ABE for DFA from \boldsymbol{k}-Lin

Junqing Gong ${ }^{1, \star}$, Brent Waters ${ }^{2, \star \star}$, and Hoeteck Wee ${ }^{1,3, \star \star \star}$
${ }^{1}$ CNRS, ENS and PSL \{jgong, wee\}@di.ens.fr
2 University of Texas at Austin and NTT Research
bwaters@cs.utexas.edu
${ }^{3}$ Algorand

Abstract

We present the first attribute-based encryption (ABE) scheme for deterministic finite automaton (DFA) based on static assumptions in bilinear groups; this resolves an open problem posed by Waters (CRYPTO 2012). Our main construction achieves selective security against unbounded collusions under the standard k-linear assumption in prime-order bilinear groups, whereas previous constructions all rely on q-type assumptions.

1 Introduction

Attribute-based encryption (ABE) [19,11] is a generalization of public-key encryption to support fine-grained access control for encrypted data. Here, ciphertexts are associated with a description value x and keys with a policy f, and decryption is possible when $f(x)=1$. In many prior ABE schemes, the policy f is specified using a boolean formula, but there are many applications where we want the policy f to operate over arbitrary sized input data. For example, we could imagine a network logging application where x represents an arbitrary number of events logged. Another example is where x is a database of patient data that includes disease history paired with gene sequences where the number of participants is not apriori bounded or known.

Following the work of Waters in 2012 [21], we consider ABE for regular languages, where the policies f are specified using deterministic finite automata (DFA). This allows us to capture applications such as tax returns and virus scanners. In spite of the substantial progress made in the design and analysis of ABE schemes over the past decade, all known constructions of ABE for DFA rely on q-type assumptions in bilinear groups [21,2,3,1], where the complexity of the assumption grows with the length of the string x. In this work, we address the following open problem posed in the original work of Waters [21]:

Can we build an ABE for DFA based on static assumptions in bilinear groups, notably the k-linear assumption in prime-order bilinear groups?

From both a practical and theoretical stand-point, we would like to base cryptography on weaker and better understood assumptions, as is the case with the k-linear assumption. This is also an intriguing problem from a conceptual stand-point because prior approaches exploit q-type assumptions in a fairly inherent manner. Waters' ABE for DFA was based on an "embedding paradigm" where the arbitrary-length challenge string was programmed into the public parameters, and embedding an arbitrary length string into fixed-size parameters seems to require a q-type assumption. The dual system encryption methodology developed in the context of ABE for boolean formula $[20,15,16,18,6]$ allows us to overcome the latter limitation, provided the ciphertext or key size is allowed to grow with the size of the formula; this does not work in the DFA setting, since formula size roughly corresponds to $\ell \cdot Q$, where ℓ is the length of the string x and Q is the number of states in the DFA. Indeed, a key challenge that distinguishes ABE for DFA from ABE for boolean formula is that both the size of public parameters and the secret keys are independent of ℓ, which means that we cannot afford to unroll and embed the entire DFA computation path into the secret key.

[^0]This work. We present the first ABE for DFA based on static assumptions in bilinear groups, thereby providing an affirmative answer to the above open problem. Our main construction achieves selective security against unbounded collusions under the standard k-linear assumption in prime-order bilinear groups. Our proof strategy departs significantly from prior ABEs for DFA in that we design a series of hybrids that traces through the computation. Our proof of security carefully combines a "nested, two-slot" dual system argument [20,15,16,18,12,6] along with a novel combinatorial mechanism for propagating entropy along the computation path of a DFA.

We note that our high-level approach of tracing the computation path across hybrids is similar to that used in the recent ABE for boolean formula from static assumptions in [14], but we have to deal with the afore-mentioned challenge specific to DFAs. In a bit more detail, in our ABE for DFA, the secret keys contain random shares "in the exponent" corresponding to each state of the DFA; this is analogous to ABE for boolean formula where the random shares correspond to wires in a formula. Roughly speaking, in the i 'th hybrid, we modify the distribution of the share corresponding to the state u_{i} reached upon reading the first i bits of the input string. In a DFA, a state could be reached many times throughout the DFA computation on a fixed input, which means that we need to modify the share corresponding to u_{i} (along with the challenge ciphertext) in such a way that it does not affect the functionality of the DFA. This difficulty does not arise in ABE for boolean formula, because each wire is only used once during the computation.

1.1 Technical overview - warm-up

We present an overview of our ABE scheme for DFAs. Recall that a DFA is specified by a tuple (Q, Σ, δ, F) where the state space is $[Q]:=\{1,2, \ldots, Q\} ; 1$ is the unique start state; $F \subseteq[Q]$ is the set of accept states, and $\delta:[Q] \times \Sigma \rightarrow[Q]$ is the state transition function.

Warm-up construction. The starting point of our construction is Waters' ABE scheme for DFA [21] over asymmetric composite-order bilinear groups (G_{N}, H_{N}, G_{T}, e) whose order N is the product of three primes p_{1}, p_{2}, p_{3}. (The original scheme is instantiated over prime-order bilinear groups, but relies on q-type assumptions.) Let g_{i}, h_{i} denote generators of order p_{i} in G_{N} and H_{N}, for $i=1,2,3$, and let h be a generator for H_{N}. The scheme is as follows:

$$
\begin{align*}
\mathrm{msk} & =\left(h, \alpha, w_{\text {start }}, w_{\text {end }}, z,\left\{w_{\sigma}\right\}_{\sigma \in \Sigma}\right) \tag{1}\\
\mathrm{mpk} & =\left(g_{1}, g_{1}^{w_{\text {start }}}, g_{1}^{w_{\text {end }}}, g_{1}^{z},\left\{g_{1}^{w_{\sigma}}\right\}_{\sigma \in \Sigma}, e\left(g_{1}, h\right)^{\alpha}\right) \\
\mathrm{ct}_{x} & =\left(\begin{array}{c}
g_{1}^{s_{0}}, g_{1}^{s_{0} w_{\text {start }}}, \\
\left\{g_{1}^{s_{i}}, g_{1}^{s_{i-1} z+s_{i} w_{x_{i}}}\right\}_{i \in[\ell]}, \\
g_{1}^{s_{\ell}}, g_{1}^{s_{\ell} w_{\text {end }}}, e\left(g_{1}, h\right)^{s_{\ell} \alpha} \cdot m
\end{array}\right) \\
\operatorname{sk}_{f}= & \left(\begin{array}{c}
h^{d_{1}+w_{\text {start }} r_{1}}, h^{r_{1}}, \\
\left\{h^{-d_{u}+z r_{u}}, h^{d_{v}+w_{\sigma} r_{u}}, h^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h^{r_{u}}\right\}_{u \in F}
\end{array}\right)
\end{align*}
$$

Decryption proceeds as follows:
(i) compute $e\left(g_{1}^{s_{0}}, h^{d_{1}}\right)$;
(ii) for $i=1, \ldots, \ell$, compute $e\left(g_{1}^{s_{i}}, h^{d_{u_{i}}}\right)$, where u_{i} denotes the state reached upon reading x_{1}, \ldots, x_{i}.
(iii) compute $e\left(g_{1}, h\right)^{s_{\ell} \alpha}$ and thus m.

To go from $e\left(g_{1}^{s_{i-1}}, h^{d_{u_{i-1}}}\right)$ to $e\left(g_{1}^{s_{i}}, h^{d_{u_{i}}}\right)$ in step (ii), we rely on the identity: for all $u \in[Q], \sigma \in \Sigma$,

$$
s_{i} d_{\delta(u, \sigma)}-s_{i-1} d_{u}=s_{i} \cdot\left(d_{\delta(u, \sigma)}+w_{\sigma} r_{u}\right)+s_{i-1} \cdot\left(-d_{u}+z r_{u}\right)-\left(s_{i-1} z+s_{i} w_{\sigma}\right) \cdot r_{u}
$$

We note that our scheme differs from Waters' scheme in that we reuse r_{u} for all the transitions starting from u instead of a fresh $r_{u, \sigma}$ for each (u, σ). This modification yields a smaller secret key (roughly $Q \cdot|\Sigma|+2 Q$ vs $3 Q \cdot|\Sigma|$ group elements), and also simplifies the notation.

Proof strategy. At a very high level, the proof follows Waters' dual system encryption methodology [20,15]. This means that throughout the proof, we modify the ciphertext and key distributions but not mpk , and only in the p_{2}-subgroup generated by g_{2}, h_{2} (which we also refer to as the p_{2}-components). In fact, we will rely on the "nested two-slot" variant of dual system encryption introduced in $[16,18,12,6]$ for settings where the ciphertext uses independent randomness s_{0}, s_{1}, \ldots, as is the case for our DFA scheme. Here, "nested" refers to the fact that the security proof interweaves a computational argument over ciphertexts with another over secret keys, whereas "two-slot" refers to the use of the p_{3}-subgroup to carry out this delicate interweaving. In contrast, the basic dual system encryption framework [2,22] applies a single computational argument over ciphertexts at the beginning and can be instantiated in asymmetric composite-order groups whose order is the product of two primes.

Proof - first idea. For this proof overview, we will focus on the selective setting where the adversary first picks a challenge x^{*} before seeing mpk and making secret key queries. In addition, we consider a further simplification where the adversary only makes a single key query for some DFA f where $f\left(x^{*}\right)=0$ (i.e. rejecting). Let $u_{0}=1$ denote the start state, and let u_{1}, \ldots, u_{ℓ} denote the state in f reached upon reading $x_{1}^{*}, \ldots, x_{\ell}^{*}$. In particular, $u_{\ell} \notin F$.

Recall that decryption computes $e\left(g_{1}^{s_{i}}, h^{d_{u_{i}}}\right)$ for each $i=0, \ldots, \ell$. A natural proof strategy would be design a series of games $\mathrm{G}_{0}, \ldots, \mathrm{G}_{\ell}$ such that in G_{i}, the quantity $e\left(g_{1}^{s_{i}}, h^{d_{u}}\right)$ is pseudorandom for each $u \neq u_{i}$. In particular, since $u_{\ell} \notin F$, this means that $e\left(g_{1}^{s_{\ell}}, h^{d_{u}}\right)$ is pseudorandom for all $u \in F$, which should imply that $e\left(g_{1}^{s_{\ell}}, h^{\alpha}\right)$ is pseudorandom.

Towards carrying out this strategy, we pick $\Delta \leftarrow \mathbb{Z}_{N}$ and define:

$$
\Delta_{i, u}:= \begin{cases}\Delta & \text { if } u \neq u_{i} \\ 0 & \text { otherwise }\end{cases}
$$

In G_{i}, we switch the ciphertext-key distributions from $\left(\mathrm{ct}_{x^{*}}, \mathrm{sk}_{f}\right)$ to $\left(\mathrm{ct}_{x^{*}}^{i}, \mathrm{sk}_{f}^{i}\right)$ where

- $\mathrm{ct}_{x^{*}}^{i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $g_{1}^{s_{i}}$ with $\left(g_{1} g_{2}\right)^{s_{i}}$;
- sk_{f}^{i} is the same as sk_{f} except we add a $h_{2}^{\Delta_{i, v}}$ term to $h^{d_{v}+w_{\sigma} r_{u}}$ for every u, σ.

Roughly speaking, this means that in G_{i}, the quantity $e\left(g_{1}^{s_{i}}, h^{d_{u}}\right)$ would be masked by $e\left(g_{2}^{s_{i}}, h_{2}^{\Delta_{i, u}}\right)=e\left(g_{2}^{s_{i}}, h_{2}^{\Delta}\right)$ whenever $u \neq u_{i}$. In particular, the quantity $e\left(g_{1}^{s_{\ell}}, h^{\alpha}\right)$ would be masked by $e\left(g_{2}^{s_{\ell}}, h_{2}^{\Delta}\right)$.

Proof - second idea. As it turns out, we cannot hope to show that the quantity $e\left(g_{1}^{s_{i}}, h^{d_{u}}\right)$ is pseudorandom for each $u \neq u_{i}$. Consider a DFA with $Q=3, \Sigma=\{0\}$ and $\delta(1,0)=2, \delta(3,0)=2$. Then, given an encryption of $x=0$, an adversary can compute

$$
e\left(g_{1}^{s_{0}}, h^{d_{3}}\right)
$$

by first computing $e\left(g_{1}^{s_{1}}, h^{d_{2}}\right)$ using the transition $1 \xrightarrow{0} 2$, and then "back-tracking" along the transition $3 \xrightarrow{0} 2$; these are so-called "back-tracking attacks" in [21].

Instead, we will only argue that $e\left(g_{1}^{s_{i}}, h^{d_{u}}\right)$ is pseudorandom, for $u \in F_{i, x^{*}}$ for some family of sets $F_{i, x^{*}} \subseteq[Q]$. (Our first attempt corresponds to setting $F_{i, x^{*}}=[Q] \backslash\left\{u_{i}\right\}$.) In order to argue that $e\left(g_{1}^{s_{\ell}}, h^{\alpha}\right)$ is pseudorandom, we want $F_{\ell, x^{*}}=F$. For $i=0, \ldots, \ell-1$, we will define

$$
F_{i, x^{*}}:=\left\{u \in[Q]: \delta\left(u, x_{i+1}^{*}, \ldots, x_{\ell}^{*}\right) \in F\right\} .
$$

Here, we use δ to also denote the "extended transition" function, namely

$$
\delta\left(u, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{\ell^{\prime}}\right)=\delta\left(\delta\left(\delta\left(u, \sigma_{1}\right), \sigma_{2}\right), \ldots, \sigma_{\ell^{\prime}}\right) .
$$

That is, $F_{i, x^{*}}$ is the set of states that are reachable from the accept states in F by back-tracking along $x_{\ell}^{*}, \ldots, x_{i+1}^{*}$. In particular, if $f\left(x^{*}\right)=0$, then $1 \notin F_{0, x^{*}}$ (recall that 1 denotes the start state) and more generally, $u_{i} \notin F_{i, x^{*}}$ (recall that $\left.u_{i}=\delta\left(1, x_{1}^{*}, \ldots, x_{i}^{*}\right)\right)$. Finally, we modify $\Delta_{i, u}$ to be

$$
\Delta_{i, u}:= \begin{cases}\Delta & \text { if } u \in F_{i, x^{*}} \\ 0 & \text { otherwise }\end{cases}
$$

Intuitively, the proof starts by introducing a unit of entropy captured by Δ to each state in $F_{0, x^{*}}$ in G_{0}, and then propagates that entropy to the states in $F_{1, x^{*}}$ in G_{1}, then $F_{2, x^{*}}$ in G_{2}, and finally to $F_{\ell, x^{*}}=F$ in G_{ℓ}. We can then use Δ to mask α, upon which we can argue that the plaintext is perfectly hidden via an information-theoretic argument. Looking ahead, (5) captures precisely how we computationally propagate entropy from $F_{i-1, x^{*}}$ in G_{i-1} to $F_{i, x^{*}}$ in G_{i}. The key insight here is that these sets $F_{i, x^{*}}$ are the states that are reachable by back-tracking from the accept states, and not the ones that are reachable from the start state.

Proof - interlude. Now, we are ready to describe how to carry out the hybrid argument from G_{0} to G_{ℓ}. As mentioned earlier, we focus on the setting with a single key query f. This means that we need to show that for each $i=1, \ldots, \ell$, we have:

$$
\mathrm{G}_{i-1}=\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i}, \mathrm{sk}_{f}^{i}\right)=\mathrm{G}_{i}
$$

To prove this, we will introduce an additional ciphertext distribution $\mathrm{ct}_{x^{*}}^{i-1, i}$, where:

- $\mathrm{ct}_{x^{*}}^{i-1, i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $g_{1}^{s_{i-1}}, g_{1}^{s_{i}}$ with $\left(g_{1} g_{2}\right)^{s_{i-1}},\left(g_{1} g_{2}\right)^{s_{i}}$
and move from G_{i-1} to G_{i} via the following hybrid arguments:

$$
\begin{align*}
& \mathrm{G}_{i-1}=\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \quad \mathrm{sk}_{f}^{i-1}\right) \\
& \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i},\right. \\
& \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{f}^{i-1}\right) \tag{2}\\
& \approx_{c}\left(\mathrm{mpk}, \quad \mathrm{ct}_{x^{*}}^{i}, \quad \mathrm{sk}_{f}^{i}\right) \\
&\left.\mathrm{sk}_{f}^{i}\right)=\mathrm{G}_{i}
\end{align*}
$$

Note that the proof interweaves a computational argument over ciphertexts with another over secret keys. In the proof, we will rely on the following computational assumptions in composite-order bilinear groups:

- $\mathrm{SD}_{p_{1} \hookrightarrow p_{1} p_{2}}^{G_{N}}$ subgroup assumption in G_{N}, which says that $g_{1}^{s} \approx_{c}\left(g_{1} g_{2}\right)^{s}$;
- $\mathrm{DDH}_{p_{2}}^{H_{N}}$ in H_{N} (w.r.t. w), which implies that $\left(h_{2}^{r}, h_{2}^{w r}\right) \approx_{c}\left(h_{2}^{r}, h_{2}^{\Delta+w r}\right)$ given $\left(h_{2}, h_{2}^{w}\right)$ for all Δ.

Later on, we will describe how to instantiate the scheme and these assumptions using the k-linear assumption in prime-order bilinear groups.

Proof - third idea. We begin with the first computational transition in (2), namely:

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1}\right)
$$

The only difference between $\operatorname{ct}_{x^{*}}^{i-1}$ and $\operatorname{ct}_{x^{*}}^{i-1, i}$ is that we have $g_{1}^{s_{i}}$ in the former, and $\left(g_{1} g_{2}\right)^{s_{i}}$ in the latter. Unfortunately, we cannot directly invoke the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$ assumption to carry out this transition, because we need h_{2} to simulate the extra $h_{2}^{\Delta_{i-1, v}}$ terms in sk_{f}^{i-1}, and the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$ assumption is trivially broken in the presence of h_{2}. Instead, we crucially rely on the fact that the $h_{2}^{\Delta_{i-1, v}}$ terms appear in $s k_{f}^{i-1}$ as:

$$
h_{2}^{\Delta_{i-1, v}} \cdot h^{w_{\sigma} r_{u}}, h^{r_{u}}
$$

where $\Delta_{i-1, v} \in\{0, \Delta\}$. In particular, we will prove a statement of the form:

$$
\begin{equation*}
g_{1}^{s} \approx_{c}\left(g_{1} g_{2}\right)^{s} \quad \text { given } \quad g_{1}, g_{1}^{w}, g_{2}, g_{2}^{w}, h, h^{w}, h_{2}^{\Delta} \cdot h^{w r}, h^{r} \tag{3}
\end{equation*}
$$

where $s, w, r, \Delta \leftarrow \mathbb{Z}_{N}$. We refer to this as the (s, w)-switching lemma. Note the presence of the term g_{2}^{w}, which we need in the reduction to simulate the $g_{2}^{s_{i-1} w_{x_{i-1}^{*}}}$ term in $\mathrm{ct}_{x^{*}}^{i-1, i}$, and which means that $\left(h_{2}^{\Delta} \cdot h^{w_{x_{i-1}^{*}}}{ }^{r_{u}}, h^{r_{u}}\right)$ is not pseudorandom. We will prove the (s, w)-switching lemma by exploiting the third p_{3}-subgroup, using a "two slot" dual system
argument:

$$
\begin{align*}
& \begin{array}{rlll}
\text { LHS } \\
\underset{\substack{p_{1} \stackrel{p_{1}}{1} \\
\approx_{c}}}{=} g_{1}^{s}, \quad h^{w r} \cdot h_{2}^{\Delta}, & h^{r} \\
& g_{3}^{s}, h^{w r} \cdot h_{2}^{\Delta}, & h^{r}
\end{array} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \underset{{ }_{c}}{\mathrm{DDH}} \quad g_{1}^{s} \cdot g_{2}^{s}, \quad h^{w r} \cdot h_{2}^{\Delta}, \quad h^{r}=\text { RHS }
\end{aligned}
$$

We now clarify that there is in fact a catch here, namely that the (s, w)-switching lemma breaks down if the adversary is also given $g_{1}^{s w}$, which could indeed be the case due to the $g_{2}^{s_{i} w_{x_{i}^{*}}}$ term in $\mathrm{ct}_{x^{*}}^{i-1, i}$. We will circumvent this issue by modifying scheme (1) in the next section.

Looking ahead, we note that the same argument (once we fix the catch) would allow us to handle the third computational transition in (2), namely

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i}, \mathrm{sk}_{f}^{i}\right) .
$$

Proof - fourth idea. Next, we handle the remaining computational transition in (2), namely

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i}\right)
$$

By a standard argument based on the Chinese Remainder Theorem, it suffices to prove the statement for the $p_{2^{-}}$ components of the above expression, and since mpk has no p_{2}-components, this leaves us with:

$$
\left(\operatorname{ct}_{x^{*}}^{i-1, i}[2], \mathrm{sk}_{f}^{i-1}[2]\right) \approx_{c}\left(\mathrm{ct}_{x^{*}}^{i-1, i}[2], \mathrm{sk}_{f}^{i}[2]\right)
$$

where $\mathrm{xx}[2]$ denotes the p_{2}-components of xx . That is, we will need to prove a statement of the form:

$$
\begin{aligned}
& \left\{h_{2}^{-d_{u}+z r_{u}}, h_{2}^{d_{v}+\boxed{\Delta_{i-1, v}}+w_{\sigma} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)} \\
\approx & \left.c h_{2}^{-d_{u}+z r_{u}}, h_{2}^{d_{v}+\triangle \Delta_{i, v}+w_{\sigma} r_{u}}, \quad h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}
\end{aligned}
$$

given $\mathrm{ct}_{x^{*}}^{i-1, i}[2]$. Instead, we will sketch a proof that

$$
\left.\begin{array}{rl}
& \left\{h_{2}^{-d_{u}+\sqrt{\Delta_{i-1, u}}+z r_{u}}, h_{2}^{d_{\nu}+w_{\sigma} r_{u}},\right. \tag{5}\\
\approx & \left.h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)} \\
& \left\{h_{2}^{-d_{u}+z r_{u}},\right.
\end{array} h_{2}^{d_{\nu}+\boxed{\Delta_{i, v}}+w_{\sigma} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)} .
$$

given $\left(s_{i-1}, s_{i}, s_{i-1} z+s_{i} w_{x_{i}^{*}}\right)$. The latter will be useful for simulating the terms in $\mathrm{ct}_{x^{*}}^{i-1, i}$ [2], which is given by:

$$
\operatorname{ct}_{x^{*}}^{i-1, i}[2]=\left(g_{2}^{s_{i-1} w_{x_{i-1}^{*}}}, g_{2}^{s_{i-1}}, g^{s_{i-1} z+s_{i} w_{x_{i}^{*}}}, g_{2}^{s_{i}}, g_{2}^{s_{i} z}\right)
$$

We can interpret (5) as the key computational step that "propagates" the entropy from the states in $F_{i-1, x^{*}}$ to those in $F_{i, x^{*}}$. We will explain the connection between (5) and the statement $\mathrm{sk}_{f}^{i-1} \approx_{c} \mathrm{sk}_{f}^{i}$ we need later on in the overview.

The proof of (5) relies on the following three observations:

1. by the $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{x_{i}^{*}} \bmod p_{2}$, we have

$$
\begin{equation*}
\left(h_{2}^{z r}, h_{2}^{w_{x_{i}^{*}} r}, h_{2}^{r}\right) \approx_{c}\left(h_{2}^{z r-s_{i} \gamma}, h_{2}^{w_{x_{i}^{*}} r+s_{i-1} \gamma}, h_{2}^{r}\right) \tag{6}
\end{equation*}
$$

given ($s_{i-1}, s_{i}, s_{i-1} z+s_{i} w_{x_{i}^{*}}$); this extends readily to the setting with many triplets corresponding to the r_{u} 's. Note that the above triplets (X, Y, Z) satisfies a consistency check $X^{s_{i-1}} \cdot Y^{s_{i}}=Z^{s_{i-1} z+s_{i} w_{x_{i}^{*}}}$.
2. whenever $\sigma \neq x_{i}^{*}$, we can again invoke the $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption, now w.r.t. $w_{\sigma} \bmod p_{2}$, to replace $h_{2}^{w_{\sigma} r_{u}}$ with $h_{2}^{\Delta_{i, v}+w_{\sigma} r_{u}}$ for all $u \in[Q], \sigma \neq x_{i}^{*}, v=\delta(u, \sigma)$.
3. for all x^{*} and $i \in[\ell], u \in[Q]$, we have

$$
u \in F_{i-1, x^{*}} \Longleftrightarrow \delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}
$$

This is one of two steps where we crucially relies on the definition of $F_{i, x^{*}}$.
We note that the analogue of (6) given also $g_{2}^{s_{i} z}$ in ct ${ }_{x}^{i-1, i}[2]$ is false due to the consistency check $e\left(g_{2}^{s_{i}}, h_{2}^{z r}\right)=e\left(g_{2}^{s_{i} z}, h_{2}^{r}\right)$. Again, we will circumvent this issue by modifying scheme (1) in the next section.

Proof - fifth idea. To make use of (5) in the proof, we introduce an additional key distribution $\mathrm{sk}_{f}^{i-1, i}$:

- $\mathrm{sk}_{f}^{i-1, i}$ is the same as sk_{f} except we add a $h_{2}^{\Delta_{i-1, u}}$ term to $h^{-d_{u}+z r_{u}}$ for every u.

