
Output Compression, MPC, and iO

for Turing Machines

Saikrishna Badrinarayanan ∗ Rex Fernando † Venkata Koppula ‡ Amit Sahai §

Brent Waters ¶

Abstract

In this work, we study the fascinating notion of output-compressing randomized encodings for Turing
Machines, in a shared randomness model. In this model, the encoder and decoder have access to a shared
random string, and the efficiency requirement is, the size of the encoding must be independent of the
running time and output length of the Turing Machine on the given input, while the length of the shared
random string is allowed to grow with the length of the output. We show how to construct output-
compressing randomized encodings for Turing machines in the shared randomness model, assuming iO
for circuits and any assumption in the set {LWE, DDH, Nth Residuosity}.

We then show interesting implications of the above result to basic feasibility questions in the areas of
secure multiparty computation (MPC) and indistinguishability obfuscation (iO):

1. Compact MPC for Turing Machines in the Random Oracle Model. In the context of
MPC, we consider the following basic feasibility question: does there exist a malicious-secure MPC
protocol for Turing Machines whose communication complexity is independent of the running time
and output length of the Turing Machine when executed on the combined inputs of all parties?
We call such a protocol as a compact MPC protocol. Hubácek and Wichs [HW15] showed via
an incompressibility argument, that, even for the restricted setting of circuits, it is impossible
to construct a malicious secure two party computation protocol in the plain model where the
communication complexity is independent of the output length. In this work, we show how to evade
this impossibility by compiling any (non-compact) MPC protocol in the plain model to a compact
MPC protocol for Turing Machines in the Random Oracle Model, assuming output-compressing
randomized encodings in the shared randomness model.

2. Succinct iO for Turing Machines in the Shared Randomness Model. In all existing
constructions of iO for Turing Machines, the size of the obfuscated program grows with a bound
on the input length. In this work, we show how to construct an iO scheme for Turing Machines in
the shared randomness model where the size of the obfuscated program is independent of a bound
on the input length, assuming iO for circuits and any assumption in the set {LWE, DDH, Nth

Residuosity}.

∗UCLA. Email: saikrishna@cs.ucla.edu
†UCLA. Email: rex@cs.ucla.edu
‡UT Austin. Email: kvenkata@cs.utexas.edu.
§UCLA. Email: sahai@cs.ucla.edu.
¶UT Austin. Email: bwaters@cs.utexas.edu.

1

Contents

1 Introduction 3
1.1 Our Results . 5
1.2 Related work . 6

2 Technical Overview 7
2.1 Output Compressing Randomized Encodings . 7
2.2 Compact MPC for Turing Machines in the Random Oracle Model. 8
2.3 Succinct iO for Turing Machines in the Shared Randomness Model 10

3 Preliminaries 11

4 Randomized Encodings: Definitions 11
4.1 Succinct Partial Randomized Encodings . 11
4.2 Strong output-compressing Randomized Encodings in the shared randomess model 12

5 Strong Output-compressing Randomized Encodings in the CRS Model 13
5.1 Construction . 14
5.2 Proof of Security . 15

6 Compact MPC 27
6.1 Construction . 28
6.2 Security Proof . 30

7 Constructing iO from Output-Compressing Randomized Encodings 33
7.1 Construction . 34
7.2 Security . 35
7.3 Succinct Partial Randomized Encodings . 36

8 Construction of Succinct Partial Randomized Encodings 37
8.1 Correctness and Efficiency . 39
8.2 Proof of Security . 41

A Secure Multiparty Computation in the Random Oracle Model 46

B Further Preliminaries 48
B.1 Puncturable Pseudorandom Functions . 48
B.2 Somewhere Statistically Binding Hash . 48
B.3 Indistinguishability Obfuscation for Circuits . 49
B.4 Succinct Randomized Encodings . 49

C Primitives from [KLW15] 50
C.1 Notations . 50
C.2 iO-Compatible Primitives . 51

D Proof of Simulation Security for Succinct Partial Randomized Encodings 56
D.1 Proof of Lemma D.1 . 60
D.2 Proof of Lemma D.2 . 71
D.3 Proof of Lemma D.3 . 80
D.4 Proof of Lemma D.4 . 82

2

1 Introduction

In this work, we study the fascinating notion of output-compressing randomized encodings for Turing ma-
chines. We explore the implication of such encodings to a natural and surprisingly unexplored form of
secure multiparty computation for Turing Machines, and also to indistinguishability obfuscation for Turing
Machines.

Output-compressing randomized encodings were introduced in the works of Ananth and Jain[AJ15] and
Lin, Pass, Seth and Telang [LPST16] as a generalization of randomized encodings [IK00] and succinct
randomized encodings [KLW15, BGL+15, CHJV15]. Recall that in an output-compressing randomized
encoding scheme for Turing machines, there exists an encode algorithm that takes as input a Turing machine
M and an input x. It outputs an encoding M̃x such that the decode algorithm, given this encoding M̃x,
can compute the output M(x). The efficiency requirement is that for any machine M and input x, the size
of the encoding is poly(|M |, |x|, λ), for some fixed polynomial poly, where λ is the security parameter. In
particular, the size of the encoding should be independent of the output length and the running time of the
machine M on input x.1 In those papers, they defined both indistinguishability based and simulation based
security notions. In this work, we will focus on the stronger notion of simulation based security which states
that an output-compressing randomized encoding scheme is secure if there exists a simulator Sim, that, for
any Turing machine M and input x, given just the output M(x), along with the size of the machine |M |
and the input length |x|, outputs a simulated encoding M̃x that is indistinguishable from a real encoding of
the machine M and input x.2 As stated here, this goal is impossible due to an “incompressibility” argument
as shown by Lin et al.[LPST16]. Such incompressibility arguments have been a source of impossibility
proofs in many areas of cryptography such as functional encryption, garbled circuits and secure multiparty
computation [BSW11, AIKW13, CIJ+13, AGVW13, HW15] and this is perhaps the reason why simulation
secure output compressing randomized encodings have not been well studied so far.

Our starting observation is that the above impossibility fails to hold in a shared randomness model where
the size of the randomness can grow with the output length. More formally, both the encoder and decoder
share a random string (whose size can grow with the output length) and we require two properties: (1) For
any machine M and input x, the size of the encoding is poly(|M |, |x|, λ), for some fixed polynomial poly. (2)
There exists a simulator Sim, that, for any Turing machine M and input x, given just the output M(x),
along with the length of the machine |M | and the input length |x|, outputs a pair of a simulated encoding

M̃x and a shared random string that is indistinguishable from the pair of a real encoding and a uniformly
random string.

In fact, our first main result is that we can indeed construct output-compressing randomized encodings for
Turing machines in the shared randomness model based on indistinguishability obfuscation (iO) for circuits
and any assumption in {Decisional Diffie Hellman (DDH),Learning With Errors (LWE), N th Residuosity} where the size
of the shared randomness equals the output length. Recall that iO is necessary because output-compressing
randomized encodings for Turing machines implies iO for circuits as shown by Lin et al.[LPST16] (it is easy
to see that this implication to iO remains true even in the shared randomness model). We describe the
techniques used in our construction in Section 2.1. We then use this new tool to tackle basic feasibility
questions in the context of two fundamental areas in Cryptography: secure multiparty computation (MPC)
and indistinguishability obfuscation (iO).
Compact MPC for Turing machines with unbounded output in the Random Oracle model. The
first basic feasibility question we address is the following: Consider a set of nmutually distrusting parties with
inputs x1, . . . , xn respectively that agree on a Turing machineM . Their goal is to securely compute the output
M(x1, . . . , xn) without leaking any information about their respective inputs, where we stress that the output
can be of any unbounded polynomial size. Crucially, we require that the communication complexity of the
protocol (the sum of the length of the messages exchanged by all the parties) is poly(|M |, |x1|, . . . , |xn|, λ) for
some fixed polynomial poly where λ is the security parameter. In particular, the communication complexity

1the size can depend logarithmically on the output length and running time.
2We actually consider a stronger notion where part of the input need not be hidden and we require that the size of the

encoding should not grow with this revealed part. This is a generalization of the notion of partial garbling schemes introduced
by Ishai and Wee [IW14].

3

should be independent of the output length and the running time of the machine M on input (x1, . . . , xn).
We call such an MPC protocol to be compact. Indeed, this communication efficiency requirement is the most
natural efficiency requirement in the context of MPC for Turing machines.

Remarkably, this extremely basic question, as stated above, has never been considered before to the best
of our knowledge (see related work below for comparison with previous work). At first glance, one may think
that Fully Homomorphic Encryption (FHE), one of the most powerful primitives in Cryptography, should
help solve this problem. The reason being that, at least in the two party setting, FHE allows one party to
encrypt its input and send it to the other party, who can then homomorphically evaluate the function to be
computed “under the hood” and compute an encryption of the final output. However, it is not clear how
this evaluator would learn the output since he does not have the decryption key. Sending the encryption
of the final output to the other party would also blow up the communication complexity. This is related
to the question posed by Hubácek and Wichs [HW15], where they consider a circuit based model, and in
fact, our notion generalizes their model. That is, they consider n parties who wish to securely evaluate
a circuit on their joint inputs such that the communication complexity of the protocol is independent of
the output length of the circuit. In that work, they showed how to achieve semi-honest secure two party
computation with this efficiency requirement assuming iO for circuits and somewhere statistically binding
(SSB) hash. Further, they showed that in the context of malicious adversaries,3 in the standard model, it
is impossible to construct a secure computation protocol with such efficiency requirement even for just two
party computation.

However, in this work, we are not willing to give up on achieving malicious secure compact MPC. Instead,
we find a way to evade this impossibility result! We do so by considering the well studied programmable
random oracle (RO) model [BR93, Nie02, DSW08, Wee09, CJS14, CDG+18]. We stress that typically, people
look to the RO model in the hunt for efficiency improvements but here, we are seeking to establish basic
feasibility results using the RO model. Indeed, the RO model has enabled important feasibility results in the
past which were impossible in the plain model, for example unconditional non-interactive zero-knowledge
arguments for NP with sub-linear communication [IMS12] and Universal Samplers [HJK+16].

More specifically, we show how to construct a compact constant round MPC protocol for Turing machines
in the RO model secure against malicious adversaries assuming iO for circuits and any assumption in {DDH,
LWE, Nth Residuosity}. Recall that by compact, we mean that the communication complexity of the protocol
is independent of the output length and running time of the Turing machine being evaluated on the joint
inputs of the parties. We obtain this result by using output-compressing randomized encodings in the shared
randomness model to compile any non-compact malicious secure constant round MPC protocol (even just
for circuits) in the plain model into a compact constant round MPC protocol for Turing machines in the RO
model while preserving the round complexity. We again stress that to the best of our knowledge, this is the
first MPC protocol for Turing machines where the communication complexity is bounded by a polynomial
in the description length of the machine and the input lengths of all the parties. We also observe that as a
corollary of our work, we obtain the first malicious secure compact MPC protocol in the circuit based model
of Hubácek and Wichs [HW15], in the RO model. We describe the techniques used in our construction in
Section 2.2.
Succinct iO for Turing machines for bounded inputs in the shared randomness model. The
problem of bootstrapping from iO for circuits to iO for Turing machines has been the subject of intense
study over the last few years. In 2015, in three concurrent works [KLW15, BGL+15, CHJV15]4 showed how
to construct iO for Turing machines where the size of the obfuscation grows with a bound on the input
length to the Turing machine. In this work, we ask the following question: can we construct iO for Turing
machines in the shared randomness model where the obfuscator and evaluator have a shared random string
that grows with the input bound but the size of the obfuscation does not?

Lin et al. [LPST16] showed that output-compressing randomized encodings are closely related to iO for
Turing machines. That is, they showed that simulation secure output-compressing randomized encodings

3their impossibility in fact even ruled out the simpler setting of honest but deterministic adversaries - such an adversary
behaves honestly in the protocol execution but fixes its random tape to some deterministic value.

4Recently, concurrent to our work, [AL18, AM18, GS18] also showed how to construct iO for Turing machines where, similar
to [KLW15, BGL+15, CHJV15], the size of the obfuscation grows with a bound on the input length to the Turing machine.

4

in the plain model implies iO for Turing machines with unbounded inputs.5 In particular, this implies iO
for Turing machines with bounded inputs where the size of the obfuscation does not grow with the input
bound. As we know, simulation secure output-compressing randomized encodings are impossible in the
plain model. However, it turns out that this implication does not carry over in the shared randomness
model. That is, if we start with output-compressing randomized encodings in the shared randomness model
and apply the transformation in [LPST16], in the resulting iO scheme, the size of the obfuscation does in fact
grow with the input bound. The key obstacle is that in the transformation, the obfuscation consists of an
output-compressing randomized encoding that is the root of a GGM-like tree ([GGM86]). This encoding, on
evaluation, outputs another output-compressing randomized encoding corresponding to its child node and
the process is repeated. In order to evaluate the obfuscated program on an input of length n, the evaluator
has to traverse the obfuscated program up to a depth of length n. As a result, the machine being encoded in
the root needs the shared randomness for each layer, up to a depth of length n. Hence, the size of the machine
encoded in the root grows with the input bound and so does the size of the obfuscated program. Note that
this approach fails even if the size of the shared randomness for the encoding is just 1 bit (independent of
the length of the output).

Nevertheless, we show how to overcome this obstacle by taking a completely different approach. In
our solution, the obfuscated program consists of an output-compressing randomized encoding in which,
crucially, neither the machine being encoded nor the input to the machine, depends on the input bound
of the obfuscation scheme. Hence, the size of the encoding, and therefore, also the size of the obfuscation,
does not grow with the input bound. We elaborate more about the techniques used in our construction in
Section 2.3. Concretely, we obtain the following result: iO for Turing machines in the shared randomness
model assuming iO for circuits and any assumption in {DDH, LWE, Nth Residuosity}, where the obfuscator
and evaluator have a shared random string of length poly(n, λ) for some fixed polynomial poly, and the size
of the obfuscation is poly1(|M |, λ) for some fixed polynomial poly1. Here, M denotes the Turing machine
being obfuscated and n denotes the input bound.

1.1 Our Results

In this paper, we achieve the following results.

1) Output-compressing randomized encodings.
We prove the following theorem:

Theorem 1.1 (Informal). There exists an output-compressing randomized encoding scheme for Turing
machines in the shared randomness model assuming the existence of:

• iO for circuits (AND)

• A ∈ {DDH, LWE, Nth Residuosity}.

Further, the length of the shared randomness is equal to the output length.

2) Compact MPC for Turing machines with unbounded output in the RO model.

We prove the following theorem:

Theorem 1.2 (Informal). For any n, t > 0, there exists a constant round compact MPC protocol amongst
n parties for Turing machines in the Programmable Random Oracle model that is malicious secure against
up to t corruptions assuming the existence of:

• Output-compressing randomized encodings in the shared randomness model (AND)

5Lin et al. [LPST16] in fact showed that a weaker notion of distributional indistinguishability based secure output-compressing
randomized encodings suffices to imply iO for Turing machines with unbounded inputs. However, they also supplement this by
showing that it is impossible, in general, to construct such encodings.

5

• Constant round MPC protocol amongst n parties in the plain model that is malicious secure against
up to t corruptions.

Once again, recall that by compact, we mean that the communication complexity of the protocol is
independent of the output length and running time of the Turing machine being evaluated on the joint
inputs of the parties. Here, we note that the above compiler even works if the underlying MPC protocol is
for circuits. That is, we can convert any constant round protocol for circuits into a constant round protocol
for Turing machines (with an input bound) by first converting the Turing machine into a (potentially large)
circuit.

Also, we can instantiate the underlying MPC protocol in the following manner to get a round optimal
compact MPC: append a non-interactive zero knowledge argument based on DLIN in the common random
string model [GOS06] to either the two round semi-malicious MPC protocol of [MW16] that is based on LWE
in the common random string model or the ones of [GS18, BL18] that are based on DDH/N th residuosity
in the plain model, to get two round malicious secure MPC protocols in the common random string model.
We can then implement the common random string required for the underlying protocol via the RO. We
thus achieve the following corollary:

Corollary 1.1. Assuming the existence of:

• iO for circuits (AND)

• DDH, or LWE, or Nth Residuosity (AND)

• DLIN,

there exists a compact, round optimal (two round) MPC protocol π for Turing machines in the Programmable
Random Oracle model that is malicious secure against a dishonest majority.

Our result also gives a malicious secure compact MPC protocol in the circuit-based setting of [HW15] in
the RO model. We also achieve other interesting corollaries by instantiating the underlying MPC protocol
in the setting of super-polynomial simulation or in the setting of concurrent executions. We elaborate on
both the above points in Section 6.

3) Succinct iO for Turing machines for bounded inputs in the shared randomness model.

We prove the following theorem:

Theorem 1.3 (Informal). There exists an iO scheme for Turing machines in the shared randomness model
where the size of the obfuscated program is independent of the input bound assuming the existence of:

• iO for circuits,

• DDH, or LWE, or Nth Residuosity.

1.2 Related work

A series of works [OS97, GHL+14, GGMP16, Mia16, HY16, LO17] consider MPC for RAM programs. How-
ever, in all of them, the communication complexity of the protocol grows with the running time of the RAM
program. As a result, the communication complexity of the protocol in the Turing machine model would
also grow with the output length. We stress that in our work, we require that the communication complexity
can grow with neither output length nor running time of the Turing machine.

Ananth et al.[AJS17] construct an iO scheme for Turing machines in which, for any machine M and
input bound L, the size of the obfuscation is |M |+ poly(L, λ). However, in our setting, we require that the
size be independent of this bound L.

6

Open Problems. Hubácek and Wichs [HW15] show that some weak form of obfuscation (that does not
seem to imply iO) is necessary to construct compact semi-honest secure MPC protocols in the plain model.
One interesting open problem is to study whether, in fact, iO is necessary. Further, another interesting open
problem is can we construct compact MPC protocols in the RO model based on weaker assumptions or in
fact, obfuscation is necessary? Our construction gives an initial feasibility result for this problem and we
believe it would be an interesting research direction to pursue further.

2 Technical Overview

2.1 Output Compressing Randomized Encodings

We will now discuss a high-level overview of our output-compressing randomized encoding (OcRE) scheme in
the shared randomness model. LetM be a family of Turing machines with output size bounded by o-len. An
OcRE scheme forM in the shared randomness model consists of a setup algorithm, an encoding algorithm
and a decoding algorithm. The setup algorithm takes as input security parameter λ together with a string
rnd of length o-len, and outputs a succinct encoding key ek of size poly(λ).6 This encoding key is used by the
encoding algorithm, which takes as input a machine M ∈M, an input x ∈ {0, 1}∗, and outputs an encoding

M̃x. Finally, the decoding algorithm can use M̃x and rnd to recover M(x). For efficiency, we require that
the encoding time depends only on |M |, |x| and security parameter λ. In particular, the size of the encoding
should not grow with the output length o-len or the running time of M on x. 7

The starting point of our construction is the succinct randomized encoding scheme of [KLW15], which is
an encoding scheme for boolean Turing machines, and the size of the encoding depends only on |M |, |x| and
security parameter λ. We want to use this tool as a building block to build an encoding scheme for general
Turing machines (i.e. with multi-bit output) where the size of the encoding still only depends on |M |, |x|
and λ. As a first step, let us consider the following approach. The encoding algorithm outputs an obfuscated
program Prog[M,x], which has M and x hardwired, takes input j ∈ [o-len], and outputs a KLW encoding
of Mj , x (the randomness for computing the encoding is obtained by applying a PRF on j). Here, Mj is a
boolean Turing machine which, on input x, outputs the jth bit of M(x). The decoding algorithm runs Prog
for each j ∈ [o-len], obtains o-len different encodings, and then decodes each of them to obtain the entire
output bit by bit. Clearly, this construction satisfies the efficiency requirement. This is because the size of
the program Prog depends only on |M |, |x|, and hence the size of the encoding only depends on |M |, |x|, λ.
As far as security is concerned, it is easy to show that this scheme satisfies indistinguishability-based security;
that is, if (M0, x0) and (M1, x1) are two pairs such that M0(x0) = M1(x1), |M0| = |M1|, |x0| = |x1|, then
the obfuscation of Prog[M0, x0] is computationally indistinguishable from the obfuscation of Prog[M1, x1].
Unfortunately, recall that our goal is simulation security, and it is not possible to simulate an obfuscation
of Prog[M,x], given only M(x) as input. In particular, if y = M(x) is a long pseudorandom string (whose
length can be much longer than the size of Prog[M,]), then it should be hard to compress y to a short
encoding (as shown by Lin et al. [LPST16]).

As noted in the previous section, we will evade the “incompressibility” argument by allowing the shared
randomness to have size that grows with the output length. Our goal will be to allow the simulator to embed
the output of the machine M in this randomness. Our second attempt is as follows. The setup algorithm
computes a short commitment ek to the shared randomness (say with a Merkle tree), and outputs ek as
the encoding key. The encoding algorithm computes an obfuscation of Prog[M,x, ek], which has M , x, ek
hardwired, takes as input an index j, a bit b (which is supposed to be the jth bit of the shared randomness),
and an opening π that the bit b is indeed the jth bit of the shared random string. The program checks the
proof π, and then computes a KLW encoding of (Mj , x).

While the bit b is essentially ignored in the real-world encoding, it is used by the simulator in the ideal
world. In the ideal world, the simulator, on receiving M(x), masks it with a pseudorandomly generated

6We will assume o-len is at most 2λ.
7Strictly speaking, it is allowed to depend polylogarithmically on the running time of M on input x; for this overview, we

will ignore this polylogarithmic dependence on the running time.

7

one-time pad and outputs the resultant string as the shared randomness, and the short commitment ek
is computed as in real world. For the encoding, it outputs an obfuscation of Prog-sim[ek], which takes as
input (j, b, π), checks the proof π, unmasks the bit b to obtain M(x)j and simulates the KLW randomized
encoding using M(x)j . This program has behavior identical to Prog[M,x, ek] as long as the adversary only
gives openings to the original bits of the shared randomness.

There is a simple problem with this idea: obfuscation only guarantees indistinguishability of programs
that are functionally equivalent, and although the security of a Merkle tree would make it computationally
infeasible for an adversary to come up with an opening to a wrong value, these inputs do in fact exist. To fix
this problem, we use a special iO-compatible family of hash functions called ‘somewhere-statistically binding
(SSB) hash’, introduced by [HW15]. Intuitively, this primitive is similar to a merkle tree except for two
additional features. First, it allows a given position to be statistically “bound”, where for that index it is
only possible to give an opening for the correct bit. So there are three algorithms, Setup,Open, and Verify,
as in the case of a Merkle tree, but Setup additionally takes as input a position to bind. If j is the bound
position for H then there is no opening π for a bit b ̸= xj such that Verify(π, b, j,H(x)) accepts. Second,
this bound position is hidden, so we can change it without being detected. Using this new hash allows us
to make a series of hybrids where we change the shared randomness one bit at a time without giving up
indistinguishability.

2.2 Compact MPC for Turing Machines in the Random Oracle Model.

We now describe the techniques used in our round preserving compiler from any non-compact constant
round malicious secure MPC protocol in the plain model to a compact constant round malicious secure MPC
protocol in the RO model, using output-compressing randomized encodings in the shared randomness model.

To begin with, consider any constant round MPC protocol π in the plain model. For simplicity, lets
assume that every party broadcasts a message in each round. In order to make it compact, our main idea
is a very simple one: use output-compressing randomized encodings to shrink the messages sent by every
party in each round so that they are independent of the output length and running time of the machine.
That is, instead of sending the actual message of protocol π, each party just sends an output-compressing
randomized encoding of a machine and its private input that generates the actual message!

