
Information-Theoretic 2-Round MPC without Round
Collapsing: Adaptive Security, and More

Huijia Lin1, Tianren Liu1, and Hoeteck Wee2

1University of Washington, Seattle, US
{rachel,tianrenl}@cs.washington.edu

2NTT Research and ENS, Paris, France
wee@di.ens.fr

Abstract

We present simpler and improved constructions of 2-round protocols for secure multi-
party computation (MPC) in the semi-honest setting. Our main results are new information-
theoretically secure protocols for arithmetic NC1 in two settings:

(i) the plain model tolerating up to t < n/2 corruptions; and

(ii) in the OLE-correlation model tolerating any number of corruptions.

Our protocols achieve adaptive security and require only black-box access to the underlying
field, whereas previous results only achieve static security and require non-black-box field ac-
cess. Moreover, both results extend to polynomial-size circuits with computational and adap-
tive security, while relying on black-box access to a pseudorandom generator. In the OLE
correlation model, the extended protocols for circuits tolerate up to n− 1 corruptions.

Along the way, we introduce a conceptually novel framework for 2-round MPC that does
not rely on the round collapsing framework underlying all of the recent advances in 2-round
MPC.

1 Introduction

Secure multi-party computation (MPC) [Yao86, GMW87, BGW88, CCD88] allows a group of n
mutually distrusting parties to jointly evaluate a function over their private inputs in a manner
that reveals nothing beyond the output of the function. In this work, we focus on semi-honest two-
round MPC protocols. The state of the art, following the recent breakthroughs in [BL18, GS18] may
be broadly classified as follows:

• protocols for NC1 achieving information-theoretic security tolerating t < n/2 adversarial
parties [ABT18];

• protocols for polynomial-size circuits P/poly achieving computational security tolerating t <
n/2 adversarial parties, assuming the existence of one-way functions [ABT18, ACGJ18];

• protocols for polynomial-size circuits P/poly achieving computational security tolerating t <
n adversarial parties, assuming the existence of oblivious transfer [BL18, GS18].

1

All of these constructions follow the same high-level “round collapsing” strategy introduced in
[GGHR14]. In particular, they apply garbled circuits to the circuits of parties’ algorithms of a
multi-round MPC protocol, where the garbling is used to collapse the multi-round MPC protocol
to a 2-round protocol.

1.1 Our Results

We present simpler and improved constructions of 2-round protocols for secure multi-party com-
putation (MPC) in the semi-honest setting. Our main results are new information-theoretically
secure protocols for arithmetic NC1 in two settings:

(i) the plain model tolerating up to t < n/2 corruptions; and

(ii) in the OLE-correlation model tolerating any number of corruptions.

Two parties with an Oblivious Linear Evaluation (OLE) correlation hold respectively ran-
dom elements (a(1), b(1)) and (a(2), b(2)) such that a(1)a(2) = b(1) + b(2) over a field.

Our protocols achieve adaptive security [CFGN96, Can00] and require only black-box access to
the underlying field, whereas previous results only achieve static security and require non-black-
box field access. Moreover, both results extend to polynomial-size circuits with computational and
adaptive security, while relying on black-box access to a pseudorandom generator. In the OLE cor-
relation model, the extended protocols for circuits tolerate up to n− 1 corruptions. While the hon-
est majority setting is a natural and well-established model, we believe that the OLE-correlation
model is also very natural to study, especially for arithmetic computation: OLE correlations en-
able very efficient online computation, and the correlations themselve can be generated efficiently
in the pre-processing phase [BCGI18, BCG+20]. We provide a comparison of our results with the
state of the art in Figure 1 and Figure 2.

Along the way, we introduce a conceptually novel framework for 2-round MPC that does not
rely on the round collapsing framework underlying all of the recent advances in 2-round MPC
staring from [GGHR14].
Our Techniques. The crux of our protocols, following [ABT18, IK00, IK02], is a way to “encode”
degree-3 polynomials into randomized polynomials that have degree 2 after pre-processing of
local inputs and randomness – known as multi-party randomized encodings (MPREs). Follow-
ing the round-collapsing framework of 2-round MPC, prior MPRE schemes garble the next-step
circuits of a multi-round MPC protocol, to reduce the degree from 3 to 2.

We construct MPRE directly without using “inner” multi-round MPC. We observe that the
[IK02] randomizing polynomials give a way to replace the multiplication between two input el-
ements with multiplication between two random elements. With an OLE-correlation, the prod-
uct of two random elements are additively shared between two parties, immediately reducing
the degree to 2. In the honest majority setting, we exploit a delicate interplay between the IK02
randomized polynomials and the 2-round BGW [BGW88] protocol for computing degree-2 poly-
nomials (or essentially Shamir’s secret sharing scheme) to turn multiplication between two input
elements into multiplication between two local random elements, again reducing the degree to
2. Our MPRE schemes and 2-round MPC protocols based on them enjoy simplicity and better
efficiency.
Information-Theoretic Security vs Adaptive Security. The folklore belief is that any information theo-
retically secure protocol is also adaptively secure with an inefficient simulator. Therefore, to for-
mally prove adaptive security, the technical issue is presenting an explicit efficient simulator. We

2

Reference Class IT/Comp Corruption Black-box field Adaptive
[IK00, IK02, BGW88] arith-NC1 IT t < n/3 yes yes
[DI05, BMR90, Yao86] P/poly Comp t < n/3 – yes
[GIS18] NC1 IT t < n/2 – yes*
[ABT18] NC1 IT t < n/2 no no
[ABT18, ACGJ18, GIS18] P/poly Comp t < n/2 – no
this work arith-NC1 IT t < n/2 yes yes
this work P/poly Comp t < n/2 – yes

Figure 1: Summary of semi-honest 2-round MPC protocols with a honest majority. All of the con-
structions for P/poly (starting with [DI05]) make black-box use of a PRG. The protocol by [GIS18]
handles only a constant number of parties. * They did not fully specify the adaptive simulator.

Reference Class Model Assumptions Adaptive
[BL18, GS18] P/poly standard OT no
[BLPV18] P/poly standard adaptive OT yes
[GIS18] P/poly standard NIOT yes*
[IMO18] P/poly n-ary correlations OWF yes
this work arith-NC1 2-ary correlated randomness IT yes
this work P/poly 2-ary correlated randomness OWF yes

Figure 2: Summary of semi-honest 2-round MPC protocols with a honest minority (that is, any
t < n). * They did not fully specify the adaptive simulator.

systematically present and analyze efficient adaptive simulators for our protocols, taking into ac-
count different corruption schedules. The analysis benefits greatly from our simpler and modular
approach.

2 Technical Overview

We present an overview of our constructions, focusing on the honest-majority 2-round MPC for
arith-NC1, followed by a more detailed comparison with prior approaches.

Following [IK00, IK02], to construct 2-round MPC for arith-NC1, it suffices to construct a 2-
round protocol for the 3-party functionality (x1, x2, x3) 7→ x1x2x3. More precisely, we need the
functionality ((x1, s1), (x2, s2), (x3, s3)) 7→ x1x2x3 + s1 + s2 + s3; for simplicity, we ignore the
additive terms in this overview, as they are easy to handle. As with [ABT18], the starting point of
our construction is the BGW protocol for computing x1x2x3. In BGW and also in ABT, the parties
(i) multiply Shamir shares of x2, x3 for threshold t, (ii) perform degree reduction to obtain Shamir
shares of x2x3 for threshold t, (iii) multiply the ensuing shares by that of x1 to obtain Shamir shares
of x1x2x3 for threshold 2t, (iv) interpolate the shares to recover x1x2x3. Our construction replaces
steps (ii) and (iii) with a completely different gadget.

MPRE. A (n, t)-MPRE [ABT18] for a n-party functionality f(x1, . . . ,xn) is a randomized func-
tion f̂(x1, . . . ,xn; r1, . . . , rn) with the following properties:

• (correctness) There exists an efficient decoder Dec such that for all x = (x1, . . . ,xn), r =
(r1, . . . , rn),

Dec(f̂(x; r)) = f(x)

3

• (security) We say that the MPRE is (selectively) secure against up to t corruptions if there
exists a simulator Sim such that for any x1, . . . ,xn and any subset T ⊆ [N], |T | ≤ t,

Sim(f(x1, . . . ,xn),xT) ≈
(
f̂(x1, . . . ,xn; r1, . . . , rn), rT

)
by distribution, where r1, . . . , rn on the right side are random, and xT := (xi : i ∈ T),
rT := (ri : i ∈ T).

• (effective degree) We say that a MPRE has effective degree d if there exists functions h1, . . . , hn
such that f̂ can be expressed as a degree d function of h1(x1, r1), . . . , hn(xn, rn). The func-
tions hi capture pre-computation on the local input xi and randomness ri of party Pi.

In this work, we think of x1, . . . ,xn, r1, . . . , rn as vectors over some field F. In addition, we define
the following new properties:

• We say that an MPRE is adaptively secure if the adversaries can adaptively decide which
party to corrupt next, based on the encoding and/or local input and randomness of previ-
ously corrupted parties. Correspondingly, simulation is done in an “online” fashion using
the output and/or inputs of already corrupted parties.

• We extend MPRE security with leakage: Each party Pi is associated with a leakage function
Li. If Pi is corrupted, the simulator will get Li(x1, . . . ,xn) in addition to xi. Unless otherwise
specified, the leakage function Li simply outputs ⊥.

MPRE with leakage is the key notion that captures our main gadget which uses preprocessing to
reduce the degree of IK randomized polynomials from 3 to 2. This notion is also new to this work.

2.1 Our Basic Construction

Main gadget. Our main gadget is MPRE for the 4-party functionality

((x, µ), a, b,⊥) 7→ xab+ µ

with the following properties:

(I) it has effective degree 2;

(II) tolerates any number of corruptions with leakage L4((x, µ), a, b,⊥) = (a, b).

To build this gadget, we start with the IK02 randomized encoding for xab+ µ where

(x, a, b, µ ; w1, w2, w3, w4, w5) 7→a− w1 aw3 + xw1 − w3w1 − w2 w2b− w2w5 − w1w4 + w1w5x + w4a+ µ

−1 x− w3 −w4 + w5x
−1 b− w5

 (1)

As a quick warm-up, observe that we can haveP4 sample all of the randomnessw1, w2, w3, w4, w5.
This achieves effective degree 2, but with leakage L4((x, µ), a, b,⊥) = (x, a, b, µ). We show that by
distributing the randomness more cleverly, we can reduce the leakage upon corruption of P4 to
just a, b while preserving effective degree 2.

In particular, we will crucially rely on the fact that the randomized encoding contains exactly
one monomial w1w5x of degree 3. In our MPRE,

4

• w2, w3, w4 are shared additively, wi = w
(1)
i + w

(4)
i , between P1 and P4 (if both P1 and P4 are

corrupted, then the adversary already learns all inputs x, a, b, µ);

• P4 samples w1, w5 and pre-computes w1w5 so that the encoding has effective degree two.

In summary, the MPRE computes the following in effective degree 2:

f̂((x, µ), a, b,⊥ ; w) = g
((
x, µ,w

(1)
2 , w

(1)
3 , w

(1)
4

)
, a, b,

(
w1w5, w

(4)
2 , w

(4)
3 , w

(4)
4

))
= (1)

To handle corruption of P4 in the analysis of the MPRE, we crucially rely on the fact that we
can simulate the randomized encoding together w1, w5 given (xab + µ, a, b). To see this, observe
that given a simulated encoding Π and a, b, one can compute matching w1 = Π[1, 1] + a and
w5 = Π[3, 3] + b.

MPRE for x1x2x3 with OLE correlations. A two-party OLE correlation over F is a pair

(w(1), b(1)), (w(2), b(2)) : b(1) + b(2) = w(1) · w(2)

Observe that in the IK02 randomized encoding Equation (1), multiplication of input elements a
and b is replaced with multiplication of random elements w1 and w5. If assuming OLE correlation
between P2, P3, the IK02 encoding can be computed in degree 2, without any leakage to P4 (in fact
there is no need for P4 at all). This gives an effective degree 2 MPRE for computing the 3-party
functionality

x1, x2, x3 7→ x1x2x3

• P2 and P3 hold (w1, b
(1)), (w5, b

(5)) such that b(1) + b(5) = w1w5;

• w2, w3, w4 are shared additively between P1, P2, P3.