Instead of

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1, i}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i}\right)
$$

we will show:

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1, i}\right) \quad \text { and } \quad\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1, i}\right) \approx_{c}\left(\mathrm{mpk}^{\mathrm{ctt}}{ }_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i}\right)
$$

That is, we will switch from sk_{f}^{i-1} to $\mathrm{sk}_{f}^{i-1, i}$ in the presence of $\mathrm{ct}_{x^{*}}^{i-1}$ instead of $\mathrm{ct}_{x^{*}}^{i-1, i}$ and employ the following strategy:

$$
\begin{array}{rlrl}
\mathrm{G}_{i-1} & =\left(\mathrm{mpk}, \quad \mathrm{ct}_{x^{*}}^{i-1},\right. & \left.\mathrm{sk}_{f}^{i-1}\right) \\
& \approx_{c}\left(\mathrm{mpk}, \quad \mathrm{ct}_{x^{*}}^{i-1},\right. & \left.\mathrm{sk}_{f}^{i-1, i}\right) & \\
& \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i},, \mathrm{sk}_{f}^{i-1, i}\right) & & \tag{7}\\
& \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i},\right. & \left.\mathrm{sk}_{f}^{i}\right) & \\
& \approx_{c}(\mathrm{mpk}, & \mathrm{ct}_{x^{*}}^{i}, & \left.\mathrm{sk}_{f}^{i}\right)=\mathrm{G}_{i}
\end{array} \text { ideng (5) } \begin{aligned}
& \text { identical to 3st transition in (2) } \\
&
\end{aligned}
$$

Here, the last three computational transitions can be handled as before. This leaves us with the first transition, namely to show that

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1, i}\right)
$$

Roughly, we focus on the p_{2}-components and prove it via the following hybrid arguments:

$$
\begin{aligned}
& \mathrm{sk}_{f}^{i-1}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z r_{u}}, h_{2}^{d_{v}+\boxed{\Delta_{i-1, v}}+w_{\sigma} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \approx_{s}\left(\begin{array}{c}
h_{2}^{d_{1}-\sqrt{\Delta_{i-1,1}}+w_{\text {start }} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\Delta \Delta_{i-1, u}+z r_{u}}, h_{2}^{d_{v}+w_{\sigma} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\Delta \Delta_{i-1, u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \approx_{c}\left(\begin{array}{c}
h_{2}^{d_{1}-\Delta_{i-1,1}+w_{\text {start }} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\Delta_{i-1, u}+z r_{u}}, h_{2}^{d_{v}+w_{\sigma} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\Delta_{1, u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)=\operatorname{sk}_{f}^{i-1, i}[2]
\end{aligned}
$$

in the presence of $\mathrm{ct}_{x^{*}}^{i-1}[2]$, which is given by:

$$
\operatorname{ct}_{x^{*}}^{i-1}[2]= \begin{cases}g_{2}^{s_{0} w_{\text {start }}}, g_{2}^{s_{0}}, g_{2}^{s_{0} z} & \text { if } i=1 \\ s_{2}^{s_{i-1} w_{x_{i-1}^{*}}^{*}}, g_{2}^{s_{i-1}}, g_{2}^{s_{i-1} z} & \text { if } 2 \leq i \leq \ell\end{cases}
$$

The first statistical step simply relies on the change of variable

$$
d_{u} \mapsto d_{u}-\Delta_{i-1, u} \quad \forall u \in[Q] .
$$

Then we handle the second computational step by arguing

$$
h_{2}^{-\Delta_{i-1,1}+w_{\mathrm{start}} r_{1}} \approx_{c} h_{2}^{w_{\mathrm{start}} r_{1}} \quad \text { and } \quad h_{2}^{\Delta_{i-1, u}+w_{\mathrm{end}} r_{u}} \approx_{c} h_{2}^{w_{\mathrm{end}} r_{u}} \quad \forall u \in F
$$

This is implied by $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\text {start }}, w_{\text {end }} \bmod p_{2}$ with an exception:

- when $i=1$, the ciphertext $\operatorname{ct}_{x^{*}}^{0}$ leaks $w_{\text {start }} \bmod p_{2}$ via $g_{2}^{s_{0} w_{\text {start }}}$ and $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\text {start }} \bmod p_{2}$ does not hold. In this case, we use the fact that $\Delta_{0,1}=0$ which is implied by $1 \notin F_{0, x^{*}}$.

This is the second step where we crucially rely on the definition of $F_{i, x^{*}}$.

1.2 Our construction

Here is our final "alternating" construction, where we introduce two copies of ($z,\left\{w_{\sigma}\right\}$), and we alternate between the two copies in the ciphertext depending on the parity of i :

$$
\begin{align*}
& \mathrm{msk}=\left(h, \alpha, w_{\text {start }}, w_{\text {end }}, z_{0}, z_{1},\left\{w_{\sigma, 0}, w_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right) \tag{8}\\
& \mathrm{mpk}=\left(g_{1}, g_{1}^{w_{\text {start }}}, g_{1}^{w_{\text {end }}}, g_{1}^{z_{0}}, g_{1}^{z_{1}},\left\{g_{1}^{w_{\sigma, 0}}, g_{1}^{w_{\sigma, 1}}\right\}_{\sigma \in \Sigma}, e\left(g_{1}, h\right)^{\alpha}\right) \\
& \mathrm{ct}_{x}=\left(\begin{array}{c}
g_{1}^{s_{0}}, g_{1}^{s_{0} w_{\text {start }}}, \\
\left\{g_{1}^{s_{i}}, g_{1}^{s_{i-1} z_{i \text { mod } 2}+s_{i} w_{x_{i}, i \bmod 2}}\right\}_{i \in[\ell]}, \\
g_{1}^{s_{\ell}}, g_{1}^{s_{\ell} w_{\text {end }}}, e\left(g_{1}, h\right)^{s_{\ell} \alpha} \cdot m
\end{array}\right) \\
& \text { sk }_{f}=\left(\begin{array}{c}
h^{d_{1}+w_{\text {start }} r_{1}}, h^{r_{1}}, \\
\left\{h^{-d_{u}+z_{b} r_{u}}, h^{d_{v}+w_{\sigma, b} r_{u}}, h^{r_{u}}\right\}_{b \in\{0,1\}, u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{h^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h^{r_{u}}\right\}_{u \in F}
\end{array}\right)
\end{align*}
$$

Note the additional $i \bmod 2$ subscript in ct_{x} and the additional quantifier $b \in\{0,1\} \mathrm{in} \mathrm{sk}_{f}$. Decryption proceeds essentially as before by computing $e\left(g_{1}^{s_{i}}, h^{d_{u_{i}}}\right)$ for $i=0, \ldots, \ell$ and finally $e\left(g_{1}, h\right)^{s_{\ell} \alpha}$ and thus m.

Updating auxiliary distributions. The proof for the "alternating" construction still follows the strategy in (7). The distributions $\mathrm{ct}_{x^{*}}^{i}$ and $\mathrm{ct}_{x^{*}}^{i-1, i}$ are defined analogously; we update $\mathrm{sk}_{f}^{i}[2]$ and $\left.\mathrm{sk}_{f}^{i-1, i}{ }^{i} 2\right]$ for the "alternating" construction as follows:

$$
\begin{gathered}
\operatorname{sk}_{f}^{i}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{i \bmod 2} r_{u}}, h_{2}^{d_{v}+\sqrt[\Delta_{i, v}]{ }+w_{\sigma, i \bmod 2} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{i-1 \bmod 2} r_{u}}, h_{2}^{d_{v}+w_{\sigma, i-1 \bmod 2} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
\operatorname{sk}_{f}^{i-1, i}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\sqrt{\Delta_{i-1, u}}+z_{i \bmod 2} r_{u}}, h_{2}^{d_{v}+w_{\sigma, i \bmod 2} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\left.-d_{u}+z_{i-1 \bmod 2} r_{u}, h_{2}^{d_{v}+w_{\sigma, i-1 \bmod 2} r_{u}}, h_{2}^{r_{u}}\right\}_{u, \sigma, v=\delta(u, \sigma)},}\right. \\
\left\{h_{2}^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)
\end{gathered}
$$

As an example, we illustrate a complete game sequence for 3-bit input in Fig. 1.

Fig. 1. Summary of game sequence for $\ell=3$. We only describe the p_{2}-components here. Recall the notational short-hand $\llbracket d_{u} \mapsto$ $d_{\nu} \rrbracket_{z, w}:=\left(h_{2}^{-d_{u}+z r_{u}}, h_{2}^{d_{v}+w r_{u}}, h_{2}^{r_{u}}\right)$. Here, secret key elements in the second and third columns are quantified over $u \in[Q], \sigma \in$ $\Sigma, v=\sigma(u, \sigma)$ while those in the fourth column are over $u \in F$; we omit $\llbracket 0 \mapsto d_{1} \rrbracket_{0, w_{\text {start }}}$. For the ciphertext elements, we omitted the

How alternation helps. We briefly describe how the alternating structure circumvents two of the issues in the earlier proof overview:

- To switch from $\mathrm{ct}_{x^{*}}^{i-1}$ to $\mathrm{ct}_{x^{*}}^{i-1, i}$ given $\mathrm{sk}_{f}^{i-1, i}$, we will rely on $\left(s_{i}, z_{i \bmod 2}\right)$-switching lemma. The earlier issue with the terms $\left(g_{1}^{s_{i}}, g_{1}^{\left.s_{i} z_{i+1 \bmod 2}\right)}\right.$ in $\mathrm{ct}_{x^{*}}^{i-1, i}$ simply goes away because $z_{i \bmod 2} \neq z_{i+1 \bmod 2}$, thanks to the alternation. A similar trick works for switching from $\mathrm{ct}_{x^{*}}^{i-1, i}$ to $\mathrm{ct}_{x^{*}}^{i}$.
- To switch from $\mathrm{sk}_{f}^{i-1, i}$ to sk_{f}^{i} given $\mathrm{ct}_{x^{*}}^{i-1, i}$, we will rely on the analogue of (6) with ($z_{i \bmod 2}, w_{x_{i}^{*}, i \bmod 2}$) in place of $\left(z, w_{x_{i}^{*}}\right)$. The extra term in $\mathrm{ct}_{x^{*}}^{i-1, i}$ that enables the earlier attack now corresponds to $g_{2}^{s_{i} z_{i+1 \bmod 2}}$, and the attack is no longer applicable simply because $z_{i \bmod 2} \neq z_{i+1 \bmod 2}$, thanks again to the alternation.

Handling many secret keys. The proof extends to selective security for many keys, with fresh $\left\{d_{u}, r_{u}\right\}_{u \in[Q]}$ per key and the same Δ used across all the keys. Roughly speaking, the fresh r_{u} allows us to carry out the computational steps involving the $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption, and in the final step, we rely on the fact that all the secret keys only leak $\alpha+\Delta$ and not α itself.

1.3 Prime-order groups

To complete the overview, we sketch our final ABE scheme which is secure under the k-Linear assumption in primeorder bilinear groups. ${ }^{4}$ Here, we rely on the previous framework of Chen et al. [5,10,4,6] for simulating composite-order groups in prime-order ones. Let $\left(G_{1}, G_{2}, G_{T}, e\right)$ be a bilinear group of prime order p. We start with our ABE scheme in

[^1]composite-order groups (8) and carry out the following substitutions:
\[

$$
\begin{array}{llll}
d_{u}, \alpha & \mapsto \mathbf{d}_{u}, \mathbf{k} & z_{b}, w_{\sigma, b} & \mapsto \mathbf{Z}_{b}, \mathbf{W}_{\sigma, b} \\
g_{1}^{s_{i}} & \mapsto\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}\right]_{1} & h^{r_{u}} & \mapsto\left[\mathbf{r}_{u}\right]_{2} \\
g_{1}^{s_{i} z_{b}}, g_{1}^{s_{i} w_{\sigma, b}} & \mapsto\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{b}\right]_{1},\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, b}\right]_{1} & h^{z_{b} r_{u}}, h^{w_{\sigma, b} r_{u}} \mapsto\left[\mathbf{Z}_{b} \mathbf{r}_{u}\right]_{2},\left[\mathbf{W}_{\sigma, b} \mathbf{r}_{u}\right]_{2}
\end{array}
$$
\]

where

$$
\mathbf{A}_{1} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k} \quad \text { and } \quad \mathbf{Z}_{b}, \mathbf{W}_{\sigma, b} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{d}_{u}, \mathbf{k} \leftarrow \mathbb{Z}_{p}^{2 k+1}, \mathbf{s}_{i}, \mathbf{r}_{u} \leftarrow \mathbb{Z}_{p}^{k}
$$

and $[\cdot]_{1},[\cdot]_{2}$ correspond respectively to exponentiations in the prime-order groups G_{1}, G_{2}. Note that \mathbf{A}_{1} has height $2 k+1$: we will use k-dimensional random subspaces to simulate each of the p_{1} and p_{3} subgroups, and a 1-dimensional subspace to simulate the p_{2} subgroup; these are sufficient to simulate the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}, \mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ and $\mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ assumptions (we would need to modify the proof of the (s, w)-switching lemma in (4) to avoid $\mathrm{SD}_{p_{3} \mapsto p_{2}}^{G_{N}}$ assumption). It is sufficient to use $\mathbf{Z}_{b}, \mathbf{W}_{\sigma, b}$ of width k since we only rely on the $\mathrm{DDH}_{p_{2}}^{H_{N}}, \mathrm{DDH}_{p_{3}}^{H_{N}}$ assumptions.

This yields the following prime-order ABE scheme for DFA:

$$
\begin{aligned}
& \mathrm{msk}=\left(\mathbf{k}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{0}, \mathbf{Z}_{1},\left\{\mathbf{W}_{\sigma, 0}, \mathbf{W}_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right) \\
& \mathrm{mpk}=\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{0}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{1},\left\{\mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, 0}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T}\right) \\
& \mathrm{ct}_{x}=\left(\begin{array}{c}
{\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }}\right]_{1}} \\
\left\{\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{i \bmod 2}+\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\left.\left.x_{i}, i \bmod 2\right]_{1}\right\}_{i \in[\ell]}}\right.\right. \\
{\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }}\right]_{1},\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T} \cdot m}
\end{array}\right) \\
& \mathrm{sk}_{f}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1}+\mathbf{W}_{\text {start }} \mathbf{r}_{1}\right]_{2},\left[\mathbf{r}_{1}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{b} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, b} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{b \in\{0,1\}, u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}
\end{array}\right)
\end{aligned}
$$

Decryption proceeds as before by first computing

$$
\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i}}\right]_{T} \quad \forall i=0, \ldots, \ell
$$

via the associativity relations $\mathbf{A}_{1}^{\top} \mathbf{Z} \cdot \mathbf{r}_{u}=\mathbf{A}_{1}^{\top} \cdot \mathbf{Z} \mathbf{r}_{u}$ (ditto $\mathbf{W}_{\text {start }}, \mathbf{W}_{\sigma, b}, \mathbf{W}_{\text {end }}$) [7]; and finally recovers $\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T}$ and thus m.

1.4 Discussion

The main open problem arising in this work is to obtain an adaptively secure ABE scheme for DFA under the k-Lin assumption. One natural approach is to combine our techniques with the piecewise guessing framework in [14,13] to obtain an adaptively secure ABE scheme for DFA under the k-Lin assumption. The main obstacle here is that in the intermediate hybrids, we need to know the sets $F_{i, x^{*}}$, for which there can be up to 2^{Q} possibilities, where Q is the maximal number of states in a DFA provided by the adversary in the secret key queries. As such, naively applying the piecewise guessing framework would incur a 2^{Q} security loss. Another potential approach is to appeal to the doubly selective framework in [2,17], which reduces the problem to building a selectively secure ciphertext-policy ABE for DFA (alternatively, a co-selectively secure key-policy ABE for DFA) under the k-Lin assumption, in the single-key setting; again, naively applying the techniques in this work would incur a 2^{Q} security loss. To conclude, achieving adaptive security under the k-Lin assumption with only a polynomial loss appears to require new ideas that go beyond the state of the art.

Organization. The next section gives some background knowledge. We prove selective security of the compositeorder scheme in the one-key setting in Section 3, as well as that of the prime-order scheme in the many-key setting in Section 4.

2 Preliminaries

Notation. We denote by $s \leftarrow S$ the fact that s is picked uniformly at random from a finite set S. By PPT, we denote a probabilistic polynomial-time algorithm. Throughout this paper, we use 1^{λ} as the security parameter. We use lower case boldface to denote (column) vectors and upper case boldcase to denote matrices. We use \approx_{s} to denote two distributions being statistically indistinguishable, and \approx_{c} to denote two distributions being computationally indistinguishable.

Deterministic Finite Automaton (DFA). A deterministic finite automaton (DFA) f is defined by (Q, Σ, δ, F) where

- Q is the number of states and we take [Q] as the state space;
$-\Sigma$ is the alphabet;
$-\delta:[Q] \times \Sigma \rightarrow[Q]$ is a transition function;
$-F \subseteq[Q]$ is the set of accept states.
Here the (unique) start state is always state 1 . We use $f(x)=1$ to denote that an input $x=\left(x_{1}, \ldots, x_{\ell}\right) \in \Sigma^{\ell}$ is accepted by DFA f, which means that there exists a sequence of states $u_{0}, u_{1}, \ldots, u_{\ell} \in[Q]$ satisfying:
- $u_{0}=1$,
- for all $i=1, \ldots, \ell$, we have $\delta\left(u_{i-1}, x_{i}\right)=u_{i}$,
- $u_{\ell} \in F$.

If input x is not accepted by DFA f, we write $f(x)=0$.

2.1 Attribute-based encryption for Deterministic Finite Automaton

Syntax. An attribute-based encryption (ABE) scheme for DFA consists of four algorithms (Setup, Enc, KeyGen, Dec):
$\operatorname{Setup}\left(1^{\lambda}, \Sigma\right) \rightarrow(\mathrm{mpk}, \mathrm{msk})$. The setup algorithm gets as input the security parameter 1^{λ} and the alphabet Σ. It outputs the public parameter mpk and the master key msk. We assume mpk defines the message space \mathcal{M}.

Enc(mpk, $x, m) \rightarrow \mathrm{ct}_{x}$. The encryption algorithm gets as input mpk, an input $x \in \Sigma^{*}$ and a message $m \in \mathcal{M}$. It outputs a ciphertext ct_{x}. Note that x is public given ct_{x}.

KeyGen(mpk, msk, f) $\rightarrow \mathrm{sk}_{f}$. The key generation algorithm gets as input mpk, msk and a description of DFA f. It outputs a secret key sk_{f}. Note that f is public given sk_{f}.
$\operatorname{Dec}\left(m p k, \mathrm{sk}_{f}, \mathrm{ct}_{x}\right) \rightarrow m$. The decryption algorithm gets as input sk_{f} and ct_{x} such that $f(x)=1$ along with mpk. It outputs a message m.

Correctness. For all input x and DFA f with $f(x)=1$ and all $m \in \mathcal{M}$, we require

$$
\operatorname{Pr}\left[\begin{array}{c}
(m p k, \operatorname{msk}) \leftarrow \operatorname{Setup}\left(1^{\lambda}, \Sigma\right) ; \\
\operatorname{Dec}\left(m p k, \mathrm{sk}_{f}, \mathrm{ct}_{x}\right)=m: \mathrm{sk}_{f} \leftarrow \operatorname{KeyGen}(\mathrm{mpk}, \mathrm{msk}, f) ; \\
\mathrm{ct}_{x} \leftarrow \operatorname{Enc}(m p k, x, m)
\end{array}\right]=1 .
$$

Security definition. For a stateful adversary \mathcal{A}, we define the advantage function
with the restriction that all queries f that \mathcal{A} makes to KeyGen(mpk, msk, \cdot) satisfy $f\left(x^{*}\right)=0$. An ABE scheme is adaptively secure if for all PPT adversaries \mathcal{A}, the advantage $\operatorname{Adv}_{\mathcal{A}}^{\mathrm{ABE}}(\lambda)$ is a negligible function in λ. The selective security is defined analogously except that the adversary \mathcal{A} selects x^{*} before seeing mpk.

2.2 Composite-order Groups

A generator \mathcal{G} takes as input a security parameter 1^{λ} and outputs group description $\mathbb{G}:=\left(N, G_{N}, H_{N}, G_{T}, e\right)$, where N is product of three primes p_{1}, p_{2}, p_{3} of $\Theta(\lambda)$ bits, G_{N}, H_{N} and G_{T} are cyclic groups of order N and $e: G_{N} \times H_{N} \rightarrow G_{T}$ is a non-degenerate bilinear map. We require that the group operations in G_{N}, H_{N} and G_{T} as well the bilinear map e are computable in deterministic polynomial time with respect to λ. We assume that a random generator g (resp. h) of G_{N} (resp. H_{N}) is always contained in the description of bilinear groups. For every divisor n of N, we denote by G_{n} the subgroup of G_{N} of order n. We use g_{1}, g_{2}, g_{3} to denote random generators of subgroups $G_{p_{1}}, G_{p_{2}}, G_{p_{3}}$ respectively and define h_{1}, h_{2}, h_{3} random generators of subgroups $H_{p_{1}}, H_{p_{2}}, H_{p_{3}}$ analogously.

Computational assumptions. We review two static computational assumptions in the composite-order group, used e.g. in [15,8]. By symmetry, one may permute the indices for subgroups.

Assumption $1\left(\mathbf{S D}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}\right)$ We say that $\left(p_{1} \mapsto p_{1} p_{2}\right)$-subgroup decision assumption, denoted by $S D_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$, holds iffor all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}}^{\mathrm{SD}_{p_{1} \rightarrow p_{1} p_{2}}^{G_{N}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{1}\right)=1\right]\right| . \mid}
$$

where

$$
\begin{aligned}
& D:=\left(g_{1}, g_{2}, g_{3}, h_{1}, h_{3}, h_{12}\right), \quad h_{12} \leftarrow H_{p_{1} p_{2}} \\
& T_{0} \leftarrow_{\text {R }} G_{p_{1}}, T_{1} \leftarrow G_{p_{1} p_{2}} .
\end{aligned}
$$

Assumption $2\left(\mathbf{D D H}_{p_{1}}^{H_{N}}\right.$) We say that p_{1}-subgroup Diffie-Hellman assumption, denoted by $D D H_{p_{1}}^{H_{N}}$, holds iffor all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}}^{\operatorname{DDH}_{p_{1}}^{H_{N}}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G}, D, T_{1}\right)=1\right]\right|
$$

where

$$
\begin{aligned}
& D:=\left(g_{1}, g_{2}, g_{3}, h_{1}, h_{2}, h_{3}\right), \\
& T_{0}:=\left(h_{1}^{x}, h_{1}^{y}, h_{1}^{x y}\right), T_{1}:=\left(h_{1}^{x}, h_{1}^{y}, h_{1}^{x y+z}\right), \quad x, y, z \leftarrow \mathbb{Z}_{N} .
\end{aligned}
$$

3 ABE for DFA in Composite-Order Groups

In this section, we present our ABE for DFA in composite-order groups, as a warm-up to our prime-order scheme in Section 4. Here, we focus on selective security in the one-key setting under static assumptions.

3.1 Scheme

Our ABE for DFA in composite-order groups is described as follows:

- Setup $\left(1^{\lambda}, \Sigma\right): \operatorname{Run} \mathbb{G}=\left(N=p_{1} p_{2} p_{3}, G_{N}, H_{N}, G_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$ and pick generators $g_{1} \leftarrow G_{p_{1}}, h \leftarrow H_{N}$. Sample α, $w_{\text {start }}$, $w_{\text {end }}, z_{0}, z_{1}, w_{\sigma, 0}, w_{\sigma, 1} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \in \Sigma$. Choose a pairwise-independent hash function H . Output

$$
\begin{aligned}
\mathrm{mpk} & =\left(g_{1}, g_{1}^{w_{\text {start }}}, g_{1}^{w_{\text {end }}}, g_{1}^{z_{0}}, g_{1}^{z_{1}},\left\{g_{1}^{w_{\sigma, 0}}, g_{1}^{w_{\sigma, 1}}\right\}_{\sigma \in \Sigma}, e\left(g_{1}, h\right)^{\alpha}, \mathrm{H}\right) \quad \text { and } \\
\text { msk } & =\left(h, \alpha, w_{\text {start }}, w_{\text {end }}, z_{0}, z_{1},\left\{w_{\sigma, 0}, w_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right)
\end{aligned}
$$

The message space \mathcal{M} is the image space of H .