More precisely, consider a party P with input x that intends to send a message msg1 in the first round
as part of executing protocol π. Let’s denote M to be the Turing machine that all the parties wish to
evaluate. Let M1 denote the algorithm used by the first party to generate this message msg1 in the first
round. Now, instead of sending msg1, P sends an encoding of machine M1 and input (x, r) where r is the
randomness used by party P in protocol π. The recipient first decodes this encoding to receive P’s first
round message of protocol π - msg1. Without loss of generality, let’s assume that the length of randomness
r is only proportional to the input length (else, internally, M1 can apply a pseudorandom generator). In
terms of efficiency, the description of the machine M1 only depends on M and so it is easy to see that the
size of the encoding does not depend on the non-compact message - msg1. A natural initial observation is
that in order to construct a simulator for the protocol, we need to generate simulated encodings. However,
as we know that simulation secure output-compressing randomized encodings are impossible, we will resort
to using our new encodings constructed in the shared randomness model.

Need for Random Oracle. Does this result in a compact protocol in the common random string (CRS)
model, with the CRS being the shared randomness and its size grows with the output length? At this
juncture, we first recall that [HW15] showed that malicious secure compact MPC is impossible even in the
CRS model where the size of the CRS can grow with the output length.8 As a result, it must be the case
that our protocol is not a compact and secure MPC protocol in the CRS model. We first explain why and

8They actually show that it is impossible in an offline/online setting where the initial offline phase takes place independent
of the parties’ inputs and can have arbitrarily long communication complexity. In particular, using the offline phase to perform
a coin-tossing protocol to generate the CRS implies the impossibility in the CRS model.

8

this also brings us to the use of the Programmable Random Oracle. To illustrate the issue, let’s continue the
protocol execution. Now, after receiving a message in the first round from every other party, P first decodes
all these messages to compute a transcript trans for protocol π. P then computes an encoding of machine
M2 and input (x, r, trans) where M2 is the machine used to generate the next message msg2 and sends this
in round 2. Looking ahead to the security proof, the simulator will have to generate a simulated encoding
of this message and also simulate the shared randomness. To do that, the simulated shared randomness
will have to depend on M2(x, r, trans). Notice that the simulator will have to decide the simulated shared
randomness (aka the CRS) apriori before beginning the protocol execution. However, in the setting of
malicious adversaries, this is not possible because the value trans depends on the adversary’s input and
randomness, both of which are not even picked before the adversary receives the CRS.

Therefore, we resort to the RO model. Now, in each round, along with its encoding, P also sends a short
index. The recipient first queries the RO on this index to compute the shared randomness that is then
used to decode. Looking ahead to the proof, the simulator can pick a random index that the RO has not
been queried on so far and “program” the RO’s output to be the simulated shared randomness. This can
be executed after receiving the transcript of the previous round and before sending the pair of index and
simulated encoding in any round.

Strong Output-compressing Randomized Encodings. Next, it turns out that, in fact, just standard
output-compressing randomized encodings do not suffice for the above transformation. To see why, consider
any round j. Let trans denote the transcript of the underlying protocol π at the end of round (j − 1). Now,
in round j, party P sends an encoding of machine Mj and input (x, r, trans), where Mj is the machine used
to generate the jth round message. However, the size of trans could depend on the output length of the
protocol because trans denotes the transcript of the underlying non-compact protocol π. A natural attempt
to solve would be to let trans be the transcript of the new compact protocol up to this point instead of the
underlying protocol, and to let Mj decode the transcript when forming the next message. This also turns
out to be problematic, though, since we now need a randomized encoding of a machine Mj which accesses
the RO. As a result, since the size of the encoding in each round grows with the input to the machine being
encoded, the size of the messages in each round also does depend on the output length and so, we are back
to square one with a non-compact protocol!

In order to solve this issue, we make the crucial observation that the part of the input to the machine
being encoded that actually grows with the output length of the protocol is actually public information.
That is, we do not care about any privacy for this part of the input and only require that the size of
the encoding does not grow with this public input. Corresponding to this, we define a new stronger
version of output-compressing randomized encodings in the shared randomness model, which we call strong
output-compressing randomized encodings. In more detail, the encoding algorithm takes as input a machine
M , a private input x1 and a public input x2 and outputs an encoding. Informally, the efficiency requirement
is that the size of the encoding is poly(|M |, |x1|) for a fixed polynomial poly and does not depend on x2, in
addition to being independent of the output length and running time. Further, security requires that, in
addition to the output M(x1, x2), the simulator is also given the public input x2 and the tuple of honest
encoding and honest shared randomness should be indistinguishable from the tuple of simulated encoding
and simulated shared randomness. Thus, if we use strong output-compressing randomized encodings, we
overcome the issue. Our construction of strong output-compressing randomized encodings is very similar to
the construction in Section 2.1 except that we replace the succinct randomized encodings with a stronger
notion called succinct partial randomized encodings. More details can be found in Section 5.

Another subtle detail is that, while proving security, in the sequence of hybrids, it is essential that we
first switch the encodings to be simulated before switching the messages of the protocol π from real to
simulated. This is because we can not afford to send honest encodings of simulated messages of protocol
π as the description of the simulator’s machine to generate these messages could grow with the output

9

bound. One interesting consequence of the above point is that our transformation is oblivious to whether
the underlying simulator rewinds or runs in super-polynomial time. As a result, our construction naturally
extends even to the setting of concurrent security if the underlying protocol is concurrently secure.

Notice that our compiler to solve this very basic feasibility question is in fact, remarkably simple, which
further highlights the power of simulation secure output-compressing randomized encodings in the shared
randomness model. We refer the reader to Section 6 for more details about our compact MPC protocol and
proof.

2.2.1 Implication in the circuit model of [HW15]

First, recall that in the setting of Hubácek and Wichs [HW15], the goal is to construct an MPC protocol
for circuits where the communication complexity is independent of the output length of the circuit. At first
glance, it might seem that our construction trivially implies a result in the circuit setting as well. However,
this is not quite directly true. Observe that in our protocol, the communication complexity grows with the
description of the Turing machine and so, when we convert the circuit to the Turing machine model, the
communication complexity grows with the size of the circuit. In the case of a circuit, the output length
can in fact be proportional to the size of the circuit. To circumvent this, we will consider a Turing machine
representation of a Universal circuit, that takes as input a circuit C and an input x and evaluates C(x). Now,
notice that the size of this universal circuit, and by extension, the size of the Turing machine evaluated, is
independent of the circuit being evaluated. Further, we will set the circuit being computed - C, to be part of
the “public” input to each strong output-compressing randomized encoding that is computed in each round
of the protocol. Since all parties have knowledge of C, we don’t need to hide this input. As a result, neither
the machine being encoded nor the private input depend on the circuit being evaluated and this solves the
problem. That is, the communication complexity of the resulting compiled protocol is independent of the
output length of the circuit.

2.3 Succinct iO for Turing Machines in the Shared Randomness Model

We now describe the techniques used in our construction of iO for Turing machines in the shared randomness
model where the size of the obfuscated program does not grow with a bound on the input length. We
will denote such obfuscation schemes as succinct iO schemes in this section. First, we recall from the
introduction that the transformation of Lin et al. [LPST16] to go from output-compressing randomized
encodings to succinct iO does not work in the shared randomness model. Briefly, the reason was that
if we want to support Turing machines with input length n, then there must be n chunks of the shared
randomness, and the ‘top-level’ encoding in the LPST scheme must contain a commitment to each of the n
chunks, and as a result, the size grows with n.

Therefore, our obfuscation scheme will have a completely different structure. Recall that [KLW15] showed
an obfuscation scheme where the size of obfuscation of M with input bound n grows with the security
parameter, input bound and machine size (but does not depend on the running time of M on any input).
We will use such weakly-succinct obfuscation scheme to obtain succinct iO.

Consider a program P that takes as input a Turing machine M , input bound n, and outputs a weakly-
succinct obfuscation of M with input bound n (the randomness for obfuscation can be generated using a
pseudorandom generator). The size of the output grows with n, size of M and security parameter λ. But
the important thing to note here is that the size of program P does not grow with input bound n. Therefore,
we can use output-compressing randomized encodings to construct succinct iO. The obfuscation algorithm
simply outputs an encoding of program P with inputs (M,n). Clearly, the size of this encoding does not
grow with n (using the efficiency property of OcRE). The proof of security follows from the security of the
obfuscation scheme and the output-compressing randomized encoding scheme.

Finally, an informed reader might recall that the LPST construction required the security parameter to
grow at each level, while in our case, we can work with a single security parameter. The reason for this is

10

because their security reduction loses a factor of 2 for each level, and therefore the security parameter must
grow at each level. In our case, we have a different proof structure, and the switch from encoding of P,M0

to P,M1 in the security proof is a single-step jump.

Organization. We first describe some preliminaries in Section 3. In section Section 4, we describe the
definition of strong output-compressing randomized encodings for Turing machines in the shared randomness
model and this is followed by the construction in Section 5. Then, in Section 6, we construct compact MPC
protocols in the random oracle model. Our construction of succinct iO for Turing machines is described in
Section 7. Finally, we describe the construction of succinct partial randomized encodings in Section 8 and
we defer its proof of security to the supplementary material attached along with the submission.

3 Preliminaries

We will use λ to denote the security parameter throughout the rest of the paper. For any string s of length
n, let s[i] denote the ith bit of s. Without loss of generality, we assume all Turing machines are oblivious.

We describe the definition of secure multiparty computation in the random oracle model in Appendix A.
Some additional preliminaries can be found in Appendix B.

4 Randomized Encodings: Definitions

4.1 Succinct Partial Randomized Encodings

In this section, we introduce the notion of succinct partial randomized encodings (spRE). This is similar
to the notion of succinct randomized encodings (defined in B.4), except that the adversary is allowed to
learn part of the input. For efficiency, we require that if the machine has size m, and ℓ bits of input are
hidden, then the size of randomized encoding should be polynomial in the security parameter λ, ℓ and m.
In particular, the size of the encoding does not depend on the entire input’s length (this is possible only
because we want to hide ℓ bits of the input; the adversary can learn the remaining bits of the input). This
notion is the Turing Machine analogue of partial garbling of arithmetic branching programs, studied by Ishai
and Wee [IW14].

A succinct partial randomized encoding scheme SPRE for a class of boolean Turing machinesM consists
of a preprocessing algorithm Preprocess, encoding algorithm Encode, and a decoding algorithm Decode with
the following syntax.

Preprocess(1λ, x2 ∈ {0, 1}∗): The preprocessing algorithm takes as input security parameter λ (in unary),
string y ∈ {0, 1}∗ and outputs a string hk.

Encode(M ∈ M, T ∈ N, x1 ∈ {0, 1}∗, hk ∈ {0, 1}p(λ)): The encoding algorithm takes as input a Turing
machine M ∈M, time bound T ∈ N, partial input x1 ∈ {0, 1}∗, string hk ∈ {0, 1}p(λ), and outputs an

encoding M̃ .

Decode(M̃, x2, hk): The decoding algorithm takes as input an encoding M̃ , a string x2 ∈ {0, 1}∗, string hk
and outputs y ∈ {0, 1,⊥}.

Definition 4.1. LetM be a family of Turing machines. A randomized encoding scheme SPRE = (Preprocess,
Encode,Decode) is said to be a succinct partial randomized encoding scheme if it satisfies the following
correctness, efficiency and security properties.

• Correctness: For every machine M ∈M, string x = (x1, x2) ∈ {0, 1}∗, security parameter λ and T ∈ N,
if hk← Preprocess(1λ, x2), then Decode(Encode(M,T, x1, hk), x2) = TM(M,x, T).

11

• Efficiency: There exist polynomials pprep, penc and pdec such that for every machine M ∈ M, x =
(x1, x2) ∈ {0, 1}∗, T ∈ N and λ ∈ N, if hk ← Preprocess(1λ, x2), then |hk| = pprep(λ), the time to

encode M̃ ← Encode(M,T, x1, hk) is bounded by penc(|M |, |x1|, log T, λ), and the time to decode M̃ is
bounded by min(Time(M,x, T) · pdec(λ, log T).

• Security: For every PPT adversary A = (A1,A2), there exists a PPT simulator S such that
for all PPT distinguishers D, there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[1 ← D(Expt-SPRE-RealSPRE,A(λ))] − Pr[1 ← D(Expt-SPRE-IdealSRE,A,S(λ))] ≤ negl(λ), where
Expt-SPRE-Real and Expt-SPRE-Ideal are defined in Figure 11. Moreover, the running time of S is
bounded by some polynomial pS(|M |, |x1|, log T, λ).

Experiments Expt-SPRE-RealSPRE,A(λ) and Expt-SPRE-IdealSPRE,A,S(λ)

Expt-SPRE-RealSPRE,A(λ):

- (M,x = (x1, x2), T, σ)← A1(1
λ).

- hk← Preprocess(x2, 1
λ).

- M̃ ← Encode(M,T, x1, hk).

- Experiment outputs A2(M̃, σ).

Expt-SPRE-IdealSPRE,A,S(λ):

- (M,x = (x1, x2), T, σ)← A1(1
λ),

t∗ = min (T,Time (M,x)), out = TM (M,x, T).

- hk← Preprocess(1λ, x2).

- M̃ ← S
(
1|M|, 1|x1|, hk, 1λ, out, t∗

)
.

- Experiment outputs A2(M̃, σ).

Figure 1: Simulation Security Experiments for partial randomized encodings

Our construction of succinct partial randomized encodings is closely related to the succinct randomized
encodings scheme by [KLW15] and we defer the details to Appendix 8.

4.2 Strong output-compressing Randomized Encodings in the shared ran-
domess model

The notion of succinct randomized encodings (defined in Appendix B) was originally defined for boolean
Turing machines. We can also consider randomized encodings for Turing machines with long outputs. Using
(standard) succinct randomized encodings, one can construct randomized encodings for Turing machines
with multi-bit outputs, where the size of encodings grows linearly with the output size. In a recent work,
Lin et al. [LPST16] introduced a stronger notion called output-compressing randomized encodings, where the
size of the encoding only depends sublinearly on the output length. Lin et al. also showed that simulation
based security notions of output-compressing randomized encodings are impossible to achieve. In this work,
we consider a stronger notion of output-compressing randomized encodings in the shared randomness model
where the encoder and decoder have access to a shared random string (denoted by crs). Here, the machine
also takes another public input x2 along with a private input x1 with the requirement that the size of the
encoding should only grow polynomially in the size of the machine and the private input x1. In particular, it
does not grow with x2 or the running time of the machine or its output length. We define it formally below.

A strong output-compressing randomized encoding scheme S.OcRE = (Setup,Encode,Decode) in the
shared randomness model consists of three algorithms with the following syntax.

Setup(1λ, 1o-len, crs ∈ {0, 1}o-len): The setup algorithm takes as input security parameter λ, output-bound
o-len and a shared random string crs of length o-len. It outputs an encoding key ek.

Encode((M, tmf(·)), x = (x1, x2), T, ek): The encoding algorithm takes as input an oblivious Turing Machine
M with tape movement function tmf(·), input x consisting of a private part x1 and a public part x2,

time bound T ≤ 2λ (in binary) and an encoding key ek, and outputs an encoding M̃x.

Decode(M̃x, x2, crs): The decoding algorithm takes as input an encoding M̃x, a public input x2, the shared
random string crs and outputs y ∈ {0, 1}∗ ∪ {⊥}.

12

Definition 4.2. A strong output-compressing randomized encoding scheme S.OcRE = (Setup,Encode,Decode)
in the shared randomness model is said to be secure if it satisfies the following correctness, efficiency and
security requirements.

• Correctness: For all security parameters λ ∈ N, output-length bound o-len ∈ N, crs ∈ {0, 1}o-len,
machine M with tape movement function tmf(·), input x = (x1, x2), time bound T such that |M(x)| ≤
o-len, if ek ← Setup(1λ, 1o-len, crs), M̃x ← Encode((M, tmf(·)), x, T ek), then Decode(M̃x, x2, crs) =
TM(M,x, T).

• Efficiency: There exist polynomials p1, p2, p3 such that for all λ ∈ N, o-len ∈ N, crs ∈ {0, 1}o-len:

1. If ek← Setup(1λ, 1o, crs), |ek| ≤ p1(λ, log o).

2. For every Turing machine M , time bound T , input x = (x1, x2) ∈ {0, 1}∗, if

M̃x ← Encode(M,x, T, ek), then |M̃x| ≤ p2(|M |, |x1|, log |x2|, log T, log o, λ).

3. The running time of Decode(M̃x, x2, crs) is at most min (T,Time(M,x)) · p3(λ, log T).

• Security: For every PPT adversary A = (A1,A2), there exists a simulator S such that for all PPT
distinguishers D, there exists a negligible function negl(·) such that for all λ ∈ N,

Pr[1← D(Expt-S.OcRE-RealS.OcRE,A(λ))]

− Pr[1← D(Expt-S.OcRE-IdealS.OcRE,A,S(λ))] ≤ negl(λ),

where Expt-S.OcRE-Real and Expt-S.OcRE-Ideal are defined in Figure 2.

Experiments Expt-S.OcRE-RealS.OcRE,A(λ) and Expt-S.OcRE-IdealS.OcRE,A,S(λ)

Expt-S.OcRE-RealS.OcRE,A(λ):

- (1o-len, (M, tmf(·)), x = (x1, x2), T, σ)← A1(1
λ).

- crs← {0, 1}o-len,
ek← Setup(1λ, 1o-len, crs).

- M̃ ← Encode((M, tmf(·)), x, T, ek).

- Experiment outputs A2(crs, ek, M̃, σ).

Expt-S.OcRE-IdealS.OcRE,A(λ):

- (1o-len, (M, tmf(·)), x = (x1, x2), T, σ)← A1(1
λ).

- Let t∗ = min(T,Time(M,x)) and b∗ = TM(M,x, T).

- s← S(1|M|, 1|x1|, tmf(·), x2, t
∗, b∗, 1λ).

- Let s = (crs, M̃).

- ek← Setup(1λ, 1o-len, crs).

- Experiment outputs A2(crs, ek, M̃, σ).

Figure 2: Simulation Security Experiments for strong output-compressing randomized encodings in the
shared randomness model

Remark: In particular, note that strong output-compressing randomized encodings (S.OcRE) implies output-
compressing randomized encodings (OcRE) by setting the public input x2 to be ⊥.

5 Strong Output-compressing Randomized Encodings in the CRS
Model

In this section, we show a construction of strong output-compressing randomized encodings in the common
random string (CRS) model. Formally, we show the following theorem:

Theorem 5.1. Assuming the existence of:

• iO for circuits (AND)

• Somewhere statistically binding (SSB) hash (AND)

13

• Puncturable PRFs (AND)

• Succinct partial randomized encodings for single-bit output Turing machines,

There exists a strong output-compressing randomized encoding scheme for Turing machines in the shared
randomness model.

Instantiating the SSB hash and the succinct partial randomized encodings, we get the following corollary:

Corollary 5.1. Assuming the existence of:

• iO for circuits (AND)

• A ∈ {DDH, LWE, Nth Residuosity},

There exists a strong output-compressing randomized encoding scheme for Turing machines in the shared
randomness model.

Notation and Primitives used: We will be using the following cryptographic primitives for our con-
struction:

• Indistinguishability obfuscation for circuits (Ckt.Obf, Ckt.Eval).

• Succinct partial randomized encodings for single-bit output Turing machines (SPRE.Preprocess,
SPRE.Encode, SPRE.Decode). Without loss of generality, we assume that the algorithm SPRE.Encode
uses λ bits of randomness - it can internally apply a PRG on this randomness if a larger amount is
required.

• Somewhere statistically binding hash(SSB.Gen, SSB.Open, SSB.Verify).

• A Puncturable PRF (F1, PPRF.Puncture1) that takes inputs of size λ and outputs 1 bit.

• A Puncturable PRF (F2, PPRF.Puncture2) that takes inputs of size λ and outputs λ bits.

5.1 Construction

S.OcRE.Setup(1λ, 1o, crs ∈ {0, 1}o): The setup algorithm does the following:

1. Choose hash function H ← SSB.Gen(1λ, o, 0).9

2. Compute h = H(crs) and set ek = (h,H).

S.OcRE.Encode(M,x = (x1, x2), T, ek = (h,H)): The encoding algorithm does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).

2. Choose a key KSPRE for the puncturable PRF F2.

3. Let Mi denote the turing machine that, on input x, runs the machine M on input x and outputs
the ith bit of M(x). Let t denote |SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

4. Compute P̃rog← Ckt.Obf(Prog, 1λ) where the program Prog is defined in Figure 3. Note that the
size of the program Prog is padded appropriately so that it is equal to the size of the program
Prog-sim defined later in Figure 4.

5. Output M̃x = (P̃rog, t,H).

9We modify the syntax of the SSB hash system slightly to allow the binding index to range from 0, . . . , o and without loss of
generality, just set SSB.Gen(1λ, o, 0) = SSB.Gen(1λ, o, 1). That is, when the binding index is set as 0, we actually don’t care at
what index the hash system is bound at and will not actually use the statistically binding property. This is just to be consistent
with the definition of the SSB hash system.

14

Prog

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t].
Hardwired : Hash value h ∈ {0, 1}λ, machine M , input x1, PRF key KSPRE, bound T , preprocessed value
hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. Recall that Mi denotes the turing machine that, on input x, runs the machine M on input x and

outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i)) and output the
jth bit of out.

Figure 3: Circuit Prog

S.OcRE.Decode(M̃x = (P̃rog, t,H), x2, crs): For each i ∈ [o], the decoding algorithm computes bit outi as
follows:

1. Parse crs = (crs[1], crs[2], . . . , crs[o]), where each crs[j] is a bit.

2. Compute SSB proof for each crs[j]; that is, compute π[j] = SSB.Open(H, crs, j).

3. For j = 1 to t, do:

(a) Compute M̃i[j] = Ckt.Eval(P̃rog, (i, crs[i], π[i], j)).

4. Let M̃i = (M̃i[1] M̃i[2] . . . M̃i[t]). Compute outi = SPRE.Decode(M̃i, x2).

Finally, it outputs (out1 out2 . . . outo).

Correctness and Succinctness Correctness follows from the correctness of (SPRE.Encode,SPRE.Decode)
and (Ckt.Obf, Ckt.Eval).

Below we show the three efficiency properties required by the definition.

1. If ek← Setup(1λ, 1o, crs), |ek| = ℓhash(λ) + ℓfn(λ), where ℓhash and ℓfn are from SSB.

2. For every Turing machine M , time bound T , input x = (x1, x2) ∈ {0, 1}∗, if M̃x ← Encode(M,x, T, ek),

then |M̃x| = (|prog|+|t|) ≤ |Prog|+poly(λ). Prog is padded to be the same length as the programs used
in the hybrids and Prog-sim, so |Prog| is the maximum of the length of these programs. By inspecting
the values hardwired in each of these programs we get |Prog| ≤ p(|h|, |M |, |x1|, |hk|, k, log o, t), where
k is the maximum size of the keys of F1 and F2. By the efficiency of SPRE, the definition of SSB
hashes and the definition of puncturable PRFs we get that |Prog| ≤ p2(λ, |M |, |x1|, log o) and thus

|M̃x| ≤ p2(λ, |M |, |x1|, log |x2|, log o) for some fixed polynomial p2.

3. The running time of Decode(M̃x, x2, crs) is at most O(o× t1+o× t× t2) where t1 is the running time of

SPRE.Decode(M̃i, x2) and t2 is the running time of Ckt.Eval(P̃rog, (i, crs[i], π[i], j)). By the efficiency of

the SPRE scheme and the iO scheme we have Decode(M̃x, x2, crs) ≤ min (T,Time(M,x)) · p3(λ, log T).

5.2 Proof of Security

5.2.1 Description of Simulator

The simulator S.OcRE.Sim gets as input the value M(x) (which is the output of the machine M on input x)

and the public part of the input x2, and it must simulate the shared random string crs and an encoding M̃x

of the machine M and x. We now describe the simulator.

S.OcRE.Sim(1|M|,1|x1|,x2,1
λ,M(x),T):

The simulator does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).

15

2. Choose a key Kcrs for the puncturable PRF F1 and a key Ksim for the puncturable PRF F2.

3. Then, for each i, compute crs[i] = M(x)i ⊕ wi where wi = F (Kcrs, i) and M(x)i denotes the ith bit of
M(x). The shared random string is set to be (crs[1] crs[2] . . . crs[o]).