Then the encoding computes the following in effective degree 2:

f̂(x1, x2, x3 ; w,b)

= g
((
x1, w

(1)
2 , w

(1)
3 , w

(1)
4

)
,
(
x2, w1, b

(1), w
(2)
2 , w

(2)
3 , w

(2)
4

)
,
(
x3, w5, b

(5), w
(3)
2 , w

(3)
3 , w

(3)
4

))
= (1)|µ=0

Since every degree-3 polynomial can be expanded into a sum of degree-3 monomials, we im-
mediately obtain a degree-2 MPRE for computing general degree-3 polynomials, by computing
independent MPRE for each degree-3 monomial.

Lemma 2.1 (MPRE for degree-3, honest minority). There exists an adaptively secure MPRE for degree-
3 polynomials with effective degree 2 in the OLE-correlation model, for t ≤ n.

MPRE for x1x2x3 for honest majority. Next, we build a n-party MPRE with effective degree 2
for

x1, x2, x3, ⊥, . . . ,⊥︸ ︷︷ ︸
n−3

7→ x1x2x3

tolerating t < n/2 corruptions, as long as |F| > n (without any leakage). For simplicity, we
consider the setting where P1 is never corrupted. Following the overview,

• P2 samples a random degree-t polynomial Q2 such that Q2(0) = x2.

5

• Similarly, P3 samples Q3 with Q3(0) = x3.

• P1 samples a random degree-(n− 1) polynomial Z such that Z(0) = 0.

Now, consider the polynomial
Y := x1Q2Q3 + Z

Observe that Y has degree at most n−1, and satisfies Y (0) = x1x2x3. Then, for each i = 1, 2, . . . , n,
parties P1, P2, P3, Pi run the gadget MPRE to compute

((x1, Z(i)), Q2(i), Q3(i),⊥) 7→ Y (i) = x1Q2(i)Q3(i) + Z(i)

The output party can recover Y (0) = x1x2x3 given Y (1), . . . , Y (n) via polynomial interpolation.
In summary, the MPRE is the parallel composition of n gadget MPRE and hence have effective
degree 2.

F̂ (x1, x2, x3,⊥, . . . ,⊥︸ ︷︷ ︸
P4 to Pn

; r) =
(
f̂
(
(x1, Z(i))︸ ︷︷ ︸

P1

, Q2(i)︸ ︷︷ ︸
P2

, Q3(i)︸ ︷︷ ︸
P3

, ⊥︸︷︷︸
Pi

))
i∈[n]

We can in fact prove security of this MPRE for up to t < n/2 corruptions, as long as P1 is not
corrupted. We sketch the security proof for the setting where the last t parties Pn−t+1, . . . , Pn are
corrupted:

• We can simulate the encoding by sampling a random degree n − 1 polynomial Y whose
constant term is x1x2x3, thanks to the randomization via Z;

• To simulate the view of the last t parties, security of the gadget MPRE tells us that it suffices
to simulate Q2(i), Q3(i), i = n− t+ 1, . . . , n. By the security of Shamir’s secret sharing, these
are just a collection of uniformly random field elements, and leaks no additional information
to the adversary.

More generally, P1 may be corrupted, at which point x1 and the polynomial Z are revealed. To
ensure privacy of x2, x3 in this case, we need to modify the polynomial to Y := x1Q2Q3 + Z + S,
with an additional random degree-(n − 1) polynomial S jointly sampled by all parties, with Pi
sampling S(i) at random. To recover the output x1x2x3, the parties additionally compute S(0),
which is a linear function over local inputs.

Since MPRE for computing degree-3 monomials gives MPRE for general degree-3 polynomi-
als, we obtain

Lemma 2.2 (MPRE for degree-3, honest majority). There exists an adaptively secure MPRE for degree-3
polynomials with effective degree 2 in the plain model, for t < n/2.

Handling adaptive corruptions. All our MPRE schemes introduced so far have perfect infor-
mation theoretic security. In later sections, we construct an efficient and stateful simulator for
simulating the view of adaptive adversaries. In particular, the simulator Sim can be decomposed
into a stateful two-subroutine simulator (SimO,SimI) in which SimO(f(x1, . . . ,xn)) simulates the
encoding f̂(x1, . . . ,xn; r1, . . . , rn), and SimI(i,xi) simulates ri, in the order that the adaptive ad-
versary corrupts parties.

6

Putting Pieces Together for NC1 Given an MPRE for computing degree-3 polynomials in a
model (the OLE correlation model or in the plain model with honest majority), we can “lift” it
to handle arithmetic NC1 computation in the same model, while preserving the effective degree.
The IK02 randomized encoding [IK02] for arith-NC1 allows for transforming a function g in NC1

by a degree-3 polynomial ĝ, such that, ĝ(x1, · · ·xn ; r) reveals only g(x1, · · · ,xn) and nothing else.
This means it suffices to compute the following n-party degree-3 functionality where randomness
r is additively shared among all parties.

(x1, r
(1)) · · · (xn, r(n)) 7→ ĝ(x1, · · ·xn ; r =

∑
ir

(i)) . (2)

The above is an effective-degree-3 MPRE for arithmetic NC1. We further reduce the effective
degree to 2, by computing the effective-degree-3 MPRE using the effective-degree-2 MPREs for
degree 3 polynomials.

Lemma 2.3 (MPRE for arith-NC1). There exist adaptively secure MPRE for arith-NC1 with effective
degree 2 in the OLE-correlation model for any number t ≤ n of corruptions, and in the plain model for
t < n/2.

Finally, to obtain 2-round MPC for arith-NC1, we compute the effective-degree-2 MPRE using
2-round MPC for degree-2 polynomials. In the honest majority model, the BGW protocol has only
2 rounds when computing degree-2 polynomials. In the OLE correlation model, we design a very
simple 2-round protocol for computing degree-2 polynomials.

Extension to circuits. Starting from Yao’s garbled circuits, we can get a (n − 1)-private MPRE
for P/poly with effective degree 3 that makes black-box use of a PRG G, using the techniques
introduced in [DI05, BMR90]. For simplicity, consider garbling a single gate g with input wire
u, v and output wire o. For each input/output wire j, each party Pi samples a pair of PRG
seeds s(i)

j,0, s
(i)
j,1 corresponding the wire having value 0 or 1; the two labels for wire j is then set to

`j,b = s
(1)
j,b ‖ . . . ‖s

(n)
j,b . To hide the labels of the output wire o, each party locally expands their seeds

through G, and hide label `o,g(a,b) using the XOR of PRG outputs from all parties. For instance,

`o,g(a,b) ⊕
(⊕

i

Gd(s
(i)
u,a)

)
⊕
(⊕

i

Gd′(s
(i)
v,b)

)
where Gd for d = 0 or 1 outputs the first or second half of the PRG output bits respectively, and
d, d′ are set so that the same output bit is never reused. These table entries are further randomly
permuted using mask bits ku, kv which are additively shared among all parties. The computed
encoding is secure as long as one party remains uncorrupted. The computation makes black-box
use of the PRG and has effective degree 3 after pre-processing of form:

h(xi ; k(i), s(i)) = (xi, (k
(i)
j , s

(i)
j,0, s

(i)
j,1, G(s

(i)
j,0), G(s

(i)
j,1))j)

We can then combine this with our MPRE for degree-3 polynomials with effective degree 2 (over
a sufficiently large field extension of F2).

Lemma 2.4 (MPRE for P/poly). There exist adaptively secure MPRE for P/poly with effective degree 2
in the OLE-correlation model for any number t ≤ n− 1 of corruptions, and in the plain model for t < n/2.
The scheme makes black-box use of a PRG.

2-round MPC protocols for P/poly in the same models then follow.

7

3 Preliminaries and Definitions

For any positive integer n, define [n] := {1, 2, . . . , n}. For any set S ⊆ [n] and vector x =
(x1, . . . ,xn), where xi itself can be a vector, let x[S] denote the indexed set (xi)i∈S . Let F denote a
finite field, and ⊗ tensor product.

3.1 MPC Protocols

Definition 1 (Functionality). An n-party functionality is a function f : X1 × . . .× Xn → Y , where
Xi is the i-th party’s input domain and Y is the output space.

Definition 2 (MPC Protocol). An r-rounds MPC protocol Π for a n-party functionality f consists
of n algorithms (Ci)i∈[n]. An execution of Π with inputs x = (x1, . . . ,xn) ∈ X1 × . . . × Xn and
security parameter 1λ proceeds as follows:

Randomness Each party Pi samples local randomness ri ← Ri, whereRi is the local randomness
space of the Pi. It initializes its state as st(0)

i = (xi, ri).

Round 1 ≤ j ≤ r: Every party Pi computes (m
(j)
i→1, · · · ,m

(j)
i→n) ← Ci(1

λ, st
(j−1)
i). For every i′ ∈

[n] \ {i}, Pi sends message m(j)
i→i′ to party Pi′ , and receives message m(j)

i′→i from party Pi′ . It
updates its state st

(j)
i = (st

(j−1)
i , (m

(j)
i′→i)i′∈[n]\{i}).

Output: After r rounds, every party Pi computes yi ← Ci(1
λ, st

(r)
i), and outputs yi.

Define the view of partyPi in the above execution to be VIEWΠ(1λ,x)[i] = st
(r)
i = (xi, ri, (m

(j)
i′→i)i′∈[n]\{i},j∈[r]).

Let VIEWΠ(1λ,x) denote the array of views of all parties.
We also consider MPC protocol that relies on correlated randomness. If the MPC protocol relies

on correlated randomness, which is a distribution D over R′1 × · · · × R′n, then in each execution
of the protocol, (r′1, . . . , r

′
n) ← D is sampled by the beginning of the protocol, and each party Pi

initialize its state as st(0)
i = (xi, ri, r

′
i).

Below, we suppress the appearance of the security parameter 1λ, which is assumed implicitly.

Remark 3.1. We remark that the above definition considers the same output for all parties. It can
be generalized to the case where each party has a different output. From a protocol design point of
view, it is without loss of generality to consider a common output: To compute function f mapping
x1, . . . ,xn to different outputs y1, . . . ,yn, every party Pi can sample a one-time pad ki of appro-
priate length and jointly compute the augmented functionality mapping (x1,k1), . . . , (xn,kn) to
(y1 + k1), . . . , (yn + kn), where ki’s and + should be defined appropriately for the specific func-
tionality f . For instance, if f is a Boolean computation, ki’s should be random strings and + is
XOR, and if f is an arithmetic computation over a finite field, ki’s should be random vectors and
+ over the field.

Definition 3 (MPC Correctness). A protocol Π for a functionality f : X1× . . .×Xn → Y is perfectly
or statistically correct, if for every input tuple x ∈ X1 × . . . × Xn and every security parameter
λ ∈ N, the output of every party Pi equals f(x1, . . . , xn), with probability 1 or with overwhelming
probability respectively.

Definition 4 (Semi-Honest Security against Static Corruption). A protocol Π for a n-party func-
tionality f is perfectly, or statistically, or computationally semi-honest secure against t-corruption,

8

if there is a PPT simulator Sim, such that for every subset T ⊆ [n] of at most t parties, input tu-
ple x, it holds that the real views VIEWΠ(x)[T] of parties in T and the output of the simulator
Sim(T,x[T], f(x)) are identically distributed, or statistically close, or computationally indistinguishable
respectively.

Semi-honest Adaptive Security In the adaptive corruption model, a semi-honest adversary is
allowed to choose which party to corrupt next adaptively (up to t corruptions) depending on
its current view, which includes the views of previously corrupted parties. Correspondingly, the
simulator for adaptive adversaries is an interactive stateful algorithm that responds to adversary’s
corruption requests with simulated views, generated from the inputs and output of corrupted
parties.

Definition 5 (Semi-honest Security against Adaptive Corruption.). A protocol Π for a n-party
functionality f is perfectly, or statistically, or computationally semi-honest adaptively secure against
t-corruption, if there is a PPT interactive and stateful simulator Sim, such that, for every adver-
sary A (PPT in the computational setting, computationally unbounded otherwise), input tuple
x, the outputs of the following two experiments are identically distributed, or statistically close, or
computationally indistinguishable respectively.

• In the real world: The challenger runs an execution of Π on input x using fresh randomness,
obtaining parties’ views VIEWΠ(x).

The adversaryA adaptively and iteratively queries Corrupt(i), and receivesPi’s view VIEWΠ(x)[i],
up to at most t corruptions.

Return A’s output.

• In the simulation: Proceed identically as in the real world, except that upon A’s request
Corrupt(i), invoke the simulator (ṼIEW[i], st) ← Sim(i,xi, y, st) and sends ṼIEW[i] to A,
where st is initialized to be empty.