- Enc $(\mathrm{mpk}, x, m):$ Let $x=\left(x_{1}, \ldots, x_{\ell}\right) \in \Sigma^{\ell}$. Pick $s_{0}, s_{1}, \ldots, s_{\ell} \leftarrow \mathbb{Z}_{N}$ and output

$$
\mathrm{ct}_{x}=\left(\begin{array}{c}
g_{1}^{s_{0}}, g_{1}^{s_{0} w_{\text {start }}}, \\
\left\{g_{1}^{s_{i}}, g_{1}^{s_{i-1} z_{i \bmod 2}+s_{i} w_{x_{i}, i \bmod 2}}\right\}_{i \in[\ell]}, \\
g_{1}^{s_{\ell}}, g_{1}^{s_{\ell} w_{\text {end }}}, \mathrm{H}\left(e\left(g_{1}, h\right)^{s_{\ell} \alpha}\right) \cdot m
\end{array}\right) .
$$

- KeyGen(mpk, msk, f) : Pick $d_{u}, r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$ and output

$$
\operatorname{sk}_{f}=\left(\begin{array}{c}
h^{d_{1}+w_{\mathrm{start}} r_{1}}, h^{r_{1}}, \\
\left\{h^{-d_{u}+z_{b} r_{u}}, h^{d_{v}+w_{\sigma, b} r_{u}}, h^{r_{u}}\right\}_{b \in\{0,1\}, u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h^{r_{u}}\right\}_{u \in F}
\end{array}\right) .
$$

- $\operatorname{Dec}\left(m p k, \mathrm{sk}_{f}, \mathrm{ct}_{x}\right):$ Parse ciphertext for input $x=\left(x_{1}, \ldots, x_{\ell}\right)$ as

$$
\mathrm{ct}_{x}=\left(C_{0,1}, C_{0,2},\left\{C_{i, 1}, C_{i, 2}\right\}_{i \in[\ell]}, C_{\text {end }, 1}, C_{\mathrm{end}, 2}, C\right)
$$

and key for $f=(Q, \Sigma, \delta, F)$ as

$$
\mathrm{sk}_{f}=\left(K_{0,1}, K_{0,2},\left\{K_{b, u}, K_{b, u, \sigma}, K_{u}\right\}_{b, u, \sigma},\left\{K_{\mathrm{end}, u}, K_{u}\right\}_{u \in F}\right)
$$

If $f(x)=1$, compute $\left(u_{0}=1, u_{1}, \ldots, u_{\ell}\right) \in[Q]^{\ell+1}$ such that $\delta\left(u_{i-1}, x_{i}\right)=u_{i}$ for $i \in[\ell]$ and $u_{\ell} \in F$, and proceed as follows:

1. Compute $B_{0}=e\left(C_{0,1}, K_{0,1}\right) \cdot e\left(C_{0,2}, K_{0,2}\right)^{-1}$;
2. For all $i=1, \ldots, \ell$, compute

$$
B_{i}=e\left(C_{i-1,1}, K_{i \bmod 2, u_{i-1}}\right) \cdot e\left(C_{i, 1}, K_{i \bmod 2, u_{i-1}, x_{i}}\right) \cdot e\left(C_{i, 2}, K_{u_{i-1}}\right)^{-1}
$$

3. Compute $B_{\text {end }}=e\left(C_{\text {end }, 1}, K_{\text {end }, u_{\ell}}\right) \cdot e\left(C_{\text {end }, 2}, K_{u_{\ell}}\right)^{-1}$ and

$$
B=B_{0} \cdot \prod_{i=1}^{\ell} B_{i} \cdot B_{\mathrm{end}}
$$

4. Output the message $m^{\prime} \leftarrow C \cdot \mathrm{H}(B)^{-1}$.

Correctness. For $x=\left(x_{1}, \ldots, x_{\ell}\right)$ and $f=(Q, \Sigma, \delta, F)$ such that $f(x)=1$, we have:

$$
\begin{align*}
B_{0} & =e\left(g_{1}, h\right)^{s_{0} d_{1}} \tag{9}\\
B_{i} & =e\left(g_{1}, h\right)^{s_{i} d_{u_{i}}-s_{i-1} d_{u_{i-1}}} \tag{10}\\
B_{\mathrm{end}} & =e\left(g_{1}, h\right)^{s_{\ell} \alpha-s_{\ell} d_{u_{\ell}}} \tag{11}\\
B & =e\left(g_{1}, h\right)^{s_{\ell} \alpha} \tag{12}
\end{align*}
$$

This follows from the following equalities in the exponent:
(9) $s_{0} d_{1} \quad=s_{0} \cdot\left(d_{1}+w_{\text {start }} r_{0}\right)-s_{0} w_{\text {start }} \cdot r_{0}$
(10) $s_{i} d_{u_{i}}-s_{i-1} d_{u_{i-1}}=s_{i-1} \cdot\left(-d_{u_{i-1}}+z_{i \bmod 2} r_{u_{i-1}}\right)+s_{i} \cdot\left(d_{u_{i}}+w_{x_{i}, i \bmod 2} r_{u_{i-1}}\right)-\left(s_{i-1} z_{i \bmod 2}+s_{i} w_{x_{i}, i \bmod 2}\right) \cdot r_{u_{i-1}}$
(11) $s_{\ell} \alpha-s_{\ell} d_{u_{\ell}}=s_{\ell} \cdot\left(\alpha-d_{u_{\ell}}+w_{\text {end }} r_{u_{\ell}}\right)-s_{\ell} w_{\text {end }} \cdot r_{u_{\ell}}$
and finally

$$
\text { (12) } s_{\ell} \alpha=s_{0} d_{1}+\sum_{i=1}^{\ell}\left(s_{i} d_{u_{i}}-s_{i-1} d_{u_{i-1}}\right)+\left(s_{\ell} \alpha-s_{\ell} d_{u_{\ell}}\right) \text {. }
$$

Correctness follows readily.

Security. We will prove the following theorem for the one-key setting where the adversary asks for at most one secret key. We explain how to handle many keys in Section 3.10 and the proof for the prime-order scheme in Section 4 is for the many-key setting.

Theorem 1 (composite-order ABE for DFA). The ABE scheme for DFA in composite-order bilinear groups described above is selectively secure (cf. Section 2.1) in the one-key setting under the following static assumptions: $S D_{p_{1} \rightarrow p_{1} p_{2}}^{G_{N}}$, $S D_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}, S D_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}, D D H_{p_{2}}^{H_{N}}$ and $D D H_{p_{3}}^{H_{N}}$.

3.2 Game sequence

Let $x^{*} \in \Sigma^{\ell}$ denote the selective challenge and let $\bar{\ell}=\ell \bmod 2$. We focus on the case $\ell>1$ and defer $\ell=0,1$ to Section 3.9. Recall that g_{2}, h_{2} denote random generators for $G_{p_{2}}, H_{p_{2}}$ respectively.

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distributions that we use in the proof of security. Throughout, the distributions are the same as the original distributions except for the p_{2}-components. For notational simplicity, we will only write down the p_{2}-components and use $\mathrm{xx}[2]$ to denote p_{2}-components of xx .

Ciphertext distributions.

- for $i=0,1, \ldots, \ell: \operatorname{ct}_{x^{*}}^{i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $g_{1}^{s_{i}}$ with $\left(g_{1} g_{2}\right)^{s_{i}}$;
- for $i=1,2, \ldots, \ell: \operatorname{ct}_{x^{*}}^{i-1, i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $g_{1}^{s_{i-1}}, g_{1}^{s_{i}}$ with $\left(g_{1} g_{2}\right)^{s_{i-1}},\left(g_{1} g_{2}\right)^{s_{i}}$.

That is, we have: writing $\tau=i \bmod 2$,

$$
\begin{aligned}
& \operatorname{ct}_{x^{*}}^{i}[2]= \begin{cases}g_{s_{0}}^{s_{0} w_{\text {start }}}, g_{2}^{s_{0}}, g_{2}^{s_{0} z_{1}} & \text { if } i=0 \\
g_{s_{i}}^{2}, g_{x_{i}^{*}, \tau}^{s_{i}}, g_{2}^{s_{i} z_{1-\tau}} & \text { if } 0<i<\ell \\
s_{\ell} w_{x_{\ell}^{*}, \bar{\ell}}, g_{2}^{s_{\ell}}, g_{2}^{s_{\ell} w_{\text {end }}}, e\left(g_{2}^{s_{\ell}}, h_{2}^{\alpha}\right) & \text { if } i=\ell\end{cases}
\end{aligned}
$$

The Δ-distributions. Fix a DFA f. Let $F_{\ell, x^{*}}=F$; for $i=0, \ldots, \ell-1$, we will define

$$
F_{i, x^{*}}:=\left\{u \in[Q]: \delta\left(u, x_{i+1}^{*}, \ldots, x_{\ell}^{*}\right) \in F\right\} .
$$

Here, we use δ to also denote the "extended transition" function, namely

$$
\delta\left(u, \sigma_{1}, \sigma_{2}, \ldots, \sigma_{\ell^{\prime}}\right)=\delta\left(\delta\left(\delta\left(u, \sigma_{1}\right), \sigma_{2}\right), \ldots, \sigma_{\ell^{\prime}}\right)
$$

That is, $F_{i, x^{*}}$ is the set of states that are reachable from the accept states by back-tracking along $x_{\ell}^{*}, \ldots, x_{i+1}^{*}$. In particular, if $f\left(x^{*}\right)=0$, then $1 \notin F_{0, x^{*}}$ (recall that 1 denotes the start state) and more generally, $u_{i} \notin F_{i, x^{*}}$ (recall that $\left.u_{i}=\delta\left(1, x_{1}^{*}, \ldots, x_{i}^{*}\right)\right)$. Finally, we pick $\Delta \leftarrow \mathbb{Z}_{N}$ and define $\Delta_{i, u}$ to be

$$
\Delta_{i, u}:= \begin{cases}\Delta & \text { if } u \in F_{i, x^{*}} \\ 0 & \text { otherwise }\end{cases}
$$

Secret key distributions.

- for $i=0,1, \ldots, \ell: \mathrm{sk}_{f}^{i}$ is the same as sk ${ }_{f}$ except we add $h_{2}^{\Delta_{i, v}}$ to $h^{d_{v}+w_{\sigma, i \bmod 2} r_{u}}$ for every $u \in[Q], \sigma \in \Sigma$ and $v=\delta(u, \sigma)$.
- for $i=1,2, \ldots, \ell: \mathrm{sk}_{f}^{i-1, i}$ is the same as sk ${ }_{f}$ except we add $h_{2}^{\Delta_{i-1, u}}$ to $h^{-d_{u}+z_{i \bmod 2} r_{u}}$ for every $u \in[Q]$.
- sk_{f}^{*} is the same as sk_{f} except we add $h_{2}^{\Delta \ell, u}$ to $h^{\alpha-d_{u}+w_{\text {end }} r_{u}}$ for every $u \in F$.

That is, we have: writing $\tau=i \bmod 2$,

$$
\begin{aligned}
& \operatorname{sk}_{f}^{i}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{\tau} r_{u}}, h_{2}^{d_{v}+\Delta_{i, v}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{sk}_{f}^{i-1, i}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\sqrt{\Delta_{i-1, u}}+z_{\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{sk}_{f}^{*}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{b} r_{u}}, h_{2}^{d_{v}+w_{\sigma, b} r_{u}}, h_{2}^{r_{u}}\right\}_{b \in\{0,1\}, u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\sqrt[\Delta \ell, u]{ }+w_{\mathrm{end}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)
\end{aligned}
$$

Game sequence. We prove Theorem 1 via a series of games described below and summarized in Fig 2.

- G_{0} : Identical to the real game.
- G_{1} : Identical to G_{0} except that the challenge ciphertext is $\mathrm{ct}_{x^{*}}^{0}$.
$-\mathrm{G}_{2 . i .0}, i=1, \ldots, \ell$: In this game, the challenge ciphertext is $\mathrm{ct}_{x^{*}}^{i-1}$ and the secret key is sk ${ }_{f}^{i-1}$. Note that $\mathrm{G}_{2.1 .0}$ is identical to G_{1} except that the secret key is sk_{f}^{0} and we have $\mathrm{G}_{2 . i .0}=\mathrm{G}_{2 . i-1.4}$ for all $2 \leq i \leq \ell$.
- $\mathrm{G}_{2 . i .1}, i=1, \ldots, \ell$: Identical to $\mathrm{G}_{2 . i .0}$ except that the secret key is $\mathrm{sk}_{f}^{i-1, i}$.
$-\mathrm{G}_{2 . i .2}, i=1, \ldots, \ell$: Identical to $\mathrm{G}_{2 . i .1}$ except that the challenge ciphertext is $\mathrm{ct}_{x^{*}}{ }^{i-1, i}$.
- $\mathrm{G}_{2 . i .3}, i=1, \ldots, \ell$: Identical to $\mathrm{G}_{2 . i .2}$ except that the secret key is sk_{f}^{i}.
$-\mathrm{G}_{2 . i .4}, i=1, \ldots, \ell$: Identical to $\mathrm{G}_{2 . i .3}$ except that the challenge ciphertext is $\mathrm{ct}_{x^{*}}^{i}$.
- G_{3} : Identical to $G_{2 . \ell .4}$ except that secret key is sk_{f}^{*}.

We use $\operatorname{Adv}_{\mathcal{A}}^{x x x}(\lambda)$ to denote the advantage of adversary \mathcal{A} in $G_{x x x}$ with parameter 1^{λ}.

3.3 Useful lemmas

We begin with a few useful lemmas which will be used throughout the proof of security.

Basic facts. We first state several facts which we will use in the proof.
Lemma 1. For any $x^{*} \in \Sigma^{\ell}$ and f such that $f\left(x^{*}\right)=0$, we have:

1. $\Delta_{0,1}=0$;
2. for all $i \in[\ell], u \in[Q]$, we have

$$
u \in F_{i-1, x^{*}} \Longleftrightarrow \delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}} .
$$

Proof. The first statement follows from the fact $1 \notin F_{0, x^{*}}$. The second one can be proved as follows: For direction \Longrightarrow, we know $\delta\left(u, x_{i}^{*}, x_{i+1}^{*}, \ldots, x_{\ell}^{*}\right) \in F$ for all $u \in F_{i-1, x^{*}}$. This means $\delta\left(\delta\left(u, x_{i}^{*}\right), x_{i+1}^{*}, \ldots, x_{\ell}^{*}\right) \in F$ and thus $\delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}$ by the definition. The direction \Longleftarrow can be proved analogously.

Game	$\mathrm{ct}_{x}{ }^{*}$			p_{2}-components of sk_{f}		Remark
0	$\mathrm{ct}_{x^{*}}$	sk_{f}	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{0}, w_{\sigma, 0}}$	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{1}, w_{\sigma, 1}}$	$\left.\llbracket d_{u}-\alpha \mapsto 0\right]_{w_{\text {end }}, 0}$	Real game
1	$\mathrm{ct}^{0}{ }^{*}$	sk_{f}	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{0}, w_{\sigma, 0}}$	$\llbracket d_{u} \mapsto d_{v} \rrbracket_{z_{1}, w_{\sigma, 1}}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	SD
2.1 .0	$\mathrm{ct}_{x^{*}}^{0}$	sk_{f}^{0}	$\llbracket d_{u} \mapsto d_{\nu}+\Delta_{0, v} \rrbracket_{z_{0}, w_{\sigma, 0}}$	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{1}, w_{\sigma, 1}}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	DDH
2.i.0	$\mathrm{ct}_{x^{*}}^{i-1}$	sk_{f}^{i-1}	$\llbracket d_{u} \mapsto d_{v} \rrbracket_{z_{\tau}, w_{\sigma, \tau}}$	$\llbracket d_{u} \mapsto d_{v}+\Delta_{i-1, v} \rrbracket_{z_{1-\tau}, w_{\sigma, 1-\tau}}$	$\left.\llbracket d_{u}-\alpha \mapsto 0\right]_{w_{\text {end }}, 0}$	$\mathrm{G}_{2 . i .0}=\mathrm{G}_{2 . i-1.4} \forall 2 \leq i \leq \ell$
2.i.1	$\mathrm{ct}_{x^{*}}^{i-1}$	$\mathrm{sk}_{f}^{i-1, i}$	$\llbracket d_{u}-\Delta_{i-1, u} \mapsto d_{\nu} \rrbracket_{z_{\tau}, w_{\sigma, \tau}}$	$\llbracket d_{u} \mapsto d_{v} \rrbracket_{z_{1-\tau}}, w_{\sigma, 1-\tau}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	$" d_{u} \mapsto d_{u}-\Delta_{i-1, u}{ }^{\prime}+\mathrm{DDH}(+$ Lem 1-1 $)$
2.i. 2	$\mathrm{ct}_{x^{*}}^{i-1, i}$	$\mathrm{sk}_{f}^{i-1, i}$	$\llbracket d_{u}-\Delta_{i-1, u} \mapsto d_{\nu} \rrbracket_{z_{\tau}, w_{\sigma, \tau}}$	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{1-\tau}}, w_{\sigma, 1-\tau}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	Lem 2
2.i.3	$\mathrm{ct}_{x^{*}}^{i-1, i}$	sk_{f}^{i}	$\left[d_{u} \mapsto d_{v}+\Delta_{i, v}\right]_{z_{\tau}, w_{\sigma, \tau}}$	$\llbracket d_{u} \mapsto d_{v} \rrbracket_{z_{1-\tau}, w_{\sigma, 1-\tau}}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	Lem 3 + DDH + Lem 1-2
2.i.4	$\mathrm{ct}^{\text {i }}{ }^{\text {\% }}$	sk ${ }_{f}^{i}$	$\llbracket d_{u} \mapsto d_{v}+\Delta_{i, v} \rrbracket_{z_{\tau}, w_{\sigma, \tau}}$	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{1-\tau}, w_{\sigma, 1-\tau}}$	$\llbracket d_{u}-\alpha \mapsto 0 \rrbracket_{w_{\text {end }}, 0}$	Lem $2+$ DDH
3	$\mathrm{ct}_{x^{*}}^{\ell}$	sk_{f}^{*}	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{0}, w_{\sigma, 0}}$	$\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z_{1}, w_{\sigma, 1}}$	$\llbracket d_{u}-\triangle \Delta_{\ell, u}-\alpha \mapsto 0 \rrbracket w_{\text {end }}, 0$	$" d_{u} \mapsto d_{u}-\Delta_{\ell, u} "+\mathrm{DDH}$

Fig. 2. Game sequence for composite-order ABE for DFA with $i=1, \ldots, \ell$. Recall that $\tau=i \bmod 2$. We only describe the p_{2} components for keys with the notational short-hand $\llbracket d_{u} \mapsto d_{\nu} \rrbracket_{z, w}:=\left(h_{2}^{-d_{u}+z r_{u}}, h_{2}^{d_{v}+w r_{u}}, h_{2}^{r_{u}}\right)$. All secret key elements in the fourth and fifth columns are quantified over $u \in[Q], \sigma \in \Sigma, v=\sigma(u, \sigma)$ while those in the sixth column are over $u \in F$; we omit
 cf. Section 2.2; all lemmas will be described in Section 3.3; "Lem 1-1" and "Lem 1-2" indicate the two statements in Lemma 1, respectively. Note that we use Lemma 1 for " $G_{2 . i .0} \mapsto G_{2 . i .1}$ " only when $i=1$ which is indicating by brackets.

Ciphertext switching. We use (s, w)-switching lemma (Lemma 2) when switching ciphertext distributions in Section 3.6. This extends the statement described in (3) by considering many tuples of form $\left(h^{w r} \cdot h_{2}^{\Delta}, h^{r}\right)$ each with fresh r. To prove Lemma 2, we follow hybrid arguments described in (4) except that (i) we use $\mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ instead of $\mathrm{SD}_{p_{3} \mapsto p_{2}}^{G_{N}}$ assumption and (ii) we apply $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ assumption once more. Looking ahead, this allows us to derive a prime-order scheme with better parameters.

Lemma 2 ($s, w)$-switching lemma). For all $Q \in \mathbb{N}$, we have

$$
\begin{array}{r}
\quad \text { aux, } g_{1}^{s}, \quad\left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{D}}, h^{\bar{r}_{u}}\right\}_{u \in[Q]} \\
\approx_{c} \text { aux, } g_{1}^{s} \cdot g_{2}^{s},\left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{D}}, h^{\bar{r}_{u}}\right\}_{u \in[Q]}
\end{array}
$$

where aux $=\left(g_{1}, g_{2}, h, h^{w}, g_{1}^{w}, g_{2}^{w}\right)$ and $w, s, \bar{\Delta}, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. Concretely, the advantage function $\operatorname{Adv}_{\mathcal{B}}^{\text {SWITCH }}(\lambda)$ is bounded by

$$
2 \cdot \operatorname{Adv}_{\mathcal{B}_{1}} \mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}(\lambda)+4 \cdot \operatorname{Adv}_{\mathcal{B}_{2}} \mathrm{DDH}_{p_{3}}^{H_{N}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{3}} \mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}(\lambda)
$$

with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right)$, $\operatorname{Time}\left(\mathcal{B}_{3}\right) \approx \operatorname{Time}(\mathcal{B})$.
Proof. We prove the lemma via the following hybrid arguments:

$$
\begin{array}{rlrll}
\text { LHS } & =\text { aux, } g_{1}^{s}, & \left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}},\right. & \left.h^{\bar{r}_{u}}\right\}_{u} & \\
& \approx_{c} \text { aux, } g_{1}^{s} \cdot g_{3}^{s}, & \left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}},\right. & \left.h^{\bar{r}_{u}}\right\}_{u} & \text { using } \operatorname{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}} \\
& \approx_{c} \text { aux, } g_{1}^{s} \cdot g_{3}^{s}, & \left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}} \cdot h_{3}^{\bar{\Delta}}, h^{\bar{r}_{u}}\right\}_{u} & \text { using } \mathrm{DDH}_{p_{3}}^{H_{N}} \\
& \approx_{c} \text { aux, } g_{1}^{s} \cdot g_{2}^{s} \cdot g_{3}^{s},\left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}} \cdot h_{3}^{\bar{\Delta}},\right. & \left.h^{\bar{r}_{u}}\right\}_{u} & \text { using } \mathrm{SD}_{p_{3} \rightarrow p_{3} p_{2}}^{G_{N}} \\
& \approx_{c} \text { aux, } g_{1}^{s} \cdot g_{2}^{s} \cdot g_{3}^{s}, & \left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}} \cdot h_{3}^{\bar{X}},\right. & \left.h^{\bar{r}_{u}}\right\}_{u} & \text { using DDH } H_{p_{3}}^{H_{N}} \\
& \approx_{c} \text { aux, } g_{1}^{s} \cdot g_{2}^{s} \cdot g_{3}^{\phi}, & \left\{h^{w \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}},\right. & \left.h^{\bar{r}_{u}}\right\}_{u}=\text { RHS using } \mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}
\end{array}
$$

We proceed as follows:

- The first and the last \approx_{c} rely on the $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{3}}^{G_{N}}$ assumption stating that:

$$
g_{1}^{s} \approx_{c} g_{1}^{s} \cdot g_{3}^{s} \quad \text { given } g_{1}, g_{2}, h, h_{2}
$$

where $s \leftarrow \mathbb{Z}_{N}$. All reductions are straight-forward.

- The second and the fourth \approx_{c} rely on the following statement implied by $\mathrm{DDH}_{p_{3}}^{H_{N}}$ assumption w.r.t. w mod p_{3} : for all $\bar{\Delta} \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{3}^{w \bar{r}_{u}}, h_{3}^{\bar{r}_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{3}^{w \bar{r}_{u}+\bar{\Delta}}, h_{3}^{\bar{r}_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, g_{3}, h_{1}, h_{2}, h_{3}, h_{3}^{w}$ where $w, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. All reductions are straight-forward.

- The third \approx_{c} relies on the $\mathrm{SD}_{p_{3} \mapsto p_{3} p_{2}}^{G_{N}}$ assumption stating that:

$$
\begin{equation*}
g_{3}^{s} \approx_{c} g_{2}^{s} \cdot g_{3}^{s} \quad \text { given } g_{1}, g_{2}, h, h_{23} \tag{13}
\end{equation*}
$$

where $s \leftarrow \mathbb{Z}_{N}$ and h_{23} is a random generator for $H_{p_{2} p_{3}}$. The reduction works as follows: On input ($S, g_{1}, g_{2}, h, h_{23}$) where either $S=g_{3}^{s}$ or $S=g_{2}^{s} \cdot g_{3}^{s}$, we sample $w, \bar{\Delta}, \bar{r}_{u}, \tilde{s} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. First, we can trivially compute aux and challenge term $g_{1}^{\tilde{s}} \cdot S$. Second, we simulate $h_{2}^{\bar{\Delta}} \cdot h_{3}^{\bar{\Delta}}$ with $h_{23}^{\bar{\Delta}}$ by the fact: $h_{2}^{\bar{\Delta}} \cdot h_{3}^{\bar{\Delta}} \approx_{s} h_{23}^{\bar{\Delta}}$ for all h_{2}, h_{3}, h_{23} when $\bar{\Delta} \leftarrow \mathbb{Z}_{N}$; this is sufficient for simulating all remaining terms.

Combining all five steps proves the lemma.
Remark 1. Observe that the distributions in the lemma are easily distinguishable if the view also contains $g_{1}^{s w}$ or $\left(g_{1} g_{2}\right)^{s w}$ (on the LHS and RHS respectively).

Key switching. We use (z, w)-transition lemma (Lemma 3) for switching key distributions (see Section 3.7), which captures the core argument in the statement (5) in the Introduction.

Lemma $3\left((z, w)\right.$-transition lemma). For all $Q \in \mathbb{N}, s_{i-1}, s_{i} \neq 0$ and $\bar{\Delta} \in \mathbb{Z}_{N}$, we have

$$
\begin{array}{r}
\text { aux, } s_{i-1} z+s_{i} w,\left\{h_{2}^{\sqrt{s_{i} \bar{\Delta}}+z \bar{r}_{u}}, \quad h_{2}^{w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]} \\
\approx_{c} \text { aux, } s_{i-1} z+s_{i} w,\left\{\quad h_{2}^{z \bar{r}_{u}}, h_{2}^{\sqrt{s_{i-1} \bar{\Delta}}+w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]}
\end{array}
$$

where aux $=\left(g_{1}, g_{2}, h_{1}, h_{2}, h_{3}, h_{2}^{z}, h_{2}^{w}\right)$ and $z, w, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. Concretely, the advantage function $\operatorname{Adv}_{\mathcal{B}}^{\text {TRANS }}(\lambda)$ is bounded by $2 \cdot \operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{DDH}_{p_{2}}^{H_{N}}}(\lambda)$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right) \approx \operatorname{Time}(\mathcal{B})$.
Proof. We prove the lemma with the following hybrid arguments:

$$
\begin{aligned}
& \left.\begin{array}{rlrll}
\text { LHS } & = & \text { aux, } s_{i-1} z+s_{i} w,\{ & h_{2}^{s_{i} \bar{\Delta}+z \bar{r}_{u}}, & \left.h_{2}^{w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u} \\
& \approx_{c} \text { aux, } s_{i-1} z+s_{i} w,\left\{h_{2}^{s_{i} \bar{\Delta}-s_{i} \gamma_{u}+z \bar{r}_{u}}\right. & h^{s_{i-1} \gamma_{u}}+w \bar{r}_{u}
\end{array}, h_{2}^{\bar{r}_{u}}\right\}_{u} \quad \text { using } \mathrm{DDH}_{p_{2}}^{H_{N}} \\
& \left.\approx_{s} \text { aux, } s_{i-1} z+s_{i} w \text {, } \quad h_{2}^{-s_{i} \gamma_{u}+z \bar{r}_{u}}, h \frac{s_{i-1} \bar{\Delta}+s_{i-1} \gamma_{u}+w \bar{r}_{u}}{}, h_{2}^{\bar{r}_{u}}\right\}_{u} \quad \text { statistical argument (14) } \\
& \approx_{c} \text { aux, } s_{i-1} z+s_{i} w,\left\{\quad h_{2}^{-s_{i} \gamma \bar{u}+z \bar{r}_{u}}, h_{2}^{s_{i-1} \bar{\Delta}+s_{i}+\pi \bar{u}+w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u}=\text { RHS using } \operatorname{DDH}_{p_{2}}^{H_{N}}
\end{aligned}
$$

where $\gamma_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. We proceed as follows:

- The first and third \approx_{c} follow from the statement: for all $s_{i-1}, s_{i} \neq 0$, we have

$$
\left\{h_{2}^{z \bar{r}_{u}}, h_{2}^{w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{-s_{i} \gamma_{u}+z \bar{r}_{u}}, h_{2}^{s_{i-1} \gamma_{u}+w \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}, h_{2}^{z}, h_{2}^{w}, s_{i-1} z+s_{i} w$ where $z, w, \bar{r}_{u}, \gamma_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. This is implied by $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w \bmod p_{2}$: On input

$$
h_{2}, h_{2}^{w},\left\{h_{2}^{\bar{r}_{u}}, T_{u}\right\}_{u \in[Q]}
$$

where either $T_{u}=h_{2}^{w \bar{r}_{u}}$ or $T_{u}=h_{2}^{\omega \bar{r}_{u}+s_{i-1} \gamma_{u}}$ and $w, \bar{r}_{u}, \gamma_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$, we sample $\tilde{z} \leftarrow \mathbb{Z}_{N}$ and implicitly set

$$
z=\tilde{z}-s_{i-1}^{-1} s_{i} w
$$

Then, we can simulate $h_{2}^{z}=h_{2}^{\tilde{z}} \cdot\left(h_{2}^{w}\right)^{-s_{i-1}^{-1} s_{i}}$ and $s_{i-1} z+s_{i} w=s_{i-1} \tilde{z}$ using $h_{2}, h_{2}^{w}, \tilde{z}, s_{i-1}, s_{i}$ (without knowing w) and output the challenge terms

$$
\left\{\left(h_{2}^{\bar{r}_{u}}\right)^{\tilde{z}} \cdot T_{u}^{-s_{i-1}^{-1} s_{i}}, T_{u}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]} .
$$

Observe that, when $T_{u}=h_{2}^{w \bar{r}_{u}}$, the output distribution is identical to that on the left-hand side; when $T_{u}=$ $h_{2}^{\omega \bar{r}_{u}+s_{i-1} \gamma_{u}}$, the output distribution is identical to that on the right-hand side. This proves the statement.