4. Choose a hash function H ← SSB.Gen(1λ, o, 0) and compute h = H(crs).

5. Compute ˜Prog-sim← Ckt.Obf(Prog-sim, 1λ), where Prog-sim is defined in Figure 4.

6. Let Mi denote the turing machine that, on input x, runs the machine M on input x and outputs the
ith bit of M(x). Let t denote |SPRE.Encode(Mi, T, z, hk; r)|) using any random string r and any input
z such that |z| = |x1|.

7. Set M̃x = (˜Prog-sim, t).

Prog-sim

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Hash h ∈ {0, 1}λ, machine M , PRF keys Ksim,Kcrs, preprocessed value hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. Do the following:

(a) Let w = F1(Kcrs, i) and y = w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(Ksim, i).

(c) Output jth bit of out.

Figure 4: Simulated Program Prog-sim

5.2.2 Hybrids

We will show that the real and ideal worlds are indistinguishable via a sequence of (o+2) hybrid experiments
Hyb0 to Hybo+1 where Hyb0 corresponds to the real world and Hybo+1 corresponds to the ideal world. For
each i ∈ [o], in hybrid Hybi∗ , the first i∗ bits of the CRS are computed as encryptions of output bits (with
the w’s as one time pads). The encoding of M , x does not compute the SRE for i ≤ i∗. More formally:

Hybrid Hybi∗ :
The challenger does the following:

1. Compute hk = SPRE.Preprocess(1λ, x2).

2. Choose a key Kcrs for the puncturable PRF F1 and two keys Ksim,KSPRE for the puncturable PRF F2.

3. Then, for each i ≤ i∗, compute crs[i] = M(x)i ⊕ wi where wi = F1(Kcrs, i) and M(x)i denotes the ith

bit of M(x).

4. For each i > i∗, pick crs[i] uniformly at random.

5. The shared random string is set to be (crs[1] crs[2] . . . crs[o]).

6. Choose a hash function H ← SSB.Gen(1λ, o, i∗) and compute h = H(crs). Set ek = h.

7. Compute P̃rog-i∗ ← Ckt.Obf(Prog-i∗, 1λ), where Prog-i∗ is defined in Figure 5.

8. Let Mi denote the turing machine that, on input x, runs the machine M on input x and outputs the
ith bit of M(x). Let t denote |SPRE.Encode(Mi, T, x1, hk; r)| using any random string r.

16

Prog-i∗

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index i∗, Hash h ∈ {0, 1}λ, machine M , input x1, PRF keys Kcrs,Ksim,KSPRE, bound T ,
preprocessed value hk.

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ i∗, do the following:

(a) Let w = F1(Kcrs, i) and y = w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(Ksim, i).

(c) Output jth bit of out.

3. Else, if i > i∗: Recall that Mi denotes the turing machine that, on input x, runs the machine M
on input x and outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i))
and output the jth bit of out.

Figure 5: Hybrid Program Prog-i∗

9. Set M̃x = (P̃rog-i∗, t).

Hybrid Hybo+1:
Identical to Hybo except that the value x1 is not hardwired into Prog-i∗.

5.2.3 Indistinguishability of Hybrids

We will now show that every pair of consecutive hybrids is computationally indistinguishable and this
completes the proof. Formally, we will prove the following theorem. Note that Hybo+1 is indistinguishable
from Hybo by the security of the iO scheme.

Theorem 5.2. For any index i∗ ∈ [o], the hybrids Hybi∗ and Hybi∗+1 are computationally indistinguishable.

Proof. We will prove this theorem via a sequence of sub-hybrids H0 to H9 where H0 corresponds to Hybi∗
and H9 corresponds to Hybi∗+1. Note that we will drop the term t from the description of the encoding in
the rest of the proof since it is the same value throughout.

Hybrid H0 This sub-hybrid corresponds to Hybi∗ , where the adversary receives an obfuscation of Prog-i∗

and a hybrid shared random string. The first i∗ components of crs consists of encryptions of the first i∗ bits
of M(x)i∗ using the respective w’s as one time pads. The remaining components are chosen uniformly at
random.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. That is, it sets crs[i] = M(x)i ⊕
F1(Kcrs, i) for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-i∗. It computes M̃x ← Ckt.Obf(Prog-i∗, 1λ)

and sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

17

Hybrid H1 In this hybrid, the challenger uses SSB.Gen to be binding at position i∗+1 to the bit crs[i∗+1].

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. Then, the challenger computes hk = SPRE.Preprocess(1λ, x2).

3. The challenger chooses a keyKcrs for the puncturable PRF F1 and keysKsim,KSPRE for the puncturable
PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. That is, it sets crs[i] = M(x)i ⊕
F1(Kcrs, i) for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-i∗. It computes M̃x ← Ckt.Obf(Prog-i∗, 1λ)

and sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H2 In this hybrid, the adversay receives an obfuscation of Prog-(i∗, 1) (defined in Figure 6). This
program is similar to Prog-i∗, except that the keys Ksim and KSPRE are punctured at (i∗+1). The challenger
hardwires the output for index (i∗ + 1).

1. The adversary sends M,x = (x1, x2) to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs blocks usingKcrs for each i ≤ i∗. It sets crs[i] = M(x)i⊕F1(Kcrs, i)
for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 1) defined in Figure 6. It performs the
following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes an encoding y1 of Mi∗+1, x with randomness F2(KSPRE, i
∗ + 1). That is, y1 =

SPRE.Encode(Mi∗+1, T, x1, hk;F2(KSPRE, i
∗ + 1)).

(c) It computes M̃x ← Ckt.Obf(Prog-(i∗, 1)[i∗, h,M, x1,Kcrs,K
′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

18

Prog-(i∗, 1)

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index i∗, Hash h ∈ {0, 1}λ, machine M , input x1, Kcrs, punctured PRF keys K′

crs,K
′
sim,K′

SPRE,
bit crs[i∗ + 1], output y1, preprocessed value hk, bound T .

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ i∗, do the following:

(a) Let w = F1(Kcrs, i) and y be the first bit of w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(K
′
sim, i).

(c) Output jth bit of out.

3. If i = i∗ + 1 and str = crs[i∗ + 1] then output jth bit of y1.

4. Else, if i > i∗: Recall that Mi denotes the turing machine that, on input x, runs the machine M
on input x and outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i))
and output the jth bit of out.

Figure 6: Program Prog-(i∗, 1) used in sub-hybrid H2

Hybrid H3 This sub-hybrid is similar to the previous one, except that the hardwired randomized encoding
is generated using true randomness.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. It sets crs[i] = M(x)i⊕F1(Kcrs, i)
for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 1). It performs the following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes an encoding y1 of (Mi∗+1, x with randomness r1 ← {0, 1}ℓsre-rand . That is,
y1 = SPRE.Encode(Mi∗+1, T, x1, hk; r1).

(c) It computes M̃x ← Ckt.Obf(Prog-(i∗, 1)[i∗, h,M, x1,Kcrs,K
′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H4 In this hybrid, the challenger replaces the hardwired randomized encoding with a simulated
one.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

19

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. It sets crs[i] = M(x)i⊕F1(Kcrs, i)
for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 1). It performs the following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes a simulated encoding y1 of M(x)i∗+1 with randomness
r1 ← {0, 1}ℓsim-rand . That is, let M(x)i∗+1 denote the (i∗ + 1)th bit of M(x).
y1 = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r1).

(c) It computes M̃x ← Ckt.Obf(Prog-(i∗, 1)[i∗, h,M, x1,Kcrs,K
′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H5 In this sub-hybrid, the challenger punctures the PRF key Kcrs on index i∗ + 1. It outputs an
obfuscation of Prog-(i∗, 2).

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. It sets crs[i] = M(x)i⊕F1(Kcrs, i)
for each i ∈ [i∗]. For all i > i∗, the challenger chooses crs[i]← {0, 1}λ.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 2) defined in Figure 7. It performs the
following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes a punctured PRF key K ′crs = Kcrs{i∗ + 1} ← PPRF.Puncture1(Kcrs, i
∗ + 1).

(c) Next, it computes a simulated encoding y1 of M(x)i∗+1 with randomness r1 ←
{0, 1}ℓsim-rand . That is, let M(x)i∗+1 denote the (i∗ + 1)th bit of M(x). y1 =
SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r1).

(d) It computes M̃x ← Ckt.Obf(Prog-(i∗, 2)[i∗, h,M, x1,K
′
crs,K

′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

20

Prog-(i∗, 2)

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index i∗, Hash h ∈ {0, 1}λ, machine M , input x1, punctured PRF keys K′

crs, K
′
sim,K′

SPRE, bit
crs[i∗ + 1], output y1, preprocessed value hk, bound T .

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ i∗, do the following:

(a) Let w = F1(K
′
crs, i) and y be the first bit of w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(K
′
sim, i).

(c) Output jth bit of out.

3. If i = i∗ + 1 and str = crs[i∗ + 1] then output jth bit of y1.

4. Else, if i > i∗: Recall that Mi denotes the turing machine that, on input x, runs the machine M
on input x and outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(K

′
SPRE, i))

and output the jth bit of out.

Figure 7: Program Prog-(i∗, 2) used in sub-hybrid H5

Hybrid H6 In this sub-hybrid, the challenger replaces crs[i∗ + 1] with M(x)i∗+1 ⊕ F1(Kcrs, i
∗ + 1).

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ i∗. It sets crs[i] = M(x)i⊕F1(Kcrs, i)
for each i ∈ [i∗]. For all i > i∗ + 1, the challenger chooses crs[i]← {0, 1}.
It sets crs[i∗ + 1] = (M(x)i∗+1 ⊕ F1(Kcrs, i

∗ + 1).

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 2). It performs the following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes a punctured PRF key K ′crs = Kcrs{i∗ + 1} ← PPRF.Puncture1(Kcrs, i
∗ + 1).

(c) Next, it computes a simulated encoding y1 of M(x)i∗+1 with randomness r1 ←
{0, 1}ℓsim-rand . That is, let M(x)i∗+1 denote the (i∗ + 1)th bit of M(x). y1 =
SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r1).

(d) It computes M̃x ← Ckt.Obf(Prog-(i∗, 2)[i∗, h,M, x1,K
′
crs,K

′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H7 In this sub-hybrid, the challenger computes the simulated encoding using randomness gener-
ated pseudorandomly with PRF key Ksim.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

21

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ (i∗ + 1). It sets crs[i] = M(x)i ⊕
F1(Kcrs, i) for each i ∈ [i∗ + 1]. For all i > i∗ + 1, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 2). It performs the following steps.

(a) It first computes punctured keys K ′SPRE = KSPRE{i∗ + 1} ← PPRF.Puncture2(KSPRE, i
∗ + 1),

K ′sim = Ksim{i∗ + 1} ← PPRF.Puncture2(Ksim, i
∗ + 1).

(b) Next, it computes a punctured PRF key K ′crs = Kcrs{i∗ + 1} ← PPRF.Puncture1(Kcrs, i
∗ + 1).

(c) It computes a simulated encoding y1 of M(x)i∗+1 with randomness r1 = F2(Ksim, i
∗+1). That is,

let M(x)i∗+1 denote the (i
∗+1)th bit of M(x). y1 = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r1).

(d) It computes M̃x ← Ckt.Obf(Prog-(i∗, 2)[i∗, h,M, x1,K
′
crs,K

′
sim,K

′
SPRE, crs[i

∗ + 1], y1, hk], 1
λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H8 In this sub-hybrid, the challenger replaces all the punctured PRF keys K ′crs,K
′
sim and K ′SPRE

with unpunctured PRF keys.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ (i∗ + 1). It sets crs[i] = M(x)i ⊕
F1(Kcrs, i) for each i ∈ [i∗ + 1]. For all i > i∗ + 1, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes an obfuscation of Prog-(i∗, 3) defined in Figure 8. It performs the
following steps.

(a) Next, it computes a simulated encoding y1 of M(x)i∗+1 with randomness
r1 = F2(Ksim, i

∗ + 1). That is, let M(x)i∗+1 denote the (i∗ + 1)th bit of M(x).
y1 = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r1).

(b) It computes M̃x ← Ckt.Obf(Prog-(i∗, 3)[i∗, h,M, x2,Kcrs,Ksim,KSPRE, crs[i
∗ + 1], y1, hk], 1

λ) and

sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Hybrid H9 In this sub-hybrid, the challenger changes the program being obfuscated to Prog-(i∗+1). This
corresponds to Hybi∗+1.

1. The adversary sends M,x = (x1, x2), 1
o, T to the challenger.

2. The challenger computes hk = SPRE.Preprocess(1λ, x2).

3. Then, the challenger chooses a key Kcrs for the puncturable PRF F1 and keys Ksim,KSPRE for the
puncturable PRF F2.

22

Prog-(i∗, 3)

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index i∗, Hash h ∈ {0, 1}λ, machine M , input x1, PRF keys Kcrs, Ksim,KSPRE, bit crs[i

∗ + 1],
output y1, preprocessed value hk, bound T .

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ i∗, do the following:

(a) Let w = F1(Kcrs, i) and y be the first bit of w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(Ksim, i).

(c) Output jth bit of out.

3. If i = i∗ + 1 and str = crs[i∗ + 1] then output jth bit of y1.

4. Else, if i > i∗: Recall that Mi denotes the turing machine that, on input (x, i), runs the machine M
on input x and outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i))
and output the jth bit of out.

Figure 8: Program Prog-(i∗, 3) used in sub-hybrid H7

4. Next, the challenger computes the crs bits using Kcrs for each i ≤ (i∗ + 1). It sets crs[i] = M(x)i ⊕
F1(Kcrs, i) for each i ∈ [i∗ + 1]. For all i > i∗ + 1, the challenger chooses crs[i]← {0, 1}.

5. The challenger then chooses hash function H ← SSB.Gen(1λ, o, i∗ + 1). It computes h = H(crs).

6. Finally, the challenger computes M̃x ← Ckt.Obf(Prog-(i∗ + 1), 1λ) where Prog-(i∗ + 1) is defined in

Figure 9. The challenger sends (crs, M̃x) to the adversary.

7. The adversary sends its guess b.

Prog-(i∗ + 1)

Inputs : Index i ∈ [o], bit str ∈ {0, 1}, proof π, index j ∈ [t]
Hardwired : Index (i∗ + 1), Hash h ∈ {0, 1}λ, machine M , input x1, PRF keys Kcrs,Ksim,KSPRE, prepro-
cessed value hk, bound T .

1. Verify proof π : Check if SSB.Verify(H,h, i, str, π) = 1. If not, output ⊥.
2. If i ≤ (i∗ + 1), do the following:

(a) Let w = F1(Kcrs, i) and y be the first bit of w ⊕ str.

(b) Compute out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ; r) where r = F2(Ksim, i).

(c) Output jth bit of out.

3. Else, if i > (i∗+1): Recall thatMi denotes the turing machine that, on input (x, i), runs the machineM
on input x and outputs the ith bit of M(x). Compute out = SPRE.Encode(Mi, T, x1, hk;F2(KSPRE, i))
and output the jth bit of out.

Figure 9: Hybrid Program Prog-(i∗ + 1)

Indistinguishability of Sub-Hybrids:
We will now show that every pair of consecutive sub-hybrids is computationally indistinguishable and this

completes the proof of Theorem 5.2.

Lemma 5.1. Assuming the index hiding property of the SSB hash system, hybrid H0 is computationally
indistinguishable from hybrid H1.

23

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary ASSB that breaks the index hiding property of the SSB
hash scheme which is a contradiction.

The adversary ASSB sends the tuple (o, i∗, i∗ + 1) to the challenger CSSB of the SSB hash scheme. CSSB
responds back with a hash key H that is binding either at index i∗ or at index (i∗ + 1)- that is, responds
either with H ← SSB.Gen(1λ, o, i∗) or H ← SSB.Gen(1λ, o, i∗ + 1).

Then, ASSB interacts with the adversary A and performs the experiment exactly as in Hybrid H0 except
that it sets the hash key H as the value received from CSSB. Notice that when the challenger CSSB sends a
hash key that is binding at index i∗, the experiment between ASSB and A corresponds exactly to Hybrid H0

and when the challenger CSSB sends a hash key that is binding at index (i∗ + 1), the experiment between
ASSB and A corresponds exactly to Hybrid H1. Thus, if A can distinguish between the two hybrids with
non-negligible probability, ASSB can use the same guess to break the index hiding property of the SSB hash
scheme with non-negligible probability which is a contradiction.

Lemma 5.2. Assuming the functionality preserved under puncturing property of the puncturable PRF F2,
the somewhere statistically binding property of the SSB hash system and the security of iO for circuits,
hybrid H1 is computationally indistinguishable from hybrid H2.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary AiO that breaks the security of the indistinguishability
obfuscator which is a contradiction.

The adversary AiO interacts with A exactly as in hybrid H1 and receives the pair (M,x, 1o, T) from A
in step 1. Then, AiO sends the pair of programs (Prog-i∗,Prog-(i∗, 1)) defined in Figure 5 and Figure 6
respectively to the challenger CiO of the indistinguishability obfuscation scheme. CiO picks one of the two
programs randomly and responds back with an obfuscation of that program. Then, AiO sets this received
value as M̃x and performs the rest of the experiment with A exactly as in Hybrid H1. Observe that when
CiO picks program Prog-i∗, the experiment between AiO and A corresponds exactly to Hybrid H1 and
when CiO picks program Prog-(i∗, 1), the experiment between AiO and A corresponds exactly to Hybrid
H2. From the security of the indistinguishability obfuscator, we know that if two programs are functionally
equivalent, then their obfuscations are computationally indistinguishable. Thus, suppose the two programs
(Prog-i∗,Prog-(i∗, 1)) were functionally equivalent, then, if A can distinguish between the two hybrids with
non-negligible probability, AiO can use the same guess to break the security of the indistinguishability
obfuscator with non-negligible probability which would be a contradiction.
We will now show that the two programs (Prog-i∗,Prog-(i∗, 1)) are functionally equivalent and this completes
the proof. We will consider 3 cases that partition the set of inputs to the two programs.
Case 1: Input index i ≤ i∗

Now, by the functionality preserved under puncturing property of the puncturable PRF F2, observe that
F2(Ksim, i) = F2(K

′
sim, i) where K

′
sim is a key punctured at index (i∗+1). Thus, both programs Prog-i∗ and

Prog-(i∗, 1) are functionally equivalent in this case.
Case 2: Input index i > (i∗ + 1)
Once again, by the functionality preserved under puncturing property of the puncturable PRF F2, observe
that F2(Ksim, i) = F2(K

′
sim, i). Thus, both programs Prog-i∗ and Prog-(i∗, 1) are functionally equivalent in

this case too.
Case 3: Input index i = (i∗ + 1)
Suppose the next part of the input - str equals crs[i∗+1]. Then, observe that both programs output exactly
the same value.

The only difference between the two programs’ behavior is when the input is of the form (i∗+1, str, π, j)
such that the proof π verifies and str ̸= crs[i∗ + 1]. For such inputs, Prog-i∗ runs step 3 - that is, computes
out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ;F2(Ksim, i)) and outputs the jth bit whereas Prog-(i∗, 1) outputs ⊥
since it can’t evaluate F2(K

′
SPRE, i

∗ + 1) in step 4. However, we will now show that for all inputs of the
form (i∗ + 1, str, π, j) where str ̸= crs[i∗ + 1], there doesn’t exist any value of π such that proof in step 1
verifies (i.e SSB.Verify(H,h, i∗ + 1, str, π) = 1) and hence both programs output the same value - ⊥ on such

24

inputs and this completes the proof. Observe that this is exactly the property guaranteed by the somewhere
statistically binding property of the SSB hash system! Recall that, the somewhere statistically binding
property states that, for h← SSB.Gen(1λ, o, i∗+1), there doesn’t exist str, str′ such that str ̸= str′, π, π′ such
that SSB.Verify(H,h, i∗ + 1, str, π) = SSB.Verify(H,h, i∗ + 1, str′, π′) = 1. We know that since h = H(crs),
for str = crs[i∗ + 1], there does exist π such that SSB.Verify(H,h, i∗ + 1, str, π) = 1. Thus, for all inputs of
the form (i∗ + 1, str, π, j) where str ̸= crs[i∗ + 1], there doesn’t exist any value of π such that proof in step 1
verifies and this completes the proof.

Lemma 5.3. Assuming the pseudorandom at punctured points property of the puncturable PRF F2, hybrid
H2 is computationally indistinguishable from hybrid H3.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary APRF that breaks the pseudorandom at punctured
points property of the puncturable PRF scheme which is a contradiction.
APRF interacts with a challenger CPRF for the PRF scheme and sends a query with the point (i∗ + 1).

CPRF picks a key KSPRE for the puncturable PRF F2 and responds back with a punctured key K ′SPRE that
is computed as K ′SPRE ← PPRF.Puncture2(KSPRE, i

∗ + 1). Then, CPRF also sends a value r∗ which is picked
either uniformly at random or is computed as r∗ = F2(KSPRE, i

∗ + 1). APRF interacts with the adversary A
exactly as in hybrid H2 except that the randomness used to compute the encoding y1 is set to be the value r∗.
Notice that when the challenger CPRF computes r∗ by evaluating the PRF, the experiment between APRF

and A corresponds exactly to Hybrid H2 and when the challenger CPRF sends a uniformly random string,
the experiment between APRF and A corresponds exactly to Hybrid H3. Thus, if A can distinguish between
the two hybrids with non-negligible probability, APRF can use the same guess to break the pseudorandom at
punctured points property of the puncturable PRF F2 with non-negligible probability which is a contradiction.

Lemma 5.4. Assuming the security of the succinct randomized encoding scheme SPRE, hybrid H3 is com-
putationally indistinguishable from hybrid H4.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary ASPRE that breaks the security of the succinct random-
ized encoding scheme SPRE which is a contradiction.

The adversary ASPRE interacts with A exactly as in hybrid H3 and receives the tuple
(M,x = (x1, x2), 1

o, T) from A in step 1. Then, ASPRE sends the tuple (Mi∗+1, (x1, x2), T, 1
o) to

the challenger CSPRE of the succinct randomized encoding scheme. CSPRE responds back with either
an honestly generated encoding of (Mi∗+1, x) or a simulated one - that is, responds either with
SPRE.Encode(Mi∗+1, T, x1, hk; r) or SPRE.Sim(1|Mi∗+1|, 1|x1|, hk, 1λ,M(x)i∗+1, T ; r) where M(x)i∗+1 denotes
the (i∗ + 1)th bit of M(x), r is picked randomly and hk = SPRE.Preprocess(1λ, x2). Then, ASPRE sets this
received value as y1 and performs the rest of the experiment with A exactly as in Hybrid H3. Notice that
when the challenger CSPRE sends an honest randomized encoding, the experiment between ASPRE and A
corresponds exactly to Hybrid H3 and when the challenger CSPRE sends a simulated randomized encoding,
the experiment between ASPRE and A corresponds exactly to Hybrid H4. Thus, if A can distinguish
between the two hybrids with non-negligible probability, ASPRE can use the same guess to break the security
of the succinct randomized encoding scheme SPRE with non-negligible probability which is a contradiction.

Lemma 5.5. Assuming the functionality preserved under puncturing property of the puncturable PRF F1

and the security of iO for circuits, hybrid H4 is computationally indistinguishable from hybrid H5.

Proof. This proof is similar to the proof of Lemma 5.2.

25

Lemma 5.6. Assuming the pseudorandom at punctured points property of the puncturable PRF F1, hybrid
H5 is computationally indistinguishable from hybrid H6.

Proof. This proof is similar to the proof of Lemma 5.3.

Lemma 5.7. Assuming the pseudorandom at punctured points property of the puncturable PRF F2, hybrid
H6 is computationally indistinguishable from hybrid H7.

Proof. This proof is similar to the proof of Lemma 5.3.