3.2 (Multi-Party) Randomized Encoding

Definition 6 (Randomized Encoding [IK02, AIK04]). Let f : X → Y be some function. The ran-
domized encoding of f is a function f̂ : X×R → Ŷ , whereR is the randomness space. A randomized
encoding should be both correct and private.

Correctness There is a decoding function Dec such that for all x ∈ X , r ∈ R, it holds that

Dec(f̂(x; r)) = f(x).

Privacy There exists a efficient randomized simulation algorithm Sim such that for any x ∈ X ,
the distribution of Sim(f(x)) is identical to that of f̂(x; r). The privacy can be relaxed to
statistical privacy (resp. computational privacy), if the Sim(f(x)) and f̂(x; r) are statistically
close (resp. computational indistinguishable).

Definition 7 (Multi-Party Randomized Encoding [ABT18]). Let f : X1 × · · · × Xn → Y be some
n-party functionality. A multi-party randomized encoding (MPRE) of f consists of

• Input space X = X1 × · · · × Xn and output space Y ;

9

• Local randomness spaceRi for i ∈ [n];

Correlated randomness spaceR′1 × · · · × R′n together with a distribution D over it;

• Local preprocessing function hi : Xi ×Ri ×R′i → X̂i;
• Encoding function f̂ : X̂1 × · · · × X̂n → Ŷ , the degree of f̂ is called the effective degree of this

MPRE.

Such that for any input (x1, . . . , xn), the encoding f̂
(
h1(x1, r1, r

′
1), . . . , hn(xn, rn, r

′
n)
)

represents
y = f(x1, . . . , xn) in the following sense:

Correctness There exists a decoding function Dec : Ŷ → Y , such that for any input (x1, . . . , xn) ∈
X1 × · · · × Xn, randomness (r1, . . . , rn) ∈ R1 × · · · × Rn and correlated randomness (r′1, . . . , r

′
n)

in the support of D, the corresponding encodings ŷ = f̂(h1(x1, r1, r
′
1), . . . , hn(xn, rn, r

′
n)) satisfies

that f(x1, . . . , xn) = Dec(ŷ).

Semi-honest Adaptive t-Privacy The MPRE is perfectly (resp. statistically or computationally)
secure against t adaptive corruptions if there exists an adaptive simulator such that the following
real world and ideal world are perfectly (resp. statistically or computationally) indistinguishable.

In both the real world and the ideal world, the distinguisher first chooses input x = (x1, . . . , xn),
and sends it to the challenger. Then the distinguisher can make queries and tries to guess which
world it is.

• In the real world: The distinguisher chooses input x = (x1, . . . , xn), and sends it to the chal-
lenger. The challenger samples local randomness ri ← Ri for each i ∈ [n] and correlated
randomness (r′1, . . . , r

′
n) ← D; computes x̂i = hi(xi, ri, r

′
i) for i ∈ [n] and ŷ = f̂(x̂1, . . . , x̂n).

In short, the challenger follows the protocol.

The challenger allows the distinguisher to adaptively query the following two oracles. The
later one can be queried up to t times.

Upon CorruptO: Output ŷ

Upon CorruptI(i): Output ri, r′i.

• In the ideal world: The distinguisher chooses input x = (x1, . . . , xn), and sends it to the chal-
lenger. The challenger does nothing other than stores the input. The queries are answered
by the simulator, which is a randomized stateful algorithm (SimO,SimI).

The challenger allows the distinguisher to adaptively query the following two oracles. The
later one can be queried up to t times.

Upon CorruptO: Compute y = f(x) and output whatever SimO(y) outputs.

Upon CorruptI(i): Output what is output by SimI(i, xi).

3.3 Composition of MPREs

If there is a MPRE for f whose encoding function is f̂ , together with a MPRE for f̂ whose encod-
ing function is ˆ̂f . Then Theorem 3.2 shows that they can be composed as a MPRE for f whose
encoding function is ˆ̂f . Theorem 3.2 is adaptive version of Lemma 3.3 and 3.4 in [ABT18]. Such
composition is useful when ˆ̂f is simpler than f̂ .

10

If there are MPREs for f1, f2. W.l.o.g., assume their input domain are the same. Then Theo-
rem 3.3 shows that they can be composed as a MPRE for the functionality

f(x1, . . . , xn) = (f1(x1, . . . , xn), f2(x1, . . . , xn))

while preserving the complexity.

Theorem 3.2 (Sequential Composition). Assume there is a perfectly (resp. statistically or computation-
ally) adaptively t-private MPRE for functionality f : X1 × · · · × Xn → Y , whose encoding function is
f̂ : X̂1 × · · · × X̂n → Ŷ . Assume there is a perfectly (resp. statistically or computationally) adaptively
t-private MPRE for f̂ , whose encoding function is ˆ̂f : ˆ̂X1 × · · · × ˆ̂Xn → ˆ̂Y . Then there exists a perfectly
(resp. statistically or computationally) adaptively t-private MPRE for f whose encoding function is ˆ̂f .

Proof. Say the MPRE for f : X1 × · · · × Xn → Y , call it the outer MPRE, has

• Local randomness spacesRouter
1 , . . . ,Router

n ;

• (if any) Correlated randomness spaceRouter
1

′ × · · · × Router
n

′ and the distribution Douter;

• Local preprocessing functions houter
1 , . . . , houter

n ;

• Encoding function f̂ : X̂1 × · · · × X̂n → Ŷ
• Decoding function Decouter : Ŷ → Y ;

• Simulator Simouter = (SimOouter,SimIouter).

Similarly, say the MPRE for f̂ : X̂1 × · · · × X̂n → Ŷ , the inner MPRE, has

• Local randomness spacesRinner
1 , . . . ,Rinner

n ;

• (if any) Correlated randomness spaceRinner
1

′ × · · · × Rinner
n

′ and the distribution Dinner;

• Local preprocessing functions hinner
1 , . . . , hinner

n ;

• Encoding function ˆ̂f : ˆ̂X1 × · · · × ˆ̂Xn → ˆ̂Y

• Decoding function Decinner : ˆ̂Y → Ŷ ;

• Simulator Siminner = (SimOinner,SimIinner).

Then the scheme in Figure 3 is a MPRE for f whose encoding function is ˆ̂f .
The correctness of the resulting MPRE follows from the correctness of the inner and outer

MPRE. In short,

Dec(ˆ̂f(. . . , hi(xi, r
outer
i , rinner

i , router
i

′, rinner
i

′), . . .))

=
(by definition)

Decouter(Decinner(ˆ̂f(. . . , hinner
i (houter

i (xi, r
outer
i , router

i
′), rinner

i , rinner
i

′), . . .)))

=
(correctness of inner MPRE)

Decouter(f̂(. . . , houter
i (xi, r

outer
i , router

i
′), . . .))

=
(correctness of outer MPRE)

f(. . . , xi, . . .).

The adaptive t-privacy is the indistinguishability between the real world and the ideal world.

• In the real world. The adversary chooses the input (x1, . . . , xn), then the adversary’s queries
are answered as the follows

11

MPRE yielded by sequential composition

Local randomness: Pi samples router
i ← Router

1 , rinner
i ← Rinner

i

Correlated randomness: Pi gets router
i

′, rinner
i

′ such that (router
1

′, . . . , router
n

′) is sam-
pled from Douter and (rinner

1
′, . . . , rinner

n
′) is sampled from Dinner

Preprocessing function hi:

hi(xi, r
outer
i , rinner

i , router
i

′, rinner
i

′) = hinner
i (houter

i (xi, r
outer
i , router

i
′), rinner

i , rinner
i

′)

Encoding function: ˆ̂f .

Decoding function: Dec(ˆ̂y) = Decouter(Decinner(ˆ̂y)).

Figure 3: Sequential Composition of MPREs

On the outset: Sample router
i ← Router

i , rinner
i ← Rinner

i for i ∈ [n].
Sample (router

1
′, . . . , router

n
′)← Douter, (rinner

1
′, . . . , rinner

n
′)← Dinner.

Compute x̂i = houter
i (xi, r

outer
i , router

i
′), ˆ̂xi = hinner

i (x̂i, r
inner
i , rinner

i
′) for i ∈ [n].

Compute ˆ̂y = ˆ̂f(ˆ̂x1, . . . , ˆ̂xn), ŷ = Decinner(ˆ̂y), y = Decouter(ŷ).

CorruptI(i): Output router
i , rinner

i , router
i

′, rinner
i

′.

CorruptO: Output ˆ̂y.

• In the ideal world. The adversary chooses the input (x1, . . . , xn), then the adversary’s queries
are answered as the follows

CorruptI(i): Let (router
i , router

i
′)← SimIouter(i, xi).

Compute x̂i = houter
i (xi, r

outer
i , router

i
′), let (rinner

i , rinner
i

′)← SimIinner(i, x̂i).
Output router

i , rinner
i , router

i
′, rinner

i
′.

CorruptO: Compute y = f(x1, . . . , xn). Let ŷ ← SimOouter(y). Let ˆ̂y ← SimOinner(ŷ). Output
ˆ̂y.

The indistinguishability is proved by a hybrid argument. We introduce the middle world.

• In the middle world. The adversary chooses the input (x1, . . . , xn), then the adversary’s queries
are answered as the follows

On the outset: Sample router
i ← Router

i for i ∈ [n]. Sample (router
1

′, . . . , router
n

′)← Douter.
Compute x̂i = houter

i (xi, r
outer
i , router

i
′) for i ∈ [n].

Compute ŷ = f̂(x̂1, . . . , x̂n), y = Decouter(ŷ).

CorruptI(i): Let (rinner
i , rinner

i
′)← SimIinner(i, x̂i).

Output router
i , rinner

i , router
i

′, rinner
i

′.

CorruptO: Let ˆ̂y ← SimOinner(ŷ). Output ˆ̂y.

Then as long as the adversary call CorruptI at most t times, the security of the inner MPRE implies
the indistinguishability between the real world and the middle world, the security of the outer
MPRE implies the indistinguishability between the real world and the ideal world.

12

Theorem 3.3 (Parallel Composition). For each j ∈ [m], assume there is a perfectly (resp. statistically
or computationally) adaptively t-private MPRE for functionality f (j) : X1 × · · · × Xn → Y(j), whose
encoding function is f̂ (j) : X̂ (j)

1 × · · · × X̂ (j)
n → Ŷ(j). Then there exists a perfectly (resp. statistically or

computationally) adaptively t-private MPRE for f whose encoding function is f̂ , where f concatenate the
outputs of f (1), . . . , f (m)

f(x1, . . . , xn) := (f (1)(x1, . . . , xn), . . . , f (m)(x1, . . . , xn))

and f̂ is the concatenation of f̂ (1), . . . , f̂ (m)

f̂((x̂
(1)
1 , . . . , x̂

(m)
1), . . . , (x̂(1)

n , . . . , x̂(m)
n)) = (f̂ (1)(x̂

(1)
1 , . . . , x̂(1)

n), . . . , f̂ (m)(x̂
(m)
1 , . . . , x̂(m)

n)).

Additionally, if the MPRE for f (j) has leakage L(j)
i : X1 × · · · × Xn → L(j)

i to Pi for i ∈ [n], j ∈ [m],
then the resulting MPRE has leakage Li : X1 × · · · × Xn → L(1)

i × · · · × L
(m)
i ,

Li(x1, . . . , xn) = (L
(1)
i (x1, . . . , xn), . . . , L

(m)
i (x1, . . . , xn)),

to the i-th party.

Proof. Say the MPRE for fj : X1 × · · · × Xn → Y has

• Local randomness spacesR(j)
1 , . . . ,R(j)

n ;

• (if any) Correlated randomness spaceR(j)
1
′ × · · · × R(j)

n
′ and the distribution D(j);

• Local preprocessing functions h(j)
1 , . . . , h

(j)
n ;

• Encoding function f̂ (j) : X̂ (j)
1 × · · · × X̂ (j)

n → Ŷ(j)

• Decoding function Dec(j) : Ŷ(j) → Y(j);

• (if any) Leakage functions Li : X1 × · · · × Xn → L(1)
i × · · · × L

(m)
i ;

• Simulator Sim(j) = (SimO(j),SimI(j)).

Then the scheme in Figure 4 is a MPRE for f whose encoding function is f̂ .
The correctness of the resulting MPRE follows from the correctness of the given MPREs. In

short
Dec(f̂(. . . , hi(xi, r

(1)
i , . . . , r

(m)
i , r

(1)
i
′, . . . , r

(m)
i
′), . . .))

= Dec(f̂(. . . , (h
(1)
i (xi, r

(1)
i , r

(1)
i
′), . . . , h

(m)
i (xi, r

(m)
i , r

(m)
i
′)), . . .))