- The second \approx_{s} relies on the statistical statement for all $\bar{\Delta} \in \mathbb{Z}_{N}$:

$$
\begin{equation*}
\left\{\bar{\Delta}-\gamma_{u}, \gamma_{u}\right\}_{u \in[Q]} \approx_{s}\left\{-\gamma_{u}, \bar{\Delta}+\gamma_{u}\right\}_{u \in[Q]} \tag{14}
\end{equation*}
$$

when $\gamma_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$.
This readily proves the lemma.

3.4 Initialization: $\mathbf{G}_{0} \mapsto \mathrm{G}_{1}, \mathrm{G}_{1} \mapsto \mathrm{G}_{2.1 .0}$

The first two transitions are straight-forward; we prove the following two lemmas for them, respectively.
Lemma $4\left(\mathrm{G}_{0} \approx_{c} \mathrm{G}_{1}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{0}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{1}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}}^{\operatorname{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}(\lambda)}
$$

Proof. This relies on $\mathrm{SD}_{p_{1} \mapsto p_{1} p_{2}}^{G_{N}}$ assumption stating that

$$
\left(g_{1}, h, g_{1}^{s_{0}}\right) \approx_{c}\left(g_{1}, h, g_{1}^{s_{0}} \cdot g_{2}^{s_{0}}\right)
$$

where $s_{0} \leftarrow \mathbb{Z}_{N}$. In the reduction,

- we sample $\alpha, w_{\text {start }}, w_{\text {end }}, z_{0}, z_{1}, w_{\sigma, 0}, w_{\sigma, 1} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \in \Sigma$ and create (msk, mpk) honestly using g_{1} and h;
- with msk, we can generate the secret key for f honestly; i.e., we run $\mathrm{sk}_{f} \leftarrow \operatorname{KeyGen}(\mathrm{mpk}, \mathrm{msk}, f$);
- the challenge ciphertext can be created using terms given out in the statement above and $s_{1}, s_{2}, \ldots, s_{\ell}$ chosen by ourselves.

Lemma $5\left(\mathrm{G}_{1} \approx{ }_{c} \mathrm{G}_{2.1 .0}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{1}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2.1 .0}(\lambda)\right| \leq 2|\Sigma| \cdot \operatorname{Adv}_{\mathcal{B}}^{\operatorname{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

Proof. This roughly means that

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{0}, \mathrm{sk}_{f}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{0}, \mathrm{sk}_{f}^{0}\right) .
$$

By the Chinese Reminder Theorem, it suffices to focus on the p_{2}-components; concretely, we prove that

given g_{1}, h_{1}, h_{3} and

$$
\operatorname{ct}_{x^{*}}^{0}[2]:=\left(g_{2}^{s_{0} w_{\text {start }}}, g_{2}^{s_{0}}, g_{2}^{s_{0} z_{1}}\right)
$$

Here terms g_{1}, h_{1}, h_{3} allow us to simulate the p_{1} - and p_{3}-components of $\mathrm{ct}_{x^{*}}^{0}$ and sk_{f} ($\mathrm{or} \mathrm{sk}_{f}^{0}$) as well as mpk, which is sufficient for proving the lemma. Furthermore, this statement immediately follows from the statement below which are implied by $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\sigma, 0} \bmod p_{2}$ with $\sigma \in \Sigma$: for all $\sigma \in \Sigma$ and $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{u}}, h_{2}^{w_{\sigma, 0} r_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{r_{u}}, h_{2}^{\Delta+w_{\sigma, 0} r_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{w_{\sigma, 0}}$ where $w_{\sigma, 0}, r_{u} \leftarrow \mathbb{Z}_{N}$ for $u \in[Q]$. Here we crucially rely on the fact the ciphertext $\operatorname{ct}_{x^{*}}^{0}$ [2] does not leak $w_{\sigma, 0} \bmod p_{2}$ with $\sigma \in \Sigma$.

3.5 Switching secret keys I: $\mathbf{G}_{2 . i .0} \mapsto \mathbf{G}_{2 . i .1}$

In this section, we prove the following lemma.
Lemma $6\left(\mathrm{G}_{2 . i .0} \approx{ }_{c} \mathrm{G}_{2 . i .1}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .0}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\operatorname{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

Proof organization. We need two auxiliary games $\mathrm{G}_{2 . i .1 . a}$ and $\mathrm{G}_{2 . i .1 . b}$ and prove that:

$$
\mathrm{G}_{2 . i .0} \stackrel{\text { Lemma } 7}{\approx} \mathrm{G}_{2 . i .1 . a} \stackrel{\text { Lemma } 8}{\approx} \mathrm{G}_{2 . i .1 . b} \stackrel{\text { Lemma } 9}{\approx} \mathrm{G}_{2 . i .1}
$$

where the p_{2}-components of the secret key in these games are recalled/defined as below

$$
\begin{aligned}
& \mathrm{G}_{2 . i .0}:\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+\Delta_{i-1, v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)=\mathrm{sk}_{f}^{i-1}[2] \\
& \mathrm{G}_{2 . i .1 . a}:\left(\begin{array}{c}
h_{2}^{d_{1}-\sqrt{\Delta i-1,1}+}+w_{\mathrm{start} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\triangle \Delta_{i-1, u}+z_{\tau} r_{u}}, h_{2}^{d_{v}-\boxed{\Delta_{i-1, v}}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+\sqrt{\Delta_{i-1, u}}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\triangle \Delta_{i-1, u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{G}_{2 . i .1 . b}:\left(\begin{array}{c}
h_{2}^{d_{1}-\Delta_{i-1,1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\Delta_{i-1, u}+z_{\tau} r_{u}}, h_{2}^{d_{v}-\Delta_{i-1, v}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+\Delta_{i-1, u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\Delta_{i-1, u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{G}_{2 . i .1}:\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\Delta_{i-1, u}+z_{\tau} r_{u}}, h_{2}^{d_{v}-\Delta_{i 1, v}+w_{\sigma, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+\Delta_{-1, u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+\Lambda_{1, u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)=\operatorname{sk}_{f}^{i-1, i}{ }_{[2]}
\end{aligned}
$$

and the p_{2}-components of ciphertext are recalled as follows

$$
\operatorname{ct}_{x^{*}}^{i-1}[2]= \begin{cases}g_{s_{0}}^{s_{0} w_{\text {start }}}, g_{2}^{s_{0}}, g_{2}^{s_{0} z_{1}} & \text { if } i=1 \\ g_{2}, w_{x_{i-1}^{*}, 1-\tau}, g_{2}^{s_{i-1}}, g_{2}^{s_{i-1} z_{\tau}} & \text { if } 2 \leq i \leq \ell\end{cases}
$$

The $p_{1^{-}}$and p_{3}-components of secret key and ciphertext as well as mpk remain unchanged among all the four games.

Lemmas and Proofs. We describe and prove the following lemmas. Combining them together proves Lemma 6.
Lemma $7\left(\mathrm{G}_{2 . i .0} \approx{ }_{s} \mathrm{G}_{2 . i .1 . a}\right)$. For all $i=1, \ldots, \ell$, we have

$$
\operatorname{Adv}_{\mathcal{A}}^{2 . i .0}(\lambda)=\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . a}(\lambda)
$$

Proof. This immediately follows from the change of variables: $d_{u} \mapsto d_{u}-\Delta_{i-1, u} \bmod p_{2}$ for all $u \in[Q]$.
Lemma $8\left(\mathrm{G}_{2 . i .1 . a} \approx{ }_{c} \mathrm{G}_{2 . i .1 . b}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . a}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . b}(\lambda)\right| \leq 2 \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{p_{2}}^{H_{N}}}(\boldsymbol{\lambda})
$$

Proof. We prove the lemma via a case analysis for i :

- Case $i=1$: The two games are exactly identical due to the fact that $\Delta_{0,1}=0$, see Lemma 1 .
- Case $i>1$: The lemma follows from the statement below implied by $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\text {start }} \bmod p_{2}$: for all $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{1}}, h_{2}^{w_{\text {start }} r_{1}}\right\} \approx_{c}\left\{h_{2}^{r_{1}}, h_{2}^{-\Delta+w_{\text {start }} r_{1}}\right\}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{w_{\text {start }}}$ where $w_{\text {start }}, r_{1} \leftarrow \mathbb{Z}_{N}$. Here we crucially rely on the fact the ciphertext $\mathrm{ct}_{x^{*}}^{i-1}[2]$ with $i>1$ does not leak $w_{\text {start }} \bmod p_{2}$.

Lemma $9\left(\mathrm{G}_{2 . i .1 . b} \approx_{c} \mathrm{G}_{2 . i .1}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . b}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)\right| \leq 2(|\Sigma|+2) \cdot \operatorname{Adv}_{\mathcal{B}}^{\operatorname{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

Proof. This follows from statements below implied by $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t $w_{\sigma, \tau}, z_{1-\tau}, w_{\text {end }} \bmod p_{2}$ with $\sigma \in \Sigma$:

- For all $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{u}}, h_{2}^{z_{1-\tau} r_{u}}, h_{2}^{w_{\text {end }} r_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{r_{u}}, h_{2}^{\Delta+z_{1-\tau} r_{u}}, h_{2}^{\Delta+w_{\text {end }} r_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{z_{1}-\tau}, h_{2}^{w_{\text {end }}}$ where $z_{1-\tau}, w_{\text {end }}, r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$.

- For all $\sigma \in \Sigma$ and $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{u}}, h_{2}^{w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{r_{u}}, h_{2}^{-\Delta+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{w_{\sigma, \tau}}$ where $w_{\sigma, \tau}, r_{u} \leftarrow \mathbb{Z}_{N}$ for $u \in[Q]$.
Here we use the fact that $\mathrm{ct}_{x^{*}}^{i-1}[2]$ with $1 \leq i \leq \ell$ does not leak $w_{\sigma, \tau}, z_{1-\tau}, w_{\text {end }} \bmod p_{2}$ with $\sigma \in \Sigma$.

3.6 Switching ciphertexts: $G_{2 . i .1} \mapsto G_{2 . i .2}, G_{2 . i .3} \mapsto G_{2 . i .4}$

In this section, we prove the following two lemmas for $G_{2 . i .1} \mapsto G_{2 . i .2}$ and $G_{2 . i .3} \mapsto G_{2 . i .4}$, respectively. The proofs are similar, we give the details for the first proof and only sketch the differences in the second proof.

Lemma $10\left(\mathrm{G}_{2 . i .1} \approx_{c} \mathrm{G}_{2 . i .2}\right)$. For $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .2}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}}^{\text {SWITCH }}(\lambda)
$$

Proof. This roughly means that

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1}, \mathrm{sk}_{f}^{i-1, i}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i-1, i}\right)
$$

Recall that $\tau=i \bmod 2$. We prove the lemma using $\left(s_{i}, z_{\tau}\right)$-switching lemma (see Lemma 2). On input

$$
\text { aux, } S_{i},\left\{h^{z_{\tau} \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}}, h^{\bar{r}_{u}}\right\}_{u \in[Q]}
$$

with aux $=\left(g_{1}, g_{2}, h, h^{z_{\tau}}, g_{1}^{z_{\tau}}, g_{2}^{z_{\tau}}\right)$ and

$$
S_{i}=g_{1}^{s_{i}} \text { or } S_{i}=g_{1}^{s_{i}} \cdot g_{2}^{s_{i}}
$$

where $z_{\tau}, s_{i}, \bar{\Delta}, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$, the reduction proceeds as follows:
(Simulating mpk) We sample $\alpha, w_{\text {start }}, w_{\text {end }}, z_{1-\tau}, w_{\sigma, \tau}, w_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \in \Sigma$; then we can trivially simulate mpk with terms $g_{1}, h, g_{1}^{z_{\tau}}$ given out in aux.
(Simulating key for f) We want to simulate $\mathrm{sk}_{f}^{i-1, i}$ in the form

On input f, we build $F_{i-1, x^{*}} \subseteq[Q]$ from f, then sample $d_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$ and $r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \notin F_{i-1, x^{*}}$. We implicitly set

$$
\Delta=\bar{\Delta} \quad \text { and } \quad r_{u}=\bar{r}_{u} \text { for all } u \in F_{i-1, x^{*}}
$$

and simulate $\mathrm{sk}_{f}^{i-1, i}$ as follows:

- By the definition of $\left\{\Delta_{i-1, u}\right\}_{u}$ and our implicit setting, we can rewrite all terms in the dashed boxes as:

$$
\begin{cases}h^{r_{u}}, h^{-d_{u}+z_{\tau} r_{u}} & \text { if } u \notin F_{i-1, x^{*}} \\ h^{\bar{r}_{u}}, h^{-d_{u}+z_{\tau} \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}} & \text { if } u \in F_{i-1, x^{*}}\end{cases}
$$

Terms for $u \notin F_{i-1, x^{*}}$ can be computed honestly from $\left\{r_{u}, d_{u}\right\}_{u \notin F_{i-1, x^{*}}}$ we sampled and $h, h^{z_{\tau}}$ given in aux; terms for $u \in F_{i-1, x^{*}}$ can be computed from $\left\{d_{u}\right\}_{u \in F_{i-1, x^{*}}}$ we sampled and $\left\{h^{z_{\tau} \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}}, h^{\bar{r}_{u}}\right\}_{u \in F_{i-1, x^{*}}}$ given out in the input.

- All remaining terms can be trivially simulated using $\left\{r_{u}\right\}_{u \notin F_{i-1, x^{*}}}$ and $\left\{h^{r_{u}}=h^{\bar{r}_{u}}\right\}_{u \in F_{i-1, x^{*}}}$ as well as $\alpha,\left\{d_{u}\right\}_{u \in[Q]}$, $w_{\text {start }}, z_{1-\tau},\left\{w_{\sigma, \tau}, w_{\sigma, 1-\tau}\right\}_{\sigma \in \Sigma}, w_{\text {end }}$ we sampled.
(Simulating ciphertext for x^{*}) We want to generate a ciphertext for x^{*} which is distributed as either $\mathrm{ct}_{x^{*}}^{i-1}{\text { or } \mathrm{ct}_{x^{*}}^{i-1, i} \text { : }}_{\text {: }}$ (

On input $\left(m_{0}, m_{1}\right) \in \mathcal{M} \times \mathcal{M}$, we sample $\beta \leftarrow\{0,1\}$ and $s_{j} \leftarrow \mathbb{Z}_{N}$ for all $j \neq i$, and output the challenge ciphertext

$$
\begin{cases}\left(\left(g_{1} g_{2}\right)^{s_{0} w_{\text {start }}},\left(g_{1} g_{2}\right)^{s_{0}},\left(g_{1} g_{2}\right)^{s_{0} z_{1}} \cdot S_{1}^{w_{x_{1}^{*}, 1}}, S_{1}, S_{1}^{z_{0}} \cdot g_{1}^{s_{2} w_{x_{2}^{*}, 0}}, \ldots\right) & \text { if } i=1 \\ \left(\ldots, g_{1}^{s_{i-2} z_{1-\tau}} \cdot\left(g_{1} g_{2}\right)^{s_{i-1} w_{x_{i-1}^{*}}, 1-\tau},\left(g_{1} g_{2}\right)^{s_{i-1}},\left(g_{1} g_{2}\right)^{s_{i-1} z_{\tau}} \cdot S_{i}^{w_{i}^{*}, \tau}, S_{i}, S_{i}^{z_{1-\tau}} \cdot g_{1}^{s_{i+1} w_{x_{i+1}^{*}}, 1-\tau}, \ldots\right) & \text { if } 1<i<\ell \\ \left(\ldots, g_{1}^{s_{\ell-2} z_{1-\bar{\ell}}} \cdot\left(g_{1} g_{2}\right)^{s_{\ell-1} w_{x_{\ell-1}^{*}}, 1-\bar{\ell}},\left(g_{1} g_{2}\right)^{s_{\ell-1}},\left(g_{1} g_{2}\right)^{s_{\ell-1} z_{\bar{\ell}}} \cdot S_{\ell}^{x_{\ell}^{*}, \bar{\ell}}, S_{\ell}, S_{\ell}^{w_{\text {end }}}, \mathrm{H}\left(e\left(S_{\ell}, h^{\alpha}\right)\right) \cdot m_{\beta}\right) & \text { if } i=\ell\end{cases}
$$

Here we use the fact that the ciphertext contains no term with $s_{i} z_{\tau}$ in the exponent (cf. Remark 1). All omitted terms can be honestly computed from aux and exponents $\left\{s_{j}\right\}_{j \neq i}$ sampled by ourselves. Clearly, when $S_{i}=g_{1}^{s_{i}}$, the output is identical to $\mathrm{ct}_{x^{*}}^{i-1}$; when $S_{i}=g_{1}^{s_{i}} \cdot g_{2}^{s_{i}}$, the output is identical to $\mathrm{ct}_{x^{*}}^{i-1, i}$. This completes the proof.

Lemma $11\left(\mathrm{G}_{2 . i .3} \approx{ }_{c} \mathrm{G}_{2 . i .4}\right)$. For $i=1, \ldots, \ell$, there exists $\mathcal{B}_{1}, \mathcal{B}_{2}$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .3}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .4}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\text {SWITCH }}(\lambda)+4(|\Sigma|-1) \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\mathrm{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

Proof. This roughly means that

$$
\text { (mpk, } \left.\mathrm{ct}_{x^{*}}^{i-1, i}, \mathrm{sk}_{f}^{i}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i}, \mathrm{sk}_{f}^{i}\right)
$$

We prove the lemma using ($s_{i-1}, w_{x_{i}^{*}, \tau}$)-transition lemma (see Lemma 2). Recall that $\tau=i \bmod 2$. The reduction is analogous to that for Lemma 10: On input

$$
\text { aux, } S_{i-1},\left\{h^{w_{x_{i}^{*}, \tau^{\prime}} \overline{\bar{r}}_{u}} \cdot h_{2}^{\bar{\Delta}}, h^{\bar{r}_{u}}\right\}_{u \in[Q]}
$$

with aux $=\left(g_{1}, g_{2}, h, h^{w_{x_{i}^{*}, \tau}}, g_{1}^{w_{x_{i}^{*}, \tau}}, g_{2}^{w_{x_{i}^{*}, \tau}}\right)$ and

$$
S_{i-1}=g_{1}^{s_{i-1}} \text { or } S_{i-1}=g_{1}^{s_{i-1}} \cdot g_{2}^{s_{i-1}}
$$

where $w_{x_{i}^{*}, \tau}, s_{i-1}, \bar{\Delta}, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$, we sample α, $w_{\text {start }}, w_{\text {end }}, z_{0}, z_{1}, w_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \in \Sigma, w_{\sigma, \tau} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \neq x_{i}^{*}$ and $s_{j} \leftarrow \mathbb{Z}_{N}$ for all $j \neq i-1$; then we can simulate mpk and the challenge ciphertext analogously. The main difference locates at the simulation of secret key.
(Simulating key for f) We want to simulate sk_{f}^{i} in the form:

On input f, we sample $d_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$ and implicitly set $\Delta=\bar{\Delta}$ as before but we set $\left\{r_{u}\right\}_{u \in[Q]}$ as follows:

- We build $F_{i, x^{*}} \subseteq[Q]$, sample $r_{u} \leftarrow \mathbb{Z}_{N}$ for all u such that $\delta\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}}$ and implicitly set $r_{u}=\bar{r}_{u}$ for all u such that $\delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}$.

Then we simulate sk_{f}^{i} as follows:

- By the definition of $\left\{\Delta_{i, u}\right\}_{u}$ and our implicit setting, we can rewrite all terms in the dashed box as below

$$
\begin{cases}h^{r_{u}}, h^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} r_{u}} & \text { if } \delta\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}} \\ h^{\bar{r}_{u}}, h^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} \bar{r}_{u}} \cdot h_{2}^{\bar{\Delta}} & \text { if } \delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}\end{cases}
$$

and simulate them from either $\left\{r_{u}\right\}_{\delta\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}}}$ or $\left\{h^{w_{x_{i}^{*}, \tau^{\bar{r}}}} \cdot h_{2}^{\bar{\Delta}}, h^{\bar{r}_{u}}\right\}_{\delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}}$ with the help of $\left\{d_{u}\right\}_{u \in[Q]}$ and aux. This is similar to the simulation of terms in the dashed boxes in the proof for Lemma 10.

- The terms in the gray box are computationally simulated in the following form

$$
\left\{h^{d_{v}+w_{\sigma, \tau} r_{u}} \cdot h_{2}^{\Delta / L^{\nu}}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta(u, \sigma)}
$$

using $\left\{d_{u}\right\}_{u \in[Q]},\left\{w_{\sigma, \tau}\right\}_{\sigma \neq x_{i}^{*}}$ we sampled and $\left\{h^{r_{u}}\right\}_{u \in[Q]}$ we have simulated. This follows from $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t $w_{\sigma, \tau} \bmod p_{2}$ with $\sigma \neq x_{i}^{*}$ which implies that: for all $\sigma \neq x_{i}^{*}$ and $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{u}}, h_{2}^{w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{r_{u}}, h_{2}^{\Delta+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{w_{\sigma, \tau}}$ where $w_{\sigma, \tau}, r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. Here we use the fact that both $\operatorname{ct}_{x^{*}}^{i-1, i}$ and $\operatorname{ct}_{x^{*}}^{i}$ does not leak $w_{\sigma, \tau} \bmod p_{2}$ with $\sigma \neq x_{i}^{*}$.

- All remaining terms can be easily handled as in the proof of Lemma 10.

This completes the proof.