Lemma 5.8. Assuming the functionality preserved under puncturing property of the puncturable PRFs F1

and F2 and the security of iO for circuits, hybrid H7 is computationally indistinguishable from hybrid H8.

Proof. This proof is similar to the proof of Lemma 5.2.

Lemma 5.9. Assuming the somewhere statistically binding property of the SSB hash system and the security
of iO for circuits, hybrid H8 is computationally indistinguishable from hybrid H9.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary AiO that breaks the security of the indistinguishability
obfuscator which is a contradiction.

The adversary AiO interacts with A exactly as in hybrid H8 and receives the pair (M,x, 1o, T) from A
in step 1. Then, AiO sends the pair of programs (Prog-(i∗, 3),Prog-(i∗+1)) defined in Figure 8 and Figure 9
respectively to the challenger CiO of the indistinguishability obfuscation scheme. CiO picks one of the two
programs randomly and responds back with an obfuscation of that program. Then, AiO sets this received
value as M̃x and performs the rest of the experiment with A exactly as in Hybrid H8. Observe that when
CiO picks program Prog-(i∗, 3), the experiment between AiO and A corresponds exactly to Hybrid H8 and
when CiO picks program Prog-(i∗ + 1), the experiment between AiO and A corresponds exactly to Hybrid
H9. From the security of the indistinguishability obfuscator, we know that if two programs are functionally
equivalent, then their obfuscations are computationally indistinguishable. Thus, suppose the two programs
(Prog-(i∗, 3),Prog-(i∗ + 1)) were functionally equivalent, then, if A can distinguish between the two hybrids
with non-negligible probability, AiO can use the same guess to break the security of the indistinguishability
obfuscator with non-negligible probability which would be a contradiction.
We will now show that the two programs (Prog-(i∗, 3),Prog-(i∗ + 1)) are functionally equivalent and this
completes the proof. We will consider 2 cases that partition the set of inputs to the two programs.
Case 1: Input index i ̸= (i∗ + 1)
It is easy to see that both programs Prog-i∗ and Prog-(i∗, 1) are functionally equivalent in this case.
Case 2: Input index i = (i∗ + 1)
Suppose the next part of the input - str equals crs[i∗+1]. Then, observe that both programs output exactly
the same value.

The only difference between the two programs’ behavior is when the input is of the form (i∗+1, str, π, j)
such that the proof π verifies and str ̸= crs[i∗ + 1]. For such inputs, Prog-(i∗ + 1) runs step 2 - that is,
computes out = SPRE.Sim(1|Mi|, 1|x1|, hk, 1λ, y, T ;F2(Ksim, i)) and outputs the jth bit whereas Prog-(i∗, 3)
runs step 4. However, we will now show that for all inputs of the form (i∗+1, str, π, j) where str ̸= crs[i∗+1],
there doesn’t exist any value of π such that proof in step 1 verifies (i.e SSB.Verify(H,h, i∗ + 1, str, π) =
1) and hence both programs in fact output the same value - ⊥ on such inputs and this completes the
proof. Observe that this is exactly the property guaranteed by the somewhere statistically binding property
of the SSB hash system! Recall that, the somewhere statistically binding property states that, for h ←
SSB.Gen(1λ, o, i∗ + 1), there doesn’t exist str, str′ such that str ̸= str′, π, π′ such that SSB.Verify(H,h, i∗ +
1, str, π) = SSB.Verify(H,h, i∗ + 1, str′, π′) = 1. We know that since h = H(crs), for str = crs[i∗ + 1], there
does exist π such that SSB.Verify(H,h, i∗ + 1, str, π) = 1. Thus, for all inputs of the form (i∗ + 1, str, π, j)
where str ̸= crs[i∗+1], there doesn’t exist any value of π such that proof in step 1 verifies and this completes
the proof.

26

6 Compact MPC

We consider the problem of constructing a malicious secure compact MPC protocol for Turing machines.
Consider a set of n mutually distrusting parties with inputs x1, . . . , xn respectively that agree on a turing
machine M . Their goal is to securely compute the output M(x1, . . . , xn) without leaking any information
about their respective inputs where the output can be of any unbounded polynomial size. We first define
the notion of a compact MPC protocol. Let λ denote the security parameter and let Comm.Compl(π) denote
the communication complexity (sum of the lengths of all messages exchanged by all parties) of any protocol
π. Let Time(M, x) denote the running time of turing machineM on input x.

Definition 6.1. An MPC protocol π is said to be compact if there exists a fixed polynomial poly such that
for all machines M and inputs (x1, . . . , xn), Comm.Compl(π) = poly(|M |, |x1|, . . . , |xn|, λ, log(Time(M, x))).
In particular, the communication complexity is independent of the output length and the running time of
the machine on the inputs of all the parties.

In this section, we give a round preserving compiler from any constant round (non-compact) malicious
secure MPC protocol in the plain model to a malicious secure compact MPC protocol for Turing machines
in the random oracle (RO) model.

Formally, we prove the following theorem:

Theorem 6.1. For all n, t > 0, assuming the existence of:

• A (constant) k round 10 MPC protocol amongst n parties in the plain model that is malicious secure
against up to t corruptions (AND)

• Strong output compressing randomized encodings in the shared randomness model,

there exists a k round compact MPC protocol π amongst n parties for Turing machines in the Programmable
Random Oracle model that is malicious secure against up to t corruptions.

Here, we note that the above compiler even works if the underlying MPC protocol is for circuits. That is,
we can convert any constant round protocol for circuits into a constant round protocol for Turing machines
(with an input bound) by first converting the Turing machine into a (potentially large) circuit.

Corollaries:
We can instantiate the strong output compressing randomized encodings from our construction in Section 5.
We now discuss several corollaries on instantiating the underlying MPC protocol with various protocols in
literature based on different models.

1. Instantiating the MPC protocol with the round optimal11 plain model construction of [BGJ+17a] that
is secure against a dishonest majority based on DDH/Nth Residuosity, we get a four round compact
MPC protocol π for Turing machines in the Programmable Random Oracle model that is malicious
secure against a dishonest majority assuming iO for circuits and either DDH/Nth Residuosity.

2. We can also instantiate the underlying MPC protocol with protocols that are secure in the Common
Random String model by using the RO’s output on some fixed string to implement the common random
string. In particular, combining the two round semi-malicious MPC protocol of [MW16] that is based
on LWE in the common random string model or the ones of [GS18, BL18] that are based on DDH/N th

10Observe that our round preserving compiler in fact works for any MPC protocol where the number of rounds is independent
of the machine being evaluated.

11Recall that in the plain model, the optimal round complexity is 4.

27

residuosity in the plain model, with a non-interactive zero knowledge argument based on DLIN in
the common random string model [GOS06], we get two round malicious secure MPC protocols in the
common random string model. As a result, we have the following corollary:

Corollary 6.1. Assuming the existence of:

• iO for circuits (AND)

• A where A ∈ {LWE,DDH,N th Residuosity} (AND)

• DLIN

there exists a round optimal (two round) compact MPC protocol π for Turing machines in the Pro-
grammable Random Oracle model that is malicious secure against a dishonest majority.

3. We note that our transformation works even on instantiating the underlying constant round MPC
protocol with ones that are secure in the setting of super-polynomial simulation[Pas03, BGI+17] or in
the concurrent (self-composable) setting [GGJS12, BGJ+17b] to yield compact versions of the same in
the RO model.

Implication to [HW15] Model. Finally, we observe that our transformation also has an implication
to the circuit-based model of Hubácek and Wichs [HW15] as elaborated in Section 2.2. Thus, we get the
following corollary:

Theorem 6.2. For all n, t > 0, assuming the existence of:

• A constant round MPC protocol amongst n parties in the plain model that is malicious secure against
up to t corruptions (AND)

• Strong output compressing randomized encodings in the shared randomness model,

there exists a constant round MPC protocol π amongst n parties for all polynomial sized circuits in
the Programmable Random Oracle model that is malicious secure against up to t corruptions where the
communication complexity of the protocol is independent of the output length of the circuit. That is,
there exists a fixed polynomial poly such that, for all circuits C and all inputs (x1, . . . , xn) ∈ Domain(C),
Comm.Compl(π) = poly(|x1|, . . . , |xn|, λ).

6.1 Construction

Notation and Primitives Used:

• Let λ denote the security parameter and RO be a random oracle that takes as input a tuple (r, 1len)
where |r| = λ and outputs a string of length len.

• Consider n parties P1, . . . ,Pn with inputs x1, . . . , xn respectively (with |xi| = λ for each i ∈ [n]) who
wish to evaluate any turing machineM on their joint inputs.

• Let S.OcRE = (S.OcRE.Setup, S.OcRE.Encode, S.OcRE.Decode) be a strong output compressing ran-
domized encodings scheme in the shared randomness model.

• Let πplain be a t round MPC protocol for turing machines in the plain model that is malicious secure
against a dishonest majority. For simplicity, we assume that the protocol works using a broadcast
channel - that is, in each round, every party broadcasts a message to all other parties.

• Let NextMsgk(·) denote the algorithm used by any party to compute the kth round of protocol πplain

and let Out(·) denote the algorithm used by any party to compute the final output. Also, without loss
of generality, assume that in protocol πplain, each party uses randomness randi of length λ. 12

12Internally, we can apply a PRG to expand this to any length of randomness we require. Here, we are implicitly assuming
that the protocol requires each party to use uniformly random strings. This is true of almost every constant round MPC
protocol.

28

Remark: To ease the exposition, we assume that the Random Oracle can output arbitrarily long strings
by also taking the desired output length as input to the oracle. In reality, let’s say it outputs strings of
length p(λ) where p is a polynomial. Then, in the protocol below, each party can output a starting query
index ri,j and an offset oi,j to indicate that the shared random string is actually the concatenation of
RO(ri,j), . . . ,RO(ri,j + oi,j). Note that |oi,j | ≤ λ.

Protocol: The protocol is described below.

1. Round 1:
Each party Pi does the following:

• Pick a random string ri,1 ∈ {0, 1}λ. Let leni,1 = |NextMsg1(xi; randi)|.
• Compute crsi,1 = RO(ri,1, 1

leni,1).

• Compute eki,1 = S.OcRE.Setup(1λ, 1leni,1 , crsi,1).

• Compute msgi,1 = S.OcRE.Encode(NextMsg1, ((xi, randi),⊥), 2λ, eki,1).
• Output (msgi,1, ri,1, leni,1).

2. Round 2 ... t:
For each subsequent round k, each party Pi does the following:

• Let τk−2 denote the transcript of the underlying protocol πplain after round (k − 2). τ0 = ⊥.
• Set τk−1 = τk−2.

• For each party Pj , (j ̸= i) do the following:

– Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

– Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

– Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

– Append msgplainj,k−1 to τk−1.

• Pick a random string ri,k ∈ {0, 1}λ. Let leni,k = |NextMsgk(xi; randi, τk−1)|.
• Compute crsi,k = RO(ri,k, 1

leni,k).

• Compute eki,k = S.OcRE.Setup(1λ, 1leni,k , crsi,k).

• Compute msgi,k = S.OcRE.Encode(NextMsgk, ((xi, randi), τk−1), 2
λ, eki,k).

• Output13 (msgi,k, ri,k, leni,k).

3. Output Computation:
Each party Pi does the following:

• Let τt−1 denote the transcript of the underlying protocol πplain after round (t− 1).

• Set τt = τt−1.

• For each party Pj , (j ̸= i) do the following:

– Parse its previous round message as (msgj,t, rj,t, lenj,t).

– Compute crsj,t = RO(rj,t, 1
lenj,t).

– Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).

– Append msgplainj,t to τt.

• Output Out(xi, randi, τt).

13Note that to send leni,k, the length of the message is log leni,k and so at most λ.

29

Efficiency of the Protocol:
The size of the messages sent in round k by each party Pi is 3 ·max{|(msgi,k, ri,k, leni,k)|}i,k. By the defi-

nition of strong output-compressing randomized encodings, |msgi,k| ≤ p2(|NextMsgk|, |(xi, randi)|, log T, λ)
where p2 is a polynomial. |randi| = λ, |NextMsgk| = p3(|M |) where M is the original functionality and p3 is
a polynomial. Also, we know T is at most 2λ. So |msgi,k| ≤ p3(|M |, |xi|, λ) for some polynomial p3. We
know that |ri,k| = λ and |leni,k| ≤ λ. Therefore, the size of the messages sent in round k by each party Pi is
at most p3(|M |, |xi|, λ).

Since πplain is a constant-round protocol, the total communication complexity of our protocol π is at most
p(n, |M |, |x1|, . . . , |xn|, λ) for a fixed polynomial p.

6.2 Security Proof

In this section, we formally prove Theorem 6.2.
Consider an adversary A who corrupts t parties where t < n. Let’s say the simulator Simplain for protocol
πplain consists of 4 algorithms (Simplain

1 , Simplain
2 , Simplain

3 ,Simplain
Out) where: Sim

plain
1 (j, ·) outputs the adversary’s

view for the jth of the first t1 rounds, Simplain
2 queries the ideal functionality to receive the output,

Simplain
3 (j, ·) outputs the adversary’s view for the jth round of the last (t − t1) rounds and Simplain

Out (i, ·)
computes the output of honest party Pi.

14 Also, let’s denote the size of Simplain(·) by s(λ).

6.2.1 Description of Simulator

The strategy of the simulator Sim for our protocol π against a malicious adversary A is described below.

1. Round 1 ...t1:
For each round k and each honest party Pi, Sim does the following:

• Let τk−2 denote the transcript of the underlying protocol πplain after round (k − 2). τ0 = ⊥.
• Set τk−1 = τk−2.

• For each party Pj , (j ̸= i), if k > 1, do the following:

– Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

– Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

– Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

– Append msgplainj,k−1 to τk−1.

• Compute msgplaini,k = Simplain
1 (k, τk−1, st) where st denotes the state of Simplain.

• Pick a random string ri,k ∈ {0, 1}λ.

• Compute (msgi,k, crsi,k)← S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

• Set RO(ri,k, 1
|crsi,k|) = crsi,k.

• Output15 (msgi,k, ri,k, |crsi,k|).

2. Query to Ideal Functionality:
Sim queries Simplain

2 (τk1 , st) and receives an output y in return.

3. Round (t1 + 1) ... t:
For each round k and each honest party Pi, Sim does the following:

14Simplain
1 also outputs some state that is fed as input to the subsequent algorithms and similarly for Simplain

2 , Simplain
3 .

15As before, note that to send the message |crsi,k|, the length of the string is log |crsi,k|.

30

• Let τk−2 denote the transcript of the underlying protocol πplain after round (k − 2). τ0 = ⊥.
• Set τk−1 = τk−2.

• For each party Pj , (j ̸= i), if k > 1, do the following:

– Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

– Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

– Compute msgplainj,k−1 = S.OcRE.Decode(msgj,k−1, τk−2, crsj,k−1).

– Append msgplainj,k−1 to τk−1.

• Compute msgplaini,k = Simplain
3 (k, y, τk−1, st) where st denotes the state of Simplain.

• Pick a random string ri,k ∈ {0, 1}λ.

• Compute (msgi,k, crsi,k)← S.OcRE.Sim(1|s(λ|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

• Set RO(ri,k, 1
|crsi,k|) = crsi,k.

• Output (msgi,k, ri,k, |crsi,k|).

4. Output Computation:
Sim does the following:

• For each honest party Pi, do:

– Let τt−1 denote the transcript of the underlying protocol πplain after round (t− 1).

– Set τt = τt−1.

– For each party Pj , (j ̸= i) do the following:

∗ Parse its previous round message as (msgj,k−1, rj,k−1, lenj,k−1).

∗ Compute crsj,k−1 = RO(rj,k−1, 1
lenj,k−1).

∗ Compute msgplainj,t = S.OcRE.Decode(msgj,t, τt−1, crsj,t).

∗ Append msgplainj,t to τt.

– If Simplain
Out (i, y, τt, st) = ⊥, send ⊥ to the ideal functionality and stop.

• Instruct the ideal functionality to deliver output to the honest parties.

Remarks: Note that if Simplain is a rewinding simulator, our simulator Sim will also be a rewinding simulator.

6.2.2 Hybrids

We now show that the above simulation strategy is successful against all malicious PPT adversaries. That is,
the view of the adversary along with the output of the honest parties is computationally indistinguishable in
the real and ideal worlds. We will show this via a series of computationally indistinguishable hybrids where
the first hybrid Hyb0 corresponds to the real world and the last hybrid Hyb2 corresponds to the ideal world.

1. Hyb0 - Real World: In this hybrid, consider a simulator Sim.Hyb that plays the role of the honest
parties.

2. Hyb1 - Simulate Encodings: In this hybrid, in every round, Sim.Hyb computes the messages and
the shared random string by running the simulator S.OcRE.Sim of the strong output compressing
randomized encodings scheme. That is, for each round k and each honest party Pi, after decoding the
transcript τk−1 at the end of the previous round, Sim.Hyb does the following:

• Compute msgplaini,k = NextMsgk((xi, randi), τk−1).

• Pick a random string ri,k ∈ {0, 1}λ.

31

• Compute (msgi,k, crsi,k)← S.OcRE.Sim(1|NextMsgk|, 1(2·λ+|τk−1|), 1λ,msgplaini,k , 1λ).

• Set RO(ri,k, 1
|crsi,k|) = crsi,k.

• Output (msgi,k, ri,k, |crsi,k|).

3. Hyb2 - Simulate MPC: In this hybrid, in every round, Sim.Hyb computes the messages msgplaini,k

of the underlying protocol πplain by running the simulator Simplain of the strong output compressing
randomized encodings scheme. The output computation phase is also performed exactly as done by
Sim in the ideal world. This hybrid corresponds to the ideal world.

We will now show that every pair of successive hybrids is computationally indistinguishable.

Lemma 6.1. Assuming the security of the strong output compressing randomized encoding scheme S.OcRE,
Hyb0 is computationally indistinguishable from Hyb1.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary AS.OcRE that breaks the security of the scheme S.OcRE
which is a contradiction.
AS.OcRE begins an execution of protocol π interacting with the adversary A. Now, for each round k and

every honest party Pi, let τk−1 denote the transcript of the underlying protocol πplain. AS.OcRE computes
τk−1 exactly as in Hyb0. Then, AS.OcRE sends the tuple (NextMsgk, ((xi, randi), τk−1), λ, T) to the challenger
COcRE. Then, CS.OcRE sends back a pair of encoding and crs which is either honestly generated or simulated.
AOcRE sets the received encoding as the value msgi,k and the received crs as the value crsi,k. Then, AOcRE

picks a random value ri,k of length λ. Since the adversary would have made only a polynomial number of
queries so far to the random oracle out of a possible 2λ choices for ri,k, the probability that ri,k was queried
to the random oracle before this is negligible. Then, AOcRE sets RO(ri,k, 1

|crsi,k|) = crsi,k. AS.OcRE sends
(msgi,k, ri,k, |crsi,k|) to A.

Notice that when the challenger CS.OcRE sends an honestly generated encoding and crs, the experiment
between AS.OcRE and A corresponds exactly to Hyb0 and when the challenger CS.OcRE sends a simulated
encoding and crs, the experiment corresponds exactly to Hyb1. Thus, if A can distinguish between the two
hybrids with non-negligible probability, AS.OcRE can use the same guess to break the security of the scheme
S.OcRE with non-negligible probability which is a contradiction.

Lemma 6.2. Assuming the security of the MPC protocol plain, Hyb1 is computationally indistinguishable
from Hyb2.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary Aplain

π that breaks the security of the scheme πplain which
is a contradiction.
Aplain

π begins an execution of protocol π for evaluating machineM interacting with the adversary A and
an execution of protocol πplain for evaluating machineM interacting with a challenger Cplainπ . Now, suppose
A corrupts a set of parties P, Aplain corrupts the same set of parties in the protocol πplain. For each round
k and on behalf of every honest party Pi, Aplain receives a message msg from the challenger Cplain. Aplain

sets msg to be the message msgi,k in its interaction with A and then computes its messages to be sent to A
exactly as in Hyb1. Then, Aplain

π decodes the messages sent by A in each round k and forwards them to Cplain
as its messages for protocol πplain in round k. Finally, on behalf of the honest parties, Aplain receives a set of
outputs which is forwarded as the outputs of the honest parties in the protocol π to the adversary A.

Notice that when the challenger Cplainπ sends honestly generates messages, the experiment between Aplain
π

and A corresponds exactly to Hyb1 and when the challenger Cplainπ sends simulated messages, the experiment
corresponds exactly to Hyb2. Thus, if A can distinguish between the two hybrids with non-negligible proba-
bility, Aplain

π can use the same guess to break the security of the scheme πplain with non-negligible probability
which is a contradiction.

32

7 Constructing iO from Output-Compressing Randomized Encod-
ings

In this section, we will show a construction of succinct iO for bounded-input turing machines from output-
compressing randomized encodings (in the shared randomness model). Recall that we can construct output-
compressing randomized encodings from strong output-compressing randomized encodings by just setting
the public input x2 to be ⊥. 16 Also, recall from Section B.3 that in a succinct obfuscation scheme, the
efficiency goal is to ensure that the size of the obfuscated turing machine is independent of the input bound.
Formally, we show the following theorem:

Theorem 7.1. Assuming the existence of:

• Output-compressing randomized encodings in the shared randomness model,

• weakly succinct iO for bounded-input Turing machines,

There exists a succinct iO scheme for bounded-input Turing machines in the shared randomness model.

Instantiating the output-compressing randomized encodings from our construction in Section 5 and instan-
tiating the weakly succinct obfuscation scheme with the scheme of [KLW15], we get the following corollary:

Corollary 7.1. Assuming the existence of:

• iO for circuits,

• A ∈ {DDH, LWE, Nth Residuosity}.

There exists a succinct iO scheme for bounded-input Turing machines in the shared randomness model.

Notation and Primitives used:

• Let OcRE = (OcRE.Setup,OcRE.Encode,OcRE.Decode) be an output-compressing randomized encoding
scheme (from Section 5.

• Let (TM-bd.Obf,TM-bd.Eval) be a weakly succinct obfuscation scheme for bounded-input Turing ma-
chines (where the size of obfuscation is allowed to depend on input bound). Such obfuscation schemes
have been previously constructed in literature [KLW15]. Let the algorithm TM-bd.Obf be represented
by a Turing machine TMTM-bd.Obf that takes as input a Turing machine description M , a time bound T ,
an input bound n (in unary), security parameter λ (in unary) and randomness r of length ℓrnd(|M |, λ, n)
(which is used to compute the obfuscated program).

• Let SizeTM-bd.Obf(|M |, λ, n) denote the size of the obfuscation of a machine M using the scheme
(TM-bd.Obf, TM-bd.Eval) with security parameter λ and input bound n (since TM-bd.Obf is an ef-
ficient algorithm, it follows that SizeTM-bd.Obf is a polynomial in (λ, n, |M |, log(T)).

• Let TM∗TM-bd.Obf,PRG be the Turing machine is described in Figure 10 and let STM-bd.Obf,PRG denote the
size of the description of TM∗TM-bd.Obf,PRG. (note that STM-bd.Obf,PRG is some constant that depends on
the obfuscation scheme and the PRG scheme). Additionally,

16A similar transformation would also work in the standard model.

33

TM∗
TM-bd.Obf,PRG

Inputs : Machine M , time bound T , input bound 1n, random string t.

1. Compute r = PRG(1λ, t).

2. Output TMTM-bd.Obf(M, 1n, 1λ, r)

Figure 10: Turing Machine TM∗TM-bd.Obf,PRG

7.1 Construction

We will now describe a succinct iO scheme O = (TM.Setup,TM.Obf,TM.Eval) for bounded-input Turing
machines in the shared randomness model, where the size of the obfuscation does not grow with the input
bound.

TM.Setup(1λ, 1n, 1m, crs ∈ {0, 1}SizeTM-bd.Obf(λ,n,m)): The setup algorithm does the following:

1. Set o = SizeTM-bd.Obf(λ, n,m) and compute ek ← OcRE.Setup(1λ, 1o, crs). Here m is used to
denote the length of the largest turing machine in the class of turing machines we are interested
to obfuscate.

