) to the arbiter. 

 

(2) VS demands PU
i
 and SU

i
(h(Mi), h(PU

i+1
)) from U after supplying him h(Mi) and  h(PU

i+1
). 

U generates SU
i
 and PU

i
 using the secret key K (see footnote

1
) and signs the concatenation 

of supplied h(Mi) and  h(PU
i+1
) using SU

i
. U cannot supply a wrong PU

i
 since he signed 

h(PU
i
) in the previous i.e. (i-1)

th
 step

2
. He cannot supply a wrong signature SU

i
(h(Mi), 

h(PU
i+1
)) since the signature can be verified using the supplied key PU

i
. 

 

                                                           
1
 Note that it is immaterial how U generates one time key pairs SU

i
’s and PU

i
’s. VS cannot and need not 

ensure that U is following the correct formula for generating one time key pairs during any phase in the 

scheme. The sole purpose of specifying a formula for SU
i
 and PU

i
 is to put the responsibility of supplying 

signatures and public keys on U instead of the VS. 
2
 for i = 1, U cannot supply a wrong key since PU

1
 was the initial key registered using non-repudiable 

means. 



 

 

(3) The arbiter computes the hash of the signature h(SU
i
(h(Mi), h(PU

i+1
))) supplied by U and 

matches it with hash of the signature submitted by VS in (1). If they do not match, the VS 

is concluded to be the cheater. Otherwise, the arbiter concludes the following- 

a) VS was requested by U to sign h(Mi) 

b) Hash of the next one time public key to be supplied by U should be h(PU
i+1
). 

 

If the hash of the disputed message, i.e., h(M) equals h(Mi), the dispute is resolved in the favour 

of VS. Else if i equal n, i.e., all message stored by VS have been checked and none equals M, the 

dispute is resolved in the favour of the user U. Otherwise, i is incremented and the process 

continues with step (1) again. 

 

Now, we summarize the computational and storage requirements for SAOTS and our scheme for 

all the 3 parties involved. 

 

Notations: 
H: hash computation 

S: generation of traditional public key signature 

V: verification of traditional public key signature 

E: OTS encoding computation (costs less than one hash) 

p: number of hash computations to verify OTS 

m: number of public key components in the OTS scheme 

K: size of secret key of the user 

C: size of the signature counter 

 

 Party Name SAOTS original Proposed Construction 

User 1H + 1E 1H + 1E 

Server 1E + (p+2)H + 1S 1E + (p+3)H + 1S 

 

Computational Requirements 

Receiver 1H + 1V 1H + 1V 

User mH 1K + 1C 

Server (m+p+1)H 3H 

 

Storage Requirements 

Receiver _ _ 

 

Table 1: Objective comparison of the proposed scheme with the original SAOTS scheme 

 
5 Conclusion 
 

Server assisted signature schemes try to provide a means of non-repudiation for constrained and 

mobile devices having limited computational and memory resources. SAOTS seems to be the 

most practical server assisted signature scheme. However, the main problem with SAOTS was 

high storage requirements for the VS and memory requirements for the mobile client. 

 

We improved the SAOTS construction by addressing both of the above concerns. By generating 

one time signature keys pseudorandomly and introducing a new server storage and dispute 

resolution scheme, we are able to substantially reduce the VS storage requirements as well as the 

mobile client memory requirements. Only 60 bytes per signature generation are added to the VS 

storage instead of 5 KB in the previous scheme. Further, the memory requirements for the mobile 

client are reduced from 2.7 KB to just 20 bytes. The resulting construction seems to be practical 

from both computational as well as storage point of view. 

 



 

 

References 
 

[1] Kemal Bicakci and Nazife Baykal, “Server Assisted Signatures Revisited”, T. Okamoto 

(Ed.): CT-RSA 2004, LNCS 2964, pp. 143–156, 2004. 

[2] M. Burnside, D. Clarke, T. Mills, A. Maywah, S. Devadas, and R. Rivest. Proxy- Based 

Security Protocols in Networked Mobile Devices. Proceedings of the 17
th
 ACM 

Symposium on Applied Computing (Security Track), March 2002. 