3.7 Switching key II: $\mathbf{G}_{2 . i .2} \mapsto \mathbf{G}_{2 . i .3}$

In this section we prove the following lemma.
Lemma $12\left(G_{2 . i .2} \approx_{c} G_{2 . i .3}\right)$. For all $i=1, \ldots, \ell$, there exists $\mathcal{B}_{1}, \mathcal{B}_{2}$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .2}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .3}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\text {TRANS }}(\lambda)+2(|\Sigma|-1) \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\mathrm{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

Proof. Recall $\tau=i \bmod 2$. By the Chinese Reminder Theorem, it suffices to focus on the p_{2}-components; concretely we prove

$$
\begin{aligned}
& \mathrm{sk}_{f}^{i-1, i}[2]=\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+\sqrt{\Delta_{i-1, u}}+z_{\tau} r_{u}}{ }^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q]}, \\
\left\{h_{2}^{d_{v}+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h_{2}^{r}\right\}_{u \in F}
\end{array}\right) \\
& \approx c\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\text {start }} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{\tau} r_{u}}, h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+\Delta_{\Delta_{i, \delta\left(u, x_{i}^{*}\right)}}+w_{x_{i}^{*}, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q]}, \\
\left\{h_{2}^{d_{v}+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right) \\
& \approx_{c}\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\text {start }} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{\tau} r_{u}}, h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+\Delta_{i, \delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q]}, \\
\left\{h_{2}^{d_{\nu}+\Delta_{i, v}+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\tau} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\tau} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)=\mathrm{sk}_{f}^{i}[2]
\end{aligned}
$$

given g_{1}, h_{1}, h_{3} and

Here terms g_{1}, h_{1}, h_{3} allow us to simulate the $p_{1^{-}}$and p_{3}-components of $\mathrm{ct}_{x^{*}}^{i-1, i}$ and $\mathrm{sk}_{f}^{i-1, i}$ ($\mathrm{or} \mathrm{sk}_{f}^{i}$) as well as mpk, which is sufficient for proving the lemma. We then proceed as follows:

- The first \approx_{c} relies on $\left(z_{\tau}, w_{x_{i}^{*}, \tau}\right)$-transition lemma (see Lemma 3). On input

$$
\text { aux, } s_{i-1} z_{\tau}+s_{i} w_{x_{i}^{*}, \tau},\left\{h_{2}^{\hat{\Delta}_{0}+z_{\tau} \bar{r}_{u}}, h_{2}^{\hat{\Delta}_{1}+w_{x_{i}^{*}, \tau} \bar{r}_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in[Q]}
$$

with aux $=\left(g_{1}, g_{2}, h_{1}, h_{2}, h_{3}, s_{i-1}, s_{i}, h_{2}^{z_{\tau}}, h_{2}^{w_{x_{i}^{*}, \tau}}\right)$ where $z_{\tau}, w_{x_{i}^{*}, \tau}, \bar{r}_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$ and

$$
\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right) \in\left\{\left(s_{i} \bar{\Delta}, 0\right),\left(0, s_{i-1} \bar{\Delta}\right)\right\} \quad \text { with } \quad \bar{\Delta} \leftarrow \mathbb{Z}_{N}
$$

we simulate p_{2}-components of the ciphertext and keys as follows:
(Simulating ciphertext) We sample $\alpha, w_{\text {start }}, w_{\text {end }}, z_{1-\tau}, w_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{N}$ for all $\sigma \in \Sigma$, and $w_{\sigma, \tau} \leftarrow \mathbb{Z}_{N}$ for $\sigma \neq x_{i}^{*}$. It is straight-forward to simulate $\mathrm{ct}_{x^{*}}^{i-1, i}[2]$ from $g_{2}, s_{i-1}, s_{i}, s_{i-1} z_{\tau}+s_{i} w_{x_{i}^{*}, \tau}$. This relies on the fact that neither $z_{\tau} \bmod$ p_{2} nor $w_{x_{i}^{*}, \tau} \bmod p_{2}$ appear elsewhere in $\mathrm{ct}_{x^{*}}^{i-1, i}[2]$.
(Simulating key for f) We want to generate a challenge key which is either $\mathrm{sk}_{f}^{i-1, i}$ [2] on the LHS or the key on the RHS depending on $\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right)$. On input f, we build $F_{i-1, x^{*}} \subseteq[Q]$ from f and sample $d_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$ and $r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \notin F_{i-1, x^{*}}$. We implicitly set

$$
\Delta=\left\{\begin{array}{ll}
s_{i} \bar{\Delta} & \text { for the LHS } \\
s_{i-1} \bar{\Delta} & \text { for the RHS }
\end{array} \text { and } r_{u}=\bar{r}_{u} \text { for all } u \in F_{i-1, x^{*}}\right.
$$

and proceed as follows:

- We rewrite all terms in the second row of keys on the two sides in terms of $s_{i-1}, s_{i}, \bar{\Delta}, \bar{r}_{u}$:

$$
\begin{aligned}
& \mathrm{LHS}_{\text {row } 2}=\left\{\begin{array}{lll}
h_{2}^{-d_{u}+\sqrt{s_{i} \bar{\Delta}}+z_{\tau} \bar{r}_{u}}, & h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} \bar{r}_{u}} \\
h_{2}^{-d_{u}+z_{\tau} r_{u}}, & h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} r_{u}}, & h_{2}^{\bar{r}_{u}}
\end{array} \text { if } u \in F_{i-1, x^{*}}^{r_{u}} \text { if } u \notin F_{i-1, x^{*}}\right. \\
& \mathrm{RHS}_{\text {row } 2}=\left\{\begin{array}{lll}
h_{2}^{-d_{u}+z_{\tau} \bar{r}_{u}}, h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+\sqrt{s_{i-1} \bar{\Delta}}+w_{x_{i}^{*}, \tau} \bar{r}_{u}}, & h_{2}^{\bar{r}_{u}} & \text { if } \delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}} \\
h_{2}^{-d_{u}+z_{\tau} r_{u}}, h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+w_{x_{i}^{*}, \tau} r_{u}}, & h_{2}^{r_{u}} \text { if } \delta\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}}
\end{array}\right.
\end{aligned}
$$

and generate the second row of the challenge key as

$$
\left\{\begin{array}{lll}
h_{2}^{-d_{u}+\sqrt[\hat{\Delta}_{0}]{ }+z_{\tau} \bar{r}_{u}}, h_{2}^{d_{\delta\left(u, x_{i}^{*}\right)}+\sqrt[\hat{\Delta}_{1}]{ }+w_{x_{i}^{*}, \tau} \tau_{u}}, & h_{2}^{\bar{r}_{u}} \text { if } u \in F_{i-1, x^{*}} \\
h_{2}^{-d_{u}+z_{\tau} r_{u}}, & h_{2\left(u, x_{i}^{*}\right)}^{d_{x_{i}}, w^{*}}, & h_{2}^{r_{u}} \text { if } u \notin F_{i-1, x^{*}}
\end{array}\right.
$$

where, with $\left\{d_{u}\right\}_{u \in[Q]}$, all terms for $u \in F_{i-1, x^{*}}$ can be built from terms $\left\{h_{2}^{\hat{\Delta}_{0}+z_{\tau} \bar{r}_{u}}, h_{2}^{\hat{\Delta}_{1}+w_{x_{i}^{*}, \tau} \tau_{u}}, h_{2}^{\bar{r}_{u}}\right\}_{u \in F_{i-1, x^{*}}}$ provided in the input; all terms for $u \notin F_{i-1, x^{*}}$ can be built from $h_{2}, h_{2}^{z_{\tau}}, h_{2}^{w_{x_{i}^{*}, \tau}}$ in aux and $\left\{r_{u}\right\}_{u \notin F_{i-1, x^{*}}}$ we sampled.

- We can trivially generate all remaining terms in the challenge key which are identical to $\mathrm{sk}_{f}^{i-1, i}{ }_{\text {[2] }}$ (and also the key on the RHS) using $\left\{r_{u}\right\}_{u \notin F_{i-1, x^{*}}}$ and $\left\{h_{2}^{r_{u}}=h_{2}^{\bar{r}_{u}}\right\}_{u \in F_{i-1, x^{*}}}$ as well as $\alpha, w_{\text {start }}, z_{1-\tau},\left\{w_{\sigma, \tau}\right\}_{\sigma \neq x_{i}^{*}},\left\{w_{\sigma, 1-\tau}\right\}_{\sigma \in \Sigma}$, $w_{\text {end }}$.
Observe that,
- when $\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right)=\left(s_{i} \bar{\Delta}, 0\right)$, the output distribution is identical to the LHS;
- when $\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right)=\left(0, s_{i-1} \bar{\Delta}\right)$, the output distribution is identical to the RHS; here we rely on the fact that $u \in$ $F_{i-1, x^{*}} \Longleftrightarrow \delta\left(u, x_{i}^{*}\right) \in F_{i, x^{*}}$ for all $u \in[Q]$, see Lemma 1.
This is sufficient for the proof of the first $\approx c$.
- The second \approx_{c} follows from $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\sigma, \tau} \bmod p_{2}$ with $\sigma \neq x_{i}^{*}$, which implies that: for all $\sigma \neq x_{i}^{*}$ and $\Delta \in \mathbb{Z}_{N}$, we have

$$
\left\{h_{2}^{r_{u}}, h_{2}^{w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]} \approx_{c}\left\{h_{2}^{r_{u}}, h_{2}^{\Delta+w_{\sigma, \tau} r_{u}}\right\}_{u \in[Q]}
$$

given $g_{1}, g_{2}, h_{1}, h_{2}, h_{3}$ and $h_{2}^{w_{\sigma, \tau}}$ where $w_{\sigma, \tau}, r_{u} \leftarrow \mathbb{Z}_{N}$ for all $u \in[Q]$. This relies on the fact that ${ }_{c^{*}}{ }_{x^{*}}^{i-1, i}$ [2] does not leak $w_{\sigma, \tau} \bmod p_{2}$ with $\sigma \neq x_{i}^{*}$.

Combining the two steps proves the lemma.

3.8 Finalize: $\mathbf{G}_{2 . \ell .4} \mapsto \mathbf{G}_{3}$

We first describe the following lemma.
Lemma $13\left(\mathrm{G}_{2 . \ell .4} \approx \mathrm{G}_{3}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . \ell .4}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{p_{2}}^{H_{N}}}(\lambda)
$$

The proof is analogous to the proof for Lemma 6. Let $\bar{\ell}=\ell \bmod 2$, we need an auxiliary game $\mathrm{G}_{3 . a}$ and prove

$$
\mathrm{G}_{2 . \ell .4} \approx_{s} \mathrm{G}_{3 . a} \approx_{c} \mathrm{G}_{3}
$$

where the p_{2}-components of the secret key in these games are recalled/defined as below

$$
\mathrm{G}_{2 . \ell .4}:\left(\begin{array}{c}
h_{2}^{d_{1}+w_{\mathrm{start}} r_{1}}, h_{2}^{r_{1}}, \\
\left\{h_{2}^{-d_{u}+z_{\bar{\ell}} r_{u}}, h_{2}^{d_{\nu}+\Delta_{\ell, v}+w_{\sigma, \bar{\ell}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)}, \\
\left\{h_{2}^{-d_{u}+z_{1-\bar{\ell}} r_{u}}, h_{2}^{d_{v}+w_{\sigma, 1-\bar{\ell}} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma),} \\
\left\{h_{2}^{\alpha-d_{u}+w_{\text {end }} r_{u}}, h_{2}^{r_{u}}\right\}_{u \in F}
\end{array}\right)=\operatorname{sk}_{f}^{\ell}[2]
$$

and the p_{2}-components of ciphertext are recalled as follows

$$
\mathrm{ct}_{x^{*}}^{\ell}=\left(g_{2}^{s_{\ell} w_{x_{\ell}^{*}, \bar{e}}}, g_{2}^{s_{\ell}}, g_{2}^{s_{\ell} w_{\mathrm{end}}}, e\left(g_{2}^{s_{\ell}}, h_{2}^{\alpha}\right)\right) .
$$

The p_{1} - and p_{3}-components of secret key and ciphertext as well as mpk remain unchanged among all the three games. Analogous to Lemma 7 and 9, we have the following two lemmas which imply Lemma 13. We omit the proofs.
Lemma $14\left(\mathrm{G}_{2 . \ell .4} \approx_{s} \mathrm{G}_{3 . a}\right)$. We have $\operatorname{Adv}_{\mathcal{A}}^{2 . \ell .4}(\lambda)=\operatorname{Adv}_{\mathcal{A}}^{3 . a}(\lambda)$.
Lemma $15\left(\mathrm{G}_{3 . a} \approx{ }_{c} \mathrm{G}_{3}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{3 . a}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\operatorname{DDH}_{p_{2}}^{H_{N}}}(\lambda) .
$$

Finally we prove the last lemma evaluating adversary's advantage in G_{3}. Combining this lemma with Lemma 2,3 and Lemma $4,5,6,10,11,12,13$ proves Theorem 1.

Lemma 16 (Advantage in G_{3}). For all \mathcal{A}, we have $\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda) \approx 0$.
Proof. The definition of $\left\{\Delta_{\ell, u}\right\}_{u \in F}$ and $F_{\ell, x^{*}}=F$ imply that sk ${ }_{f}^{*}$ only leak $\alpha+\Delta \bmod p_{2}$. This means that secret keys perfectly hide $\alpha \bmod p_{2}$. Therefore, the term $e\left(g_{2}, h\right)^{s_{\ell} \alpha}$ in ct $t_{x^{*}}^{\ell}$ is independently and uniformly distributed and message m_{β} is statistically hidden by $\mathrm{H}\left(e\left(g_{1}, h\right)^{s_{\ell} \alpha} e\left(g_{2}, h\right)^{s_{\ell} \alpha}\right)$ by the leftover hash lemma. Hence, $\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda) \approx 0$.

3.9 Handling $\boldsymbol{\ell}=0$ and $\boldsymbol{\ell}=1$

In fact, we may assume $\ell>1$ WLOG by pre-processing the DFA and padding the input at the beginning. Here, we briefly describe how we can also handle $\ell=0$ and $\ell=1$ with our scheme "as is".

Case $\ell=\mathbf{0}$. Recall the real ciphertext distributions and define the auxiliary distribution $\operatorname{ct}_{x^{*}}^{0}[2]$:
we can prove the selective security via the following game sequence:

$$
\mathrm{G}_{0} \approx_{c} \mathrm{G}_{1} \approx_{c} \mathrm{G}_{2.1 .0} \approx_{c} \mathrm{G}_{3} .
$$

The proofs for the first two \approx_{c} are analogous to those for Lemma 4, 5 ; the proof of the last \approx_{c} follows that for Lemma 13 via a similar game sequence but with the following difference:

- To prove $\mathrm{G}_{3 . a} \approx_{c} \mathrm{G}_{3}$ (cf. the proof of Lemma 13), we do not use $\mathrm{DDH}_{p_{2}}^{H_{N}}$ assumption w.r.t. $w_{\text {start }} \bmod p_{2}$ since $\operatorname{ct}_{x^{*}}^{0}[2]$ leaks $w_{\text {start }} \bmod p_{2}$; however, we use the argument that $h_{2}^{d_{1}-\Delta_{0,1}+w_{\text {sartr }} r_{1}}=h_{2}^{d_{1}+w_{\text {start }} r_{1}}$ due to the fact that $\Delta_{0,1}=0$, see Lemma 1.

Finally, we have $\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda) \approx 0$ by Lemma 16 .

Case $\boldsymbol{\ell}=$ 1. Recall the real ciphertext distributions and define the auxiliary distribution $\operatorname{ct}_{x^{*}}{ }^{0,1}$ [2]:

$$
\begin{aligned}
\mathrm{ct}_{x^{*}} & =\left(g_{1}^{s_{0} w_{\text {start }}}, g_{1}^{s_{0}}, g_{1}^{s_{0} z_{1}+s_{1} w_{x_{1}^{*}, 1}}, g_{1}^{s_{1}}, g_{1}^{s_{1} w_{\text {end }}}, e\left(g_{1}, h\right)^{s_{1} \alpha}\right) \quad \text { and } \\
\mathrm{ct}_{x^{*}}^{0,1}[2] & =\left(g_{2}^{s_{0} w_{\text {start }}}, g_{2}^{s_{0}}, g_{2}^{z_{1}+s_{1} w_{x_{1}^{*}, 1}}, g_{2}^{s_{1}}, g_{2}^{s_{1} w_{\text {end }}}, e\left(g_{2}, h\right)^{s_{1} \alpha}\right)
\end{aligned}
$$

we can prove the selective security via the original game sequence:

$$
\mathrm{G}_{0} \approx_{c} \mathrm{G}_{1} \approx_{c} \mathrm{G}_{2.1 .0} \approx_{c} \mathrm{G}_{2.1 .1} \approx_{c} \mathrm{G}_{2.1 .2} \approx_{c} \mathrm{G}_{2.1 .3} \approx_{c} \mathrm{G}_{2.1 .4} \approx_{c} \mathrm{G}_{3}
$$

and all proofs are also analogous to those for Lemma 4,5,6,10,11,12,13,16.

3.10 Towards Many-key Setting

Our proof for the one-key setting can be extended to the many-key setting in a straight-forward way. Without loss of generality, we assume that all key queries f_{1}, \ldots, f_{q} share the same state space $[Q]$ and alphabet Σ, and extend notations δ, F and $F_{i, x^{*}}, d_{u}, r_{u}, \Delta_{i, u}$ for f_{κ} with an additional subscript κ. Then we sketch the changes that are needed to handle the many-key setting:

Game sequence. We still employ the game sequence described in Section 3.2 except

- secret keys in $\mathrm{G}_{2 . i .0}, \mathrm{G}_{2 . i .1}, \mathrm{G}_{2 . i .3}$ and G_{3} are $\mathrm{sk}_{f_{\mathrm{k}}}^{i-1}, \mathrm{sk}_{f_{k}}^{i-1, i}, \mathrm{sk}_{f_{k}}^{i}$ and $\mathrm{sk}_{f_{\mathrm{k}}}^{*}$, respectively, for all $\kappa \in[q]$;
- in each game, $\left\{\Delta_{i, u, k}\right\}_{u \in[Q]}$ for all $\kappa \in[q]$ are defined using the same $\Delta \leftarrow \mathbb{Z}_{N}$.

Useful lemmas. All lemmas in Section 3.3 can be trivially extended to the many-key setting; in fact, the (s, w)-switching lemma (Lemma 2) and (z, w)-transition lemma (Lemma 3) hold when we replace index $u \in[Q]$ with $(u, \kappa) \in[Q] \times[q]$.

Lemmas and Proofs. Lemma 4,5,6,10,11,12,13,16 all hold in the many-key setting:

- The proof for Lemma 4 can be trivially extended to the many-key setting.
- The proofs for Lemma 5,6,13 can work in the many-key setting due to the fact that
- $\left\{d_{u, k}\right\}_{u \in[Q]}$ are fresh for each $\kappa \in[q]$; this ensures that all changes of variables still hold with multiple keys;
- $\left\{r_{u, k}\right\}_{u \in[Q]}$ are fresh for each $\kappa \in[q]$; this ensures that all DDH-based arguments still hold with multiple keys.
- The proofs for Lemma $10,11,12$ can be extended using the many-key version of (s, w)-switching lemma or (z, w) transition lemma; here we also need the fact that $\left\{r_{u, \kappa}\right\}_{u \in[Q]}$ are fresh for each $\kappa \in[q]$.
- To prove Lemma 16 with many keys, we argue that all secret keys $\mathrm{sk}_{f_{1}}^{*}, \ldots, \mathrm{sk}_{f_{q}}^{*}$ only leak $\alpha+\Delta \bmod p_{2}$.

4 ABE for DFA in Prime-Order Groups

In this section, we present our ABE for DFA in prime-order groups. The scheme achieves selective security under the k-Linear assumption.

4.1 Prime-order Groups

A generator \mathcal{G} takes as input a security parameter 1^{λ} and outputs a description $\mathbb{G}:=\left(p, G_{1}, G_{2}, G_{T}, e\right)$, where p is a prime of $\Theta(\lambda)$ bits, G_{1}, G_{2} and G_{T} are cyclic groups of order p, and $e: G_{1} \times G_{2} \rightarrow G_{T}$ is a non-degenerate bilinear map. We require that the group operations in G_{1}, G_{2} and G_{T} as well the bilinear map e are computable in deterministic polynomial time with respect to λ. Let $g_{1} \in G_{1}, g_{2} \in G_{2}$ and $g_{T}=e\left(g_{1}, g_{2}\right) \in G_{T}$ be the respective generators. We employ the implicit representation of group elements: for a matrix \mathbf{M} over \mathbb{Z}_{p}, we define $[\mathbf{M}]_{1}:=g_{1}^{\mathbf{M}},[\mathbf{M}]_{2}:=g_{2}^{\mathbf{M}},[\mathbf{M}]_{T}:=g_{T}^{\mathbf{M}}$, where exponentiation is carried out component-wise. Also, given $[\mathbf{A}]_{1},[\mathbf{B}]_{2}$, we let $e\left([\mathbf{A}]_{1},[\mathbf{B}]_{2}\right)=[\mathbf{A B}]_{T}$.

We define the matrix Diffie-Hellman (MDDH) assumption on G_{1} [9]:

Assumption 3 ($\mathbf{M D D H}_{k, k^{\prime}}^{n}$ Assumption) Let $k^{\prime}>k \geq 1$ and $n \geq 1$. We say that the $M D D H_{k, k^{\prime}}^{n}$ assumption holds iffor all PPT adversaries \mathcal{A}, the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}} \operatorname{MDDH}_{k, k^{\prime}}^{n}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G},[\mathbf{M}]_{1},[\mathbf{M S}]_{1}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(\mathbb{G},[\mathbf{M}]_{1},[\mathbf{U}]_{1}\right)=1\right]\right|
$$

where $\mathbf{M} \leftarrow \mathbb{Z}_{p}^{k^{\prime} \times k}, \mathbf{S} \leftarrow \mathbb{Z}_{p}^{k \times n}$ and $\mathbf{U} \leftarrow \mathbb{Z}_{p}^{k^{\prime} \times n}$.
The MDDH assumption on G_{2} can be defined in an analogous way. Escala et al. [9] showed that

$$
k \text {-Lin } \Rightarrow \mathrm{MDDH}_{k, k+1}^{1} \Rightarrow \operatorname{MDDH}_{k, k^{\prime}}^{n} \forall k^{\prime}>k, n \geq 1
$$

with a tight security reduction. Henceforth, we will use MDDH_{k} to denote $\operatorname{MDDH}_{k, k+1}^{1}$.

4.2 Basis Structure and Lemmas

We want to simulate composite-order groups whose order is the product of three primes, cf. Section 2.2. Pick random

$$
\mathbf{A}_{1} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{a}_{2} \leftarrow \mathbb{Z}_{p}^{2 k+1}, \mathbf{A}_{3} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}
$$

Let $\left(\mathbf{A}_{1}^{\|}\left|\mathbf{a}_{2}^{\|}\right| \mathbf{A}_{3}^{\|}\right)^{\top}$ denote the inverse of $\left(\mathbf{A}_{1}\left|\mathbf{a}_{2}\right| \mathbf{A}_{3}\right)$, so that $\mathbf{A}_{i}^{\top} \mathbf{A}_{i}^{\|}=\mathbf{I}$ (known as non-degeneracy) and $\mathbf{A}_{i}^{\top} \mathbf{A}_{j}^{\|}=\mathbf{0}$ if $i \neq j$ (known as orthogonality).

We review the following lemmas from [6] parameterized by the above basis. By symmetry, we may permute the indices for $\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{A}_{3}$. We use span (\mathbf{A}) to denote the column span of \mathbf{A} and use basis(A) to denote a basis of span(A).

Lemma 17 ($\mathbf{M D D H}_{k, 2 k} \Rightarrow \mathbf{S D}_{\mathbf{A}_{1} \rightarrow \mathbf{A}_{1}, \mathbf{A}_{3}}^{G_{1}}$ [6]). Under the $M D D H_{k, 2 k}$ assumption in G_{1}, there exists an efficient sampler outputting random $\left(\left[\mathbf{A}_{1}\right]_{1},\left[\mathbf{a}_{2}\right]_{1},\left[\mathbf{A}_{3}\right]_{1}\right)$ along with base basis $\left(\mathbf{A}_{1}^{\|}\right)$, basis $\left(\mathbf{a}_{2}^{\|}\right)$, $\operatorname{basis}\left(\mathbf{A}_{1}^{\|}, \mathbf{A}_{3}^{\|}\right)$(of arbitrary choice) such that the following advantage function is negligible in λ.

$$
\operatorname{Adv}_{\mathcal{A}} \operatorname{sD}_{\mathbf{A}_{1} \leftarrow \mathbf{A}_{1}, \mathbf{A}_{3}}^{G_{1}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(D,\left[\mathbf{t}_{0}\right]_{1}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(D,\left[\mathbf{t}_{1}\right]_{1}\right)=1\right]\right|
$$

where

$$
\begin{aligned}
& D:=\left(\left[\mathbf{A}_{1}\right]_{1},\left[\mathbf{a}_{2}\right]_{1},\left[\mathbf{A}_{3}\right]_{1}, \operatorname{basis}\left(\mathbf{A}_{1}^{\|}\right), \operatorname{basis}\left(\mathbf{a}_{2}^{\|}\right), \operatorname{basis}\left(\mathbf{A}_{1}^{\|}, \mathbf{A}_{3}^{\|}\right)\right), \\
& \mathbf{t}_{0} \leftarrow \operatorname{span}\left(\mathbf{A}_{1}\right), \mathbf{t}_{1} \leftarrow \operatorname{span}\left(\mathbf{A}_{1}, \mathbf{A}_{3}\right) .
\end{aligned}
$$

Lemma 18 ($\mathbf{M D D H}_{k, n}^{k} \Rightarrow \mathbf{D D H}_{\mathbf{A}_{3}}^{G_{2}}[6]$). Under the $M D D H_{k, n}^{k}$ assumption in G_{2}, the following advantage function is negligible in λ

$$
\operatorname{Adv}_{\mathcal{A}} \operatorname{DDH}_{A_{3}}^{G_{2}}(\lambda):=\left|\operatorname{Pr}\left[\mathcal{A}\left(D, T_{0}\right)=1\right]-\operatorname{Pr}\left[\mathcal{A}\left(D, T_{1}\right)=1\right]\right|
$$

where

$$
\begin{aligned}
& D:=\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{A}_{3}, \mathbf{A}_{1}^{\|}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|} ; \mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{a}_{2}^{\top} \mathbf{W},[\mathbf{W D}, \mathbf{D}]_{2}\right), \mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k} \\
& T_{0}:=\left([\mathbf{W R}]_{2},[\mathbf{R}]_{2}\right), T_{1}:=\left(\left[\mathbf{W R}+\mathbf{A}_{3}^{\|} \mathbf{U}\right]_{2},[\mathbf{R}]_{2}\right), \quad \mathbf{R} \leftarrow \mathbb{Z}_{p}^{k \times n}, \mathbf{U} \leftarrow \mathbb{Z}_{p}^{k \times n}
\end{aligned}
$$

4.3 Scheme

Our ABE for DFA in prime-order groups is described as follows:
$-\operatorname{Setup}\left(1^{\lambda}, \Sigma\right): \operatorname{Run} \mathbb{G}=\left(p, G_{1}, G_{2}, G_{T}, e\right) \leftarrow \mathcal{G}\left(1^{\lambda}\right)$. Sample

$$
\mathbf{A}_{1} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{k} \leftarrow \mathbb{Z}_{p}^{2 k+1}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{0}, \mathbf{Z}_{1}, \mathbf{W}_{\sigma, 0}, \mathbf{W}_{\sigma, 1} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k} \text { for all } \sigma \in \Sigma
$$

Output

$$
\begin{aligned}
\text { mpk } & =\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{0}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{1},\left\{\mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, 0}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right]_{1},\left[\mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T}\right) \quad \text { and } \\
\text { msk } & =\left(\mathbf{k}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{0}, \mathbf{Z}_{1},\left\{\mathbf{W}_{\sigma, 0}, \mathbf{W}_{\sigma, 1}\right\}_{\sigma \in \Sigma}\right)
\end{aligned}
$$

The message space is G_{T}.