2. Output ok = (ek, n, λ) as the obfuscation key (both n and λ are represented in binary).

TM.Obf(M,T, ok): The obfuscation algorithm does the following:

1. Parse ok = (ek, n, λ). Choose a uniformly random string t← {0, 1}λ.
2. Set program P ≡ TM∗TM-bd.Obf,PRG.

3. Output M̃ ← OcRE.Encode(P,M, n, λ, t, T, ek).

TM.Eval(M̃, x, crs): The evaluation algorithm does the following:

1. Compute M ′ ← OcRE.Decode(M̃, crs).

2. Output TM-bd.Eval(M ′, x).

Correctness: The correctness of the scheme follows easily by relying on the correctness of the underlying
primitives used.

Efficiency:

• First, let us analyze the size of the obfuscation key. |ok| = |ek| + log(λ) + log(n). Recall from the
definition of OcRE that ek = p1(λ, log(o)) where p1 is a polynomial and o = Poly(λ, n,m). Thus,
|ok| = p(λ, log(n), log(m)) for some polynomial p.

• Next, let us analyze the size of the obfuscated program. The size of program P is STM-bd.Obf,PRG

(which is a constant depending on the obfuscation and PRG scheme). The size of the input to P is

(|M |+ log(T) + log(n) + log(λ) + λ). Hence, the size of the encoding M̃ (which is the final obfuscation
of the turing machine M) is p(|M |, log(T), λ, log(n), log(m)) for some polynomial p.

• Finally, let’s analyze the running time of TM.Eval(M̃, x, crs). We do this as follows.

Time(TM.Eval(M̃, x, crs)) = Time(OcRE.Decode(M̃, crs)) + Time(TM-bd.Eval(M ′, x)). The running

time of OcRE.Decode(M̃, crs) is at most min (T,Time(P, (M,n, λ, t, T)))·p3(λ, log T = λ) ≤ p(|M |, n, λ).
The running time of TM-bd.Eval(M ′, x) is at most min (T,Time(M,x)) · p(λ, n). So the running

time Time(TM.Eval(M̃, x, crs)) ≤ p1(|M |, n, λ) + min (T,Time(M,x)) · p2(λ, n) ≤ min(T,Time(M,x)) ·
p3(λ, n, |M |, log T).

34

7.2 Security

The proof follows via a sequence of hybrid arguments as described below.

• Hyb0: This is same as the original game. The challenger does the following:

1. Receive a pair of functionally equivalent machines (M0,M1) and a time bound T from the adver-
sary.

2. Pick a bit b and a λ bit string t uniformly at random.

3. Pick crs uniformly at random and compute ok = TM.Setup(1λ, 1n, 1m, crs).

4. Set program P ≡ TM∗TM-bd.Obf,PRG.

5. Output M̃ ← OcRE.Encode(P,Mb, n, λ, t, T, ek) along with crs.

• Hyb1: This is same as the original game. The challenger does the following:

1. Receive a pair of functionally equivalent machines (M0,M1) and a time bound T from the adver-
sary.

2. Pick a bit b and a λ bit string t uniformly at random.

3. Compute (crs, M̃)← OcRE.Sim(1|TM-bd.Obf|, 1|(Mb,T,1λ,1n,PRG(t))|, 1λ,TM-bd.Obf(Mb, T, 1
λ, 1n; PRG(t)), 2λ)

and ok← TM.Setup(1λ, 1n, 1m, crs).

4. Output (crs, ek, M̃).

• Hyb2: This is same as the original game. The challenger does the following:

1. Receive a pair of functionally equivalent machines (M0,M1) and a time bound T from the adver-
sary.

2. Pick a bit b uniformly at random.

3. Compute (crs, M̃) ← OcRE.Sim(1|TM-bd.Obf|, 1|(Mb,T,1λ,1n,r1)|, 1λ,TM-bd.Obf(Mb, T, 1
λ, 1n; r1), 2

λ)
where r1 is picked uniformly at random and compute ok = TM.Setup(1λ, 1n, 1m, crs).

4. Output (crs, ek, M̃).

We will now argue that every pair of consecutive hybrids is computationally indistinguishable and finally,
show that any PPT adversary has negligible advantage in Hyb2.

Lemma 7.1. Assuming the security of the output compressing randomized encoding scheme OcRE, Hyb0 is
computationally indistinguishable from Hyb1.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary AOcRE that breaks the security of the scheme OcRE
which is a contradiction.

First, AOcRE receives a pair of functionally equivalent machines (M0,M1) and a time bound T from
A. Then, AOcRE picks a bit b uniformly at random, a λ bit string t uniformly at random, sets P ≡
TM∗TM-bd.Obf,PRG sends the tuple (P,Mb, n, λ, t, T) to the challenger COcRE. Then, COcRE sends back a pair of
encoding and crs (shared randomness) which is either honestly generated or simulated. Then, AOcRE sends
these values to A as its crs and the obfuscated output.

Notice that when the challenger COcRE sends an honestly generated encoding and crs, the experiment
between AOcRE and A corresponds exactly to Hyb0 and when the challenger COcRE sends a simulated encoding
and crs, the experiment corresponds exactly to Hyb1. Thus, if A can distinguish between the two hybrids
with non-negligible probability, AOcRE can use the same guess to break the security of the scheme OcRE with
non-negligible probability which is a contradiction.

35

Lemma 7.2. Assuming the security of the pseudorandom generator PRG, Hyb1 is computationally indis-
tinguishable from Hyb2.

Proof. Suppose there exists an adversary A that can distinguish between the two hybrids with non-negligible
probability. We will use A to construct an adversary APRG that breaks the security of the pseudorandom
generator PRG which is a contradiction.

The adversaryAPRG interacts with a challenger CPRG and receives a string which is either an output of the
PRG or a uniformly random string. Then, APRG interacts with the adversary A and performs the experiment
exactly as in Hyb1 except that it sets the randomness r as the value received from CPRG. Notice that when
the challenger CPRG sends a PRG output, the experiment between APRG and A corresponds exactly to Hyb1
and when the challenger CSSB sends a uniformly random string, the experiment corresponds exactly to Hyb2.
Thus, if A can distinguish between the two hybrids with non-negligible probability, APRG can use the same
guess to break the security of the PRG with non-negligible probability which is a contradiction.

Lemma 7.3. Assuming the security of the indistinguishability obfuscation scheme (TM-bd.Obf,TM-bd.Eval),
the adversary’s advantage in Hyb2 is negligible.

Proof. Suppose there exists an adversary A that has a non-negligible advantage in distinguishing between
b = 0 and b = 1 in Hyb2. We will use A to construct an adversary AiO that breaks the security of the
indistinguishability obfuscation scheme (TM-bd.Obf,TM-bd.Eval) which is a contradiction.
AiO receives a pair of functionally equivalent machines (M0,M1) and a time bound T from the adversary.

Then, AiO sends the tuple (M0,M1, T, 1
λ, 1n) to the challenger C of the obfuscation scheme and receives back

an obfuscation y of one of the two machines M0 or M1 using the algorithm TM-bd.Obf. A uses this value to
compute a simulated crs← OcRE.Sim(y; r), ok = TM.Setup(1λ, 1n, 1m, crs) and M̃x ← OcRE.Sim(y; r) using

a random string r. AOcRE sends (crs, M̃x) to the adversary A as its output.
Notice that when the challenger CiO sends an obfuscation of M0, the experiment between AiO and A

corresponds exactly to Hyb2 using b = 0 and when the challenger CiO sends an obfuscation of M1, the
experiment between AiO and A corresponds exactly to Hyb2 using b = 1. Thus, if A has a non-negligible
advantage in distinguishing between b = 0 and b = 1 in Hyb2, AiO can use the same distinguishing guess
A to break the security of the indistinguishability obfuscation scheme (TM-bd.Obf,TM-bd.Eval) which is a
contradiction.

7.3 Succinct Partial Randomized Encodings

In this section, we introduce the notion of succinct partial randomized encodings (spRE). This is similar
to the notion of succinct randomized encodings (defined in B.4), except that the adversary is allowed to
learn part of the input. For efficiency, we require that if the machine has size m, and ℓ bits of input are
hidden, then the size of randomized encoding should be polynomial in the security parameter λ, ℓ and m.
In particular, the size of the encoding does not depend on the entire input’s length (this is possible only
because we want to hide ℓ bits of the input; the adversary can learn the remaining bits of the input). This
notion is the Turing Machine analogue of partial garbling of arithmetic branching programs, studied by Ishai
and Wee [IW14].

A succinct partial randomized encoding scheme SPRE for a class of boolean Turing machinesM consists
of a preprocessing algorithm Preprocess, encoding algorithm Encode, and a decoding algorithm Decode with
the following syntax.

Preprocess(1λ, x2 ∈ {0, 1}∗): The preprocessing algorithm takes as input security parameter λ (in unary),
string y ∈ {0, 1}∗ and outputs a string hk.

Encode(M ∈ M, T ∈ N, x1 ∈ {0, 1}∗, hk ∈ {0, 1}p(λ)): The encoding algorithm takes as input a Turing
machine M ∈M, time bound T ∈ N, partial input x1 ∈ {0, 1}∗, string hk ∈ {0, 1}p(λ), and outputs an

encoding M̃ .

36

Decode(M̃, x2, hk): The decoding algorithm takes as input an encoding M̃ , a string x2 ∈ {0, 1}∗, string hk
and outputs y ∈ {0, 1,⊥}.

Definition 7.1. LetM be a family of Turing machines. A randomized encoding scheme SPRE = (Preprocess,
Encode,Decode) is said to be a succinct partial randomized encoding scheme if it satisfies the following
correctness, efficiency and security properties.

• Correctness: For every machine M ∈M, string x = (x1, x2) ∈ {0, 1}∗, security parameter λ and T ∈ N,
if hk← Preprocess(1λ, x2), then Decode(Encode(M,T, x1, hk), x2) = TM(M,x, T).

• Efficiency: There exist polynomials pprep, penc and pdec such that for every machine M ∈ M, x =
(x1, x2) ∈ {0, 1}∗, T ∈ N and λ ∈ N, if hk ← Preprocess(1λ, x2), then |hk| = pprep(λ), the time to

encode M̃ ← Encode(M,T, x1, hk) is bounded by penc(|M |, |x1|, log T, λ), and the time to decode M̃ is
bounded by min(Time(M,x, T) · pdec(λ, log T).

• Security: For every PPT adversary A = (A1,A2), there exists a PPT simulator S such that
for all PPT distinguishers D, there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[1 ← D(Expt-SPRE-RealSPRE,A(λ))] − Pr[1 ← D(Expt-SPRE-IdealSRE,A,S(λ))] ≤ negl(λ), where
Expt-SPRE-Real and Expt-SPRE-Ideal are defined in Figure 11. Moreover, the running time of S is
bounded by some polynomial pS(|M |, |x1|, log T, λ).

Experiments Expt-SPRE-RealSPRE,A(λ) and Expt-SPRE-IdealSPRE,A,S(λ)

Expt-SPRE-RealSPRE,A(λ):

- (M,x = (x1, x2), T, σ)← A1(1
λ).

- hk← Preprocess(x2, 1
λ).

- M̃ ← Encode(M,T, x1, hk).

- Experiment outputs A2(M̃, σ).

Expt-SPRE-IdealSPRE,A,S(λ):

- (M,x = (x1, x2), T, σ)← A1(1
λ),

t∗ = min (T,Time (M,x)), out = TM (M,x, T).

- hk← Preprocess(1λ, x2).

- M̃ ← S
(
1|M|, 1|x1|, hk, 1λ, out, t∗

)
.

- Experiment outputs A2(M̃, σ).

Figure 11: Simulation Security Experiments for partial randomized encodings

8 Construction of Succinct Partial Randomized Encodings

We will now present a succinct partial RE scheme. This construction is similar to the succinct RE (machine
hiding) scheme by [KLW15].

Overview of construction Our construction is closely related to the SRE scheme by [KLW15] (referred
to as ‘KLW scheme’ for the remaining section). Let us first recall the KLW scheme (at a high level). The
KLW construction assumes the Turing machine is oblivious, has a single work tape, which initially has
the input and the next-step function, at any step, reads a state and symbol, and outputs the new state,
and the new symbol written at that position. In this scheme, the encoding of machine M and input x
consists of a obfuscated circuit Prog (which corresponds to the encoding of M), an encryption of the input
x, encryption of initial TM state, a hash of the initial work tape (which has encryption of the input), and a
signature on this hash, inital state’s encryption (together with some additional components). The circuit
Prog takes as input a time step, an encrypted state, an encrypted symbol, a proof and a signature. It
first verifies the proof and signature. Then it decrypts the state and symbol, computes the new state and
symbol (using the next-step circuit of M), encrypts the new state and symbol, updates the hash, computes
a new signature on the hash, encrypted state (and additional components) and outputs the new encrypted
state, encrypted symbol, hash and signature. The decoder runs this program iteratively. Let us assume the
machine reads position p at time step i. Also, at time step i, let ctsym be the encryption of symbol, ctst the

37

ciphertext at position p on worktape, h the hash of encrypted tape and σ the signature. The decoder, at
step i, first computes a proof π that ct is the correct ciphertext at position p. It then runs Prog on input
i, h, ctsym, ctst, π, σ, and receives new ciphertexts ct′sym, ct

′
st, new hash h′ and signature σ′. It replaces ctsym

with ct′sym on worktape at position p, and this concludes the ith iteration. This procedude is repeated till
the program outputs 0/1.

Our construction: We will assume that the Turing machine M has a separate ‘auxiliary-input tape’ and
work tape, the Turing machine is oblivious. The input to the Turing machine is split into actual input and
auxiliary input. The auxiliary input is written on the aux-tape, the work tape initially contains the remaining
input. The next-step function takes as input the current worktape symbol, current aux-tape symbol, current
state and outputs new worktape symbol and new state.

In the preprocessing stage, we choose hash function Haux, and computes haux = Haux(x2). The prepro-
cessing stage outputs Haux together with haux.

The encoding algorithm, on input M,x1,Haux, haux, first chooses another hash function Hwk which will
be used to compute a hash of the encrypted worktape. It outputs an obfuscation of circuit Prog, encryption
ct of x1 (which is the initial worktape), hash h = Hwk(ct), encryption ct0 of initial state and signatue on
hprep, h, ct0. The circuit Prog is similar to the KLW circuit. It takes as input a time step, an encrypted
worktape symbol, an encrypted state, aux-input symbol, hash of input and work tape, two corresponding
proofs and a signature. It first verifies the signature and the two proofs. Next, it decrypts and obtains the
worktape symbol, the state and uses these two, together with the current aux-input symbol to compute the
new worktape symbol and state. It then encrypts the worktape symbol and state, updates the worktape
hash, and outputs a new signature. Decoding is identical to the KLW decoding.

Our Construction Our construction requires the following primitives:

- A secret key encryption scheme SKE = (SKE.Setup, SKE.Enc,SKE.Dec). We will assume SKE.Setup
uses ℓ1 = ℓ1(λ) bits of randomness, and SKE.Enc uses ℓ2 = ℓ2(λ) bits of randomness, where ℓ1 and ℓ2
are polynomials and let ℓrnd = ℓ1 + 2ℓ2. We will let ℓ3 denote the bit length of ciphertexts produced
by SKE.Enc.

- A secure indistinguishability obfuscator scheme (Ckt.Obf,Ckt.Eval) for circuit family {Cλ}λ∈N, where
each circuit in Cλ has size sckt(λ), depth depckt(λ), takes inpckt(λ) bits as input, and outputs outckt(λ)
bits, for some polynomials sckt, depckt, inpckt, outckt.

- A positional accumulator scheme Acc =(Acc.Setup, Acc.Setup-Enforce-Read, Acc.Setup-Enforce-Write,
Acc.Prep-Read, Acc.Prep-Write, Acc.Verify-Read, Acc.Write-Store, Update) with message space
{0, 1}ℓ3+lg T and producing accumulator values of bit length ℓAcc.

- An iterator Itr = (Itr.Setup, Itr.Setup-Enforce, Itr.Iterate) for message space {0, 1}ℓ3+ℓAcc+lg T with iter-
ated value of size ℓItr bits

- A splittable signature scheme S = (Spl.Setup,Spl.Sign,Spl.Verify,Spl.Split, Spl.Sign-abo) with message
space {0, 1}ℓItr+ℓ3+ℓAcc+lg T . For simplicity of notation, we will assume Spl.Setup uses ℓrnd(λ) bits of
randomness.

- A puncturable PRF PPRF = (F, F.Setup, F.Puncture) with key space K, punctured key space Kp,
domain [T], range {0, 1}ℓrnd(λ).

- A somewhere statistically binding scheme SSB = (SSB.Gen,SSB.Open,SSB.Verify).

We will now define the preprocessing, encoding and decoding algorithms.

Preprocess(1λ, x2) : The preprocessing algorithm does the following:

1. Choose Haux ← SSB.Gen(1λ, 1|x2|, 1).

2. Compute haux = Haux(x2) and output (Haux, haux, 1
λ).

Encode(M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, T, x1, (Haux, haux, 1
λ)) : The encoding algorithm does

the following:

38

1. Choose puncturable PRF keys KE ← F.Setup(1λ), KA ← F.Setup(1λ). KE will be used for
computing an encryption of the symbol and state, and KA to compute the secret key/verification
key for signature scheme.

2. Let (r0,1, r0,2, r0,3) = F (KE , 0), sk = SKE.Setup(1λ; r0,1).

3. Let ℓinp = |x1|. Encrypt each bit of x1 separately; that is, compute cti = SKE.Enc(sk, x1,i) for
1 ≤ i ≤ ℓinp. These ciphertexts are ‘accumulated’ using the accumulator.

4. Compute (PAcc, w̃0, s̃tore0) ← Acc.Setup(1λ, T). Then, for 1 ≤ j ≤ ℓinp, compute s̃torej =

Acc.Write-Store(PAcc, s̃torej−1, j − 1, (ctj , 0)), acc-auxj = Acc.Prep-Write(PAcc, s̃torej−1, j − 1),
w̃j = Update(PAcc, w̃j−1, inpj , j − 1, acc-auxj).

5. Set w0 = w̃ℓinp and s0 = s̃toreℓinp .

6. Compute (PItr, v0)← Itr.Setup(1λ, T).

7. Then, compute an obfuscation P ← Ckt.Obf(1λ,Prog{M , T , PAcc, PItr, KE , KA,Haux, haux})
where Prog is defined in Figure 12.

8. Compute ctst ← SKE.Enc(sk, q0).

9. Let rA = F (KA, 0), (SK0,VK0,VK0,rej) = Spl.Setup(1λ; rA) and σ0 = Spl.Sign(SKA, (v0, ctst, w0, 0)).

10. Output Enc = (P,w0, v0, σ0, s0).

Decode(Enc, x2, (Haux, haux)) : The decoding algorithm receives as input Enc = ((P, ctst,0, w0, v0, σ0, store0)).
It first sets pos0 = 0 and posaux,0 = 0. Then, for i = 1 to T , it does the following:

1. Let ((ctsym,ℓ-w, ℓ-w), π) = Acc.Prep-Read(PAcc, storei−1, posi−1).
2. Let acc-aux = Acc.Prep-Write(PAcc, storei−1, posi−1).
3. Let symaux = x2,tmfaux(i−1), πaux = SSB.Open(Haux, x2, tmfaux(i− 1)).
4. Compute (posi, (ctsym,i, ℓ-w), ctst,i, wi, vi, σi) = P (t, (ctsym,ℓ-w, ℓ-w), ctst,i−1, wi−1, vi−1, σi−1,

acc-aux, π , πaux, symaux). If P has output 0, 1, or ⊥, then output the same.
5. Otherwise, compute storei = Acc.Write-Store(PAcc, storei−1, posi, (ctsym,i, i)).

8.1 Correctness and Efficiency

39

Program Prog

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 12: Program Prog

40

8.2 Proof of Security

Our security proof is similar to the KLW security proof. The main differences are as follows:

• KLW has an indistinguishability-based security definition, while we require simulation security. How-
ever, it is easy to note that the KLW construction also satisfies simulation security.

• We have an additional auxiliary input, and we need to make sure this does not leak additional informa-
tion about the machine or hidden input. To ensure this, we will keep the overall KLW proof structure,
and make local modifications to the KLW proof. In particular, the only parts that change are the steps
where KLW use the accumulator enforcing property. Together with the accumulator enforcement, we
also need to make the SSB hash binding at appropriate position. If, at time t, positions p and paux are
read, then we need to make the accumulator enforcing at position p, and the SSB hash binding at paux.

Simulator S: We will now describe the simulator S. The simulator takes as input 1|M |, tmf, tmfaux,
1|x|, (Haux, haux), 1

λ, t∗, res, where t∗ = min (T,Time (M, (x, y))) and res = TM (M, (x, y), T) and does the
following.

• It first chooses puncturable PRF keys KE ← F.Setup(1λ), KA ← F.Setup(1λ). Let (r0,1, r0,2, r0,3) =
F (KE , 0), sk = SKE.Setup(1λ; r0,1).

• It computes (PAcc, w̃0, s̃tore0) ← Acc.Setup(1λ, T). Let ℓinp = |x|, and let erase be a symbol not in
Σtape. It encrypts eraseℓinp ; that is, it computes cti = SKE.Enc(sk, erase) for 1 ≤ i ≤ ℓinp. It also
computes ctst ← SKE.Enc(sk, eraseℓst) (where ℓst is the number of bits required to represent each state
of Turing machine).

• Next, it computes acc-auxj = Acc.Prep-Write(PAcc, s̃torej−1, j − 1), s̃torej = Acc.Write-Store(PAcc,

s̃torej−1, j − 1, (ctj , 0)), w̃j = Update(PAcc, w̃j−1, inpj , j − 1, acc-auxj) for 1 ≤ j ≤ ℓinp, and sets

w0 = w̃ℓinp , s0 = s̃toreℓinp .

• It then computes (PItr, v0)← Itr.Setup(1λ, T).

• Finally, it computes an obfuscation P ← Ckt.Obf(1λ,Prog-sim{tmf, tmfaux, t
∗, res, PAcc, PItr, KE ,

KA,Haux, haux}) where Prog-sim is defined in Figure 13. This program is padded to be of the same size
as Prog (defined in Figure 12).

• Let rA = F (KA, 0), (SK0,VK0) = Spl.Setup(1λ; rA) and σ0 = Spl.Sign(SKA, (v0, ctst, w0, 0)). It outputs
Enc = (P,w0, v0, σ0, s0).

Theorem 8.1. Assuming SKE is IND-CPA secure, iO is a secure indistinguishability obfuscator, F is a selec-
tively secure puncturable PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator
satisfying Definitions C.5, C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions
C.1, C.2, C.3 and C.4, SSB is a somewhere statistically binding scheme satisfying Definition B.1, the above
scheme is a secure succinct partial randomized encoding scheme satisfying Definition 7.1.

The security proof is included in Appendix D (we include the full proof for completeness, the majority
of which is borrowed from [KLW15]).

41

Program Prog-sim

Constants: Tape movement functions tmf, tmfaux, Time bound t∗ ∈ N, Output res, Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmf(t− 1), posaux = tmfaux(t− 1) and posout = tmf(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Simulated Output

(a) If t = t∗, output res.
(b) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, eraseℓst ; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 13: Program Prog-sim

42

References

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Canetti and Garay [CG13], pages 500–518.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In Canetti and Garay [CG13],
pages 166–184.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science, pages 308–326.
Springer, 2015.

[AJS17] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation for turing
machines: Constant overhead and amortization. In Katz and Shacham [KS17], pages 252–279.

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from functional encryption
through a local simulation paradigm. Cryptology ePrint Archive, Report 2018/759, 2018. https:
//eprint.iacr.org/2018/759.

[AM18] Shweta Agrawal and Monosij Maitra. Functional encryption and indistinguishability obfuscation
for turing machines from minimal assumptions, 2018.