= Dec((. . . , h
(1)
i (xi, r

(1)
i , r

(1)
i
′), . . .), . . . , (. . . , h

(m)
i (xi, r

(m)
i , r

(m)
i
′), . . .))

= (Dec(1)(. . . , h
(1)
i (xi, r

(1)
i , r

(1)
i
′), . . .), . . . ,Dec(m)(. . . , h

(m)
i (xi, r

(m)
i , r

(m)
i
′), . . .))

= (f (1)(. . . , xi, . . .), . . . , f
(m)(. . . , xi, . . .)).

The adaptive t-privacy is proved by hybrid argument. For j = 0, 1, . . . ,m, define the j-th
hybrid world as

• In the j-th hybrid world. The adversary chooses the input (x1, . . . , xn), then the adversary’s
queries are answered as

13

MPRE yielded by parallel composition

Local randomness: Pi samples r(j)
i ← R

(j)
i for each j ∈ [m]

Correlated randomness: Pi gets r(j)
i
′ such that (r

(j)
1
′, . . . , r

(j)
n
′) is sampled from D(j) for

each j ∈ [m]

Preprocessing function hi:

hi(xi, r
(1)
i , . . . , r

(m)
i , r

(1)
i
′, . . . , r

(m)
i
′) = (h

(1)
i (xi, r

(1)
i , r

(1)
i
′), . . . , h

(m)
i (xi, r

(m)
i , r

(m)
i
′)).

Encoding function f̂ :

f̂((x̂
(1)
1 , . . . , x̂

(m)
1), . . . , (x̂(1)

n , . . . , x̂(m)
n)) = (f̂ (1)(x̂

(1)
1 , . . . , x̂(1)

n), . . . , f̂ (m)(x̂
(m)
1 , . . . , x̂(m)

n)).

Decoding function: Dec(ŷ(1), . . . , ŷ(m)) = (Dec(1)(ŷ(1)), . . . ,Dec(m)(ŷ(m))).

Figure 4: Parallel Composition of MPREs

On the outset: For each j′ ≤ j, do the following:

Sample r(j′)
i ← R(j′)

i for i ∈ [n], sample (r
(j′)
1
′, . . . , r

(j′)
n
′)← D(j′).

Compute x̂(j′)
i = h

(j′)
i (xi, r

(j′)
i , r

(j′)
i
′) for i ∈ [n].

Compute ŷ(j′) = f̂ (j′)(x̂
(j′)
1 , . . . , x̂

(j′)
n).

CorruptI(i): For each j′ > j, let (r
(j′)
i , r

(j′)
i
′)← SimI(j

′)(i, xi, L
(j′)
i (x1, . . . , xn)).

Output (r
(1)
i , . . . , r

(m)
i , r

(1)
i
′, . . . , r

(m)
i
′).

CorruptO: For each j′ > j, compute y(j′) = f (j′)(x1, . . . , xm), let ŷ(j′) ← SimO(j′)(y(j′)).
Output (ŷ(1), . . . , ŷ(m)).

The m-th hybrid is the real world, the 0-th hybrid is the ideal world. In particular, the simulator is

• In the ideal world. The simulator is the stateful algorithm

Upon CorruptI(i), SimI(i, xi, (L
(1)
i , . . . , L

(m)
i)): (Here (L

(1)
i , . . . , L

(m)
i) is the leakage.)

Let (r
(j)
i , r

(j)
i
′)← SimI(j)(i, xi, L

(j)
i) for each j ∈ [m].

Output (r
(1)
i , . . . , r

(m)
i , r

(1)
i
′, . . . , r

(m)
i
′).

Upon CorruptO, SimO(y(1), . . . , y(m)): Let ŷ(j) ← SimO(j)(y(j)) for each j ∈ [m].
Output (ŷ(1), . . . , ŷ(m)).

The security of the MPRE for f (j) implies the indistinguishability between the j-th hybrid world
and the (j − 1)-th hybrid world.

4 MPRE for Degree-3 Polynomials

In this section, we build MPRE for degree-3 polynomials in two settings: (i) honest majority, and
(ii) OLE correlations. Our road-map is as follows: In Section 4.1, we construct a 4-party gadget

14

MPRE; in Section 4.2, we construct an MPRE for the 3-party functionality 3MultPlus3 described
below, which computes a degree-3 monomial shifted by some linear terms, in the OLE-correlation
model; then in Section 4.3, we consider the n-party version of the functionality 3MultPlusn and
construct an MPRE for it in the honest majority setting.

3MultPlus3 : ((x1, α), (x2, β), (x3, γ)) 7→ x1x2x3 + α+ β + γ

3MultPlusn : ((x1, α), (x2, β), (x3, γ),⊥, . . . ,⊥︸ ︷︷ ︸
n−3

) 7→ x1x2x3 + α+ β + γ

Finally, in Section 4.4, we show that MPRE for the 3MultPlus functionalities is sufficient for obtain-
ing MPRE for general degree-3 functionalities. All our MPRE have effective degree 2.

4.1 Our 4-Party Gadget MPRE with leakage

Fix a field F. We begin with a MPRE with leakage for the following 4-party gadget function

((x, µ), a, b, ν) 7→ abx+ µ+ ν.

For randomly sampled w1, . . . , w5, [IK00, IK02] show that (φ1, . . . , φ6) is a randomized encod-
ing of abx+ µ+ ν, where φ1, . . . , φ6 are defined asφ1 φ2 φ6

−1 φ3 φ4

−1 φ5

 :=

1 w1 w2

1
1

 a µ+ ν
−1 x

−1 b

1 w3 w4

1 w5

1

=

a− w1 w3a+ w1x− w1w3 − w2 w1w5x+ w2b+ w4a− w2w5 − w1w4 + µ+ ν
−1 x− w3 w5x− w4

−1 b− w5

 .
(3)

[IK00, IK02] guarantee that φ1, . . . , φ5 are i.i.d. uniform despite the value of (a, b, x, µ, ν). We would
like to transfer this randomized encoding into an effective degree-2 MPRE with leakage.

fully-private MPRE for the gadget functionality

Local randomness: P1 samples w3, w
′
2, w

′
4 ← F; P4 samples w1, w5, w

′′
2 , w

′′
4 ← F.

Preprocessing function hi: P4 locally computes w1w5, i.e. let h4(w1, w5, w
′′
2 , w

′′
4) =

(w1, w5, w1w5, w
′′
2 , w

′′
4). Other parties simply outputs their local input and ran-

domness, i.e., hi for i 6= 4 is the identity function.

Encoding function g: On input the outputs of all hi, output (φ1, . . . , φ6) as defined
in Equation (3), with w2 := w′2 + w′′2 , w4 := w′4 + w′′4 .

Decoding function: On input (φ1, . . . , φ6), output det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
.

Figure 5: Effective degree-2 MPRE for the gadget functionality

Lemma 4.1. The scheme defined in Figure 5 is an MPRE for the following 4-party gadget function

((x, µ), a, b, ν) 7→ abx+ µ+ ν

with the following properties:

15

(I) it has effective degree 2;

(II) tolerates any number of corruptions with leakage L4((x, µ), a, b, ν) = (a, b).

Proof. The correctness is straight forward. The decoding function is the determinant of the matrix
in (3), thus

Dec(φ1, . . . , φ6) = det

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

 = det

 a µ+ ν
−1 x

−1 b

 = abx+ µ+ ν.

For the adaptive privacy, we need to define the simulator.

• In the real world: For input x, a, b, µ, ν

At the outset: Sample random w1, w3, w5, w
′
2, w

′′
2 , w

′
4, w

′′
4 , compute w2 = w′2 +w′′2 , w4 = w′4 +

w′′4 , compute (φ1, . . . , φ6) according to Equation (3).

CorruptO: Output φ1, . . . , φ6.

CorruptI(1): Output w3, w
′
2, w

′
4.

CorruptI(2): Output ⊥.

CorruptI(3): Output ⊥.

CorruptI(4): Output w1, w5, w
′′
2 , w

′′
4 .

• In the ideal world:

At the outset: Sample random φ1, . . . , φ5,

Upon CorruptO, SimO(y): Let φ6 be the unique value that det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
= y. Output

φ1, . . . , φ6.

Upon CorruptI(1), SimI(1, (x, µ)): Set w3 as the unique value that φ3 = x− w3.
If P4 is not corrupted yet, sample w′2, w

′
4 at random.

If P4 is already corrupted, subroutine SimI(4, ν, (a, b)) has learned a and has sampled
the values of w1, w5. Then, set w2, w4 to satisfy φ2 = w3a + w1x − w1w3 − w2, φ4 =
w5x− w4, and set w′2 = w2 − w′′2 , w′4 = w4 − w′′4 .
Output w3, w

′
2, w

′
4.

Upon CorruptI(2), SimI(2, a): Output ⊥.

Upon CorruptI(3), SimI(3, b): Output ⊥.

Upon CorruptI(4), SimI(4, ν, (a, b)): Set w1, w5 to satisfy φ1 = a− w1, φ5 = b− w5.
If P1 is not corrupted yet, sample w′′2 , w

′′
4 at random.

If P1 is already corrupted, subroutine SimI(1, (x, µ)) has learned x and has sampled the
value of w3. Then, set w2, w4 to satisfy φ2 = w3a+w1x−w1w3−w2 and φ4 = w5x−w4,
set w′′2 = w2 − w′2, w′′4 = w4 − w′4.
Output w1, w5, w

′′
2 , w

′′
4 .

To formally show that adversary cannot distinguish between the real world and the ideal
world, we introduce a middle world.

• In the middle world:

16

At the outset: Sample random φ1, . . . , φ5.

Let φ6 be the unique value that det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
= abx+ µ+ ν.

Solve w1, . . . , w5 from Equation (3). Sample w′2, w
′′
2 as additive sharing of w2, Sample

w′4, w
′′
4 as additive sharing of w4.

CorruptO: Output φ1, . . . , φ6.

CorruptI(1): Output w3, w
′
2, w

′
4.

CorruptI(2): Output ⊥.

CorruptI(3): Output ⊥.

CorruptI(4): Output w1, w5, w
′′
2 , w

′′
4 .

The real world is indistinguishable from the middle world, due to the security of the random-
ized encoding in (3).

Comparing the ideal world with the middle world, the only difference is that the computation
is deferred in the ideal world: Same as the real world, the simulator in the ideal samples ran-
dom φ1, . . . , φ5. But the simulator cannot compute w1, . . . , w5 at the beginning as it doesn’t know
a, b, x, µ, ν at that moment. Instead, the simulator compute each of w1, . . . , w5 once it has the nec-
essary information, using exactly the method as the middle world (i.e. by solving (3)). Thus the
ideal world is also indistinguishable from the middle world.

4.2 MPRE for 3-Party 3MultPlus using OLE correlation

In this section, we construct an MPRE for the three party functionality

3MultPlus3 : ((x1, α), (x2, β), (x3, γ)) 7→ x1x2x3 + α+ β + γ

that has effective degree 2 and tolerates any number of corruptions in the OLE-correlation model.
For randomly sampled w1, . . . , w5, [IK00, IK02] show that (φ1, . . . , φ6) is a randomized encod-

ing of x1x2x3 + α+ β + γ, where φ1, . . . , φ6 are defined asφ1 φ2 φ6

−1 φ3 φ4

−1 φ5

 :=

1 w1 w2

1
1

x1 α+ β + γ
−1 x2

−1 x3

1 w3 w4

1 w5

1

=

x1 − w1

(w3x1 + w1x2

− w1w3 − w2

) (w1w5x2 + w2x3 + w4x1

− w2w5 − w1w4 + α+ β + γ

)
−1 x2 − w3 w5x2 − w4

−1 x3 − w5

 .
(4)

[IK00, IK02] guarantee that φ1, . . . , φ5 are i.i.d. uniform despite the value of (x1, x2, x3, α+ β + γ).
We would like to transfer this randomized encoding into an effective degree-2 MPRE using OLE
correlated randomness.

Notice that w1w5x2 is the only degree-3 monomial in the randomized encoding, and w1, w5

belong to the randomness of the randomized encoding. Thus if w1, w5 are sampled from OLE
correlated randomness, monomialw1w5x2 can be transferred into a degree-2 term. More precisely,
let (w1, b

(1), w5, b
(3)) ∈ F4 be sampled from OLE correlation, it holds that w1w5 = b(1) + b(3). The

marginal distribution of (w1, w5) is still uniform; and w1w5x2 equals (b(1) + b(3))x2, which is a

17

degree-2 term. Then the randomized encoding has “effective” degree 2 as it can be computed
from φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

 =

x1 − w1

(w3x1 + w1x2

− w1w3 − w2

) (
(b(1) + b(3))x2 + w2x3 + w4x1

− w2w5 − w1w4 + α+ β + γ

)
−1 x2 − w3 w5x2 − w4

−1 x3 − w5

 . (5)

MPRE for the 3-party functionality 3MultPlus3

Local randomness: Pi samples w(i)
2 , w

(i)
3 , w

(i)
4 ← F.