- Enc $(\mathrm{mpk}, x, m):$ Let $x=\left(x_{1}, \ldots, x_{\ell}\right) \in \Sigma^{\ell}$. Pick $\mathbf{s}_{0}, \mathbf{s}_{1}, \ldots, \mathbf{s}_{\ell} \leftarrow \mathbb{Z}_{p}^{k}$ and output

$$
\mathrm{ct}_{x}=\left(\begin{array}{c}
{\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }}\right]_{1}} \\
\left\{\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{i \bmod 2}+\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i}, i \bmod 2}\right]_{1}\right\}_{i \in[\ell]} \\
{\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }}\right]_{1},\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T} \cdot m}
\end{array}\right)
$$

- KeyGen(mpk, msk, f) : Pick $\mathbf{d}_{u} \leftarrow \mathbb{Z}_{p}^{2 k+1}$ and $\mathbf{r}_{u} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$. Output

$$
\mathrm{sk}_{f}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1}+\mathbf{W}_{\mathrm{start}} \mathbf{r}_{1}\right]_{2},\left[\mathbf{r}_{1}\right]_{2}} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{b} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, b} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{b \in\{0,1\}, u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}
\end{array}\right) .
$$

- $\operatorname{Dec}\left(\mathrm{mpk}, \mathrm{sk}_{f}, \mathrm{ct}_{x}\right):$ Parse ciphertext for string $x=\left(x_{1}, \ldots, x_{\ell}\right)$ as

$$
\mathrm{ct}_{x}=\left(\left[\mathbf{c}_{0,1}^{\top}\right]_{1},\left[\mathbf{c}_{0,2}^{\top}\right]_{1},\left\{\left[\mathbf{c}_{i, 1}^{\top}\right]_{1},\left[\mathbf{c}_{i, 2}^{\top}\right]_{1}\right\}_{i \in[\ell]},\left[\mathbf{c}_{\mathrm{end}, 1}^{\top}\right]_{1},\left[\mathbf{c}_{\mathrm{end}, 2}^{\top}\right]_{1}, C\right)
$$

and key for $f=(Q, \Sigma, \delta, F)$ as

$$
\mathrm{sk}_{f}=\left(\left[\mathbf{k}_{0}\right]_{2},\left[\mathbf{r}_{1}\right]_{2},\left\{\left[\mathbf{k}_{b, u}\right]_{2},\left[\mathbf{k}_{b, u, \sigma}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{b, u, \sigma},\left\{\left[\mathbf{k}_{\text {end }, u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}\right)
$$

If $f(x)=1$, compute $\left(u_{0}=1, u_{1}, \ldots, u_{\ell}\right) \in[Q]^{\ell+1}$ such that $\delta\left(u_{i-1}, x_{i}\right)=u_{i}$ for $i \in[\ell]$ and $u_{\ell} \in F$, and proceed as follows:

1. Compute $B_{0}=e\left(\left[\mathbf{c}_{0,1}^{\top}\right]_{1},\left[\mathbf{k}_{0}\right]_{2}\right) \cdot e\left(\left[\mathbf{c}_{0,2}^{\top}\right]_{1},\left[\mathbf{r}_{1}\right]_{2}\right)^{-1}$;
2. For all $i=1, \ldots, \ell$, compute

$$
B_{i}=e\left(\left[\mathbf{c}_{i-1,1}^{\top}\right]_{1},\left[\mathbf{k}_{i \bmod 2, u_{i-1}}\right]_{2}\right) \cdot \boldsymbol{e}\left(\left[\mathbf{c}_{i, 1}^{\top}\right]_{1},\left[\mathbf{k}_{i \bmod 2, u_{i-1}, x_{i}}\right]_{2}\right) \cdot \boldsymbol{e}\left(\left[\mathbf{c}_{i, 2}^{\top}\right]_{1},\left[\mathbf{r}_{u_{i-1}}\right]_{2}\right)^{-1}
$$

3. Compute $B_{\text {end }}=e\left(\left[\mathbf{c}_{\text {end, } 1}^{\top}\right]_{1},\left[\mathbf{k}_{\text {end }, u_{\ell}}\right]_{2}\right) \cdot e\left(\left[\mathbf{c}_{\text {end, } 2}^{\top}\right]_{1},\left[\mathbf{r}_{u_{\ell}}\right]_{2}\right)^{-1}$ and

$$
B=B_{0} \cdot \prod_{i=1}^{\ell} B_{i} \cdot B_{\mathrm{end}}
$$

4. Output the message $m^{\prime} \leftarrow C \cdot B^{-1}$.

Correctness. For $x=\left(x_{1}, \ldots, x_{\ell}\right)$ and $f=(Q, \Sigma, \delta, F)$ such that $f(x)=1$, we have:

$$
\begin{align*}
B_{0} & =\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{1}\right]_{T} \tag{15}\\
B_{i} & =\left[\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i}}-\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i-1}}\right]_{T} \tag{16}\\
B_{\text {end }} & =\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}-\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{\ell}}\right]_{T} \tag{17}\\
B & =\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}\right]_{T} \tag{18}
\end{align*}
$$

This follows from the following equalities in the exponent:

$$
\begin{aligned}
\text { (15) } \mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{1} & =\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \cdot\left(\mathbf{d}_{1}+\mathbf{W}_{\text {start }} \mathbf{r}_{0}\right)-\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }} \cdot \mathbf{r}_{0} \\
\text { (16) } \mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i}}-\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i-1}}= & \mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \cdot\left(-\mathbf{d}_{u_{i-1}}+\mathbf{Z}_{i \bmod 2} \mathbf{r}_{u_{i-1}}\right)+\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \cdot\left(\mathbf{d}_{u_{i}}+\mathbf{W}_{x_{i}, i \bmod 2} \mathbf{r}_{u_{i-1}}\right) \\
& \quad-\left(\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{i \bmod 2}+\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i}, i \bmod 2}\right) \cdot \mathbf{r}_{u_{i-1}} \\
\text { (17) } \mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}-\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{\ell}}= & \mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \cdot\left(\mathbf{k}-\mathbf{d}_{u_{\ell}}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u_{\ell}}\right)-\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }} \cdot \mathbf{r}_{u_{\ell}}
\end{aligned}
$$

and finally
(18) $\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}=\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{1}+\sum_{i=1}^{\ell}\left(\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i}}-\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{i-1}}\right)+\left(\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}-\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{d}_{u_{\ell}}\right)$.

Correctness follows readily.

Security. We will prove the following theorem for the many-key setting.
Theorem 2 (prime-order ABE for DFA). The ABE scheme for DFA in prime-order bilinear groups described above is selectively secure (cf. Section 2.1) under the k-Linear assumption.

4.4 Game sequence

Auxiliary distributions. We describe the auxiliary ciphertext and secret key distributions that we use in the proof of security, which are analogous to those defined in Section 3.2. For notational simplicity, we use $x x[2]$ to denote the \mathbf{a}_{2}-components of xx .

Ciphertext distributions.

- for $i=0,1, \ldots, \ell: \mathrm{ct}_{x^{*}}^{i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}$ with $\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}+s_{i} \mathbf{a}_{2}^{\top}$ where $s_{i} \leftarrow \mathbb{Z}_{p}$;
- for $i=1,2, \ldots, \ell: \operatorname{ct}_{x^{*}}^{i-1, i}$ is the same as $\mathrm{ct}_{x^{*}}$ except we replace $\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}, \mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}$ with $\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}+s_{i-1} \mathbf{a}_{2}^{\top}, \mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}+s_{i} \mathbf{a}_{2}^{\top}$ where $s_{i-1}, s_{i} \leftarrow \mathbb{Z}_{p}$.

That is, we have: writing $\tau=i \bmod 2$,

$$
\begin{array}{rll}
\operatorname{ct}_{x^{*}}^{i}[2] & = \begin{cases}{\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1}\right]_{1}} & \text { if } i=0 \\
{\left[s_{i} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}^{*}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1-\tau}\right]_{1}} & \text { if } 0<i<\ell \\
{\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell}^{*}, \ell_{1}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{\mathrm{end}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{k}\right]_{T}} & \text { if } i=\ell\end{cases} \\
\operatorname{ct}_{x^{*}}^{i-1, i}[2] & = \begin{cases}{\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1}+s_{1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{1}^{*}, 1}\right]_{1},\left[s_{1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{0}\right]_{1}} & \text { if } i=1 \\
{\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i-1}^{*}, 1-\tau}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{\tau}+s_{i} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}^{*}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1-\tau}\right]_{1}} & \text { if } 1<i<\ell \\
{\left[s_{\ell-1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell-1}^{*}, 1-\bar{\ell}}\right]_{1},\left[s_{\ell-1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell-1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{\bar{\ell}}+s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell}^{*}, \bar{\ell}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{\mathrm{end}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{k}\right]_{T}} & \text { if } i=\ell\end{cases}
\end{array}
$$

Secret key distributions.

- for $i=0,1, \ldots, \ell: \mathrm{sk}_{f}^{i}$ is the same as sk ${ }_{f}$ except we add $\mathbf{a}_{2}^{\|} \Delta_{i, v}$ to $\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, i \bmod 2} \mathbf{r}_{u}\right]_{2}$ for every $u \in[Q], \sigma \in \Sigma$ and $v=\delta(u, \sigma)$. Here $\left\{\Delta_{i, u}\right\}_{u \in[Q]}$ in all keys share the same $\Delta \leftarrow \mathbb{Z}_{p}$. (cf. Section 3.2 and Section 3.10).
- for $i=1,2, \ldots, \ell: \mathrm{sk}_{f}^{i-1, i}$ is the same as sk ${ }_{f}$ except we add $\mathbf{a}_{2}^{\|} \Delta_{i-1, u}$ to $\left[-\mathbf{d}_{u}+\mathbf{Z}_{i \bmod 2} \mathbf{r}_{u}\right]_{2}$ for every $u \in[Q]$.
- sk_{f}^{*} is the same as sk f_{f} except we add $\mathbf{a}_{2}^{\|} \Delta_{\ell, u}$ to $\left[\mathbf{k}-\mathbf{d}_{u}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u}\right]_{2}$ for every $u \in F$.

That is, we have: writing $\tau=i \bmod 2$,

$$
\begin{aligned}
& \mathrm{sk}_{f}^{i}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1}+\mathbf{W}_{\mathrm{start}} \mathbf{r}_{1}\right]_{2},\left[\mathbf{r}_{1}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\overleftarrow{\mathbf{a}_{2}^{\|} \Delta_{i, v}}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{sk}_{f}^{i-1, i}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1}+\mathbf{W}_{\text {start }} \mathbf{r}_{1}\right]_{2},\left[\mathbf{r}_{1}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u}+\sqrt{\mathbf{a}_{2}^{\|} \Delta_{i-1, u}}+\mathbf{Z}_{\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u}+\mathbf{W}_{\text {end }} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}
\end{array}\right) \\
& \mathrm{sk}_{f}^{*}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1}+\mathbf{W}_{\text {start }} \mathbf{r}_{1}\right]_{2},\left[\mathbf{r}_{1}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u}+\underset{\mathbf{a}_{2}^{\|} \Delta_{\ell, u}}{ }+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right\}_{u \in F}
\end{array}\right)
\end{aligned}
$$

Game sequence. We prove Theorem 2 via a game sequence analogous to that described in Section 3.2 with the changes (to handle many keys) in Section 3.10 (summarized in Fig 3). We emphasize that (1) in $\mathrm{G}_{2 . i .0}, \mathrm{G}_{2 . i .1}, \mathrm{G}_{2 . i .3}$ and G_{3}, we change all secret keys to the forms $\mathrm{sk}_{f}^{i-1}, \mathrm{sk}_{f}^{i-1, i}$, sk_{f}^{i} and sk_{f}^{*}, respectively; (2) $\left\{\Delta_{i, u}\right\}_{u \in[Q]}$ for all keys are defined using the same $\Delta \leftarrow \mathbb{Z}_{N}$.

Game	$\mathrm{ct}_{x^{*}}$			sk_{f}		Remark		
0	$\mathrm{ct}_{x^{*}}$	sk_{f}	$[\mathbf{0} \mapsto 0]_{\mathbf{z}_{0}, \mathbf{W}_{\sigma, 0}}$	$[0 \mapsto 0]_{\mathbf{Z}_{1}, W_{\sigma, 1}}$	$\left[\mathbf{d}_{u}-\mathbf{k} \mapsto 0\right]{ }_{\mathbf{W}_{\text {end }}, 0}$	Real game		
1	$\mathrm{ct}^{0}{ }^{\text {* }}$	sk ${ }_{f}$	$[\mathbf{0} \mapsto 0]_{\mathrm{z}_{0}, \mathrm{~W}_{\sigma, 0}}$	$[\mathbf{0} \mapsto 0]_{\mathbf{Z}_{1}, \mathbf{W}_{\sigma, 1}}$	$\left[\mathbf{d}_{u}-\mathbf{k} \mapsto 0\right]{ }_{\mathbf{W}_{\text {end }}, 0}$	SD		
2.1.0	$\operatorname{ct}_{x^{*}}^{0}$	sk^{0}	$\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}+\mathbf{a}_{2}^{\\|} \Delta_{0, v}\right]_{\mathbf{z}_{0}, \mathbf{W}_{\sigma, 0}}$	$\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{v}\right]_{\mathbf{Z}_{1}, \mathbf{W}_{\sigma, 1}}$	$\left[\mathrm{d}_{u}-\mathbf{k} \mapsto 0\right]_{\mathbf{W}_{\text {end }}, \mathbf{0}}$	DDH		
2.i.0	$\mathrm{ct}_{x^{*}}^{i-1}$	sk_{f}^{i-1}	$\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{v} \rrbracket_{\mathbf{Z}_{\tau}, \mathbf{W}_{\sigma, \tau}}$	$\left.\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{v}+\mathrm{a}_{2}^{\\|} \Delta_{i-1, v}\right]_{\mathbf{z}_{1-\tau}, \mathbf{W}_{\sigma, 1-\tau}}$	$\left[\mathbf{d}_{u}-\mathbf{k} \mapsto \mathbf{0}\right]_{\mathbf{W}_{\text {end }}, \mathbf{0}}$	$\mathrm{G}_{2 . i .0}=\mathrm{G}_{2 . i-1.4}, \forall 2 \leq i \leq \ell$		
2.i.1	$\mathrm{ct}_{x^{*}}^{i-1}$	$\mathrm{sk}_{f}^{i-1, i}$	$\llbracket \mathbf{d}_{u}-\mathbf{a}_{2}^{\\|} \Delta_{i-1, u} \rightarrow \mathbf{d}_{v} \rrbracket \mathbf{z}_{\tau}, \mathbf{W}_{\sigma, \tau}$	$\left.\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}\right]_{\mathbf{Z}_{1-\tau},}, \mathbf{W}_{\sigma, 1-\tau}$	${ }^{\left[\mathbf{d}_{u}-\mathbf{k} \mapsto 0\right]}{ }_{\mathbf{W}_{\text {end }}, \mathbf{0}}$	" $\mathbf{d}_{u} \mapsto \mathbf{d}_{u}-\mathbf{a}_{2}^{\\|} \Delta_{i-1, u}{ }^{\prime}+\mathrm{DDH}(+$ Lem 1-1)		
2.i. 2	$\mathrm{ct}_{x^{*}}^{i-1, i}$	$\mathbf{s k}_{f}^{i-1, i}$	$\left[\mathbf{d}_{u}-\mathbf{a}_{2}^{\\|} \Delta_{i-1, u} \mapsto \mathbf{d}_{v}\right]_{\mathbf{Z}_{\tau}, \mathbf{W}_{\sigma, \tau}}$	$\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}\right]_{\mathbf{z}_{1-\tau}}, \mathbf{W}_{\sigma, 1-\tau}$	$\left[\mathbf{d}_{u}-\mathbf{k} \mapsto \mathbf{0}\right]_{\mathbf{W}_{\text {end }}, \mathbf{0}}$	Lem 19		
2.i. 3	$\operatorname{ct}_{x^{*}}^{i-1, i}$	sk ${ }_{f}^{i}$	$\left.\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}+\mathbf{a}_{2}^{\\|} \Delta_{i, v}\right]_{\mathbf{z}_{\tau}, \mathbf{W}_{\sigma, \tau}}$	$\left.\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}\right]_{\mathbf{Z}_{1-\tau}}, \mathbf{W}_{\sigma, 1-\tau}$	${ }^{\left[\mathbf{d}_{u}-\mathbf{k} \mapsto 0\right]} \mathrm{W}_{\text {end }}, \mathbf{0}$	Lem 20 + DDH + Lem 1-2		
2.i.4	$\mathrm{ct}_{x^{*}}^{i}$	sk ${ }_{f}^{i}$	$\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{v}+\mathbf{a}_{2}^{\\|} \Delta_{i, v} \rrbracket_{\mathbf{Z}_{\tau}, \mathbf{W}_{\sigma, \tau}}$	$\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}\right] \mathbf{z}_{1-\tau}, \mathbf{W}_{\sigma, 1-\tau}$	$\left[\mathbf{d}_{u}-\mathbf{k} \mapsto \mathbf{0}\right]_{\mathbf{w}_{\text {end }}, 0}$	Lem 19 + DDH		
3	$\operatorname{ct}_{x^{*}}^{\ell}$	sk_{f}^{*}	$\llbracket \mathbf{d}_{u} \mapsto \mathbf{d}_{v} \rrbracket_{\mathbf{z}_{0}, \mathbf{W}_{\sigma, 0}}$	$\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{\nu}\right] \mathbf{Z}_{1}, \mathbf{W}_{\sigma, 1}$	[$\left.\mathbf{d}_{u}-\mathbf{a}_{2}^{\\|} \Delta_{\ell, u}-\mathbf{k} \mapsto \mathbf{0}\right] \mathbf{W}_{\text {end }}, \mathbf{0}$	$" \mathbf{d}_{u} \rightarrow \mathbf{d}_{u}-\mathbf{a}_{2}^{\\|} \Delta_{\ell, u}{ }^{\prime}$ + ${ }^{\text {DDH }}$		

Fig. 3. Game sequence for prime-order ABE for DFA with $i=1, \ldots, \ell$. Recall that $\tau=i \bmod 2$. We describe keys with the notational short-hand $\left[\mathbf{d}_{u} \mapsto \mathbf{d}_{v} \rrbracket_{\mathbf{Z}, \mathbf{W}}:=\left(\left[-\mathbf{d}_{u}+\mathbf{Z r}_{u}\right]_{2},\left[\mathbf{d}_{v}+\mathbf{W r}_{u}\right]_{2},\left[\mathbf{r}_{u}\right]_{2}\right)\right.$. All secret key elements in the fourth and fifth columns are quantified over $u \in[Q], \sigma \in \Sigma, \nu=\sigma(u, \sigma)$ while those in the sixth column are over $u \in F$; we omit $\llbracket \mathbf{0} \mapsto \mathbf{d}_{1} \rrbracket_{\mathbf{0}, \mathbf{W}_{\text {start }}}$. In the "Remark" column, "SD" and "DDH" indicate $\mathrm{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{a}_{2}}^{G_{1}}$ assumption and $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption described in Section 4.2.

4.5 Useful lemmas

In this subsection, we describe (\mathbf{s}, \mathbf{W})-switching lemma (Lemma 19) and (Z,W)-transition lemma (Lemma 20) which are the prime-order analogues of (s, w)-switching lemma (Lemma 2) and (z, w)-transition lemma (Lemma 3) in Section 3.3. Note that we will present them for the many-key setting where an additional subscript $\kappa \in[q]$ is applied (cf. Section 3.10).

Lemma 19 ((s,W)-switching lemma). For all $Q, q \in \mathbb{N}$, we have

$$
\begin{gathered}
\text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in[Q], k \in[q]} \\
\approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+\mathbf{s \mathbf { a } _ { 2 } ^ { \top }}\right]_{1},\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in[Q], k \in[q]}
\end{gathered}
$$

where aux $=\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{a}_{2}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{a}_{2}^{\top} \mathbf{W}\right]_{1},[\mathbf{W D}, \mathbf{D}]_{2}\right)$ and $\mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{s}, \overline{\mathbf{r}}_{u, k} \leftarrow \mathbb{Z}_{p}^{k}, \bar{\Delta}, s \leftarrow \mathbb{Z}_{p}$. Concretely, the advantage function $\operatorname{Adv}_{\mathcal{B}}^{\text {sWITCH }}(\lambda)$ is bounded by

$$
2 \cdot \operatorname{Adv}_{\mathcal{B}_{1}} \mathrm{SD}_{\mathrm{A}_{1} \mapsto \mathrm{~A}_{1}, \mathbf{A}_{3}}^{G_{1}}(\lambda)+4 \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\mathrm{DDH}_{\mathrm{A}_{3}}^{G_{2}}}(\lambda)+\operatorname{Adv}_{\mathcal{B}_{3}}^{\mathrm{SD}_{\mathrm{A}_{3} \mapsto \mathbf{A}_{3}, \mathbf{a}_{2}}^{G_{1}}}(\lambda)
$$

with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right)$, $\operatorname{Time}\left(\mathcal{B}_{3}\right) \approx \operatorname{Time}(\mathcal{B})$.
Proof. We prove the lemma via the following hybrid argument:

$$
\begin{aligned}
& \text { LHS }=\text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}\right]_{2}, \quad\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u, k} \\
& \approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}\right]_{2}, \quad\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u, k} \\
& \approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}+\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{A}_{3}^{\|} \mathbf{u}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u, k} \\
& \approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+s \mathbf{s a}_{2}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1},\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{A}_{3}^{\|} \mathbf{u}\right]_{2}, \quad\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u, k} \\
& \approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+s \mathbf{a}_{2}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{A} / \mathbf{H}_{3} \mathbf{u}\right]_{2}, \quad\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u, k} \\
& \approx_{c} \text { aux, }\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+s \mathbf{a}_{2}^{\top}+\hat{\mathbf{s}}^{\top} \boldsymbol{A}_{3}^{\top}\right]_{1}, \quad\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2} \bar{\Delta}\right]_{2},\right. \\
& \left.\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u, k}=\text { RHS } \\
& \text { using } \mathrm{SD}_{\mathbf{A}_{1} \dashv \mathbf{A}_{1}, \mathbf{A}_{3}}^{G_{1}} \\
& \text { using } \mathrm{DDH}_{\mathbf{A}_{3}}^{G_{2}} \\
& \text { using } \mathrm{SD}_{\mathbf{A}_{3} \dashv \mathbf{A}_{3}, \mathbf{a}_{2}}^{G_{1}} \\
& \text { using } \mathrm{DDH}_{\mathbf{A}_{3}}^{G_{2}} \\
& \text { using } \mathrm{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{3}}^{G_{1}}
\end{aligned}
$$

where $\hat{\mathbf{s}}, \mathbf{u} \leftarrow \mathbb{Z}_{p}^{k}$. We proceed as follows:

- The first and the last \approx_{c} follow from $\mathrm{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{A}_{3}}^{G_{1}}$ assumption stating that

$$
\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}\right]_{1} \approx_{c}\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1} \quad \text { given } \mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}
$$

where $\mathbf{s}, \hat{\mathbf{s}} \leftarrow \mathbb{Z}_{p}^{k}$. All reductions are straight-forward.

- The second and the fourth \approx_{c} rely on the following statement implied by $\mathrm{DDH}_{\mathbf{A}_{3}}^{G_{2}}$ assumption w.r.t. \mathbf{W} : for all $\mathbf{u} \in \mathbb{Z}_{p}^{k}$, we have

$$
\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}+\mathbf{A}_{3}^{\|} \mathbf{u}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}^{\top}, \mathbf{a}_{2}^{\top}, \mathbf{A}_{3}^{\top}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}, \mathbf{a}_{2}^{\top} \mathbf{W},[\mathbf{W D}, \mathbf{D}]_{2}\right)$ where $\mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}$ and $\mathbf{u}, \overline{\mathbf{r}}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. All reductions are straight-forward.

- The third \approx_{c} relies on $\mathrm{SD}_{\mathbf{A}_{3} \rightarrow \mathbf{A}_{3}, \mathbf{a}_{2}}^{G_{1}}$ assumption stating that:

$$
\left[\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1} \approx_{c}\left[s \mathbf{a}_{2}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}\right]_{1} \quad \text { given } \mathbf{A}_{1}, \mathbf{a}_{2}, \text { basis }\left(\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right)
$$

where $\hat{\mathbf{s}} \leftarrow \mathbb{Z}_{p}^{k}$ and $s \leftarrow \mathbb{Z}_{p}$. The reduction works as follows: On input $\left(\left[\mathbf{c}^{\top}\right]_{1}, \mathbf{A}_{1}, \mathbf{a}_{2}\right.$, basis $\left.\left(\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right)\right)$where either $\mathbf{c}^{\top}=$ $\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}$ or $\mathbf{c}^{\top}=s \mathbf{a}_{2}^{\top}+\hat{\mathbf{s}}^{\top} \mathbf{A}_{3}^{\top}$, we sample $\mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{s}, \overline{\mathbf{r}}_{u, k} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. First, we can trivially compute aux and the challenge term $\left[\mathbf{s}^{\top} \mathbf{A}_{1}^{\top}+\mathbf{c}^{\top}\right]_{1}$. Second, we sample $\widetilde{\mathbf{u}} \leftarrow \mathbb{Z}_{p}^{k+1}$ and simulate $\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{A}_{3}^{\|} \mathbf{u}$ with $\operatorname{basis}\left(\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right) \widetilde{\mathbf{u}}$. This follows from the fact that $\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{A}_{3}^{\|} \mathbf{u} \approx_{s} \operatorname{basis}\left(\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right) \widetilde{\mathbf{u}}$ for all $\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}$, $\operatorname{basis}\left(\mathbf{a}_{2}^{\|}, \mathbf{A}_{3}^{\|}\right)$when $\bar{\Delta} \leftarrow \mathbb{Z}_{p}$, $\mathbf{u} \leftarrow \mathbb{Z}_{p}^{k}$ and $\widetilde{\mathbf{u}} \leftarrow \mathbb{Z}_{p}^{k+1}$. This is sufficient for simulating all remaining terms.