[BGI+17] Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and Akshay Wadia. Two-
message witness indistinguishability and secure computation in the plain model from new assump-
tions. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryptology and Infor-
mation Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part III, volume 10626
of Lecture Notes in Computer Science, pages 275–303. Springer, 2017.

[BGJ+17a] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Kalai, Dakshita Khurana, and
Amit Sahai. Promise zero knowledge and its applications to round optimal mpc. IACR Cryp-
tology ePrint Archive, 2017:1088, 2017.

[BGJ+17b] Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Dakshita Khurana, and Amit Sahai.
Round optimal concurrent MPC via strong simulation. In Yael Kalai and Leonid Reyzin, edi-
tors, Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 743–775. Springer, 2017.

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Succinct randomized
encodings and their applications. In Servedio and Rubinfeld [SR15], pages 439–448.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round mpc from k-round ot via garbled interactive
circuits. EUROCRYPT, 2018.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In CCS ’93, Proceedings of the 1st ACM Conference on Computer and
Communications Security, Fairfax, Virginia, USA, November 3-5, 1993., pages 62–73, 1993.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Yuval Ishai, editor, Theory of Cryptography - 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in
Computer Science, pages 253–273. Springer, 2011.

43

https://eprint.iacr.org/2018/759
https://eprint.iacr.org/2018/759

[CDG+18] Can Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.
The wonderful world of global random oracles. EUROCRYPT, 2018.

[CG13] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
volume 8043 of Lecture Notes in Computer Science. Springer, 2013.

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Succinct garbling
and indistinguishability obfuscation for RAM programs. In Servedio and Rubinfeld [SR15], pages
429–437.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and Giuseppe
Persiano. On the achievability of simulation-based security for functional encryption. In Canetti
and Garay [CG13], pages 519–535.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical UC security with a global
random oracle. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 597–608. ACM, 2014.

[DSW08] Yevgeniy Dodis, Victor Shoup, and Shabsi Walfish. Efficient constructions of composable com-
mitments and zero-knowledge proofs. In David A. Wagner, editor, Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 17-21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages
515–535. Springer, 2008.

[GGJS12] Sanjam Garg, Vipul Goyal, Abhishek Jain, and Amit Sahai. Concurrently secure computation in
constant rounds. In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology
- EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of
Lecture Notes in Computer Science, pages 99–116. Springer, 2012.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, 1986.

[GGMP16] Sanjam Garg, Divya Gupta, Peihan Miao, and Omkant Pandey. Secure multiparty RAM com-
putation in constant rounds. In Hirt and Smith [HS16], pages 491–520.

[GHL+14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel Wichs.
Garbled RAM revisited. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in
Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 405–422. Springer, 2014.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge
University Press, 2004.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive zaps and new techniques for
NIZK. In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006, 26th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings,
volume 4117 of Lecture Notes in Computer Science, pages 97–111. Springer, 2006.

[GS18] Sanjam Garg and Akshayaram Srinivasan. A simple construction of io for turing machines.
Cryptology ePrint Archive, Report 2018/771, 2018. https://eprint.iacr.org/2018/771.

44

https://eprint.iacr.org/2018/771

[HJK+16] Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, Brent Waters, and Mark Zhandry.
How to generate and use universal samplers. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part II, volume 10032 of Lecture Notes in Computer Science, pages 715–744, 2016.

[HS16] Martin Hirt and Adam D. Smith, editors. Theory of Cryptography - 14th International Confer-
ence, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I, volume
9985 of Lecture Notes in Computer Science, 2016.

[HW15] Pavel Hubácek and Daniel Wichs. On the communication complexity of secure function eval-
uation with long output. In Tim Roughgarden, editor, Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015,
pages 163–172. ACM, 2015.

[HY16] Carmit Hazay and Avishay Yanai. Constant-round maliciously secure two-party computation in
the RAM model. In Hirt and Smith [HS16], pages 521–553.

[IK00] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation. In 41st Annual Symposium on Foundations of
Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California, USA, pages
294–304. IEEE Computer Society, 2000.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge pcps. In
Ronald Cramer, editor, Theory of Cryptography - 9th Theory of Cryptography Conference, TCC
2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume 7194 of Lecture Notes in
Computer Science, pages 151–168. Springer, 2012.

[IW14] Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages 650–662.
Springer, 2014.

[KLW14] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925, 2014.
https://eprint.iacr.org/2014/925.

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In Servedio and Rubinfeld [SR15], pages 419–428.

[KS17] Jonathan Katz and Hovav Shacham, editors. Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part II, volume 10402 of Lecture Notes in Computer Science. Springer, 2017.

[Lin17] Yehuda Lindell. How to simulate it–a tutorial on the simulation proof technique. In Tutorials
on the Foundations of Cryptography, pages 277–346. Springer, 2017.

[LO17] Steve Lu and Rafail Ostrovsky. Black-box parallel garbled RAM. In Katz and Shacham [KS17],
pages 66–92.

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized en-
codings and applications. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography -
13th International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part I, volume 9562 of Lecture Notes in Computer Science, pages 96–124. Springer, 2016.

45

https://eprint.iacr.org/2014/925

[Mia16] Peihan Miao. Cut-and-choose for garbled RAM. IACR Cryptology ePrint Archive, 2016:907,
2016.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-key FHE.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture Notes
in Computer Science, pages 735–763. Springer, 2016.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In Annual International Cryptology Conference, pages 111–126.
Springer, 2002.

[OS97] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In
Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual
ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages
294–303. ACM, 1997.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its application to protocol composition.
In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 160–176. Springer, 2003.

[SR15] Rocco A. Servedio and Ronitt Rubinfeld, editors. Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015.
ACM, 2015.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 475–484. ACM, 2014.

[Wee09] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In International Conference
on the Theory and Application of Cryptology and Information Security, pages 417–434. Springer,
2009.

A Secure Multiparty Computation in the Random Oracle Model

Parts of this section have been taken from [Gol04], with modifications for the random oracle model using
[Lin17, Wee09, Nie02] as references.

A multi-party protocol is cast by specifying a random process that maps pairs of inputs to pairs of outputs
(one for each party). We refer to such a process as a functionality. The security of a protocol is defined
with respect to a functionality f . In particular, let n denote the number of parties. A non-reactive n-party
functionality f is a (possibly randomized) mapping of n inputs to n outputs. A multiparty protocol in the
programmable random oracle model with security parameter λ for computing a non-reactive functionality f
is a protocol running in time poly(λ) where there are parties P1, . . . ,Pn with inputs (x1, . . . , xn) respectively,
and additionally there is one other party RO which implements a random oracle functionality and which
any party can query. It satisfies the following correctness requirement: if all run an honest execution of
the protocol, then the joint distribution of the outputs y1, . . . , yn of the parties is statistically close to
f(x1, . . . , xn).

A reactive functionality f is a sequence of non-reactive functionalities f = (f1, . . . , fℓ) computed in a
stateful fashion in a series of phases. Let xj

i denote the input of Pi in phase j, and let sj denote the state
of the computation after phase j. Computation of f proceeds by setting s0 equal to the empty string and
then computing (yj1, . . . , y

j
n, s

j) ← fj(s
j−1, xj

1, . . . , x
j
n) for j ∈ [ℓ], where yji denotes the output of Pi at the

46

end of phase j. A multi-party protocol computing f also runs in ℓ phases, at the beginning of which each
party holds an input and at the end of which each party obtains an output. (Note that parties may wait to
decide on their phase-j input until the beginning of that phase.) Parties maintain state throughout the entire
execution. The correctness requirement is that, in an honest execution of the protocol, the joint distribution
of all the outputs {yj1, . . . , yjn}ℓj=1 of all the phases is statistically close to the joint distribution of all the
outputs of all the phases in a computation of f on the same inputs used by the parties.

Defining Security. The security of a protocol (with respect to a functionality f) is defined by comparing
the real-world execution of the protocol with an ideal-world evaluation of f by a trusted party. More
concretely, it is required that for every adversary A, which attacks the real execution of the protocol, there
exists an adversary Sim, also referred to as a simulator, which can achieve the same effect in the ideal-world.
Since we are in the programmable random oracle model, in the ideal world we allow the simulator to answer
oracle queries however it chooses. Let’s denote x = (x1, . . . , xn).

The real execution In the real execution of the n-party protocol π for computing f is executed in the
presence of an adversary A. The honest parties follow the instructions of π. The adversary A takes as input
the security parameter k, the set I ⊂ [n] of corrupted parties and the inputs of the corrupted parties. A
sends all messages in place of corrupted parties and may follow an arbitrary polynomial-time strategy. The
adversary and all other parties can interact with the random oracle RO.

The interaction of A with a protocol π defines a random variable REALπ,ARO,I(k,x) whose value is
determined by the coin tosses of the adversary and the honest parties. This random variable contains the
output of the adversary (which may be an arbitrary function of its view) as well as the outputs of the honest
parties. We let REALπ,ARO,I denote the distribution ensemble {REALπ,ARO,I(k,x)}k∈N,⟨x,z⟩∈{0,1}∗ .

The ideal execution . An ideal execution for a function f proceeds as follows, with an adversary Sim
which attempts to mimic the behavior of A. Note that in the ideal execution, there is no explicit random
oracle and instead, Sim can internally emulate all queries made to the random oracle.

• Send inputs to the trusted party: The parties send their inputs to the trusted party, and we let
x′i denote the value sent by Pi.

• Trusted party sends output to the adversary: The trusted party computes f(x′1, . . . , x
′
n) =

(y1, . . . , yn) and sends {yi}i∈I to the adversary Sim.

• Adversary instructs trusted party to abort or continue: This is formalized by having the
adversary send either a continue or abort message to the trusted party. In the latter case, the trusted
party sends to each uncorrupted party Pi its output value yi. In the former case, the trusted party
sends the special symbol ⊥ to each uncorrupted party.

• Outputs: Sim outputs an arbitrary function of its view, and the honest parties output the values
obtained from the trusted party.

The interaction of Sim with the trusted party defines a random variable IDEALf⊥,Sim(k,x) as above,
and we let IDEALf⊥,Sim = {IDEALf⊥,Sim,I(k,x)}k∈N,⟨x⟩∈{0,1}∗ where the subscript ”⊥” indicates that the
adversary can abort computation of f . We emphasize that the exclusion of the random oracle in the ideal
world is intentional; adding it would give Sim no extra power.

Having defined the real and the ideal worlds, we now proceed to define our notion of security.

Definition A.1. Let k be the security parameter. Let f be an n-party randomized functionality, and π
be an n-party protocol for n ∈ N. We say π t-securely computes f with abort in the presence of malicious
adversaries if for every PPT adversary A there exists a polynomial time adversary Sim such that for any
I ⊂ [n] with |I| ≤ t and any PPT distinguisher D the following quantity is negligible:

|Pr[D(REALπ,RO,ARO,I(k,x)) = 1]− Pr[D(IDEALf⊥,Sim(k,x)) = 1]|.

47

Note that since we are in the programmable random oracle model where the distinguisher D doesn’t get
access to the random oracle.

B Further Preliminaries

B.1 Puncturable Pseudorandom Functions

We use the definition of puncturable PRFs given in [SW14], given as follows.
A puncturable family of PRFs F is given by a triple of turing machines PPRF.KeyGen, PPRF.Puncture,

and F , and a pair of computable functions n() and m(), satisfying the following conditions:

• Functionality preserved under puncturing: For every PPT adversary A such that A(1λ) outputs
a set S ⊆ {0, 1}n(λ), then for all x ∈ {0, 1}n(λ) where x ̸∈ S, we have that:

Pr

[
F (K,x) = F (KS , x) |

K ← PPRF.KeyGen(1λ),
KS ← PPRF.Puncture(K,S)

]
= 1

• Pseudorandom at punctured points: For every PPT adversary (A1, A2) such that A1(1
λ) outputs

a set S ⊆ {0, 1}n(λ) and state σ, consider an experiment where K ← PPRF.KeyGen(1λ) and KS ←
PPRF.Puncture(K,S). Then we have∣∣∣Pr [A2(σ,KS , S, F (K,S)) = 1

]
− Pr

[
A2(σ,KS , S, Um(λ)|̇S|) = 1

]∣∣∣ = negl(λ)

where F (K,S) denotes the concatenation of F (K,x) for all x ∈ S in lexicographic order and Uℓ

denotes the uniform distribution over ℓ bits.

B.2 Somewhere Statistically Binding Hash

Hubáček and Wichs [HW15] introduced the notion of Somewhere Statistically Binding (SSB) hash. It is
parameterized by polynomials ℓfn, ℓhash, ℓopen, consists of algorithms Gen-Enf,Open,Verify with the following
syntax.

Gen-Enf(1λ, L, i): The setup algorithm takes as input security parameter λ (in unary), input length L (in
binary) and index i ∈ {1, . . . , L} (in binary). It outputs a polynomial time hash function H : {0, 1}L →
{0, 1}ℓhash whose description is at most ℓfn(λ) bits long.

Open(H,x, j): The opening algorithm takes as input the description of a hash function H, string x ∈ {0, 1}L
and an index j ∈ {1, . . . , L}. It outputs an opening π ∈ {0, 1}ℓopen .

Verify(H,h, j, u, π): The verification algorithm takes as input a hash function H, a hash value h ∈ {0, 1}ℓhash ,
index j ∈ {1, . . . , L}, bit u ∈ {0, 1} and a proof π ∈ {0, 1}ℓopen . It outputs 0/1.

Definition B.1. An SSB hash scheme SSB = (Gen,Open,Verify), parameterized by ℓfn, ℓhash, ℓopen, is said
to be secure if it satisfies the following correctness, statistically binding and index hiding properties:

• Correctness: For all λ ∈ N, L ≤ 2λ, indices i, j ∈ {1, . . . , L}, string x ∈ {0, 1}L, ifH ← Gen-Enf(1λ, L, i)
and π ← Open(H,x, j), then Verify(H,H(x), j, x[j], π) = 1.

• Somewhere Statistically Binding Property: For any security parameter λ ∈ N, L ≤ 2λ, index i ∈
{1, . . . , L}, there does not exist hash value h, distinct values u ̸= u′ and openings π, π′ such that
Verify(H,h, i, u, π) = Verify(H,h, i, u′, π′).

• Index Hiding Property: For every PPT algorithm A = (A1,A2), there exists a negligible function
negl(·) such that for all λ ∈ N, Pr[1 ← Expt-SSBSSB,A(λ)] ≤ 1/2 + negl(λ), where Expt-SSB is defined
in Figure 14.

48

Experiment Expt-SSBSSB,A(λ)

• (L, i0, i1, σ)← A1(1
λ). If L > 2λ, experiment outputs a uniformly random bit.

• b← {0, 1}, H ← Gen-Enf(1λ, L, ib).

• b′ ← A2(H,σ). If b = b′, experiment outputs 1.

Figure 14: Index Hiding Experiment for SSB Hash

B.3 Indistinguishability Obfuscation for Circuits

Let C be a class of boolean circuits. An obfuscation scheme for C consists of two algorithms Ckt.Obf,Ckt.Eval
with the following syntax.

Ckt.Obf(C ∈ C, 1λ): The obfuscation algorithm is a PPT algorithm that takes as input a circuit C ∈ C,
security parameter λ (in unary). It outputs an obfuscated circuit C̃.

Ckt.Eval(C̃, x): The evaluation algorithm is a PPT algorithm takes as input an obfuscated circuit C̃, an
input x ∈ {0, 1}∗, and outputs y ∈ {0, 1,⊥}.

Definition B.2. An obfuscation scheme O = (Ckt.Obf,Ckt.Eval) is said to be a secure indistingushability
obfuscator for C if it satisfies the following correctness and security properties:

• Correctness: For every security parameter λ ∈ N, input length n ∈ N, circuit C ∈ C that takes n bit
inputs, input x ∈ {0, 1}n, Ckt.Eval(Ckt.Obf(C, 1λ), x) = C(x).

• Security: For every PPT adversary A = (A1, A2), there exists a negligible function negl(·) such that
for all security parameters λ ∈ N, Pr[1 ← Expt-iO-cktO,A(λ)] − 1/2 ≤ negl(λ), where Expt-iO-ckt is
defined in Figure 15.

Experiment Expt-iO-cktO,A(λ)

– (C0, C1, σ)← A1(1
λ)

– If |C0| ̸= |C1|, or if either C0 or C1 have different input lengths, then the experiment outputs a
uniformly random bit.

Else, let n denote the input lengths of C0, C1. If there exists an input x ∈ {0, 1}n such that C0(x) ̸=
C1(x), then the experiment outputs a uniformly random bit.

– b← {0, 1}, C̃ ← Ckt.Obf(Cb, 1
λ).

– b′ ← A2(σ, C̃).

– Experiment outputs 1 if b = b′, else it outputs 0.

Figure 15: Security Experiment for Indistinguishability Obfuscation

B.4 Succinct Randomized Encodings

The notion of succinct randomized encodings was introduced by the works of [BGL+15, KLW15, CHJV15].
In a randomized encoding scheme, we have an encoding algorithm and a decoding algorithm. The encoding
algorithm takes as input a Turing machine M , an input x and outputs an encoding of (M,x). The decoding
algorithm can use this encoding to compute M(x). Here, it is important that the time to encode only
depends on the size of M,x and the security parameter. In particular, it must be independent of the running
time of M on input x. In addition to the encoding algorithms being succinct, we will also require a succinct
simulator. While the previous works did not require this property, the construction of [KLW15] satisfies this
property.

LetM be a family of oblivious boolean Turing machines. A randomized encoding scheme forM consists
of algorithms Encode and Decode with the following syntax.

49

Encode((M, tmf(·)), x, T, 1λ): The encoding algorithm is a PPT algorithm that takes as input an oblivious
Turing machine M with tape movement function tmf(·), input x, security parameter λ (in unary) and

time bound T ≤ 2λ (in binary). It outputs an encoding M̃x of size poly(|M | , |x| , log T, λ).

Decode(M̃x): The decoding algorithm takes as input an encoding M̃x and outputs y ∈ {0, 1,⊥}.

Definition B.3. Let M be a family of Turing machines. A randomized encoding scheme SRE =
(Encode,Decode) is said to be a succinct randomized encoding scheme if it satisfies the following correctness,
efficiency and security properties.

• Correctness: For every machine M ∈ M with tape movement function tmf(·), input x ∈ {0, 1}∗,
security parameter λ and T ,

Decode(Encode((M, tmf(·)), x, T, 1λ)) = TM(M,x, T).

• Efficiency: There exist polynomials p1 and p2 such that for every machine M ∈M, x ∈ {0, 1}∗, T ∈ N
and λ ∈ N, the time to encode M̃x ← Encode((M, tmf(·)), x, T, 1λ) is bounded by p1(M,x, log T, λ),

and the time to decode M̃x is bounded by min(Time(M,x), T) · p2(λ, log T).

• Security: For every PPT adversary A = (A1,A2), there exists a PPT simulator S such that
for all PPT distinguishers D, there exists a negligible function negl(·) such that for all λ ∈ N,
Pr[1 ← D(Expt-SRE-RealSRE,A(λ))] − Pr[1 ← D(Expt-SRE-IdealSRE,A,S(λ))] ≤ negl(λ), where Expt-SRE-Real and
Expt-SRE-Ideal are defined in Figure 16. Moreover, the running time of S is bounded by some
polynomial pS(|M |, |x1|, log T, λ).

Experiments Expt-SRE-RealOcRE,A(λ) and Expt-SRE-IdealOcRE,A,S(λ)

Expt-SRE-RealSRE,A(λ):

- ((M, tmf(·)), x, T, σ)← A1(1
λ).a

- M̃ ← Encode((M, tmf(·))x, T, 1λ).

- Experiment outputs A2(M̃, σ).

a
The adversary A1 outputs an oblivious Turing machine M with

tape movement function tmf(·).

Expt-SRE-IdealSRE,A,S(λ):

- ((M, tmf(·)), x, T, σ)← A1(1
λ). a

- Let t∗ = min(T,Time(M,x)) and b∗ = TM(M,x, T).

- M̃ ← S(1|M|, 1|x|, t∗, b∗, tmf(·), 1λ).b

- Experiment outputs A2(M̃, σ).

a
The adversary A1 outputs an oblivious Turing machine M with tape move-

ment function tmf(·).
b
Note that since S is a polynomial time simulator, the running time of S is

polynomial in |M|, |x|, λ, log T .

Figure 16: Simulation Security Experiments for randomized encodings

C Primitives from [KLW15]

C.1 Notations

For our partial randomized encoding scheme, we will use the following notations/conventions for Turing
machines. We will assume the Turing machine has a worktape and an ‘auxiliary-input’ tape. Both these
tapes have a header, which is initially positioned at index 0 and moves left/right (denoted by −1/ + 1
respectively). The transition function δ takes as input the current state, symbol located at the head positions
of the tape and aux-tape respectively, and outputs the new state, the new symbol to be written on tape (at
the head position), and the movement for the tape header and aux-tape header respectively. More formally,
it is defined as follows.

50

Turing machines A Turing machine is a 7-tuple M = ⟨Q,Σtape,Σinp, δ, q0, qacc, qrej⟩ with the following
semantics:

- Q is the set of states with start state q0, accept state qacc and reject state qrej.

- Σinp is the set of inputs symbols

- Σtape is the set of tape symbols. We will assume Σinp ⊂ Σtape and there is a special blank symbol
‘ ’ ∈ Σtape \ Σinp.

- δ : Q× Σtape × Σinp → Q× Σtape × {+1,−1} × {+1,−1} is the transition function.

We will assume the computation begins with the work-tape containing the actual input x, the aux-tape
contains the auxiliary input x2, both heads positioned at index 0, and the starting state being q0. The
computation ends when the state reaches either qacc or qrej. If it reaches qacc, then the machine M accepts
(x, xaux), and if it reaches qrej, it rejects (x, xaux).

C.2 iO-Compatible Primitives

In this section, we will define extensions of some cryptographic primitives that makes them ‘compatible’ with
indistinguishability obfuscation. Here, we define the syntax and security notions for these primitives. Their
constructions can be found in [KLW15].

C.2.1 Splittable Signatures

A splittable signature scheme is a normal signature scheme, augmented by some additional algorithms that
produce alternative signing and verification keys with differing capabilities. More precisely, there will be ‘all
but one’ keys that work correctly except for a single message m∗, and there will be ‘one’ keys that work
only for m∗. There will also be a reject-verification key that always outputs reject when used to verify a
signature.

Syntax A splittable signature scheme S for message spaceM consists of the following algorithms:

Spl.Setup(1λ) The setup algorithm is a randomized algorithm that takes as input the security parameter λ
and outputs a signing key SK, verification key VK and reject-verification key VKrej.

Spl.Sign(SK,m) The signing algorithm is a deterministic algorithm that takes as input a signing key SK and
a message m ∈M. It outputs a signature σ.

Spl.Verify(VK,m, σ) The verification algorithm is a deterministic algorithm that takes as input a verification
key VK, signature σ and a message m. It outputs either 0 or 1.

Spl.Split(SK,m∗) The splitting algorithm is randomized. It takes as input a secret key SK and a message
m∗ ∈ M. It outputs a signature σone = Spl.Sign(SK,m∗), a one-message verification key VKone, an
all-but-one signing key SKabo and an all-but-one verification key VKabo.

Spl.Sign-abo(SKabo,m) The all-but-one signing algorithm is deterministic. It takes as input an all-but-one
signing key SKabo and a message m, and outputs a signature σ.