Correlated randomness: P1 is given (w1, b
(1)) ∈ F2, and P3 is given (w5, b

(3)) ∈ F2,
for random (w1, b

(1), w5, b
(3)) ∈ F4 satisfying w1w5 = b(1) + b(3).

Preprocessing function: Preprocessing is not necessary. I.e., hi is the identity func-
tion for i ∈ {1, 2, 3}.

Encoding function: On input the outputs of all hi, output (φ1, . . . , φ6) as defined
in Equation (5), with w2 :=

∑
i∈[3]w

(i)
2 , w3 :=

∑
i∈[3]w

(i)
3 , w4 :=

∑
i∈[3]w

(i)
4 .

Decoding function: On input (φ1, . . . , φ6), output det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
.

Figure 6: Effective degree-2 MPRE for the 3MultPlus3 functionality

Lemma 4.2. The MPRE in Figure 6 for the 3-party functionality 3MultPlus3 has effective degree 2 and
tolerates any number of corruptions, in the OLE-correlation model.

Proof. The correctness is straight forward,

Dec(φ1, . . . , φ6) = det

φ1 φ2 φ6

−1 φ3 φ4

−1 φ5

 = det

x1 α+ β + γ
−1 x2

−1 x3

 = x1x2x3 + α+ β + γ.

For the adaptive privacy, we need to define the simulator.

• In the real world: For input x1, x2, x3, α, β, γ

At the outset: Sample randomw1, w5, w
(1)
2 , w

(2)
2 , w

(3)
2 , w

(1)
3 , w

(2)
3 , w

(3)
3 , w

(1)
4 , w

(2)
4 , w

(3)
4 ∈ F, sam-

ple random b(1), b(3) that b(1) + b(3) = w1w5, compute w2 =
∑

i∈[3]w
(i)
2 , w3 =

∑
i∈[3]w

(i)
3 ,

w4 =
∑

i∈[3]w
(i)
4 , compute (φ1, . . . , φ6) according to Equation (5).

CorruptO: Output φ1, . . . , φ6.

CorruptI(1): Output w1, b
(1), w

(1)
2 , w

(1)
3 , w

(1)
4 .

CorruptI(2): Output w(2)
2 , w

(2)
3 , w

(2)
4 .

CorruptI(3): Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

• In the ideal world:

18

At the outset: Sample random φ1, . . . , φ5,

Upon CorruptO, SimO(y): Let φ6 be the unique value that det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
= y. Output

φ1, . . . , φ6.

Upon CorruptI(1), SimI(1, (x1, α)): Set w1 to satisfy φ1 = x1 − w1.
If P3 is not corrupted yet, sample b(1) at random.
If P3 is already corrupted, subroutine SimI(3, (x3, γ)) has set the values of w5, b

(3). Set
b(1) = w1w5 − b(3).
If both P2 and P3 are corrupted, subroutines SimI(2, (x2, β)), SimI(3, (x3, γ)) have set
w

(2)
j , w

(3)
j for j ∈ {2, 3, 4}. Then solve w2, w3, w4 from Equation (4) and set w(1)

j = wj −
w

(2)
j − w

(3)
j for j ∈ {2, 3, 4}.

If at least one of P2, P3 is not corrupted yet, sample w(1)
2 , w

(1)
3 , w

(1)
4 ∈ F.

Output w1, b
(1), w

(1)
2 , w

(1)
3 , w

(1)
4 .

Upon CorruptI(2), SimI(2, (x2, β)): If bothP1 andP3 are corrupted, subroutines SimI(1, (x1, β)),
SimI(3, (x3, γ)) have set w(1)

j , w
(3)
j for j ∈ {2, 3, 4}. Then solve w2, w3, w4 from Equa-

tion (4) and set w(2)
j = wj − w(1)

j − w
(3)
j for j ∈ {2, 3, 4}.

If at least one of P1, P3 is not corrupted yet, sample w(2)
2 , w

(2)
3 , w

(2)
4 ∈ F.

Output w(2)
2 , w

(2)
3 , w

(2)
4 .

Upon CorruptI(3), SimI(3, (x3, γ)): Set w5 to satisfy φ5 = x3 − w5.
If P1 is not corrupted yet, sample b(3) at random.
If P1 is already corrupted, subroutine SimI(1, (x1, α)) has set the values of w1, b

(1). Set
b(3) = w1w5 − b(1).
If both P1 and P2 are corrupted, subroutines SimI(1, (x1, β)), SimI(2, (x2, γ)) have set
w

(1)
j , w

(2)
j for j ∈ {2, 3, 4}. Then solve w2, w3, w4 from Equation (4) and set w(3)

j = wj −
w

(1)
j − w

(2)
j for j ∈ {2, 3, 4}.

If at least one of P1, P2 is not corrupted yet, sample w(3)
2 , w

(3)
3 , w

(3)
4 ∈ F.

Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

To show the indistinguishability between the real world and the ideal world, we introduce a
middle world.

• In the middle world: For input x1, x2, x3, α, β, γ

At the outset: Sample random φ1, . . . , φ5.

Let φ6 be the unique value that det

[
φ1 φ2 φ6
−1 φ3 φ4
−1 φ5

]
= y.

Solve w1, . . . , w5 from Equation (4).
Sample random b(1), b(3) that b(1)+b(3) = w1w5. For each of j ∈ {2, 3, 4}, sample random
w

(1)
j , w

(2)
j , w

(3)
j that w(1)

j + w
(2)
j + w

(3)
j = wj .

CorruptO: Output φ1, . . . , φ6.

CorruptI(1): Output w1, b
(1), w

(1)
2 , w

(1)
3 , w

(1)
4 .

CorruptI(2): Output w(2)
2 , w

(2)
3 , w

(2)
4 .

19

CorruptI(3): Output w5, b
(3), w

(3)
2 , w

(3)
3 , w

(3)
4 .

The real world is indistinguishable from the middle world, due to the security of the random-
ized encoding in (3).

Comparing the ideal world with the middle world, the only difference is that the computation
is deferred in the ideal world: Same as the real world, the simulator in the ideal samples ran-
dom φ1, . . . , φ5. But the simulator cannot compute w1, . . . , w5 by solving (4) at the beginning as it
doesn’t know x1, x2, x3, α, β, γ at that moment. Instead, the simulator compute w1 once it knows
x1; compute w5 once it knows x3; and compute w2, w3, w4 once it knows all the inputs. Thus the
ideal world is also indistinguishable from the middle world.

4.3 MPRE for n-Party 3MultPlus with Honest Majority

We construct an MPRE (Figure 7) for the n-party functionality

3MultPlusn : ((x1, α), (x2, β), (x3, γ),⊥, . . . ,⊥︸ ︷︷ ︸
n−3

) 7→ x1x2x3 + α+ β + γ

that has effective degree 2 and tolerates minority corruptions. The construction requires |F| > n.

Additional notations. Let F be a field that |F| > n, let 1, . . . , n denote n distinct non-zero el-
ements in F. Denote by P(t,m) the set of degree-t polynomials P with constant term m over
F, so that Q ← P(t,m) refers to sampling a random degree-t polynomial Q whose constant
term is m. In addition, m = rec(t, (i1, σ1) . . . , (it+1, σt+1)) denotes the procedure for reconstruct-
ing the constant term from t + 1 points on the polynomial via interpolation. For convenience,
we also denote by P(t,m) | (i1, σ1) . . . , (is, σs) the set of polynomials Q ∈ P(t,m) such that
Q(i1) = σ1, . . . , Q(is) = σs, for s ≤ t+ 1.

Protocol overview. We decompose the computation of x1x2x3+α+β+γ, into two parts x1x2x3+
z+ s and α+β+γ− z− s where z is sampled by P1 and s is jointly sampled by all n parties. Since
the second term is linear, we focus on designing an MPRE for the first part.

• P1 samples z ← F, Z ← P(n− 1, z).

• P2 samples Q2 ← P(t, x2) and P3 samples Q3 ← P(t, x3).

• Pi samples S(i)← F, for every i ∈ [n]. Let s = rec(n− 1, (1, S(1)), . . . , (n, S(n)).

Observe that
Y := x1Q2Q3 + Z + S ∈ P(n− 1, x1x2x3 + z + s) .

Here, we rely on the fact that 2t ≤ n − 1. Then, for each i = 1, 2, . . . , n, parties P1, P2, P3, Pi can
run the gadget MPRE described in Section 4.1 to compute Y (i)

((x1, Z(i)), Q2(i), Q3(i), S(i)) 7→ x1Q2(i)Q3(i) + Z(i) + S(i) = Y (i) ,

from which the output party can reconstruct Y and the constant term x1x2x3 + z + s.
Security Intuition. We can prove security of this protocol for up to t < n/2 corruptions. Consider
two cases: If P1 is not corrupted, or corrupted. In the first case, the view of the output party
consists of α+ β + γ − z − s, and a degree n− 1 polynomial Y with constant term x1x2x3 + z + s,

20

which is random thanks to the randomization via Z. Now, suppose the adversary additional
corrupts t parties, excluding P1; call this set of parties T . Then, security of the gadget MPRE tells
us that the adversary also learns {Q2(i), Q3(i), S(i) : i ∈ T}. Suppose for now 2, 3 /∈ T . By the
property of Shamir’s secret sharing, this leaks no additional information about x1, x2, x3 to the
adversary. Now, if 2 ∈ T , then the adversary also learns Q2, but that is okay since it already learns
x2; the same argument applies to 3 ∈ T .

In the second case that P1 is corrupted and adversary learns x1 and all Z(i)’s, the polynomial
Y is still a random degree-(n − 1) polynomial with constant term x1x2x3 + z + s thanks to the
randomization via S. If the adversary corrupts at set T of t parties, including P1, and learns
{Q2(i), Q3(i), S(i) : i ∈ T}, Shamir’s secret sharing, again protects x2, x3 from being leaked to the
adversary.

Protocol Specification In short, the MPRE F̂ for x1x2x3 + α+ β + γ simply computes n 4-party
gadget MPRE,

f̂((x1, Z(i)), Q2(i), Q3(i), S(i)) for all i ∈ [n]

together with the linear term α+β+ γ+ z+ s. A formal description is in Figure 7. It is easy to see
that F̂ has effective degree 2 since f̂ has effective degree ≤ 2.

MPRE F̂ for the n-party gadget functionality

This scheme uses the following tools:

• f̂ is the effective degree-2 MPRE for the 4-party gadget in Section 4.1.

Local Randomness and Preprocessing: Parties locally sample and do:

• P1 samples z ← F, Z ← P(n− 1, z).

• P2 samples Q2 ← P(t, x2).

• P3 samples Q3 ← P(t, x3).

• ∀i ∈ [n], Pi samples S(i)← F.

• ∀i ∈ [n], P1, P2, P3, Pi sample r
(i)
1 , r

(i)
i respectively and performs local

preprocessing for the i’th invocation of MPRE f̂ below.

Encoding: Compute the encoding function of f̂ and output:

∀i ŷi = f̂((x1, Z(i)), Q2(i), Q3(i), S(i) ; r
(i)
1 ,⊥,⊥, r(i)

i)

ŷ = α+ β + γ − s− z ,

where s = rec(n− 1, (i, S(i))i).

Decoding: For every i, decode ŷi to obtain Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).
Output rec(n− 1, (i, Y (i))i) + ŷ.

Figure 7: Effective degree-2 MPRE F̂ for the n-party gadget functionality

Lemma 4.3. The MPRE scheme in Figure 7 for the n-party functionality 3MultPlusn has effective degree
2 and satisfies t-adaptive privacy for t < n/2. The construction requires |F| > n.

21

Simulator. Observe that the MPRE F̂ invokes the 4-party gadget MPRE f̂ for n times and com-
putes a linear function `. By the adaptive security of f̂ and Theorem 3.3, we have that the parallel
composition of all n invokations of f̂ and the linear function ` is an MPRE Ĝ for the following
composed functionality G:

G :
((
x1, α, (Z(i))i, S(1)

)
,
(
x2, β, (Q2(i))i, S(2)

)
,
(
x3, γ, (Q3(i))i, S(3)

)
, . . . , S(i), . . . , S(n)

)
7→ α+ β + γ − s− z, (Y (i))i .