Combining all five steps proves the lemma.
Lemma 20 ($\mathbf{Z}, \mathbf{W})$-transition lemma). For all $Q, q \in \mathbb{N}, s_{i-1}, s_{i} \neq 0$ and $\bar{\Delta} \in \mathbb{Z}_{p}$, we have

$$
\begin{aligned}
& \text { aux, } s_{i-1} \mathbf{Z}+s_{i} \mathbf{W},\left\{\left[\mathbf{a}_{2}^{\|} s_{i} \bar{\Delta}+\mathbf{Z} \overline{\mathbf{r}}_{u, k}\right]_{2}, \quad\left[\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \\
& \approx_{c} \text { aux, } s_{i-1} \mathbf{Z}+s_{i} \mathbf{W},\left\{\quad\left[\mathbf{Z} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\mathbf{a}_{2}^{\|} s_{i-1} \bar{\Delta}+\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
\end{aligned}
$$

where aux $=\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{Z}, \mathbf{A}_{1}^{\top} \mathbf{W},[\mathbf{Z D}, \mathbf{W D}, \mathbf{D}]_{2}\right)$ and $\mathbf{Z}, \mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \overline{\mathbf{r}}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. Concretely, the advantage function $\operatorname{Adv}_{\mathcal{B}}^{\mathrm{TRANS}}(\lambda)$ is bounded by $2 \cdot \operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right) \approx \operatorname{Time}(\mathcal{B})$.

Proof. We prove the lemma via the following hybrid arguments: given aux, $s_{i-1} \mathbf{Z}+s_{i} \mathbf{W}$,

$$
\begin{aligned}
& \text { LHS }=\left\{\quad\left[\mathbf{a}_{2}^{\|} s_{i} \bar{\Delta}+\mathbf{Z} \overline{\mathbf{r}}_{u, k}\right]_{2}, \quad\left[\mathbf{W} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u, k} \\
& \approx_{c}\left\{\left[\mathbf{a}_{2}^{\|} s_{i} \bar{\Delta}-\mathbf{a}_{2}^{\|} s_{i} \gamma_{u, k}+\mathbf{Z} \overline{\mathbf{r}}_{u, \kappa}\right]_{2}, \quad\left[\mathbf{a}_{2}^{\|} s_{i-1} \gamma_{u, \kappa}+\mathbf{W r}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u, \kappa} \quad \text { using } \mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}} \\
& \approx_{s}\left\{\quad\left[-\mathbf{a}_{2}^{\|} s_{i} \gamma_{u, \kappa}+\mathbf{Z} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\mathbf{a}_{2}^{\|} s_{i-1} \bar{\Delta}+\mathbf{a}_{2}^{\|} s_{i-1} \gamma_{u, \kappa}+\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u, \kappa} \quad \text { statistical statement (19) }
\end{aligned}
$$

where $\gamma_{u, \kappa} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$. We proceed as follows:

- The first and third \approx_{c} follow from the statement: for all $s_{i-1}, s_{i} \neq 0$, we have

$$
\left\{\left[\mathbf{Z} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[-\mathbf{a}_{2}^{\|} s_{i} \gamma_{u, k}+\mathbf{Z} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\mathbf{a}_{2}^{\|} s_{i-1} \gamma_{u, k}+\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{Z}, \mathbf{A}_{1}^{\top} \mathbf{W},[\mathbf{Z D}, \mathbf{W D}, \mathbf{D}]_{2}, s_{i-1} \mathbf{Z}+s_{i} \mathbf{W}$ where $\mathbf{Z}, \mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \overline{\mathbf{r}}_{u, k} \leftarrow \mathbb{Z}_{p}^{k}, \gamma_{u, k} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$. This is implied by $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t \mathbf{W} : On input

$$
[\mathbf{D}]_{2},[\mathbf{W D}]_{2},\left\{\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\mathbf{t}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

and $\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}$ where either $\mathbf{t}_{u, \kappa}=\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}$ or $\mathbf{t}_{u, \kappa}=\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}+\mathbf{a}_{2}^{\|} s_{i-1} \gamma_{u, \kappa}$ and $\mathbf{W} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \overline{\mathbf{r}}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$, $\gamma_{u, \kappa} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$, we sample $\widetilde{\mathbf{Z}} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ and implicitly set

$$
\mathbf{Z}=\widetilde{\mathbf{Z}}-s_{i-1}^{-1} s_{i} \mathbf{W}
$$

Then, we can simulate

$$
\mathbf{A}_{1}^{\top} \mathbf{Z}=\mathbf{A}_{1}^{\top} \widetilde{\mathbf{Z}}-s_{i-1}^{-1} s_{i} \mathbf{A}_{1}^{\top} \mathbf{W}, \quad[\mathbf{Z} \mathbf{D}]_{2}=\left[\widetilde{\mathbf{Z}} \mathbf{D}-s_{i-1}^{-1} s_{i} \mathbf{W} \mathbf{D}\right]_{2} \quad \text { and } \quad s_{i-1} \mathbf{Z}+s_{i} \mathbf{W}=s_{i-1} \widetilde{\mathbf{Z}}
$$

using $\widetilde{\mathbf{Z}}, \mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W},[\mathbf{W D}, \mathbf{D}]_{2}, s_{i-1}, s_{i}$ (without knowing \mathbf{W}) and output the challenge term

$$
\left\{\left[\widetilde{\mathbf{Z}} \overline{\mathbf{r}}_{u, k}-s_{i-1}^{-1} s_{i} \mathbf{t}_{u, k}\right]_{2},\left[\mathbf{t}_{u, k}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} .
$$

Observe that, when $\mathbf{t}_{u, \kappa}=\mathbf{W} \overline{\mathbf{r}}_{u, \kappa}$, the output distribution is identical to that on the left-hand side; when $\mathbf{t}_{u, \kappa}=$ $\mathbf{W} \overline{\mathbf{r}}_{u, k}+\mathbf{a}_{2}^{\|} s_{i-1} \gamma_{u, k}$, the output distribution is identical to that on the right-hand side. This proves the statement.

- The second \approx_{s} follows from the statistical statement by the linearity: for all $\bar{\Delta} \in \mathbb{Z}_{p}$, we have

$$
\begin{equation*}
\left\{\bar{\Delta}-\gamma_{u, \kappa}, \gamma_{u, k}\right\}_{u \in[Q], \kappa \in[q]} \approx_{s}\left\{-\gamma_{u, k}, \bar{\Delta}+\gamma_{u, k}\right\}_{u \in[Q], \kappa \in[q]} \tag{19}
\end{equation*}
$$

when $\gamma_{u, k} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$. This is a variant of (14) over \mathbb{Z}_{p} in the many-key setting.
This readily proves the lemma.

4.6 Initialization: $\mathbf{G}_{0} \mapsto \mathrm{G}_{1}, \mathrm{G}_{1} \mapsto \mathrm{G}_{2.1 .0}$

In this subsection, we prove the following lemmas analogous to Lemma 4 and Lemma 5 in Section 3.4.
Lemma $21\left(G_{0} \approx_{c} G_{1}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{0}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{1}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}}^{\operatorname{sD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{a}_{2}}^{G_{1}}(\lambda)}
$$

Proof. This relies on $\mathrm{SD}_{\mathbf{A}_{1} \mapsto \mathbf{A}_{1}, \mathbf{a}_{2}}^{G_{1}}$ assumption which implies

$$
\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}\right]_{1}\right) \approx_{c}\left(\left[\mathbf{A}_{1}^{\top}\right]_{1},\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}+s_{0} \mathbf{a}_{2}^{\top}\right]_{1}\right)
$$

where $\mathbf{s}_{0} \leftarrow \mathbb{Z}_{p}^{k}$ and $s_{0} \leftarrow \mathbb{Z}_{p}$. In the reduction,

- we sample $\mathbf{k}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{0}, \mathbf{Z}_{1}, \mathbf{W}_{\sigma, 0}, \mathbf{W}_{\sigma, 1}$ for all $\sigma \in \Sigma$ and create (mpk, msk) honestly using $\left[\mathbf{A}_{1}^{\top}\right]_{1}$.
- with msk, we honestly run $\mathrm{sk}_{f_{k}} \leftarrow \operatorname{KeyGen}\left(\mathrm{mpk}, \mathrm{msk}, f_{\kappa}\right.$) for each key query f_{κ};
- the challenge ciphertext can be created using the term given out in the statement above and $\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{\ell}$ chosen by ourselves.

Lemma $22\left(\mathrm{G}_{1} \approx_{c} \mathrm{G}_{2.1 .0}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{1}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2.1 .0}(\lambda)\right| \leq 2|\Sigma| \cdot \operatorname{Adv}_{\mathcal{B}}^{D_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Proof. This roughly means that

Concretely, we prove

$$
\begin{aligned}
& s \mathrm{~s}_{f_{\kappa}}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}+\mathbf{W}_{\mathrm{start}} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, k}+\mathbf{Z}_{0} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 0} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, k}+\mathbf{Z}_{1} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, k}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right)
\end{aligned}
$$

in the presence of mpk and $\mathrm{ct}_{x^{*}}^{0}$ with \mathbf{a}_{2}-components recalled as follows:

$$
\operatorname{ct}_{x^{*}}^{0}[2]:=\left(\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1}\right]_{1}\right)
$$

This immediately follows from the following statements implied by $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t. $\mathbf{W}_{\sigma, 0}$ with $\sigma \in \Sigma$: for all $\sigma \in \Sigma$ and $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{W}_{\sigma, 0} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\sigma, 0} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, 0},\left[\mathbf{W}_{\sigma, 0} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{W}_{\sigma, 0} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. Here we use the fact that $\mathrm{ct}_{x^{*}}^{0}$ does not leak $\mathbf{a}_{2}^{\top} \mathbf{W}_{\sigma, 0}$ with $\sigma \in \Sigma$. This completes the proof.

4.7 Switching secret keys $\mathrm{I}: \mathrm{G}_{2 . i .0} \mapsto \mathrm{G}_{2 . i .1}$

In this section, we prove the following lemma analogous to Lemma 6 in Section 3.5.
Lemma $23\left(\mathrm{G}_{2 . i .0} \approx{ }_{c} \mathrm{G}_{2 . i .1}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .0}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Proof organization. We need two auxiliary games $\mathrm{G}_{2 . i .1 . a}$ and $\mathrm{G}_{2 . i .1 . b}$ and prove that:

$$
\mathrm{G}_{2 . i .0} \stackrel{\text { Lemma } 24}{\approx} \mathrm{G}_{2 . i .1 . a} \stackrel{\text { Lemma } 25}{\approx} \mathrm{G}_{2 . i .1 . b} \stackrel{\text { Lemma }}{\approx_{c}}{ }^{26} \mathrm{G}_{2 . i .1}
$$

where the κ-th secret key for f_{κ} in these games are recalled/defined as below

$$
\begin{aligned}
& \mathrm{G}_{2 . i .0}:\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}+\mathbf{W}_{\mathrm{start}} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\left[\mathbf{a}_{2}^{\|} \Delta_{i-1, v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)}\right. \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right)=\mathrm{sk}_{f_{\kappa}}^{i-1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{G}_{2 . i .1 . b}:\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}-\mathbf{a}_{2}^{\|} \Delta_{t-1,1, \kappa}+\mathbf{W}_{\mathrm{start}} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, \kappa}+\mathbf{Z}_{\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}-\mathbf{a}_{2}^{\|} \Delta_{i-1, v, \kappa}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, k}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, \kappa}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right) \\
& \mathrm{G}_{2 . i .1}:\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}+\mathbf{W}_{\text {start }} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, \kappa}+\mathbf{Z}_{\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}-\mathbf{a}_{2}^{\|} \Delta_{i-1, v, \kappa}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, \kappa}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i-1, u, \kappa}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right)=\mathrm{sk}_{f_{\kappa}}^{i-1, i}
\end{aligned}
$$

in the presence of mpk and $\operatorname{ct}_{x^{*}}^{i-1}$ with \mathbf{a}_{2}-components recalled as follows:

$$
\operatorname{ct}_{x^{*}}^{i-1}[2]= \begin{cases}{\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1}\right]_{1}} & \text { if } i=1 \\ {\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i-1}^{*}, 1-\tau}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{\tau}\right]_{1}} & \text { if } 2 \leq i \leq \ell\end{cases}
$$

Lemmas and Proofs. We describe and prove the following lemmas. Combining them together proves Lemma 23.
Lemma $24\left(\mathrm{G}_{2 . i .0} \approx_{s} \mathrm{G}_{2 . i .1 . a}\right)$. For all $i=1, \ldots, \ell$, we have

$$
\operatorname{Adv}_{\mathcal{A}}^{2 . i .0}(\lambda)=\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . a}(\lambda)
$$

Proof. This immediately follows from the change of variables: $\mathbf{d}_{u, \kappa} \mapsto \mathbf{d}_{u, \kappa}-\mathbf{a}_{2}^{\|} \Delta_{i-1, u, k}$ for all $u \in[Q]$ and $\kappa \in[q]$.
Lemma $25\left(\mathrm{G}_{2 . i .1 . a} \approx{ }_{c} \mathrm{G}_{2 . i .1 . b}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . a}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . b}(\lambda)\right| \leq 2 \cdot \operatorname{Adv}_{\mathcal{B}}^{\operatorname{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Proof. We prove the lemma via a case analysis for i :

- Case $i=1$: The two games are exactly identical due to the fact that $\Delta_{0,1, \kappa}=0$ for all $\kappa \in[q]$, see Lemma 1 .
- Case $i>1$: The lemma follows from the statement below implied by $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t. $\mathbf{W}_{\text {start }}:$ for all $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{W}_{\text {start }} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2}\right\}_{\mathcal{K} \in[q]} \approx_{c}\left\{\left[-\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\text {start }} \mathbf{r}_{1, k}\right]_{2},\left[\mathbf{r}_{1, k}\right]_{2}\right\}_{\mathcal{K} \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {start }},\left[\mathbf{W}_{\text {start }} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{W}_{\text {start }} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{1, k} \leftarrow \mathbb{Z}_{p}^{k}$ for all $\kappa \in[q]$. Here we use the fact that $\mathrm{ct}_{x^{*}}^{i-1}$ with $i>1$ does not leak $\mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}$.
Lemma $26\left(\mathrm{G}_{2 . i .1 . b} \approx{ }_{c} \mathrm{G}_{2 . i .1}\right)$. For all $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1 . b}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)\right| \leq 2(|\Sigma|+2) \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Proof. This follows from statements below implied by $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t $\mathbf{W}_{\sigma, \tau}, \mathbf{Z}_{1-\tau}, \mathbf{W}_{\text {end }}$ with $\sigma \in \Sigma$:

- For all $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u, \kappa}\right]_{2}\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[\mathbf{a}_{2}^{\|} \Delta+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\mathrm{end}} \mathbf{r}_{u, \kappa}\right]_{2}\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{1-\tau}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\text {end }},\left[\mathbf{Z}_{1-\tau} \mathbf{D}, \mathbf{W}_{\text {end }} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{Z}_{1-\tau}, \mathbf{W}_{\text {end }} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{u, k} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in$ $[Q]$ and $\kappa \in[q]$.

- For all $\sigma \in \Sigma$ and $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2}\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[-\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2}\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, \tau},\left[\mathbf{W}_{\sigma, \tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{W}_{\sigma, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$.
Here we use the fact that $\mathrm{ct}_{x^{*}}^{i-1}$ with $1 \leq i \leq \ell$ does not leak $\mathbf{a}_{2}^{\top} \mathbf{W}_{\sigma, \tau}, \mathbf{a}_{2}^{\top} \mathbf{Z}_{1-\tau}, \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {end }}$ with $\sigma \in \Sigma$.

4.8 Switching ciphertexts: $\mathbf{G}_{2 . i .1} \mapsto \mathbf{G}_{2 . i .2}, \mathbf{G}_{2 . i .3} \mapsto \mathbf{G}_{2 . i .4}$

In this section we prove the following two lemmas analogous to Lemma 10 and Lemma 11 in Section 3.6.
Lemma $27\left(\mathrm{G}_{2 . i .1} \approx_{c} \mathrm{G}_{2 . i .2}\right)$. For $i=1, \ldots, \ell$, there exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .1}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .2}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}}^{\text {SWITCH }}(\lambda)
$$

Proof. This roughly means that

$$
\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1},\left\{\mathrm{sk}_{f_{\kappa}}^{i-1, i}\right\}_{\chi_{\mathcal{K}}}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i-1, i},\left\{\mathrm{sk}_{f_{\kappa}}^{i-1, i}\right\}_{\mathcal{K}}\right) .
$$

Recall that $\tau=i \bmod 2$. We prove the lemma using $\left(\mathbf{s}_{i}, \mathbf{Z}_{\tau}\right)$-switching lemma (see Lemma 19). On input

$$
\text { aux, }\left[\mathbf{c}_{i}^{\top}\right]_{1},\left\{\left[\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

with aux $=\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{a}_{2}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{\tau}, \mathbf{a}_{2}^{\top} \mathbf{Z}_{\tau}\right]_{1},\left[\mathbf{Z}_{\tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ and

$$
\mathbf{c}_{i}^{\top}=\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \text { or } \mathbf{c}_{i}^{\top}=\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}+s_{i} \mathbf{a}_{2}^{\top}
$$

where $\mathbf{Z}_{\tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{s}_{i}, \overline{\mathbf{r}}_{u, k} \leftarrow \mathbb{Z}_{p}^{k}, \bar{\Delta}, s_{i} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$, the reduction proceeds as follows:
(Simulating mpk) We sample $\mathbf{k} \leftarrow \mathbb{Z}_{p}^{2 k+1}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{1-\tau}, \mathbf{W}_{\sigma, \tau}, \mathbf{W}_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ for all $\sigma \in \Sigma$, and then we can trivially simulate mpk with $\left[\mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{\tau}\right]_{1}$ given out in aux.
(Simulating secret keys) For each $\kappa=1, \ldots, q$, we want to simulate secret key for f_{κ} in the form

$$
\operatorname{sk}_{f_{\kappa}}^{i-1, i}=\left(\begin{array}{c}
{\left[\mathbf{d}_{1, k}+\mathbf{W}_{\text {start }} \mathbf{r}_{1, k}\right]_{2},\left[\mathbf{r}_{1, k}\right]_{2},} \\
\left\{\left[\left[-\mathbf{d}_{u, k}+\mathbf{a}_{2} \Delta_{i-1, u, k}+\mathbf{Z}_{\tau} \mathbf{r}_{u, k}\right]_{2}\right],\left[\mathbf{d}_{v, k}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right]_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right)
$$

On input f_{κ}, we build $F_{i-1, x^{*}, \kappa} \subseteq[Q]$ from $f_{\mathcal{K}}$, then sample $\mathbf{d}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{2 k+1}$ for all $u \in[Q]$ and $\mathbf{r}_{u, \kappa}^{\prime} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \notin F_{i-1, x^{*}, \kappa}$. We implicitly set

$$
\Delta=\bar{\Delta} \quad \text { and } \quad \mathbf{r}_{u, \kappa}= \begin{cases}\mathbf{D r}_{u, \kappa}^{\prime} & \text { for all } u \notin F_{i-1, x^{*}, \kappa} \\ \overline{\mathbf{r}}_{u, \kappa} & \text { for all } u \in F_{i-1, x^{*}, k}\end{cases}
$$

and simulate $\mathrm{sk}_{f_{\mathrm{k}}}^{i-1, i}$ as follows:

- By the definition of $\left\{\Delta_{i-1, u, k}\right\}_{u}$ and our implicit setting, we can rewrite all terms in the dashed boxes as:

$$
\begin{cases}{\left[\mathbf{D r}_{u, \kappa}^{\prime}\right]_{2},\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{\tau} \mathbf{D r}_{u, \kappa}^{\prime}\right]_{2}} & \text { if } u \notin F_{i-1, x^{*}, \kappa} \\ {\left[\overline{\mathbf{r}}_{u, k}\right]_{2}, \quad\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2} \Delta+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2}} & \text { if } u \in F_{i-1, x^{*}, \kappa}\end{cases}
$$

Terms for $u \notin F_{i-1, x^{*}, k}$ can be computed honestly from $\left\{\mathbf{r}_{u, k}^{\prime}, \mathbf{d}_{u, k}\right\}_{u \notin F_{i-1, x^{*}, k}}$ we sampled and $\left[\mathbf{Z}_{\tau} \mathbf{D}, \mathbf{D}\right]_{2}$ given in aux; terms for $u \in F_{i-1, x^{*}, k}$ can be computed from $\left\{\mathbf{d}_{u, \kappa}\right\}_{u \in F_{i-1, x^{*}, k}}$ we sampled and $\left\{\left[\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in F_{i-1, x^{*}, k}}$ given out in the input.

- All remaining terms can be trivially simulated using $\left\{\left[\mathbf{r}_{u, K}\right]_{2}=\left[\mathbf{D r}_{u, k}^{\prime}\right]_{2}\right\}_{u \notin F_{i-1, x^{*}, k}}$ and $\left\{\left[\mathbf{r}_{u, k}\right]_{2}=\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in F_{i-1, x^{*}, k}}$ as well as $\mathbf{k},\left\{\mathbf{d}_{u, \kappa}\right\}_{u \in[Q]}, \mathbf{W}_{\text {start }}, \mathbf{Z}_{1-\tau},\left\{\mathbf{W}_{\sigma, \tau}, \mathbf{W}_{\sigma, 1-\tau}\right\}_{\sigma \in \Sigma}, \mathbf{W}_{\text {end }}$ we sampled.
(Simulating ciphertext for x^{*}) We want to generate a ciphertext for x^{*} which is distributed as either $\mathrm{ct}_{x^{*}}^{i-1}{\operatorname{or~} \mathrm{ct}_{x^{*}}^{i-1, i} \text { : }}_{\text {: }}$

On input $\left(m_{0}, m_{1}\right) \in \mathcal{M} \times \mathcal{M}$, we sample $\beta \leftarrow\{0,1\}$ and $\mathbf{s}_{j} \leftarrow \mathbb{Z}_{p}^{k}, s_{j} \leftarrow \mathbb{Z}_{p}$ for all $j \neq i$ and output the challenge ciphertext

$$
\left.\left\{\begin{array}{cc}
\left(\left[\left(\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}+s_{0} \mathbf{a}_{2}^{\top}\right) \mathbf{W}_{\text {start }}\right]_{1},\left[\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}+s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[\left(\mathbf{s}_{0}^{\top} \mathbf{A}_{1}^{\top}+s_{0} \mathbf{a}_{2}^{\top}\right) \mathbf{Z}_{1}+\mathbf{c}_{1}^{\top} \mathbf{W}_{x_{1}^{*}, 1}\right]_{1},\left[\mathbf{c}_{1}^{\top}\right]_{1},\left[\mathbf{c}_{1}^{\top} \mathbf{Z}_{0}+\mathbf{s}_{2}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{2}^{*}, 0}\right]_{1}, \ldots\right) & \text { if } i=1 \\
\left(\ldots,\left[\mathbf{s}_{i-2}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{1-\tau}+\left(\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}+s_{i-1} \mathbf{a}_{2}^{\top}\right) \mathbf{W}_{x_{i-1}^{*}, 1-\tau}\right]_{1},\left[\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}+s_{i-1} \mathbf{a}_{2}^{\top}\right]_{1},\right. & \text { if } 1<i<\ell \\
{\left[\left(\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}+s_{i-1} \mathbf{a}_{2}^{\top}\right) \mathbf{Z}_{\tau}+\mathbf{c}_{i}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}\right]_{1},\left[\mathbf{c}_{i}^{\top}\right]_{1},\left[\mathbf{c}_{i}^{\top} \mathbf{Z}_{1-\tau}+\mathbf{s}_{i+1}^{\top} \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i+1}^{*}, 1-\tau}\right]_{1}, \ldots}
\end{array}\right) \quad \text { if } \begin{array}{c}
\ldots,\left[\mathbf{s}_{\ell-2}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{1-\bar{\ell}}+\left(\mathbf{s}_{\ell-1}^{\top} \mathbf{A}_{1}^{\top}+s_{\ell-1} \mathbf{a}_{2}^{\top}\right) \mathbf{W}_{x_{\ell-1}^{*}}, 1-\bar{\ell}\right]_{1},\left[\mathbf{s}_{\ell-1}^{\top} \mathbf{A}_{1}^{\top}+s_{\ell-1} \mathbf{a}_{2}^{\top}\right]_{1}, \\
{\left[\left(\mathbf{s}_{\ell-1}^{\top} \mathbf{A}_{1}^{\top}+s_{\ell-1} \mathbf{a}_{2}^{\top}\right) \mathbf{Z}_{\bar{\ell}}+\mathbf{c}_{\ell}^{\top} \mathbf{W}_{x_{\ell}^{*}, \bar{\ell}}\right]_{1},\left[\mathbf{c}_{\ell}^{\top}\right]_{1},\left[\mathbf{c}_{\ell}^{\top} \mathbf{W}_{\mathrm{end}}\right]_{1},\left[\mathbf{c}_{\ell}^{\top} \mathbf{k}\right]_{T}}
\end{array}\right) \text { if } i=\ell,
$$

Here we use the fact that the ciphertext contains no term with $\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top} \mathbf{Z}_{\tau}$ in the exponent. All omitted terms can be computed from aux and exponents $\left\{\mathbf{s}_{j}\right\}_{j \neq i}$ sampled by ourselves. Clearly, when $\mathbf{c}_{i}^{\top}=\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}$, the output is identical to $\mathrm{ct}_{x^{*}}^{i-1}$; when $\mathbf{c}_{i}^{\top}=\mathbf{s}_{i}^{\top} \mathbf{A}_{1}^{\top}+s_{i} \mathbf{a}_{2}^{\top}$, the output is identical to $\mathrm{ct}_{x^{*}}^{i-1, i}$. This completes the proof.