Correctness Letm∗ ∈M be any message. Let (SK,VK,VKrej)← Spl.Setup(1λ) and (σone,VKone, SKabo,VKabo)←
Spl.Split(SK,m∗). Then, we require the following correctness properties:

1. For all m ∈M, Spl.Verify(VK,m, Spl.Sign(SK,m)) = 1.

2. For all m ∈M,m ̸= m∗, Spl.Sign(SK,m) = Spl.Sign-abo(SKabo,m).

51

3. For all σ, Spl.Verify(VKone,m
∗, σ) = Spl.Verify(VK,m∗, σ).

4. For all m ̸= m∗ and σ, Spl.Verify(VK,m, σ) = Spl.Verify(VKabo,m, σ).

5. For all m ̸= m∗ and σ, Spl.Verify(VKone,m, σ) = 0.

6. For all σ, Spl.Verify(VKabo,m
∗, σ) = 0.

7. For all σ and all m ∈M, Spl.Verify(VKrej,m, σ) = 0.

Security We will now define the security notions for splittable signature schemes. Each security notion is
defined in terms of a security game between a challenger and an adversary A.

Definition C.1 (VKrej indistinguishability). A splittable signature scheme S is said to be VKrej indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKrej(1
λ,S,A):

1. Challenger computes (SK,VK,VKrej) ← Spl.Setup(1λ) .Next, it chooses b ← {0, 1}. If b = 0, it sends
VK to A. Else, it sends VKrej.

2. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A never receives any signatures and has no ability to produce them.
This is why the difference between VK and VKrej cannot be tested.

Definition C.2 (VKone indistinguishability). A splittable signature scheme S is said to be VKone indistin-
guishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKone(1
λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Spl.Setup(1λ). Next, it computes (σone, VKone, SKabo,

VKabo)← Spl.Split(SK,m∗). It chooses b← {0, 1}. If b = 0, it sends (σone,VKone) to A. Else, it sends
(σone,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A only receives the signature σone on m∗, on which VK and VKone

behave identically.

Definition C.3 (VKabo indistinguishability). A splittable signature scheme S is said to be VKabo

indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-VKabo(1
λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Spl.Setup(1λ). Next, it computes (σone, VKone, SKabo,

VKabo) ← Spl.Split(SK,m∗). It chooses b ← {0, 1}. If b = 0, it sends (SKabo,VKabo) to A. Else, it
sends (SKabo,VK) to A.

3. A sends its guess b′.

A wins if b = b′.

We note that in the game above, A does not receive or have the ability to create a signature on m∗. For
all signatures A can create by signing with SKabo, VKabo and VK will behave identically.

52

Definition C.4 (Splitting indistinguishability). A splittable signature scheme S is said to be splitting
indistinguishable if any PPT adversary A has negligible advantage in the following security game:

Exp-Spl(1λ,S,A):

1. A sends a message m∗ ∈M.
2. Challenger computes (SK,VK,VKrej) ← Spl.Setup(1λ), (SK′,VK′,VK′rej) ← Spl.Setup(1λ). Next,

it computes (σone, VKone, SKabo, VKabo) ← Spl.Split(SK,m∗), (σ′one, VK′one, SK′abo, VK′abo) ←
Spl.Split(SK′,m∗). . It chooses b ← {0, 1}. If b = 0, it sends (σone,VKone, SKabo,VKabo) to A.
Else, it sends (σ′one,VK

′
one, SKabo,VKabo) to A.

3. A sends its guess b′.

A wins if b = b′.

In the game above, A is either given a system of σone,VKone,SKabo,VKabo generated together by one
call of Spl.Setup or a “split” system of (σ′one,VK′one, SKabo,VKabo) where the all but one keys are generated
separately from the signature and key for the one message m∗. Since the correctness conditions do not link
the behaviors for the all but one keys and the one message values, this split generation is not detectable by
testing verification for the σone that A receives or for any signatures that A creates honestly by signing with
SKabo.

C.2.2 Positional Accumulators

A positional accumulator for message spaceMλ consists of the following algorithms.

• Acc.Setup(1λ, T) → (P, acc0, store0) The setup algorithm takes as input a security parameter λ in
unary and an integer T in binary representing the maximum number of values that can stored. It
outputs public parameters P, an initial accumulator value acc0, and an initial storage value store0.

• Acc.Setup-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index
∗) → (P, acc0, store0): The

setup enforce read algorithm takes as input a security parameter λ in unary, an integer T in binary
representing the maximum number of values that can be stored, and a sequence of symbol, index
pairs, where each index is between 0 and T − 1, and an additional index∗ also between 0 and T − 1. It
outputs public parameters P, an initial accumulator value acc0, and an initial storage value store0.

• Acc.Setup-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)) → (P, acc0, store0): The setup en-
force write algorithm takes as input a security parameter λ in unary, an integer T in binary representing
the maximum number of values that can be stored, and a sequence of symbol, index pairs, where each
index is between 0 and T − 1. It outputs public parameters P, an initial accumulator value acc0, and
an initial storage value store0.

• Acc.Prep-Read(P, storein, index) → (m,π): The prep-read algorithm takes as input the public pa-
rameters P, a storage value storein, and an index between 0 and T − 1. It outputs a symbol m (that
can be ϵ) and a value π.

• Acc.Prep-Write(P, storein, index)→ aux: The prep-write algorithm takes as input the public param-
eters P, a storage value storein, and an index between 0 and T − 1. It outputs an auxiliary value
aux.

• Acc.Verify-Read(P, accin,mread, index, π) → {True, False}: The verify-read algorithm takes as input
the public parameters P, an accumulator value accin, a symbol, mread, an index between 0 and T − 1,
and a value π. It outputs True or False.

53

• Acc.Write-Store(P, storein, index,m) → storeout: The write-store algorithm takes in the public
parameters, a storage value storein, an index between 0 and T − 1, and a symbol m. It outputs a
storage value storeout.

• Update(P, accin,mwrite, index, aux) → accout or Reject: The update algorithm takes in the public
parameters P, an accumulator value accin, a symbol mwrite, and index between 0 and T − 1, and an
auxiliary value aux. It outputs an accumulator value accout or Reject.

In general we will think of the Acc.Setup algorithm as being randomized and the other algorithms as
being deterministic. However, one could consider non-deterministic variants.

Correctness We consider any sequence (m1, index1), . . . , (mk, indexk) of symbols m1, . . . ,mk and
indices index1, . . . , indexk each between 0 and T − 1. We fix any P, acc0, store0 ← Acc.Setup(1λ, T).
For j from 1 to k, we define storej iteratively as storej := Acc.Write-Store(P, storej−1, indexj ,mj).
We similarly define auxj and accj iteratively as auxj := Acc.Prep-Write(P, storej−1, indexj) and
accj := Update(P, accj−1,mj , indexj , auxj). Note that the algorithms other than Acc.Setup are determin-
istic, so these definitions fix precise values, not random values (conditioned on the fixed starting values
P, acc0, store0).

We require the following correctness properties:

1. For every index between 0 and T − 1, Acc.Prep-Read(P, storek, index) returns mi, π, where i is the
largest value in [k] such that indexi = index. If no such value exists, then mi = ϵ.

2. For any index, let (m,π)← Acc.Prep-Read(P, storek, index). Then Acc.Verify-Read(P, acck,m, index, π) =
True.

Remarks on Efficiency In our construction, all algorithms will run in time polynomial in their input
sizes. More precisely, Acc.Setup will be polynomial in λ and log(T). Also, accumulator and π values should
have size polynomial in λ and log(T), so Acc.Verify-Read and Update will also run in time polynomial in λ
and log(T). Storage values will have size polynomial in the number of values stored so far. Acc.Write-Store,
Acc.Prep-Read, and Acc.Prep-Write will run in time polynomial in λ and T .

Security Let Acc = (Acc.Setup, Acc.Setup-Enforce-Read, Acc.Setup-Enforce-Write, Acc.Prep-Read,
Acc.Prep-Write, Acc.Verify-Read, Acc.Write-Store, Update) be a positional accumulator for symbol set M.
We require Acc to satisfy the following notions of security.

Definition C.5 (Indistinguishability of Read Setup). A positional accumulator Acc is said to satisfy indistin-
guishability of read setup if any PPT adversary A’s advantage in the security game Exp-Setup-Acc(1λ,Acc,A)
is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . ,

indexAk ∈ {0, . . . , T − 1} to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (P, acc0, store0) ← Acc.Setup(1λ, T).

Else, it outputs (P, acc0, store0)← Acc.Setup-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition C.6 (Indistinguishability of Write Setup). A positional accumulator Acc is said to sat-
isfy indistinguishability of write setup if any PPT adversary A’s advantage in the security game

54

Exp-Setup-Acc(1λ,Acc,A) is at most negligible in λ, where Exp-Setup-Acc is defined as follows.

Exp-Setup-Acc(1λ,Acc,A)

1. Adversary chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈M and k indices index1, . . . ,

indexAk ∈ {0, . . . , T − 1} to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (P, acc0, store0) ← Acc.Setup(1λ, T).

Else, it outputs (P, acc0, store0)← Acc.Setup-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition C.7 (Read Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1} and any index∗ ∈ {0, . . . , T − 1}.

Let (P, acc0, store0) ← Acc.Setup-Enforce-Read(1λ, T, (m1, index1), . . . , (mk, indexk), index
∗). For j

from 1 to k, we define storej iteratively as storej := Acc.Write-Store(P, storej−1, indexj ,mj). We
similarly define auxj and accj iteratively as auxj := Acc.Prep-Write(P, storej−1, indexj) and accj :=
Update(P, accj−1, mj , indexj , auxj). Acc is said to be read enforcing if Acc.Verify-Read(P, acck, m, index∗,
π) = True, then either index∗ /∈ {index1, . . ., indexk} and m = ϵ, or m = mi for the largest i ∈ [k] such
that indexi = index∗. Note that this is an information-theoretic property: we are requiring that for all
other symobls m, values of π that would cause Acc.Verify-Read to output True at index∗ do no exist.

Definition C.8 (Write Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ),m1, . . . ,mk ∈M, index1, . . . , indexk ∈
{0, . . . , T − 1}. Let (P, acc0, store0) ← Acc.Setup-Enforce-Write(1λ, T, (m1, index1), . . . , (mk, indexk)).
For j from 1 to k, we define storej iteratively as storej := Acc.Write-Store(P, storej−1, indexj ,mj).
We similarly define auxj and accj iteratively as auxj := Acc.Prep-Write(P, storej−1, indexj) and accj :=
Update(P, accj−1,mj , indexj , auxj). Acc is said to be write enforcing if Update(P, acck−1,mk, indexk, aux) =
accout ̸= Reject, for any aux, then accout = acck. Note that this is an information-theoretic property: we
are requiring that an aux value producing an accumulated value other than acck or Reject does not exist.

C.2.3 Iterators

In this section, we define the notion of cryptographic iterators. A cryptographic iterator essentially consists
of a small state that is updated in an iterative fashion as messages are received. An update to apply a new
message given current state is performed via some public parameters.

Since states will remain relatively small regardless of the number of messages that have been iteratively
applied, there will in general be many sequences of messages that can lead to the same state. However, our
security requirement will capture that the normal public parameters are computationally indistinguishable
from specially constructed “enforcing” parameters that ensure that a particular single state can be only be
obtained as an output as an update to precisely one other state, message pair. Note that this enforcement
is a very localized property to a particular state, and hence can be achieved information-theoretically when
we fix ahead of time where exactly we want this enforcement to be.

Syntax Let ℓ be any polynomial. An iterator I with message space Mλ = {0, 1}ℓ(λ) and state space Sλ
consists of three algorithms - Itr.Setup, Itr.Setup-Enforce and Itr.Iterate defined below.

Itr.Setup(1λ, T) The setup algorithm takes as input the security parameter λ (in unary), and an integer
bound T (in binary) on the number of iterations. It outputs public parameters P and an initial state
v0 ∈ Sλ.

Itr.Setup-Enforce(1λ, T,m = (m1, . . . ,mk)) The enforced setup algorithm takes as input the security pa-
rameter λ (in unary), an integer bound T (in binary) and k messages (m1, . . . ,mk), where each
mi ∈ {0, 1}ℓ(λ) and k is some polynomial in λ. It outputs public parameters P and a state v0 ∈ S.

55

Itr.Iterate(P, vin,m) The iterate algorithm takes as input the public parameters P, a state vin, and a message
m ∈ {0, 1}ℓ(λ). It outputs a state vout ∈ Sλ.

For simplicity of notation, we will drop the dependence of ℓ on λ. Also, for any integer k ≤ T ,
we will use the notation Itr.Iteratek(P, v0, (m1, . . . ,mk)) to denote Itr.Iterate(P, vk−1,mk), where
vj = Itr.Iterate(P, vj−1,mj) for all 1 ≤ j ≤ k − 1.

Security Let I = (Itr.Setup, Itr.Setup-Enforce, Itr.Iterate) be an interator with message space {0, 1}ℓ and
state space Sλ. We require the following notions of security.

Definition C.9 (Indistinguishability of Setup). An iterator I is said to satisfy indistinguishability of Setup
phase if any PPT adversary A’s advantage in the security game Exp-Setup-Itr(1λ, I,A) at most is negligible
in λ, where Exp-Setup-Itr is defined as follows.

Exp-Setup-Itr(1λ,I,A)

1. The adversary A chooses a bound T ∈ Θ(2λ) and sends it to challenger.
2. A sends k messages m1, . . . ,mk ∈ {0, 1}ℓ to the challenger.
3. The challenger chooses a bit b. If b = 0, the challenger outputs (P, v0) ← Itr.Setup(1λ, T). Else, it

outputs (P, v0)← Itr.Setup-Enforce(1λ, T, 1k,m = (m1, . . . ,mk)).
4. A sends a bit b′.

A wins the security game if b = b′.

Definition C.10 (Enforcing). Consider any λ ∈ N, T ∈ Θ(2λ), k < T and m1, . . . ,mk ∈ {0, 1}ℓ. Let
(P, v0)← Itr.Setup-Enforce(1λ, T,m = (m1, . . . ,mk)) and vj = Itr.Iteratej(P, v0, (m1, . . . ,mj)) for all 1 ≤ j ≤
k. Then, I = (Itr.Setup, Itr.Setup-Enforce, Itr.Iterate) is said to be enforcing if

vk = Itr.Iterate(P, v′,m′) =⇒ (v′,m′) = (vk−1,mk).

Note that this is an information-theoretic property.

D Proof of Simulation Security for Succinct Partial Randomized
Encodings

Proof of Theorem 8.1 : We will prove this theorem via a sequence of hybrid experiments. First, let us
consider the top-level hybrid experiments.

Hyb0 This hybrid corresponds to the real world security experiment. The challenger honestly chooses
(Haux, haux) ← Preprocess(1λ, x2), computes Enc ← Encode(1λ,M, T, x, (Haux, haux)). It sends Enc to A and
A outputs its view α.

Hyb1 Let t∗ = min(T,Time (M, (x, x2))) and b∗ = TM (M, (x, x2), T). In this hybrid, the challenger outputs
an obfuscation of Prog-1{t∗,KA,KE , b

∗}17 (defined in Figure 17) as part of the encoding. This program is
similar to Prog, however, for input t > t∗, it outputs ⊥. At t = t∗, it outputs b∗.

Next, we define a sequence of hybrids Hyb2,i and Hyb′2,i, where 1 ≤ i ≤ t∗. Let erase be a symbol not
present in Σtape.

Hyb2,i In this hybrid, the challenger outputs an obfuscation of Prog-2-i{i, t∗,KE ,KA, b
∗} as part of the

encoding. Prog-2-i also rejects on input t > t∗, and outputs b∗ on t∗ if the signature is the correct one. For
t < i, its input output behavior is similar to that of Prog. However, for i ≤ t < t∗, on receiving a valid
signature, it simply outputs encryptions of erase as the encryption of the state and symbol. It accumulates
and iterates accordingly.

17Note that this program has other constants hardwired, which are dropped for simplicity of notations

56

Prog-1

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux, b

∗, t∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =

SKE.Dec(skℓ-w, ctsym,in).
(c) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(d) Let (st′, sym′, β) = δ(st, sym, symaux).
(e) If stout = qrej output 0. Else if stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 17: Prog-1

Hyb′2,i In this hybrid, the challenger runs M for i − 1 steps and computes the state st∗ and symbol sym∗

written at (i− 1)th step. Next, it computes (ri−1,1, ri−1,2, ri−1,3) = F (KE , i− 1), sk = SKE.Setup(1λ; ri−1,1),
ct1 = SKE.Enc(sk, sym∗; ri−1,2) and ct2 = SKE.Enc(sk, st∗; ri−1,3). It then computes the obfuscation of Wi =
Prog′-2-i{i, t∗,KE ,KA, ct1, ct2, b

∗} (defined in Figure 19), which has the ciphertexts ct1 and ct2 hardwired.
On input corresponding to step i − 1, Wi checks if the signature is valid, and if so, it outputs ct1 and ct2
without decrypting.

Hyb3 This corresponds to the ideal world. Note that the obfuscated program in the hybrid experiment
Hyb2,1 corresponds to the ideal world. The challenger, in this experiment, only requires |M |, tmf, tmfaux,
Haux, haux = Haux(x2), t

∗ and res to compute Prog-(1, a), and all these are given as inputs to the simulator.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hybx, and Adv
′x
A the advantage of A

in Hyb′x.

Lemma D.1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,

57

Prog-2-i

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public
parameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 18: Prog-2-i

C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4
and SSB is a somewhere statistically binding scheme satisfying Definition B.1, for any PPT adversary A,
Adv0A − Adv1A ≤ negl(λ).

The proof of this lemma is contained in Section D.1.

Claim D.1. Assuming iO is a secure indistinguishability obfuscator, for any adversary A, Adv1A−Adv2,t
∗

A ≤
negl(λ).

Proof. We note that the programs Prog-1 and Prog-2-t∗ are functionally identical.

Lemma D.2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4,

58

Prog′-2-i

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public
parameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, ct1, ct2.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else if t = i− 1, set ctsym,out = ct1 and ctst,out = ct2.
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 19: Prog′-2-i

and SSB is a somwhere statistically binding scheme satisfying Definition B.1, for any PPT adversary A,
Adv2,iA − Adv

′2,i
A ≤ negl(λ).

The proof of this lemma is contained in Section D.2.

Lemma D.3. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable

PRF, SKE is IND-CPA secure, for any adversary A, Adv
′2,i
A − Adv2,i−1A ≤ negl(λ).

The proof of this lemma is contained in Section D.3.

Lemma D.4. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, SKE is IND-CPA secure, for any adversary A, Adv3A − Adv2,1A ≤ negl(λ).

The proof of this lemma is contained in Section D.4.

59

D.1 Proof of Lemma D.1

Proof Outline We will first define hybrid experiments Hint,H
′
int and Habort.

Hybrid Hint In this hybrid, the challenger first receives M, (x1, x2) from the adversary. It computes
t∗ = min(T,Time (M, (x1, x2))), and chooses an SSB hash Haux enforcing at tmfaux(t

∗−2). Next, it computes
haux = Haux(x2) and sets ek = (Haux, haux).

It then computes the correct message mt∗−1 output by Prog at time t∗ − 1 (here, ‘message’ refers to the
tuple signed by the program Prog. This consists of the iterator value, encryption of state, accumulator value
and position on worktape where the new encrypted symbol is written). Next, it outputs an obfuscation of
Pint = Pint{t∗,KE ,KA,KB,mt∗−1} (defined in Figure 20) which has mt∗−1 hardwired. It accepts only ‘A’
type signatures. However, at t = t∗ − 1, it checks if the outgoing message is mt∗−1. If so, it outputs an ‘A’
type signature, else it outputs a ‘B’ type signature.

Program Pint

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux, t

∗, mt∗−1.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).

If t = t∗ − 1 and mout = mt∗−1, σout = Spl.Sign(SK′
A,mout).

Else if t = t∗ − 1 and mout ̸= mt∗−1, σout = Spl.Sign(SK′
B ,mout).

Else, σout = Spl.Sign(SK′
A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 20: Program Pint

Hybrid H ′int This hybrid is similar to Hint, except that the challenger also computes b∗ =
TM(M, (x, x2), T). The hash function Haux is enforcing at t∗ − 1, and the challenger outputs an ob-

60

fuscation of P ′int = P ′int{t∗,KE ,KA,KB,mt∗−1, b
∗} (defined in Figure 21). This program is identical to

Pint, except for inputs corresponding to t = t∗. At t = t∗, the program verifies the validity of signature, and
then outputs b∗ (which it has hardwired). It does not decrypt the ciphertexts and compute the final output.

Program P ′
int

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux, mt∗−1, b

∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =

SKE.Dec(skℓ-w, ctsym,in).
(c) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(d) Let (st′, sym′, β) = δ(st, sym, symaux).
(e) If stout = qrej output 0. Else if stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).

If t = t∗ − 1 and mout = mt∗−1, σout = Spl.Sign(SK′
A,mout).

Else if t = t∗ − 1 and mout ̸= mt∗−1, σout = Spl.Sign(SK′
B ,mout).

Else, σout = Spl.Sign(SK′
A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 21: Program P ′int

Hybrid Habort In this hybrid, the challenger outputs an obfuscation of Pabort{t∗,KA,KE , b
∗} (defined in

Figure 22). This program is similar to P ′int, except that it does not output ‘B’ type signatures.

Let AdvintA , Adv
′int
A , AdvabortA be the advantages of an adversary A in Hint, H

′
int and Habort respectively.

Recall Adv0A and Adv1A denote A’s advantage in Hyb0 and Hyb1 respectively.

Lemma D.5. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4,
SSB is a somewhere statistically binding hash function satisfying Definition B.1, |Adv0A − AdvintA | ≤ negl(λ).

Proof. The proof of this lemma is very similar to the corresponding proof in [KLW14] (Lemma B.1), except

61

Program Pabort

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA ∈ K, SSB Hash
function Haux and hash value haux, mt∗−1, b

∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =

SKE.Dec(skℓ-w, ctsym,in).
(c) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(d) Let (st′, sym′, β) = δ(st, sym, symaux).
(e) If stout = qrej output 0. Else if stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 22: Program Pabort

for the SSB part. Therefore, in this section, we will give an outline of the proof, consisting of the outer
hybrids, and refer to appropriate claims in [KLW14].

We will first define intermediate hybrids H0,H1 and H2,j,0,H2,j,1 and H2,j,2 for 0 ≤ j < t∗.

Hybrid H0 The challenger outputs P0 = Prog{t∗, KE , KA}.

Hybrid H1 The challenger outputs P1 = P1{t∗, KE , KA,KB} (defined in Figure 23). This is similar to
Prog-1 defined in Figure 17. This program has PRF key KB hardwired and accepts both ‘A’ and ‘B’ type
signatures for t < t∗. If the incoming signature is of type α, then so is the outgoing signature.

Next, we define 3t∗ intermediate hybrid experiments H2,j,0,H2,j,1,H2,j,2 for 1 ≤ j ≤ t∗ − 1.

Hybrid H2,j,0 In this hybrid, the challenger sets the SSB hash function to be binding at the aux-tape
position read by the Turing machine at step j. Given machine M and input (x1, x2), the challenger first
computes posaux = tmfaux(j − 1), and then uses posaux to sample Haux ← SSB.Gen(1λ, 1|x2|, posaux). It sets
haux = Haux(x2). The remaining experiment is identical to H2,j−1,2 (if j = 1, then the remaining experiment
is same as H1).

62

P1

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K, SSB
Hash function Haux and hash value haux.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ct∗,in, win, posin) and α =‘-’.

If Spl.Verify(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and t ≥ t∗ output ⊥.
If α = ‘-’ and Spl.Verify(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ct∗,out, wout, posout) and σout = Spl.Sign(SK′

α,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 23: P1

Hybrid H2,j,1 In this hybrid, the challenger outputs an obfuscation of P2,j = P2,j{j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 24, accepts ‘B’ type signatures only for inputs corresponding to j+1 ≤ t ≤ t∗−1.
It also has the correct output message for step j - mj hardwired. If an input has j + 1 ≤ t ≤ t∗ − 1, then
the output signature, if any, is of the same type as the incoming signature. If t = j, the program outputs an
‘A’ type signature if mout = mj , else it outputs a ‘B’ type signature.