[3] A. Boldyreva, A. Palacio, and B. Warinschi. Secure Proxy Signature Schemes for 

Delegation of Signing Rights. Cryptology ePrint Archive, Report 2003/096, 2003, 

http://eprint.iacr.org. 

[4] P. Beguin and J. J. Quisquater. Fast server-aided RSA signatures secure against active 

attacks. CRYPTO 95, LNCS No. 963, Springer-Verlag, 1995. 

[5] P. Nguyen and J. Stern. The Beguin-Quisquater server-aided RSA protocol from Crypto 

’95 is not secure. ASIACRYPT 98, LNCS No. 1514, Springer-Verlag, 1998. 

[6] M. Jakobsson and S. Wetzel. Secure Server-Aided Signature Generation. In Proc. of the 

International Workshop on Practice and Theory in Public Key Cryptography (PKC 2001), 

LNCS No. 1992, Springer, 2001. 

[7] N. Asokan, G. Tsudik and M. Waidners. Server-supported signatures. Journal of 

Computer Security, November 1997. 

[8] X. Ding, D. Mazzocchi and G. Tsudik. Experimenting with Server-Aided Signatures. 

Network and Distributed Systems Security Symposium (NDSS’02), February 2002. 

[9] K. Bicakci and N. Baykal. SAOTS: A New Efficient Server Assisted Signature Scheme 

for Pervasive Computing. In Proc. of 1st International Conference on Security in 

Pervasive Computing, SPC 2003, LNCS No. 2802, March 2003, Germany. 

[10] K. Bicakci and N. Baykal. Design and Performance Evaluation of a Flexible and Efficient 

Server Assisted Signature Protocol. In Proc. of IEEE 8th Symposium on Computers and 

Communications, ISCC 2003, Antalya, Turkey. 

[11] R. Gennaro and P. Rohatgi. How to Sign Digital Streams. CRYPTO 1997, LNCS No. 

1294, Springer-Verlag, 1997. 

[12] National Institute for Standards and Technology. Digital Signature Standard (DSS). 

Federal Register, 56(169), August 30, 1991.  

[13] National Institute of Standards and Technology (NIST), "Announcing the Secure Hash 

Standard", FIPS 180-1, U.S. Department of Commerce, April 1995. 

[14] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining digital signatures 

and public-key cryptosystems”, Communications of the ACM, 21(2):120–126, 1978. 

[15] L. Lamport, “Password Authentication with Insecure Communication”, Communications 

of the ACM 24.11 (November 1981), pp 770-772. 

[16] Kan Zhang, Efficient Protocols for Signing Routing Messages, Proceedings of the 

Network and Distributed System Security Symposium, San Diego, California, USA, 

1998. 

[17] R.C. Merkle, A Digital Signature Based on a Conventional Encryption Function, Proc. 

CRYPTO’87, LNCS 293, Springer Verlag, 1987, pp 369-378. 

[18] R.C. Merkle, A Certified Digital Signature, Proc. CRYPTO’89, LNCS 435, Springer 

Verlag, 1990, pp 218-238. 

[19] D. Bleichenbacher and U.M. Maurer, Directed Acyclic Graphs, One-way Functions and 

Digital Signatures, Proc. CRYPTO’94, LNCS 839, Springer Verlag, 1994, pp 75-82. 

[20] D. Bleichenbacher, U.M. Maurer, Optimal Tree-Based One-time Digital Signature 

Schemes, Proc. STACS’96, LNCS 1046, Springer-Verlag, pages: 363-374, 1996. 

[21] D. Bleichenbacher, U.M. Maurer, On the efficiency of one-time digital signatures, Proc. 

ASIACRYPT’96, LNCS 1163. Springer-Verlag, pages: 145-158, 1996. 



 

 

[22] K. Bicakci, G. Tsudik, B. Tung, How to construct optimal one-time signatures, Computer 

Networks (Elsevier), Vol.43(3), pp. 339-349, October 2003. 

 