Lemma $28\left(\mathrm{G}_{2 . i .3} \approx_{c} \mathrm{G}_{2 . i .4}\right)$. For $i=1, \ldots, \ell$, there exists $\mathcal{B}_{1}, \mathcal{B}_{2}$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .3}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .4}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\mathrm{SWITCH}}(\lambda)+4(|\Sigma|-1) \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Proof. This roughly means that

$$
\left(\mathrm{mpk}, \operatorname{ct}_{x^{*}}^{i-1, i},\left\{\mathrm{sk}_{f_{k}}^{i}\right\}_{K}\right) \approx_{c}\left(\mathrm{mpk}, \mathrm{ct}_{x^{*}}^{i},\left\{\mathrm{sk}_{f_{K}}^{i}\right\}_{\kappa}\right)
$$

We prove the lemma using ($\mathbf{s}_{i-1}, \mathbf{W}_{x_{i}^{*}, \tau}$)-switching lemma (see Lemma 19). Recall that $\tau=i \bmod 2$. The reduction is analogous to that for Lemma 27: On input

$$
\text { aux, }\left[\mathbf{c}_{i-1}^{\top}\right]_{1},\left\{\left[\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

with aux $=\left(\left[\mathbf{A}_{1}^{\top}, \mathbf{a}_{2}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}, \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}\right]_{1},\left[\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ and

$$
\mathbf{c}_{i-1}^{\top}=\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top} \text { or } \mathbf{c}_{i-1}^{\top}=\mathbf{s}_{i-1}^{\top} \mathbf{A}_{1}^{\top}+s_{i-1} \mathbf{a}_{2}^{\top}
$$

where $\mathbf{W}_{x_{i}^{*}, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{s}_{i-1}, \overline{\mathbf{r}}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}, \bar{\Delta}, s_{i-1} \leftarrow \mathbb{Z}_{p}$ for all $u \in[Q]$ and $\kappa \in[q]$, we sample $\mathbf{k} \leftarrow \mathbb{Z}_{p}^{2 k+1}$, $\mathbf{W}_{\text {start }}, \mathbf{W}_{\mathrm{end}}, \mathbf{Z}_{0}, \mathbf{Z}_{1}, \mathbf{W}_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ for all $\sigma \in \Sigma, \mathbf{W}_{\sigma, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ for all $\sigma \neq x_{i}^{*}$ and $\mathbf{s}_{j} \leftarrow \mathbb{Z}_{p}^{k}, s_{j} \leftarrow \mathbb{Z}_{p}$ for all $j \neq i-1$; then we can simulate mpk and the challenge ciphertext analogously. The main difference locates at the simulation of secret key.
(Simulating secret keys) For each $\kappa=1, \ldots, q$, we want to simulate secret key for f_{κ} in the form

On input $f_{\mathcal{K}}$, we sample $\mathbf{d}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{2 k+1}$ for all $u \in[Q]$ and implicitly set $\Delta=\bar{\Delta}$ as before but we set $\left\{\mathbf{r}_{u, \kappa}\right\}_{u \in[Q]}$ as follows:

- We build $F_{i, x^{*}, k} \subseteq[Q]$ from f_{κ}, sample $\mathbf{r}_{u, \kappa}^{\prime} \leftarrow \mathbb{Z}_{p}^{k}$ for all u such that $\delta_{\kappa}\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}, k}$ and implicitly set

$$
\mathbf{r}_{u, \kappa}= \begin{cases}\mathbf{D r}_{u, \kappa}^{\prime} & \text { if } \delta_{\kappa}\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}, \kappa} \\ \overline{\mathbf{r}}_{u, \kappa} & \text { if } \delta_{\kappa}\left(u, x_{i}^{*}\right) \in F_{i, x^{*}, \kappa}\end{cases}
$$

Then we simulate $\mathrm{sk}_{f_{\kappa}}^{i}$ as follows:

- By the definition of $\left\{\Delta_{i, u, k}\right\}_{u}$ and our implicit setting, we can rewrite all terms in the dashed boxes as:

$$
\left\{\begin{array}{lll}
{\left[\mathbf{D r}_{u, \kappa}^{\prime}\right]_{2},} & {\left[-\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D r}_{u, \kappa}^{\prime}\right]_{2}} & \text { if } \delta_{\kappa}\left(u, x_{i}^{*}\right) \notin F_{i-1, x^{*}, \kappa} \\
{\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}, \quad\left[-\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2}} & \text { if } \delta_{\kappa}\left(u, x_{i}^{*}\right) \in F_{i-1, x^{*}, \kappa}
\end{array}\right.
$$

and simulate them from either $\left[\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D}, \mathbf{D}\right]_{2}$ or $\left\{\left[\mathbf{a}_{2}^{\|} \bar{\Delta}+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{\delta_{\kappa}\left(u, x_{i}^{*}\right) \in F_{i-1, x^{*}, \kappa}}$ given out in the input with the help of $\left\{\mathbf{d}_{u, \kappa}\right\}_{u \in[Q]}$ and $\left\{\mathbf{r}_{u, \kappa}^{\prime}\right\}_{\delta_{\kappa}\left(u, x_{i}^{*}\right) \notin F_{i, x^{*}, k}}$. This is similar to the simulation of terms in the dashed boxes in the proof for Lemma 27.

- The terms in the gray box are computationally simulated in the following form

$$
\left\{\left[\mathbf{d}_{v, K}+\underline{\mathbf{a}}_{2}^{\|} \Delta_{\tau, v, K}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta_{\kappa}\left(u, x_{i}^{*}\right)}
$$

using $\left\{\mathbf{d}_{u, \kappa}\right\}_{u \in[Q]},\left\{\mathbf{W}_{\sigma, \tau}\right\}_{\sigma \neq x_{i}^{*}}$ we sampled and $\left\{\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q]}$ we have simulated. This follows from $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t. $\mathbf{W}_{\sigma, \tau}$ with $\sigma \neq x_{i}^{*}$ which implies that: for all $\sigma \neq x_{i}^{*}$ and $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, \tau},\left[\mathbf{W}_{\sigma, \tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{W}_{\sigma, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. Here we use the fact that both $\mathrm{ct}_{x^{*}}^{i-1, i}$ and $\mathrm{ct}_{x^{*}}^{i}$ does not leak $\mathbf{a}_{2}^{\top} \mathbf{W}_{\sigma, \tau}$ with $\sigma \neq x_{i}^{*}$.

- All remaining terms can be easily handled as in the proof of Lemma 27.

4.9 Switching secret keys II: $\mathbf{G}_{2 . i .2} \mapsto \mathbf{G}_{2 . i .3}$

In this section we prove the following lemma which is analogous to Lemma 12 in Section 3.7.
Lemma $29\left(\mathrm{G}_{2 . i .2} \approx{ }_{c} \mathrm{G}_{2 . i .3}\right)$. For all $i=1, \ldots, \ell$, there exists $\mathcal{B}_{1}, \mathcal{B}_{2}$ with $\operatorname{Time}\left(\mathcal{B}_{1}\right)$, $\operatorname{Time}\left(\mathcal{B}_{2}\right) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 . i .2}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{2 . i .3}(\lambda)\right| \leq \operatorname{Adv}_{\mathcal{B}_{1}}^{\text {TRANS }}(\lambda)+2(|\Sigma|-1) \cdot \operatorname{Adv}_{\mathcal{B}_{2}}^{D_{\mathbf{a}_{2}}}(\lambda)
$$

Proof. Recall $\tau=i \bmod 2$. We prove

$$
\begin{aligned}
& \approx_{c}\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}+\mathbf{W}_{\text {start }} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i, \delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q]} \\
\left\{\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right) \\
& \approx_{c}\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}+\mathbf{W}_{\text {start }} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i, \delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q]} \\
\left\{\left[\mathbf{d}_{\nu, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{i, v, \kappa}+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \neq x_{i}^{*}, \nu=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, 1-\tau} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{W}_{\left.\left.\mathrm{end} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}}\right.\right.
\end{array}\right)=\mathrm{sk}_{f_{\kappa}}^{i}
\end{aligned}
$$

in the presence of mpk and $\operatorname{ct}_{x^{*}}^{i-1, i}$ with \mathbf{a}_{2}-components recalled as follows:

$$
\mathrm{ct}_{x^{*}}^{i-1, i}[2]= \begin{cases}{\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{W}_{\text {start }}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{0} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1}+s_{1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{1}^{*}, 1}\right]_{1},\left[s_{1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{0}\right]_{1}} & \text { if } i=1 \\ {\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i-1}^{*}, 1-\tau}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i-1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{\tau}+s_{i} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{i} \mathbf{a}_{2}^{\top} \mathbf{Z}_{1-\tau}\right]_{1}} & \text { if } 1<i<\ell \\ {\left[s_{\ell-1} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell-1}^{*}}^{*}, 1-\bar{\ell}\right]_{1},\left[s_{\ell-1} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell-1} \mathbf{a}_{2}^{\top} \mathbf{Z}_{\bar{\ell}}+s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell}^{*}, \bar{\ell}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{\mathrm{end}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{k}\right]_{T}} & \text { if } i=\ell\end{cases}
$$

We proceed as follows:

- The first \approx_{c} relies on $\left(\mathbf{Z}_{\tau}, \mathbf{W}_{x_{i}^{*}, \tau}\right)$-transition lemma (see Lemma 20). On input

$$
\operatorname{aux}, s_{i-1} \mathbf{Z}_{\tau}+s_{i} \mathbf{W}_{x_{i}^{*}, \tau},\left\{\left[\mathbf{a}_{2}^{\|} \hat{\Delta}_{0}+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\mathbf{a}_{2}^{\|} \hat{\Delta}_{1}+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

where aux $=\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{\tau}, \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}, s_{i-1}, s_{i},\left[\mathbf{Z}_{\tau} \mathbf{D}, \mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ and $\mathbf{Z}_{\tau}, \mathbf{W}_{x_{i}^{*}, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \overline{\mathbf{r}}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q], \kappa \in[q]$ and

$$
\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right) \in\left\{\left(s_{i} \bar{\Delta}, 0\right),\left(0, s_{i-1} \bar{\Delta}\right)\right\} \quad \text { with } \quad \bar{\Delta} \leftarrow \mathbb{Z}_{p}
$$

the reduction works as follows:
(Simulating mpk) We sample $\mathbf{k} \leftarrow \mathbb{Z}_{p}^{2 k+1}, \mathbf{W}_{\text {start }}, \mathbf{W}_{\text {end }}, \mathbf{Z}_{1-\tau}, \mathbf{W}_{\sigma, 1-\tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ for all $\sigma \in \Sigma$ and $\mathbf{W}_{\sigma, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}$ for all $\sigma \neq x_{i}^{*}$; then we can simulate mpk using $\left[\mathbf{A}_{1}^{\top}, \mathbf{A}_{1}^{\top} \mathbf{Z}_{\tau}, \mathbf{A}_{1}^{\top} \mathbf{W}_{x_{i}^{*}, \tau}\right]_{1}$ provided in aux.
(Simulating ciphertext) We sample $\mathbf{s}_{0}, \ldots, \mathbf{s}_{\ell} \leftarrow \mathbb{Z}_{p}^{k}$ and simulate $\mathrm{ct}_{x^{*}}^{i-1, i}$ using mpk, $\mathbf{a}_{2}, s_{i-1}, s_{i}, s_{i-1} \mathbf{Z}_{\tau}+s_{i} \mathbf{W}_{x_{i}^{*}, \tau}$, $\mathbf{W}_{\text {start }}, \mathbf{W}_{\sigma, 1-\tau}, \mathbf{Z}_{1-\tau}, \mathbf{W}_{\text {end }}$.
(Simulating secret keys) On input $f_{\mathcal{K}}$, we want to generate a challenge key which is either $\mathrm{sk}_{f_{k}}^{i-1, i}$ on the LHS or the key on the RHS depending on ($\hat{\Delta}_{0}, \hat{\Delta}_{1}$). For each $\kappa \in[q]$, we build $F_{i-1, x^{*}, k} \subseteq[Q]$ and sample $\mathbf{d}_{u, k} \leftarrow \mathbb{Z}_{p}^{2 k+1}$ for all $u \in[Q]$ and $\mathbf{r}_{u, k}^{\prime} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \notin F_{i-1, x^{*}, k}$. We implicitly set

$$
\Delta=\left\{\begin{array}{ll}
s_{i} \bar{\Delta} & \text { for the LHS } \\
s_{i-1} \bar{\Delta} & \text { for the RHS }
\end{array} \text { and } \quad \mathbf{r}_{u, k}= \begin{cases}\mathbf{D r}_{u, \kappa}^{\prime} & \text { if } u \notin F_{i-1, x^{*}, k} \\
\overline{\mathbf{r}}_{u, \kappa} & \text { if } u \in F_{i-1, x^{*}, \kappa}\end{cases}\right.
$$

and proceed as follows:

- We rewrite all terms in the second row of keys on the two sides in terms of $s_{i-1}, s_{i}, \bar{\Delta}, \overline{\mathbf{r}}_{u, k}$:
and generate the second row of the challenge key as

$$
\left\{\begin{array}{llll}
{\left[-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \hat{\Delta}_{0}+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},} & {\left[\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{a}_{2}^{\|} \hat{\Delta}_{1}+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, \kappa}\right]_{2},} & {\left[\overline{\mathbf{r}}_{u, \kappa}\right]_{2}} & \text { if } u \in F_{i-1, x^{*}, \kappa} \\
{\left[-\mathbf{d}_{u, \kappa}+\mathbf{Z}_{\tau} \mathbf{D r}_{u, \kappa}^{\prime}\right]_{2},} & {\left[\mathbf{d}_{\delta_{\kappa}\left(u, x_{i}^{*}\right), \kappa}+\mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D r}_{u, \kappa}^{\prime}\right]_{2},} & {\left[\mathbf{D r}_{u, \kappa}^{\prime}\right]_{2}} & \text { if } u \notin F_{i-1, x^{*}, \kappa}
\end{array}\right.
$$

where all terms for $u \in F_{i-1, x^{*}, k}$ can be built from $\left\{\left[\mathbf{a}_{2}^{\|} \hat{\Delta}_{0}+\mathbf{Z}_{\tau} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\mathbf{a}_{2}^{\|} \hat{\Delta}_{1}+\mathbf{W}_{x_{i}^{*}, \tau} \overline{\mathbf{r}}_{u, k}\right]_{2},\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in F_{i-1, x^{*}, k}}$ provided in the input; all terms for $u \notin F_{i-1, x^{*}, K}$ can be built from $\left[\mathbf{Z}_{\tau} \mathbf{D}, \mathbf{W}_{x_{i}^{*}, \tau} \mathbf{D}, \mathbf{D}\right]_{2}$ in aux and $\left\{\mathbf{r}_{u, k}^{\prime}\right\}_{u \notin F_{i-1, x^{*}, \kappa}}$ we sampled.

- We can trivially generate all remaining terms in the challenge key which are identical to $\mathrm{sk}_{f_{k}}^{i-1, i}$ (and also the key on the RHS) using $\left\{\left[\mathbf{r}_{u, k}\right]_{2}=\left[\mathbf{D r}_{u, k}^{\prime}\right]_{2}\right\}_{u \notin F_{i-1, x^{*}, k}}$ and $\left\{\left[\mathbf{r}_{u, k}\right]_{2}=\left[\overline{\mathbf{r}}_{u, k}\right]_{2}\right\}_{u \in F_{i-1, x^{*}, k}}$ as well as $\left\{\mathbf{d}_{u, k}\right\}_{u \in[Q]}, \mathbf{W}_{\text {start }}$, $\mathbf{Z}_{1-\tau},\left\{\mathbf{W}_{\sigma, \tau}\right\}_{\sigma \neq x_{i}^{*}},\left\{\mathbf{W}_{\sigma, 1-\tau}\right\}_{\sigma \in \Sigma}, \mathbf{W}_{\text {end }}$ we sampled.
Observe that,
- when $\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right)=\left(s_{i} \bar{\Delta}, 0\right)$, the output distribution is identical to the LHS;
- when $\left(\hat{\Delta}_{0}, \hat{\Delta}_{1}\right)=\left(0, s_{i-1} \bar{\Delta}\right)$, the output distribution is identical to the RHS; here we rely on the fact that $u \in$ $F_{i-1, x^{*}, K} \Longleftrightarrow \delta_{K}\left(u, x_{i}^{*}\right) \in F_{i, x^{*}, \kappa}$ for all $u \in[Q]$, see Lemma 1 .
This is sufficient for the proof of the first \approx_{c}.
- The second \approx_{c} follows from $\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}$ assumption w.r.t. $\mathbf{W}_{\sigma, \tau}$ with $\sigma \neq x_{i}^{*}$ which implies that: for all $\sigma \neq x_{i}^{*}$ and $\Delta \in \mathbb{Z}_{p}$, we have

$$
\left\{\left[\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, k}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]} \approx_{c}\left\{\left[\mathbf{a}_{2}^{\|} \Delta+\mathbf{W}_{\sigma, \tau} \mathbf{r}_{u, k}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \kappa \in[q]}
$$

given $\left(\mathbf{A}_{1}, \mathbf{a}_{2}, \mathbf{a}_{2}^{\|}, \mathbf{A}_{1}^{\top} \mathbf{W}_{\sigma, \tau},\left[\mathbf{W}_{\sigma, \tau} \mathbf{D}, \mathbf{D}\right]_{2}\right)$ where $\mathbf{W}_{\sigma, \tau} \leftarrow \mathbb{Z}_{p}^{(2 k+1) \times k}, \mathbf{D} \leftarrow \mathbb{Z}_{p}^{k \times k}, \mathbf{r}_{u, \kappa} \leftarrow \mathbb{Z}_{p}^{k}$ for all $u \in[Q]$ and $\kappa \in[q]$. Here we use the fact that $\operatorname{ct}_{x^{*}}^{i-1, i}$ does not leak $\mathbf{a}_{2}^{\top} \mathbf{W}_{\sigma, \tau}$ with $\sigma \neq x_{i}^{*}$.

Combining the two steps completes the proof.

4.10 Finalize: $\mathbf{G}_{2 . \ell .4} \mapsto \mathbf{G}_{3}$

In this section we prove the following two lemmas analogous to Lemma 13 and Lemma 16 in Section 3.8.
Lemma $30\left(\mathrm{G}_{2 . \ell .4} \approx \mathrm{G}_{3}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{2 \ell .4}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

The proof is analogous to the proof for Lemma 23. Let $\bar{\ell}=\ell \bmod 2$, we need an auxiliary game $\mathrm{G}_{3 . a}$ and prove

$$
\mathrm{G}_{2 . \ell .4} \approx_{s} \mathrm{G}_{3 . a} \approx_{c} \mathrm{G}_{3}
$$

where the κ-th secret key for f_{κ} in these games are recalled/defined as below

$$
\begin{aligned}
& \mathrm{G}_{3}:\left(\begin{array}{c}
{\left[\mathbf{d}_{1, \kappa}-\underline{\mathbf{a}}_{2}^{\|} \Delta_{\ell, 1, \kappa}+\mathbf{W}_{\text {start }} \mathbf{r}_{1, \kappa}\right]_{2},\left[\mathbf{r}_{1, \kappa}\right]_{2},} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\underline{\mathbf{a}}_{2}^{\|} \Delta_{\ell, u, \kappa}+\mathbf{Z}_{\bar{\ell}} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}+\mathbf{W}_{\sigma, \bar{\ell}} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[-\mathbf{d}_{u, \kappa}+\underline{\mathbf{a}}_{2}^{\|} \Delta_{\ell, u, \kappa}+\mathbf{Z}_{1-\bar{\ell}} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{d}_{v, \kappa}-\mathbf{a}_{2}^{\|} \Delta_{\ell, v, \kappa}+\mathbf{W}_{\sigma, 1-\bar{\ell}} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in[Q], \sigma \in \Sigma, v=\delta_{\kappa}(u, \sigma)} \\
\left\{\left[\mathbf{k}-\mathbf{d}_{u, \kappa}+\mathbf{a}_{2}^{\|} \Delta_{\ell, u, \kappa}+\mathbf{W}_{\text {end }} \mathbf{r}_{u, \kappa}\right]_{2},\left[\mathbf{r}_{u, \kappa}\right]_{2}\right\}_{u \in F_{\kappa}}
\end{array}\right)=\operatorname{sk}_{f_{\kappa}}^{*}
\end{aligned}
$$

in the presence of mpk and $\mathrm{ct}_{x^{*}}^{\ell}$ with \mathbf{a}_{2}-components recalled as follows:

$$
\operatorname{ct}_{x^{*}}^{\ell}[2]=\left(\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{x_{\ell}^{*}, \bar{\ell}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{W}_{\mathrm{end}}\right]_{1},\left[s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{k}\right]_{T}\right)
$$

Analogous to Lemma 24 and 26, we have the following two lemmas which imply Lemma 30. We omit the proofs.
Lemma $31\left(\mathrm{G}_{2 . \ell .4} \approx_{s} \mathrm{G}_{3 . a}\right)$. We have $\operatorname{Adv}_{\mathcal{A}}^{2 . \ell .4}(\lambda)=\operatorname{Adv}_{\mathcal{A}}^{3 . a}(\lambda)$.
Lemma $32\left(\mathrm{G}_{3 . a} \approx{ }_{c} \mathrm{G}_{3}\right)$. There exists \mathcal{B} with $\operatorname{Time}(\mathcal{B}) \approx \operatorname{Time}(\mathcal{A})$ such that

$$
\left|\operatorname{Adv}_{\mathcal{A}}^{3 . a}(\lambda)-\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda)\right| \leq 2(|\Sigma|+3) \cdot \operatorname{Adv}_{\mathcal{B}}^{\mathrm{DDH}_{\mathbf{a}_{2}}^{G_{2}}}(\lambda)
$$

Lemma 33 (Advantage in G_{3}). $\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda) \approx 0$.
Proof. As in the proof of Lemma 16, we argue that all keys $\left\{\mathrm{sk}_{f_{k}}^{*}\right\}_{\kappa}$ only leak $\mathbf{k}+\mathbf{a}_{2}^{\|} \Delta$ and thus perfectly hide $\mathbf{a}_{2}^{\top} \mathbf{k}$. Therefore, when $s_{\ell} \neq 0$ which occurs with overwhelming probability, the term $\left[\mathbf{s}_{\ell}^{\top} \mathbf{A}_{1}^{\top} \mathbf{k}+s_{\ell} \mathbf{a}_{2}^{\top} \mathbf{k}\right]_{T}$ in $t_{x^{*}}^{\ell}$ is independently and uniformly distributed and perfectly hide message m. Hence, $\operatorname{Adv}_{\mathcal{A}}^{3}(\lambda) \approx 0$.

References

1. S. Agrawal and M. Chase. Simplifying design and analysis of complex predicate encryption schemes. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 627-656. Springer, Heidelberg, Apr. / May 2017.
2. N. Attrapadung. Dual system encryption via doubly selective security: Framework, fully secure functional encryption for regular languages, and more. In P. Q. Nguyen and E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 557-577. Springer, Heidelberg, May 2014.
3. N. Attrapadung. Dual system encryption framework in prime-order groups via computational pair encodings. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 591-623. Springer, Heidelberg, Dec. 2016.
4. O. Blazy, E. Kiltz, and J. Pan. (Hierarchical) identity-based encryption from affine message authentication. In J. A. Garay and R. Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of $L N C S$, pages 408-425. Springer, Heidelberg, Aug. 2014.
5. J. Chen, R. Gay, and H. Wee. Improved dual system ABE in prime-order groups via predicate encodings. In E. Oswald and M. Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595-624. Springer, Heidelberg, Apr. 2015.
6. J. Chen, J. Gong, L. Kowalczyk, and H. Wee. Unbounded ABE via bilinear entropy expansion, revisited. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503-534. Springer, Heidelberg, Apr. / May 2018.
7. J. Chen and H. Wee. Fully, (almost) tightly secure IBE and dual system groups. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 435-460. Springer, Heidelberg, Aug. 2013.
8. J. Chen and H. Wee. Semi-adaptive attribute-based encryption and improved delegation for Boolean formula. In M. Abdalla and R. D. Prisco, editors, SCN 14, volume 8642 of $L N C S$, pages 277-297. Springer, Heidelberg, Sept. 2014.
9. A. Escala, G. Herold, E. Kiltz, C. Ràfols, and J. Villar. An algebraic framework for Diffie-Hellman assumptions. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129-147. Springer, Heidelberg, Aug. 2013.
10. J. Gong, X. Dong, J. Chen, and Z. Cao. Efficient IBE with tight reduction to standard assumption in the multi-challenge setting. In J. H. Cheon and T. Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 624-654. Springer, Heidelberg, Dec. 2016.
11. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of encrypted data. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06, pages 89-98. ACM Press, Oct. / Nov. 2006. Available as Cryptology ePrint Archive Report 2006/309.
12. D. Hofheinz, J. Koch, and C. Striecks. Identity-based encryption with (almost) tight security in the multi-instance, multiciphertext setting. In J. Katz, editor, PKC 2015, volume 9020 of LNCS, pages 799-822. Springer, Heidelberg, Mar. / Apr. 2015.
13. Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski, K. Pietrzak, and D. Wichs. Be adaptive, avoid overcommitting. In J. Katz and H. Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 133-163. Springer, Heidelberg, Aug. 2017.
14. L. Kowalczyk and H. Wee. Compact adaptively secure ABE from k-lin. In EUROCRYPT, 2019.
15. A. B. Lewko and B. Waters. New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 455-479. Springer, Heidelberg, Feb. 2010.
16. A. B. Lewko and B. Waters. Unbounded HIBE and attribute-based encryption. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of $L N C S$, pages 547-567. Springer, Heidelberg, May 2011.
17. A. B. Lewko and B. Waters. New proof methods for attribute-based encryption: Achieving full security through selective techniques. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 180-198. Springer, Heidelberg, Aug. 2012.
18. T. Okamoto and K. Takashima. Fully secure unbounded inner-product and attribute-based encryption. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 349-366. Springer, Heidelberg, Dec. 2012.
19. A. Sahai and B. R. Waters. Fuzzy identity-based encryption. In R. Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457-473. Springer, Heidelberg, May 2005.
20. B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619-636. Springer, Heidelberg, Aug. 2009.
21. B. Waters. Functional encryption for regular languages. In R. Safavi-Naini and R. Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218-235. Springer, Heidelberg, Aug. 2012.
22. H. Wee. Dual system encryption via predicate encodings. In Y. Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 616-637. Springer, Heidelberg, Feb. 2014.

[^0]: * Supported by ERC Project aSCEND (H2020 639554) and the French ANR ALAMBIC Project (ANR-16-CE39-0006). Part of this work was done while at ENS de Lyon.
 ** Supported by NSF CNS-1908611, CNS-1414082, DARPA SafeWare and Packard Foundation Fellowship.
 *** Supported by ERC Project aSCEND (H2020 639554).

[^1]: ${ }^{4}$ e.g: $k=1$ corresponds to the Symmetric External Diffie-Hellman Assumption (SXDH), and $k=2$ corresponds to the Decisional Linear Assumption (DLIN).