The leakage function of f̂ gives the leakage function of Ĝ, which is Li leaking (Q2(i), Q3(i)) to Pi
for every i. Ĝ is secure against t < n/2 adaptive corruption. Let (SimIG,SimOG) be its simulator.
Below, we use this simulator to construct the simulator (SimIF ,SimOF) for F̂ .
Overview. The encoding of F̂ consists of encoding of f̂ and the output of ` with appropriate input
/ output. The job of (SimIF ,SimOF) is: 1) simulate the input / output of calls to Ĝ, i.e., calls to f̂
and ˆ̀, and 2) invoke (SimIG,SimOG) to simulate the encoding and local randomness of all calls to
f̂ and `. Task 1) requires simulating Y (i), a random n-out-of-n Shamir sharing of x1x2x3 + z + s
belonging to the output of encoding, all Z(i) belonging to P1, each S(i) belonging to Pi, and
eachQ2(i), Q3(i) belonging to P2, P3 respectively, and leaked to Pi. Consistency between Y (i) and
Z(i), S(i) is maintained by “programming” the variable that is simulated the last. This can be done
as S(i) Z(i) are all marginally random and provide enough degree of freedom for programming
even if all parties were corrupted. Consistency between simulating Q2(i), Q3(i) when P2, P3 are
corrupted and when Pi is corrupted can be maintained, thanks to the fact that at most t parties are
corrupted and Q2, Q3 have degree t with constant term x2, x3.

Proof of Lemma 4.3. We start with the formal description of the simulator.

Upon CorruptO, SimO(y = x1x2x3 + α+ β + γ):

• Sample τ ← F.

• ∀i, if P1, Pi are already corrupted, Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i) is fixed.

• Sample O ← P(n − 1, τ) | (i1, Y (i1)), . . . , (is, Y (is)) conditioned on the list of fixed
(ij , Y (ij))’s from previous step. (Note that s ≤ t points are fixed.)

Send to adversary SimOG(y − τ, (Y (i))i).

Upon CorruptI(1), SimI(x1, α):

• Sample S(1)← F.

• ∀i, if Pi and the output party are already corrupted, find the unique Z(i) that satisfies
the equation Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).

Send to adversary SimIG(x1, α, (Z(i))i, S(1)).

Upon CorruptI(2), SimI(x2, β)):

• ∀i, if Pi is already corrupted, Q2(i) is already fixed.

• Sample Q2 ← P(t, x2) | (i1, Q2(i1)), . . . , (is, Q2(is)), conditioned on the list of fixed
(ij , Q2(ij)). (Note that this can be done as s ≤ t points are fixed, and Q3 has degree t.)

• if P1 and the output party are already corrupted, find the unique S(2) that satisfies the
equation Y (2) = x1Q2(2)Q3(2) + Z(2) + S(2).

22

Send to adversary SimIG(x2, β, (Q2(i))i, S(2)).

Upon CorruptI(3), SimI(x3, γ)): Same as in SimI(x2, β):

• ∀i, if Pi is already corrupted, Q3(i) is already fixed.

• Sample Q3 ← P(t, x3) | (i1, Q3(i1)), . . . , (is, Q3(is)), conditioned on the list of fixed
(ij , Q3(ij)).

• if P1 and the output party are already corrupted, find the unique S(3) that satisfies the
equation Y (3) = x1Q2(3)Q3(3) + Z(3) + S(3).

Send to adversary SimIG(x3, γ, (Q3(i))i, S(3)).

Upon CorruptI(i), SimI(⊥)) for i /∈ {1, 2, 3}:

• If P2 and/or P3 is already corrupted, Q2 and/or Q3 are fixed. Otherwise, sample
Q2(i), Q3(i)← F.

• Sample Q3 ← P(t, x3) | (i1, Q3(i1)), . . . , (is, Q3(is)), conditioned on the list of fixed
(ij , Q3(ij)).

• if P1 and the output party are already corrupted, find the unique S(i) that satisfies the
equation Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).

Send to adversary SimIG(S(i), Q2(i), Q3(i)).

Correctness of Simulation We argue that the view of the adversary in the real world and simu-
lation are identically distributed following from the simulation security of Ĝ and the fact that the
input / output of the invokation of Ĝ are simulated perfectly.
Hybrid. More formally, consider the following hybrid, where input / output of the invokation of
Ĝ is generated at the beginning as in the real world, while the encoding of Ĝ is still simulated.

At the outset: With knowledge of x1, x3, x3, α, β, γ.

• ∀i, sample Z(i)← F. Let z = Z(0).

• Sample Q2 ← P(t, x2).

• Sample Q3 ← P(t, x3).

• ∀i, sample S(i)← F. Let s = S(0).

• ∀i, compute Y (i) = x1Q2(i)Q3(i) + Z(i) + S(i).

• Compute τ = x1x2x3 + z + s, and y = x1x2x3 + α+ β + γ.

Upon CorruptO: Send to adversary SimOG(y − τ, (Y (i))i).

Upon CorruptI(1): Send to adversary SimIG(x1, α, (Z(i))i, S(1)).

Upon CorruptI(2) Send to adversary SimIG(x2, β, (Q2(i))i, S(2)).

Upon CorruptI(3): Send to adversary SimIG(x3, γ, (Q3(i))i, S(3)).

Upon CorruptI(i): Send to adversary SimIG(S(i), Q2(i), Q3(i)).

23

The only difference between the above hybrid and the real world is whether the encoding of Ĝ is
simulated or not, it follows from the security of Ĝ that the views of the adversary are identically
distributed. The only difference between the hybrid and the simulation is whether the input / out-
put of the call to Ĝ is generated at the beginning with knowledge of x1, x2, x3, α, β, γ or generated
in a delayed fashion. Since these two ways of generation yield the same distribution, the hybrid
and simulation are also identically distributed. We conclude that the real world and simulation
are identically distributed.

4.4 dMultPlus is Complete among Degree-d Functionalities

We show that the following d-party functionality dMultPlus from [GIS18, BGI+18] is complete.

dMultPlus : (x1, z1), . . . , (xd, zd) 7→ x1 · · · · · xd + z1 + · · ·+ zd.

It is complete for degree-d functionalities is the following sense: if there is a MPRE for dMultPlus,
then there is a MPRE for any degree-d functionality that has the same complexity. Since we already
have sequential composition (Theorem 3.2), it is sufficient to prove the following lemma.

Lemma 4.4. Let d ∈ {2, 3}. For any degree-d functionality f over a field F, there exists a MPRE
(f̂, h1, . . . , hn) for f , such that

• the MPRE tolerates arbitrary number of adaptive corruptions;

• every output bit of the MPRE is either linear or of the form1

(x1, z1), . . . , (xd, zd) 7→ x1 · · · · · xd + z1 + · · ·+ zd.

Proof. By the parallel composition (Theorem 3.3), we can assume w.l.o.g. that f is a polynomial.
Since we are considering fully adaptive security, we can assume w.l.o.g. that each party only has
one input bit. I.e. the input is (x1, . . . , xn) ∈ Fn, and the output of f is

f(x1, . . . , xn) =
m∑
j=1

cjxij,1 · · · · · xij,d .

Let Ij := {ij,1, . . . , ij,d}.
Then Figure 8 construct an MPRE for f . Its correctness follows from

m∑
j=1

cjuj − s =
m∑
j=1

cj(xij,1 · · · · ·xij,d + zj,ij,1 + · · ·+ zj,ij,d)− s =
m∑
j=1

cjxij,1 · · · · ·xij,d = f(x1, . . . , xn).

The privacy is guaranteed by the following simulator.

At the outset: Samples random u1, . . . , um.

Upon CorruptI(i), SimI(i, xi): For every j such that i ∈ Ij ,

• If there exists another party in Ij that is not corrupted, sample zj,i at random.
• If all other parties in Ij are corrupted, then zj,ι has been set by subroutine SimI(ι, xι)

for all ι ∈ Ij \ {i}. set zj,i = uj −
∑

ι∈Ij\{i} zj,ι.

Output (zj,i)j s.t. i∈Ij .

Upon CorruptO, SimO(y): Set s =
∑m

j=1 cjuj − y.

Output (u1, . . . , um, s).
1This function is called dMultPlus in [GIS18].

24

MPRE for f

Local randomness: Pi samples zj,i for i ∈ Ij .

Preprocessing function: No preprocessing, i.e. hi is the identical function.

Encoding function f̂ : On input x1, . . . , xn, (zj,i)j,i, output u1, . . . , um, s such that

uj = xij,1 · · · · · xij,d + zj,ij,1 + · · ·+ zj,ij,d

s =
m∑
j=1

cj(zj,ij,1 + · · ·+ zj,ij,d).

Decoding function: On input (u1, . . . , um, s), output
∑m

j=1 cjuj − s.

Figure 8: MPRE for degree-k functionalities

5 MPRE for NC1 and P/poly

We lift our effective degree-2 MPRE for degree-3 functionalities constructed in the previous sec-
tion, to MPRE for NC1 and P/poly. The transformation uses the former MPRE to compute degree-
3 randomized encodings for NC1 [IK02] and for P/poly [Yao82], and preserves the effective degree.
The resulting effective-degree-2 MPRE for NC1 is information theoretically secure and tolerates
any adaptive corruptions, while the resulting MPRE for P/poly is computationally secure making
black box access to a PRG, and tolerates n− 1 adaptive corruptions.

By our sequential composition theorem (Theorem 3.2), it is sufficient to construct degree-3
MPRE for NC1 and for P/poly. The former is constructed in [ABT18]. The later, a (n − 1)-private
degree-3 MPRE for P/poly that makes black-box use of PRG, has been implicitly constructed
in [DI05]. We will formally analyze their adaptive security in the rest of the section.

5.1 MPRE for NC1

Lemma 5.1. For any arithmetic NC1 functionality over field F, it has a MPRE such that

• the MPRE is perfectly secure against adaptive corruptions;

• the MPRE has effective degree 3 over F.

We know that any arithmetic NC1 functionality has a degree-3 randomized encoding [IK00,
IK02]. The randomized encoding of Ishai and Kushilevitz has a nice property that given the input
and the encoding, one can easily compute the randomness. Such property can be formalized as
the adaptive security of randomized encodings.

Any adaptive randomized encoding implies a fully-adaptive MPRE, the proof is similar to
Proposition 3.2 in [ABT18]. Thus Lemma 5.1 follows as a corollary.

Definition 8 (adaptive randomized encoding). Let f̂ : X × R → Ŷ be a randomized encoding
for function f : X → Y . Randomized encoding f̂ is adaptive if there exist simulation algorithms
SimI,SimO such that the following two distribution are identical for any x ∈ X

• the distribution of (r, ŷ): first let ŷ ← SimO(f(x)), then let r ← SimI(x, ŷ);

25

• the distribution of (r, ŷ): first sample r ← R, then set ŷ = f̂(x; r).

Lemma 5.2. If f̂RE is an randomized encoding for functionality f : X1 × · · · × Xn → Y , then the scheme
in Figure 9 is a MPRE for f such that

• the MPRE is secure against n− 1 adaptive corruptions;

• if f̂RE is an adaptive randomized encoding, the MPRE is secure against any number of adaptive
corruptions;

• the effective degree of the MPRE is the same as the degree of f̂RE.

Proof. The correctness follows directly from the correctness of f̂RE.

fully-adaptive MPRE

Randomness Pi samples ri ← R

Preprocessing function: No preprocessing is needed. I.e. hi is the identical
function.

Encoding function: f̂((x1, r1), . . . , (xn, rn)) = f̂RE(x1, . . . , xn; r1 + · · ·+ rn)

Decoding function: The decoding function of the randomized encoding.

Figure 9: MPRE induced by a randomized encoding

Let (SimIRE,SimORE) be the adaptive simulator of f̂RE. If there is no adaptive simulator, let
SimORE be the simulator of f̂RE. The adaptive simulator of the MPRE works as the follows

Upon CorruptI(i), SimI(i, xi):

• If there exists at least one other party that is not corrupted, sample ri ← R, output ri.

• Otherwise, the simulator has learned x1, . . . , xn. W.l.o.g. we can assume subroutine
SimO(y) has been invoked, thus ŷ has been set.
Let r ← SimIRE(x1, . . . , xn, ŷ). Let ri = r −

∑
i′ 6=i ri′ . Output ri.

Upon CorruptO, SimO(y): Let ŷ ← SimORE(y). Output ŷ.

Due to the security of the randomized encoding, the ideal world is indistinguishable from the
real world.

5.2 Computational MPRE for P/poly based on Black-box PRG

Lemma 5.3. The scheme in Figure 10 is a MPRE for P/poly such that

• the MPRE uses PRG as a black-box;

• the MPRE is computationally secure against n− 1 adaptive corruptions;

• the MPRE has effective degree 3 over boolean field.

26

Proof Overview The construction is similar to Yao’s garbled circuits. Yao’s garbled circuits can
be viewed as a degree-3 computational randomized encoding for P/poly.

Recall that in Yao’s garbled circuits, the construction involves many pairs of the form

(sj , ŝj),

so that they need to satisfy the following properties

• sj is uniformly random;

• ŝj is longer than sj and can be deterministically computed from sj ;

• if sj is hidden, ŝj is computationally indistinguishable from uniform distribution.

PRG exactly fits the requirements. In Yao’s garbled circuits, sj is sampled at random, and ŝj :=
G(sj), where G is a PRG.

To convert Yao’s garbled circuit into a computational MPRE, the label sj should be jointly
sampled by all parties. For the MPRE to be secure, ŝj should be indistinguishable from uniform
randomness as long as at least one party’s local randomness is hidden. Moreover, for the MPRE
to have low effective degree, PRG should be only be used in the preprocessing phase.

A natural construction that satisfies all the requirements is

• sj := s
(1)
j ‖ . . . ‖s

(n)
j , where s(i)

j is locally sampled by the i-th party;

• ŝj := G(s
(1)
j)⊕ · · · ⊕G(s

(n)
j).

Denote the mapping from sj to ŝj by GMP, i.e.

GMP(z(1)‖ . . . ‖z(n)) := G(z(1))⊕ · · · ⊕G(z(n)).

Under the new notation, ŝj = GMP(sj).

Circuit definition To rigorously state our MPRE, we formalize the notations for functionality
in P/poly. A boolean circuit is specified by a directed acyclic graph. The nodes in the graph are
indexed by numbers in [m], each represents a wire in the circuit.

• For any j ∈ [m], let xj denote the wire value of the j-th wire.

• Let Ji denote the input wires of the i-th party. For each j ∈ Ji, the i-th party knows the
value of xj . Let Jin :=

⋃
i Ji denote all the input wires.

• Any wire other than the input wires is the output of a gate. Let j1, j2 < j denotes the input
wires of the gate (j1, j2 are implicit functions of j), let gj : {0, 1} × {0, 1} → {0, 1} be the
corresponding gate function. Thus xj = gj(xj1 , xj2).

• For each wire j, let d(j) denote the fan-out of the wire.

• Let Jout denote all the output wires. Thus the circuit output consists of xj for all j ∈ Jout.

27

(n− 1)-private MPRE for circuit C

Input Pi has xj for each j ∈ Ji.

Randomness For each j ∈ Ji, the i-th party samples kj ∈ {0, 1}. For each j ∈ Jin, the i-
th party samples ŝ(i)

j,0, ŝ
(i)
j,1 ∈ {0, 1}2(µ+1)·d(j). For each j /∈ Jin, the i-th party samples

k
(i)
j ∈ {0, 1}, s

(i)
j,0, s

(i)
j,1 ∈ {0, 1}µ.

Preprocessing function: The i-th party computes ŝ(i)
j,0 = G(s

(i)
j,0), ŝ

(i)
j,1 = G(s

(i)
j,1) for all j /∈ Jin.

That is,

hi

((
xj , kj

)
j∈Ji

,
(
ŝ

(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1

)
j /∈Jin

)
:=
((
xj , kj

)
j∈Ji

,
(
ŝ

(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1, G(s

(i)
j,0), G(s

(i)
j,1)
)
j /∈Jin

)
.

Encoding function: Define kj :=
⊕

i∈[n] k
(i)
j , ŝj,b :=

⊕
i∈[n] ŝ

(i)
j,b for j ∈ [m]; sj,b := s

(1)
j,b ‖ . . . ‖s

(n)
j,b

for j /∈ Jin. The encoding consists of

x̄j := xj ⊕ kj , ẑj := ŝj,x̄j

for each j ∈ Jin; and

wj,b1,b2 := ŝj1,b1 [j, b2] ⊕ ŝj2,b2 [j, b1] ⊕ (kj ⊕ gj(b1 ⊕ kj1 , b2 ⊕ kj2)‖sj,kj⊕gj(b1⊕kj1 ,b2⊕kj2))

for each j /∈ Jin, b1, b2 ∈ {0, 1}; and kj for each j ∈ Jout.

Decoding function: For each j /∈ Jin, compute

x̄j‖zj = wj,x̄j1 ,x̄j2 ⊕ ẑj1 [j, x̄j2]⊕ ẑj2 [j, x̄j1].

and ẑj = GMP(zj). Output kj ⊕ x̄j for each j ∈ Jout.

Figure 10: Computational MPRE for P/poly using Black-box PRG

Proof of Lemma 5.3. Scheme is essentially Yao’s garbled circuit which uses GMP as PRG. kj is the
permutation bit of the j-th wire. sj,0, sj,1 are the wire keys of the j-th wire. (wj,0,0, wj,0,1, wj,1,0, wj,1,1)
is the table associated with the j-th gate. Thus both the correctness and privacy can be proved in
a similar fashion as garbled circuit.

The correctness is implied from the statement that

x̄j := xj ⊕ kj , ẑj := ŝj,x̄j (6)

for all j ∈ [m]. The statement can be proved by induction. For any j ∈ Jin, (6) is directly guar-
anteed by the encoding function. For any j /∈ Jin, assume the statement holds for j1, j2 – the two

28

input wire of the j-th gate, then

x̄j‖zj = wj,x̄j1 ,x̄j2 ⊕ ŝj1,x̄j1 [j, x̄j2]⊕ ŝj2,x̄j2 [j, x̄j1]

= (kj ⊕ gj(x̄j1 ⊕ kj1 , x̄j2 ⊕ kj2)‖sj,kj⊕gj(x̄j1⊕kj1 ,x̄j2⊕kj2))

= kj ⊕ gj(xj1 , xj2)‖sj,kj⊕gj(xj1 ,xj2)

= kj ⊕ xj‖sj,kj⊕xj ,

thus x̄j = kj⊕xj , zj = sj,kj⊕xj = sj,x̄j and ẑj = GMP(zj) = GMP(sj,x̄j) = ŝj,x̄j . As the consequence,
for each j ∈ Jout, the decoding function will output x̄j ⊕ kj , which equals the right output xj .

For adaptive privacy, the simulator in the ideal world works as the follows

At the outset: Sample x̄j ← {0, 1} for all j ∈ [m], sample random ẑj for all j ∈ Jin, sample random
zj and sets ẑj = GMP(zj) all j /∈ Jin.

Upon CorruptI(i), SimI(i, (xj)j∈Ji): Sets kj = xj ⊕ x̄j for all j ∈ Ji.
Sample random ŝ

(i)
j,0, ŝ

(i)
j,1 for all j ∈ Jin, sample random k

(i)
j for all j /∈ Jin.

Set s(i)
j,x̄i

as the i-th part of zj and sample random s
(i)
j,x̄i⊕1 for all j /∈ Jin.

Output
(
xj , kj

)
j∈Ji

,
(
ŝ

(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1

)
j /∈Jin

.

Upon CorruptO, SimO((xj)j∈Jout): Sets kj = xj ⊕ x̄j for all j ∈ Jout.

For each j /∈ Jin, the simulator sets

wj,x̄j1 ,x̄j2 = ẑj1 [j, x̄j2]⊕ ẑj2 [j, x̄j1]⊕ (x̄j‖zj),

and samples random wj,b1,b2 for (b1, b2) 6= (x̄j1 , x̄j2).

Output (x̄j , ẑj)j∈Jin , (wj,b1,b2)j /∈Jin,b1,b2∈{0,1}, (kj)j∈Jout to the adversary.

In order to show the real world and the ideal world are computationally indistinguishable
from the adversary’s view, we define a sequence of 2m + 1 hybrid worlds. In the t-th hybrid world
(t ∈ {0, 1

2 , 1,
3
2 , . . . ,m}):

At the outset: The adversary decides input (xj)j∈Jin .

Sample x̄j ∈ {0, 1} for all j ∈ [m], sample random ẑj for all j ∈ Jin, sample random zj and
sets ẑj = GMP(zj) all j /∈ Jin.

For all j ∈ [m], set kj = xj ⊕ x̄j . For all j ∈ Jin, set ŝj,x̄j = ẑj and sample random ŝj,x̄j⊕1. For
all j /∈ Jin, set sj,x̄j = zj , set ŝj,x̄j = GMP(sj,x̄j), ẑj = GMP(zj), thus ẑj = ŝj,x̄j .

set sj,x̄j = zj , sample random sj,x̄j⊕1 .

For each j /∈ Jin that j ≤ t, sample random sj,x̄j⊕1, ŝj,x̄j⊕1.

For each j /∈ Jin that j > t, sample random sj,x̄j⊕1, set ŝj,x̄j⊕1 = GMP(sj,x̄j⊕1).

Upon CorruptI(i): Sample random ŝ
(i)
j,0, ŝ

(i)
j,1 for all j ∈ Jin. Sample random k

(i)
j for all j /∈ Jin. Set

s
(i)
j,b as the i-th part of sj,b for all j /∈ Jin.

Send
(
xj , kj

)
j∈Ji

,
(
ŝ

(i)
j,0, ŝ

(i)
j,1

)
j∈Jin

,
(
k

(i)
j , s

(i)
j,0, s

(i)
j,1

)
j /∈Jin

to the adversary.

29

Upon CorruptO: For each j /∈ Jin that j ≤ t+ 1
2 , set

wj,x̄j1 ,x̄j2 = ẑj1 [j, x̄j2]⊕ ẑj2 [j, x̄j1]⊕ (x̄j‖zj),

and sample random wj,b1,b2 for (b1, b2) 6= (x̄j1 , x̄j2).

For each j /∈ Jin that j > t+ 1
2 , set

wj,b1,b2 = ŝj1,b1 [j, b2]⊕ ŝj2,b2 [j, b1]⊕ (kj ⊕ gj(b1 ⊕ kj1 , b2 ⊕ kj2)‖sj,kj⊕gj(b1⊕kj1 ,b2⊕kj2))

for b1, b2 ∈ {0, 1}.
The simulator sends (x̄j , ẑj)j∈Jin , (wj,b1,b2)j /∈Jin,b1,b2∈{0,1}, (kj)j∈Jout to the adversary.

The ideal world is computationally indistinguishable from the real world, because 1) the real
world is indistinguishable from the 0-th hybrid world; 2) the ideal world is indistinguishable
from the m-th hybrid world; 3) the j-th hybrid world is computationally indistinguishable from
the (j − 1)-th hybrid world.

The real world is indistinguishable from the 0-th hybrid world as they are essentially the same. E.g. in
the real world, k(1)

j , . . . , k
(n)
j are i.i.d. random boolean, and kj := k

(1)
j ⊕ · · · ⊕ k

(n)
j , x̄j := kj ⊕ xj ;

while in the 0-th hybrid world, x̄j and k
(i)
j for all corrupted party i are randomly sampled, and

kj := x̄j ⊕ xj . There two methods of sampling yield the same distribution.

The ideal world is indistinguishable from them-th hybrid world. Compared with them-th hybrid world,
the only difference of the ideal world is that some computation is deferred. E.g. in them-th hybrid
world, it sets kj := x̄j ⊕ xj at the beginning; while in the ideal world, the simulator can only set kj
after xj is given.

The (j − 1)-th hybrid world. is indistinguishable from the (j − 1
2)-th hybrid world. The only difference

between them is how wj,0,0, wj,0,1, wj,1,0, wj,1,1 are generated.
As for wj,x̄j1 ,x̄j2 , we have

wj,x̄j1 ,x̄j2 (in the (j − 1
2)-th hybrid world)

= ẑj1 [j, x̄j2]⊕ ẑj2 [j, x̄j1]⊕ (x̄j‖zj)
= ŝj1,x̄j1 [j, x̄j2]⊕ ŝj2,x̄j2 [j, x̄j1]⊕ (x̄j‖sj,x̄j)
= ŝj1,x̄j1 [j, x̄j2]⊕ ŝj2,x̄j2 [j, x̄j1]⊕ (kj ⊕ gj(x̄j1 ⊕ kj1 , x̄j2 ⊕ kj2)‖sj,kj⊕gj(x̄j1⊕kj1 ,x̄j2⊕kj2))

= wj,x̄j1 ,x̄j2 (in the (j − 1)-th hybrid world).

For the other three terms, wj,b1,b2 for (b1, b2) 6= (x̄j1 , x̄j2), we have

wj,b1,b2 (in the (j − 1)-th hybrid world)
= ŝj1,b1 [j, b2]⊕ ŝj2,b2 [j, b1]⊕ (kj ⊕ gj(b1 ⊕ kj1 , b2 ⊕ kj2)‖sj,kj⊕gj(b1⊕kj1 ,b2⊕kj2)).

Notice that in the (j − 1)-th hybrid world, ŝj1,x̄j1⊕1, ŝj2,x̄j2⊕1 are fresh randomness that are only
used to generatewj,x̄j1⊕1,x̄j2⊕1, wj,x̄j1 ,x̄j2⊕1, wj,x̄j1⊕1,x̄j2

. Thus it’s equivalent to samplingwj,b1,b2 for
(b1, b2) 6= (x̄j1 , x̄j2) at random as they are already one-time padded by fresh randomness, which is
exactly how they are generated in the (j − 1

2)-th hybrid world.

The last piece is the computational indistinguishability between the j-th hybrid world and the (j − 1
2)-th

hybrid world. The only difference between them is how ŝj,x̄j⊕1 is generated.

30

In the (j − 1
2)-th hybrid world, sj,x̄j⊕1 = s

(1)
j,x̄j⊕1‖ . . . ‖s

(n)
j,x̄j⊕1 are randomly sampled and ŝj,x̄j⊕1

is determined by ŝj,x̄j⊕1 = GMP(sj,x̄j⊕1) =
⊕

iG(s
(i)
j,x̄j⊕1). As we are proving (n − 1)-privacy, the

adversary cannot corrupts all parties. Let i∗ denote a party currently not corrupted by the adver-
sary. Notice that s(i∗)

j,x̄j⊕1 is only used to generate ŝj,x̄j⊕1, thus it is computational indistinguishable

if G(s
(i∗)
j,x̄j⊕1) is replaced by uniform randomness. Replacing G(s

(i∗)
j,x̄j⊕1) by uniform randomness

is equivalent to sampling ŝj,x̄j⊕1 at random, which is how ŝj,x̄j⊕1 is generated in the j-th hybrid
world.

6 Two-Round MPC

As what we are going to show in Lemma 6.1, an effective-degree-2 adaptive MPRE for function-
ality f and an adaptive 2-round MPC for any degree-2 functions will imply an adaptive 2-round
MPC for the functionality f . In previous sections, we construct effective degree-2 MPRE for NC1

and P/poly under different settings. The last step is to construct adaptive 2-round MPC protocols
for degree-2 functionalities in these settings, which are Section 6.1 and 6.2.

Lemma 6.1. Let (f̂, h1, . . . , hn) be a MPRE for functionality f that tolerates t adaptive corruptions. As-
sume there is a MPC protocol for f̂ that tolerates t adaptive corruptions. Then there exists a MPC protocol
(Figure 11) for f such that

• the resulting MPC protocol has the same round and communication complexity as the MPC protocol
for f̂ ;

• the resulting MPC protocol tolerates t adaptive corruptions; the type of the simulation security (pre-
fect, statistical or computational) align with that of the MPRE for f and MPC for f̂ ;

• if the MPC for f̂ or the MPRE for f uses correlated randomness, the resulting MPC uses the same
correlated randomness.

Proof. The correctness is straight-forward. By the correctness of the MPC for f̂ , the receiver will
receive ŷ = f̂(x̂1, . . . , x̂n). The receiver outputs Dec(ŷ), which equals f(x1, . . . , xn) due to the
correctness of the MPRE.

Let (SimIMPRE,SimOMPRE) be the adaptive simulator of the MPRE, and let (SimIMPC,SimOMPC)
be the adaptive simulator of the MPC protocol for f̂ . Then the simulator for the MPC protocol in
Figure 11 works as the follows

Upon CorruptI(i), SimI(i, xi): Let ri, r′i ← SimIMPRE(xi). Set x̂i = hi(xi, ri, r
′
i).

Let Viewi ← SimIMPC(x̂i). Output Viewi, ri, r
′
i.

Upon CorruptO, SimO(y): Let ŷ ← SimOMPRE(y).

Let Viewreceiver ← SimOMPC(ŷ). Output Viewreceiver.

The security can be formally proved by a hybrid argument. Consider a middle world where
the MPRE part (i.e. ri, r′i, x̂i, ŷ) is generated as in the real world, and the rest are generated by the
simulator (SimIMPC,SimOMPC).

The ideal world is indistinguishable from the middle world due to the privacy of the MPRE
and the correctness of the MPC for f̂ . The real world is indistinguishable from the middle world
due to the privacy of the MPC for f̂ .

31

t-private MPC protocol for functionality f

Input: Pi has xi.

Local randomness: Pi samples ri, the local randomness of the MPRE for f ;
Pi samples wi, the local randomness of the MPC protocol for f̂ .

Correlated randomness: Sample (r′1, . . . , r
′
n), the correlated randomness of the MPRE,

if any; Pi gets r′i.

Sample (w′1, . . . , w
′
n), the correlated randomness of the MPC protocol, if any; Pi

gets w′i.

Protocol: At the beginning, Pi locally computes x̂i = hi(xi, ri, r
′
i).

Invoke the MPC for f̂ to compute ŷ = f̂(x̂1, . . . , x̂n).

Once the receiver learns ŷ from the MPC protocol for f̂ , it outputs Dec(ŷ).

Figure 11: A MPC protocol implied by MPRE

6.1 Honest Majority & Plain Model

In the honest majority setting, the BGW [BGW88] protocol when restricted to computing degree-2
polynomials has only two rounds. The adaptive security of BGW is proved in [DN14].

Lemma 6.2. For any degree-2 functionality f , the BGW protocol computes f in 2-round and tolerates
adaptive minority corruptions.

6.2 Honest Minority & OLE Correlations

We now construct a very simple adaptively secure MPC protocol using OLE-correlation for the
following 2MultPlus functionality, which is sufficient for computing any degree-2 polynomials.

Input P1 has x1, z1 ∈ F; P2 has x2, z2 ∈ F.

OLE Correlation Sample random a1, a2, b1, b2 ∈ F such that a1a2 = b1 + b2.
P1 has a1, b1 ∈ F, P2 has a2, b2 ∈ F.

Round 1 P1 sends m1,1 := x1 − a1 to P2. P2 sends m2,1 := x2 − a2 to P1.

Round 2 P1 sends m1,1 and m1,2 := m2,1x1 + b1 + z1 to the receiver.

P2 sends m2,1 and m2,2 := m1,1x2 + b2 + z2 to the receiver.

The receiver outputs m1,2 +m2,2 −m1,1m2,1.

Figure 12: 2-round MPC for 2MULTPlus in OLE correlation model

Lemma 6.3. The 2-round MPC described in Figure 12 is a adaptive secure MPC protocol for the following
functionality

2MultPlus : ((x1, z1), (x2, z2)) 7→ x1x2 + z1 + z2

and it tolerates an arbitrary number of corruptions.

32

Proof Overview The scheme can also be explained as a randomized encoding for branching
program. As (b1, b2) is the additive secret sharing of a1a2, the receiver essentially learns m1,1,m2,1

and m1,2 +m2,2.
As [

1 a1

1

] [
x1 z1 + z2

−1 x2

] [
1 a2

1

]
=

[
m1,1 m1,2 +m2,2

−1 m2,1

]
,

the message received by the receiver is a randomized encoding of x1x2 + z1 + z2, and a1, a2 are the
randomness of the randomness encoding.

Proof. The correctness of the protocol follows directly from

m1,2 +m2,2 −m1,1m2,1

= x1x2 − x1a2 + b1 + z1x1x2 − x2a1 + b2 + z2 − (x1x2 − x1a2 − a1x2 + a1a2)

= x1x2 + z1 + z2.

The view of the adversary can be (adaptively) simulated as the following simulator

On the outset: Sample m1,1,m2,1 ∈ F at random.

SimI(i, (xi, zi)): Set ai = xi −mi,1.

Sample random mi,2 if it is not set by subroutine SimO(y). If the other party has been cor-
rupted, we can assume w.l.o.g. that subroutine SimO(y) has set mi,2.

Solve bi from mi,2 := m3−i,1xi + bi + zi.

Output ai, bi,m3−i,1.

SimO(y):

• If both P1, P2 are corrupted: w.l.o.g. subroutine SimO(y) have already been invoked.

• If Pi is corrupted, P3−i is not corrupted: Subroutine SimI(i, (xi, zi)) has set mi,2. Solve
m3−i,2 from m1,2 +m2,2 −m1,1m2,1 = y.

• If neither P1 nor P2 is corrupted: Sample random m1,2,m2,2 such that m1,2 + m2,2 =
y +m1,1m2,1.

Output m1,1,m1,2,m2,1,m2,2.

In both the real world and the ideal world,

• m1,1,m2,1 are randomly sampled;

• (m1,2,m2,2) is additive secret sharing of y +m1,1m2,1;

• The rest (i.e. a1, b1, a2, b2) can be determined by x1, z1, x2, z2,m1,1,m1,2,m2,1,m2,2.

Acknowledgements.

We thank Yuval Ishai for insightful discussions. Part of this work was done while the authors
were visiting the Simons Institute for the Theory of Computing.

33

References

[ABT18] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation
in two rounds. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 152–174. Springer, Heidelberg, November 2018.

[ACGJ18] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-
optimal secure multiparty computation with honest majority. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
395–424. Springer, Heidelberg, August 2018.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from Ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual
International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-
21, 2020, Proceedings, Part II, volume 12171 of Lecture Notes in Computer Science, pages
387–416. Springer, 2020.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, edi-
tors, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 896–912. ACM,
2018.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of
homomorphic secret sharing. In Anna R. Karlin, editor, ITCS 2018, volume 94, pages
21:1–21:21. LIPIcs, January 2018.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In 20th
ACM STOC, pages 1–10. ACM Press, May 1988.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532.
Springer, Heidelberg, April / May 2018.

[BLPV18] Fabrice Benhamouda, Huijia Lin, Antigoni Polychroniadou, and Muthuramakrishnan
Venkitasubramaniam. Two-round adaptively secure multiparty computation from
standard assumptions. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part I, volume 11239 of LNCS, pages 175–205. Springer, Heidelberg, November 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May
1990.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, January 2000.

34

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally se-
cure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press, May
1988.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

[DN14] Ivan Damgård and Jesper Buus Nielsen. Adaptive versus static security in the UC
model. In Sherman S. M. Chow, Joseph K. Liu, Lucas Chi Kwong Hui, and Siu-Ming
Yiu, editors, Provable Security - 8th International Conference, ProvSec 2014, Hong Kong,
China, October 9-10, 2014. Proceedings, volume 8782 of Lecture Notes in Computer Science,
pages 10–28. Springer, 2014.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, vol-
ume 8349 of LNCS, pages 74–94. Springer, Heidelberg, February 2014.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC:
Information-theoretic and black-box. In Amos Beimel and Stefan Dziembowski, ed-
itors, TCC 2018, Part I, volume 11239 of LNCS, pages 123–151. Springer, Heidelberg,
November 2018.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In 41st FOCS, pages 294–304.
IEEE Computer Society Press, November 2000.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In Peter Widmayer, Francisco Triguero Ruiz,
Rafael Morales Bueno, Matthew Hennessy, Stephan Eidenbenz, and Ricardo Conejo,
editors, ICALP 2002, volume 2380 of LNCS, pages 244–256. Springer, Heidelberg, July
2002.

[IMO18] Yuval Ishai, Manika Mittal, and Rafail Ostrovsky. On the message complexity of secure
multiparty computation. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,
Part I, volume 10769 of LNCS, pages 698–711. Springer, Heidelberg, March 2018.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd
FOCS, pages 160–164. IEEE Computer Society Press, November 1982.

35

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

36

	Introduction
	Our Results

	Technical Overview
	Our Basic Construction

	Preliminaries and Definitions
	MPC Protocols
	(Multi-Party) Randomized Encoding
	Composition of MPREs

	MPRE for Degree-3 Polynomials
	Our 4-Party Gadget MPRE with leakage
	MPRE for 3-Party 3MultPlus using OLE correlation
	MPRE for n-Party 3MultPlus with Honest Majority
	dMultPlus is Complete among Degree-d Functionalities

	MPRE for NC1 and P/poly
	MPRE for NC1
	Computational MPRE for P/poly based on Black-box PRG

	Two-Round MPC
	Honest Majority & Plain Model
	Honest Minority & OLE Correlations