Hybrid H2,j,2 In this hybrid, the challenger outputs an obfuscation of P ′2,j = P ′2,j{j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 25, accepts ‘B’ type signatures only for inputs corresponding to j+2 ≤ t ≤ t∗−1.
It also has the correct input message mj for step j + 1 hardwired. If t = j + 1 and min = mj it outputs an
‘A’ type signature, else it outputs a ‘B’ type signature. If an input has j + 2 ≤ t ≤ t∗ − 1, then the output
signature, if any, is of the same type as the incoming signature.

Analysis

63

P2,j

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K, SSB
Hash function Haux and hash value haux, index j, message mj .

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ct∗,in, win, posin) and α =‘-’.

If Spl.Verify(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and (t ≥ t∗ or t ≤ j) output ⊥.
If α = ‘-’ and Spl.Verify(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) If t = j and mout = mj , σout = Spl.Sign(SK′

A,mout).
Else if t = j and mout ̸= mj , σout = Spl.Sign(SK′

B ,mout).
Else σout = Spl.Sign(SK′

α,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 24: P2,j

Claim D.2. Assuming iO is a secure indistinguishability obfuscator, F is a secure puncturable PRF and S
is a splittable signature scheme satisfying Definition C.1, for any PPT adversary A, |Adv0A−Adv

1
A| ≤ negl(λ).

The proof of this claim is similar to the proof of Claim B.1 in [KLW14].

Claim D.3. Let 0 ≤ j ≤ t∗ − 2. Assuming iO is a secure indistinguishability obfuscator, Itr is an
iterator satisfying indistinguishability of Setup (Definition C.9) and is enforcing (Definition C.10), Acc
is an accumulator satisfying indistinguishability of Read/Write Setup (Definitions C.5 and C.6) and is
Read/Write enforcing (Definitions C.7 and C.8) and SSB satisfies Definition B.1, for any PPT adversary
A, |Adv2,j,0A − Adv2,j,1A | ≤ negl(λ).

Proof. This proof requires a sequence of sub-sub-hybrids, similar to the proof of Claim B.4 (which is similar

64

P ′
2,j

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K, SSB
Hash function Haux and hash value haux, index j, message mj .

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ct∗,in, win, posin) and α =‘-’.

If Spl.Verify(VKA,min, σin) = 1 set α =‘A’.
If α =‘-’ and (t ≥ t∗ or t ≤ j + 1) output ⊥.
If α = ‘-’ and Spl.Verify(VKB ,min, σin) = 1 set α =‘B’.
If α = ‘-’ output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) If t = j + 1 and min = mj , σout = Spl.Sign(SK′

A,mout).
Else if t = j + 1 and min ̸= mj , σout = Spl.Sign(SK′

B ,mout).
Else σout = Spl.Sign(SK′

α,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 25: P ′2,j

to the proof of Lemma 6.3, described in Section A.3) in [KLW14]. However, we also require the SSB enforcing
property here. Therefore, we will describe the sub-sub-hybrids at a high level here.

Hybrid h1: In this hybrid, the challenger uses ‘read enforced’ setup for the accumulator. The challenger
computes the first ℓinp + j − 1 ‘correct tuples’ for the accumulator. Let enf = ((inp[0], 0), . . . , (inp[ℓinp −
1], ℓinp − 1), (ctsym,w,1, pos0), . . . , (ctsym,w,j , posj−1)). The challenger computes (PAcc, w̃0, s̃tore0) ←
Acc.Setup-Enforce-Read(1λ, T , enf, posj−1). The remaining steps are same as in the previous hybrid.

This hybrid is indistinguishable from H2,j,0 because the accumulator satisfies Definition C.5.

Hybrid h2 In this hybrid, the challenger uses program P2, which is similar to P ′2,j−1. However, in addition
to checking if min = mj−1, it also checks if (vout, ctst,out, ctsym,out) = (vj , ctst,j , ctsym,j).

65

Hybrids h1 and h2 are indistinguishable because the programs P2 and P ′2,j are functionally identical. Here,
we use the fact that since the accumulator and SSB are read-enforcing, if min = mj−1, then (symout, stout) =
(symj , stj).

Hybrid h3 In this hybrid, the challenger uses normal setup instead of read-enforced setup.
Since the accumulator satisfies Definition C.5, h2 and h3 are computationally indistinguishable.

Hybrid h4 In this hybrid, the challenger ‘write enforces’ the accumulator. As in hybrid H1, the challenger
computes the first ℓinp+ j ‘correct tuples’ to be accumulated. Let symw,k, posk be the symbol output and the

position after the kth step. The challenger computes (PAcc, w̃0, s̃tore0)← Acc.Setup-Enforce-Write(1λ, T, enf),
where enf = ((inp[0], 0), . . . , (inp[ℓinp − 1], ℓinp − 1), (ctsym,w,1, pos0), . . . , (ctsym,w,j , posj−1), (ctsym,w,j+1, posj)).
The remaining computation is same as in previous step.

Hybrids h3 and h4 are computationally indistinguishable because accumulator satisfies Definition C.6.

Hybrid h5 In this experiment, the challenger outputs an obfuscation of P5, which is similar to P2. However,
on input where t = j, before computing signature, it also checks if wout = wj+1. Therefore, it checks whether
min = mj−1 and mout = mj .

Hybrids h4 and h5 are computationally indistinguishable because the programs P2 and P5 are functionally
identical. If min = mj−1 and (vout, ctst,out, ctsym,out) = (vj , ctst,j , ctsym,j), then win = wj−1. Therefore, using
the write-enforcing property, we get that wout = wj .

Hybrid h6 This experiment is similar to the previous one, except that the challenger uses normal setup
for accumulator instead of ‘enforcing write’.

Hybrids h5 and h6 are computationally indistinguishable because accumulator satisfies Definition C.6.

Hybrid h7 This experiment is similar to the previous one, except that the challenger uses enforced setup for
iterator instead of normal setup. It first computes PAcc, w0, store0 as in the previous hybrid. Next, it com-
putes the first j ‘correct messages’ for the iterator. Let enf = ((ctst,0, w0, pos0), . . . , (ctst,j−1, wj−1, posj−1)).

It computes (PItr, v0)← Itr.Setup-Enforce(1λ, T, enf). The remaining hybrid proceeds as the previous one.
Hybrids h6 and h7 are indistinguishable because of iterator’s indistinguishability of setup.

Hybrid h8 In this experiment, the challenger outputs an obfuscation of P8, which is similar to P5, except
that it only checks if mout = mj .

Hybrids h7 and h8 are indistinguishable because the programs P5 and P8 are functionally identical (the
argument is identical to the proof of Claim A.28 in [KLW14]).

Hybrid h9 This experiment is identical to H2,j,1. It is indistinguishable from h8 because of iterator’s setup
indistinguishability property.

Claim D.4. Let 0 ≤ j ≤ t∗ − 1. Assuming iO is a secure indistinguishability obfuscator, F is a selectively
secure puncturable PRF and S is a splittable signature scheme satisfying definitions C.1, C.2, C.3 and C.4,
for any PPT adversary A, |Adv2,j,1A − Adv2,j,2A | ≤ negl(λ).

The proof of this claim is similar to the proof of Claim B.3 in [KLW14].

Claim D.5. Assuming SSB satisfies Definition B.1, for any PPT adversary A, |Adv2,j,2A − Adv2,j+1,0
A | ≤

negl(λ).

66

Proof. Note that the only difference between these two hybrid experiments is the index used for SSB setup.
In H2,j,2, the SSB is enforcing at tmfaux(j−1), while in H2,j+1,0, it is enforcing at tmfaux(j). Using the index
hiding property, we can argue that these two hybrids are computationally indistinguishable.

Lemma D.6. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4 and

SSB satisfies Definition B.1, |AdvintA − Adv
′int
A | ≤ negl(λ).

Proof. To prove this lemma, we will define a sequence of hybrid experiments and show that they are com-
putationally indistinguishable.

Hybrid H0 In this experiment, the challenger outputs an obfuscation of P0 = Pint{t∗, KE , KA, KB ,
mt∗−1}.

Hybrid H1 In this hybrid, the challenger first computes the constants for program P1 as follows:

1. PRF keys KA and KB are punctured at t∗ − 1 to obtain KA{t∗ − 1} ← F.Puncture(KA, t
∗ − 1) and

KB{t∗ − 1} ← F.Puncture(KB , t
∗ − 1).

2. Let rc = F (KA, t
∗ − 1), (SKC ,VKC ,VKC,rej) = Spl.Setup(1λ; rC), rD = F (KB, t

∗ − 1),
(SKD,VKD,VKD,rej) = Spl.Setup(1λ; rD).

It then outputs an obfuscation of P1 = P1{t∗,KE ,KA{t∗ − 1},KB{t∗ − 1},VKC , SKC ,SKD,mt∗−1}
(defined in 26). P1 is identical to P0 on inputs corresponding to t ̸= t∗ − 1, t∗. For t = t∗ − 1, it uses the
hardwired signing keys. For t = t∗, it uses the hardwired verification key.

Hybrid H2 In this hybrid, rC and rD are chosen uniformly at random; that is, the challenger computes
(SKC ,VKC)← Spl.Setup(1λ) and (SKD,VKD)← Spl.Setup(1λ).

Hybrid H3 In this hybrid, the challenger computes constrained secret/verification keys. It computes
splittable signature keys (σC,one,VKC,one, SKC,abo,VKC,abo) ← Spl.Split(SKC ,mt∗−1) and (σD,one, VKD,one,
SKD,abo, VKD,abo)← Spl.Split(SKD,mt∗−1). It then outputs an obfuscation of P3 = P1{t∗, KE , KA{t∗−1},
KB{t∗ − 1}, VKC,one, σC,one, SKD,abo, mt∗−1}. Note that this program is identical to P1, except that
VKC,one, σC,one and SKD,abo are used instead of VKC , SKC and VKD, and SKC ,VKC , SKD,VKD are not
hardwired in this program.

Hybrid H4 In this hybrid, the challenger chooses PAcc, w0, store0 using Acc.Setup-Enforce-Read. It en-
forces the accumulator at position tmf(t∗ − 1), and then uses PAcc, w0, store0, and proceeds as in previous
experiment.

Hybrid H5 In this hybrid, the challenger enforces the SSB hash function at position tmfaux(t
∗ − 1).

Hybrid H6 In this hybrid, the challenger first computes b∗ = Mb(x). It then outputs an obfuscation of
P6 = P6{t∗, PAcc, KE , KA{t∗ − 1}, KB{t∗ − 1}, VKC,one, σC,one, SKD,abo, mt∗−1, b

∗} (defined in Figure 27).
This program differs from P1 for inputs corresponding to t = t∗. Instead of decrypting, computing the next
state and then encrypting, the program uses the hardwired output b∗.

Hybrid H7 In this experiment, the challenger uses normal setup for Acc (that is, Acc.Setup) instead of
Acc.Setup-Enforce-Read.

67

P1

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K, SSB
Hash function Haux and hash value haux, t

∗, mt∗−1, VKC , SKC , SKD.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) If t ̸= t∗, let rS,A = F (KA{t∗ − 1}, t− 1). Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).

Else VKA = VKC .
(d) If t ̸= t∗ − 1, let r′S,A = F (KA{t∗ − 1}, t). Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(e) If t ̸= t∗ − 1, r′S,B = F (KB{t∗ − 1}, t). Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ct∗,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

(b) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(c) Let (st′, sym′, β) = δ(st, sym, symaux).
(d) If stout = qrej output 0. Else if stout = qacc output 1.
(e) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).
(e) If t = t∗ − 1 and mout = mt∗−1, σout = Spl.Sign(SKC ,mout).

Else if t = t∗ − 1 and mout ̸= mt∗−1 σout = Spl.Sign(SKD,mout).
Else σout = Spl.Sign(SK′

A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 26: P1

Hybrid H8 This hybrid is identical to H ′int. In this experiment, the challenger outputs an obfuscation of
P ′int.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.

Claim D.6. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv0A − Adv1A| ≤
negl(λ).

Proof. The only difference between P0 and P1 is that P0 uses puncturable PRF keys KA,KB, while P1 uses
keys KA{t∗−1},KB{t∗−1} punctured at t∗−1. It also has the secret key/verification key pair (SKC ,VKC)
hardwired, which is computed using F (KA, t

∗ − 1) and the secret key (SKD) computed using F (KB , t
∗ − 1).

From the correctness of puncturable PRFs, it follows that the two programs have identical functionality, and
therefore their obfuscations are computationally indistinguishable.

68

P6

Constants: Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmfwk, tmfaux⟩, time bound T , Public parameters
for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K, SSB
Hash function Haux and hash value haux, t

∗, mt∗−1, VKC , SKC , SKD, hardwired output b∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) If t ̸= t∗, let rS,A = F (KA{t∗ − 1}, t− 1). Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).

Else VKA = VKC .
(d) If t ̸= t∗ − 1, let r′S,A = F (KA{t∗ − 1}, t). Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(e) If t ̸= t∗ − 1, r′S,B = F (KB{t∗ − 1}, t). Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ct∗,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

3. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =

SKE.Dec(skℓ-w, ctsym,in).
(c) Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t− 1), skst = SKE.Setup(1λ, rt−1,1), st = SKE.Dec(skst, ctst,in).
(d) Let (st′, sym′, β) = δ(st, sym, symaux).
(e) If stout = qrej output 0. Else if stout = qacc output 1.
(f) Compute (rt,1, rt,2, rt,3) = F (KE , t), sk

′ = SKE.Setup(1λ; r′t,1), ctsym,out = SKE.Enc(sk′, sym′; rt,2)
and ctst,out = SKE.Enc(sk′, st′; rt,3).

4. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).
(e) If t = t∗ − 1 and mout = mt∗−1, σout = Spl.Sign(SKC ,mout).

Else if t = t∗ − 1 and mout ̸= mt∗−1 σout = Spl.Sign(SKD,mout).
Else σout = Spl.Sign(SK′

A,mout).

5. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 27: P6

Claim D.7. Assuming F is a selectively secure puncturable PRF, for any PPT A, |Adv1A−Adv2A| ≤ negl(λ).

Proof. The proof of this claim follows from the selective security of puncturable PRF F .

Claim D.8. Assuming iO is a secure indistinguishability obfuscator and S satisfies VKone indistinguishability
(Definition C.2), for any PPT A, |Adv2A − Adv3A| ≤ negl(λ).

Proof. In order to prove this claim, we consider an intermediate hybrid program in which only the con-
strained secret keys σC,one and SKD,abo are hardwired, while VKC is hardwired as the verification key.
Using the security of iO, we can argue that the intermediate step and H2 are computationally indistinguish-
able. Next, we use VKone indistinguishability to show that the intermediate step and H3 are computationally
indistinguishable.

69

Claim D.9. Assuming Acc satisfies indistinguishability of Read Setup (Definition C.5), for any PPT A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition C.5).

Claim D.10. Assuming SSB satisfies Definition B.1, for any PPT A, |Adv4A − Adv5A| ≤ negl(λ).

Proof. The proof of this claim follows from the index-hiding security of SSB. Note that the only difference
between H4 and H5 is the index to which the SSB hash function is binding. In H4, the SSB hash is binding
to position tmfaux(t

∗ − 2) (note that it is binding to position tmfaux(t
∗ − 2) in Hint, and the SSB setup does

not change from Hint to H4). In H5, it is binding to tmfaux(t
∗ − 1). Using the index-hiding security of SSB,

it follows that these two hybrids are computationally indistinguishable.

Claim D.11. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv5A − Adv6A| ≤
negl(λ).

Proof. Note that PAcc and SSB are appropriately enforced, and VKC,one accepts only signatures for mt∗−1.
As a result, if VKC,one accepts the signature, then min = mt∗−1 and hence ctst,in = ctst,t∗−1. Next, since
PPAcc is read enforcing, ctsym,in = ctsym,t∗−1, and since SSB is enforcing at t∗ − 1, symaux = x2,tmfaux(t∗−1).
Therefore, ∗out =

∗
t∗ , which implies that the output is b∗.

Claim D.12. Assuming Acc satisfies indistinguishability of Read Setup (Definition C.5), for any PPT A,
|Adv6A − Adv7A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition C.5).

Claim D.13. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and S satisfies VKone indistinguishability (Definition C.2), for any PPT A, |Adv7A − Adv8A| ≤ negl(λ).

This step is the reverse of the step from H0 to H3. Therefore, using similar intermediate hybrid experi-
ments, a similar proof works here as well.

Lemma D.7. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4 and

SSB satisfies Definition B.1, |Adv
′int
A − AdvabortA | ≤ negl(λ).

The proof of this lemma is almost identical to the proof of Lemma D.5.

Lemma D.8. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure PRF and S
satisfies VKrej indistinguishability (Definition C.1), for any PPT adversary A, |AdvabortA − Adv1A| ≤ negl(λ).

This proof is similar to the proof of Lemma B.4 in [KLW14].

70

Wint

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, mi−2.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).

If t = i− 2 and mout = mi−2, σout = Spl.Sign(SK′
A,mout).

Else if t = i− 2 and mout = mi−2, σout = Spl.Sign(SK′
B ,mout).

Else σout = Spl.Sign(SK′
A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 28: Wint

D.2 Proof of Lemma D.2

Proof Outline We will first define intermediate programs Wint = Prog-2-iint{i, t∗, KE , KA, KB , mi−2}
(defined in Figure 28) and W ′int = Prog′-2-iint{i, t∗, KE , KA, KB, mi−2, ct1, ct2} (defined in 29). Both the
programs have the correct message for the (i− 2)th step - mi−2 hardwired, and also have a PRF key KB for
‘B’ type signatures. In addition, W ′int also has ciphertexts ct1 and ct2 hardwired. These are encryptions of
the state and symbol output at (i− 1)th step, computed as described in hybrid Hyb′2,i.

Let Hint be a hybrid experiment in which the challenger first enforces the SSB hash, and then outputs an
obfuscation of Wint, along with other elements of the encoding. Similarly, let H ′int be the hybrid experiment

71

W ′
int

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, mi−2, ciphertexts ct1, ct2.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else if t = i− 1, set ctsym,out = ct1, ctst,out = ct2.
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).

If t = i− 2 and mout = mi−2, σout = Spl.Sign(SK′
A,mout).

Else if t = i− 2 and mout = mi−2, σout = Spl.Sign(SK′
B ,mout).

Else σout = Spl.Sign(SK′
A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 29: W ′int

in which the challenger enforces the SSB hash and then outputs W ′int. For any PPT adversary A, let Adv2,iA ,

AdvintA , Adv
′int
A , Adv

′2,i+1
A denote the advantage of A in Hyb2,i,Hint,H

′
int and Hyb′2,i respectively.

Lemma D.9. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4 and
SSB satisfies Definition B.1, |Adv2,iA − AdvintA | ≤ negl(λ).

Proof. The proof of this lemma is along the same lines as the proof of Lemma D.5. We will define similar

72

hybrid experiments here.

Hybrid H0 The challenger outputs P0 = Prog-2-i{i, t∗, KE , KA}.

Hybrid H1 The challenger outputs P1 = P1{i, t∗, KE , KA,KB}. This program has PRF key KB

hardwired and accepts both ‘A’ and ‘B’ type signatures for t ≤ i− 2. If the incoming signature is of type α,
then so is the outgoing signature. It is defined in Figure 30.

P1

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let min = (vin, ctst,in, win, posin) and α = ‘A′.

If Spl.Verify(VKA,min, σin) = 0 and t ≥ i− 1, output ⊥.
Else if Spl.Verify(VKA,min, σin) = 0 set α = ‘B′.
If α = ‘B′ amd Spl.Verify(VKB ,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(e) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

α,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 30: P1

73

Next, we define 2(i− 1) intermediate circuits - P2,j , P
′
2,j for 0 ≤ j ≤ i− 2.

Hybrid H2,j In this hybrid, the challenger outputs an obfuscation of P2,j = P2,j{i, j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 31, accepts ‘B’ type signatures only for inputs corresponding to j+1 ≤ t ≤ i−2.
It also has the correct output message for step j - mj hardwired. If an input has j + 1 ≤ t ≤ i− 2, then the
output signature, if any, is of the same type as the incoming signature.

P2,j

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, tuple mj .

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let min = (vin, ctst,in, win, posin) and α = ‘A′.

If Spl.Verify(VKA,min, σin) = 0 and (t ≤ j or t ≥ i− 1), output ⊥.
Else if Spl.Verify(VKA,min, σin) = 0 set α = ‘B′.
If α = ‘B′ amd Spl.Verify(VKB ,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(e) Let mout = (vout, ctst,out, wout, posout).

If t = j and mout = mj , σout = Spl.Sign(SK′
A,mout).

Else if t = j and mout ̸= mj , σout = Spl.Sign(SK′
B ,mout).

Else σout = Spl.Sign(SK′
α,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 31: P2,j

74

Hybrid H ′2,j In this hybrid, the challenger outputs an obfuscation of P ′2,j = P ′2,j{i, j, t∗,KE ,KA,KB ,mj}.
This circuit, defined in Figure 32, accepts ‘B’ type signatures only for inputs corresponding to j+2 ≤ t ≤ i−2.
It also has the correct input message for step j +1 - mj hardwired. If t = j +1 and min = mj it outputs an
‘A’ type signature, else it outputs a ‘B’ type signature. If an input has j + 2 ≤ t ≤ i − 2, then the output
signature, if any, is of the same type as the incoming signature.

P ′
2,j

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, tuple mj .

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let F (KB , t− 1) = rS,B . Compute (SKB ,VKB ,VKB,rej) = Spl.Setup(1λ; rS,B).
(e) Let min = (vin, ctst,in, win, posin) and α = ‘A′.

If Spl.Verify(VKA,min, σin) = 0 and (t ≤ j + 1 or t ≥ i− 1), output ⊥.
Else if Spl.Verify(VKA,min, σin) = 0 set α = ‘B′.
If α = ‘B′ amd Spl.Verify(VKB ,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let F (KB , t) = r′S,B . Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(e) Let mout = (vout, ctst,out, wout, posout).

If t = j + 1 and min = mj , σout = Spl.Sign(SK′
A,mout).

Else if t = j + 1 and min ̸= mj , σout = Spl.Sign(SK′
B ,mout).

Else σout = Spl.Sign(SK′
α,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 32: P ′2,j

75

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.

Claim D.14. Assuming iO is a secure indistinguishability obfuscator, F is a xsecure puncturable PRF and
S is a splittable signature scheme satisfying Definition C.1, Adv0A − Adv1A ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Claim D.2.

Claim D.15. Assuming iO is a secure indistinguishability obfuscator, Adv1A − Adv2,0A ≤ negl(λ).

Proof. Note that P1 and P2,0 have identical functionality.

Claim D.16. Let 0 ≤ j ≤ i− 2. Assuming iO is a secure indistinguishability obfuscator, F is a selectively
secure puncturable PRF and S is a splittable signature scheme satisfying definitions C.1, C.2, C.3 and C.4,

Adv2,jA − Adv
′2,j
A ≤ negl(λ).

Proof. The proof of this claim is similar to the proof of Claim D.4.

Claim D.17. Let 0 ≤ j ≤ i − 3. Assuming iO is a secure indistinguishability obfuscator, Itr is an iterator
satisfying indistinguishability of Setup (Definition C.9) and is enforcing (Definition C.10), and Acc is an
accumulator satisfying indistinguishability of Read/Write Setup (Definitions C.5 and C.6) and is Read/Write

enforcing (Definitions C.7 and C.8) and SSB satisfies Definition B.1, Adv
′2,j
A − Adv2,j+1

A ≤ negl(λ).

Proof. This transition is similar to the transition from H2,j,2 to H2,j+1,1, and therefore the proof of this
claim is similar to the proof of Claim D.5 and Claim D.3.

Claim D.18. Assuming iO is a secure indistinguishability obfuscator, Adv2,i−2A − AdvintA ≤ negl(λ).

Proof. Note that P2,i−2 and Wint are functionally identical circuits, and the SSB hash is also enforcing at
the same position in both hybrids.

Lemma D.10. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4 and

SSB satisfies Definition B.1, |AdvintA − Adv
′int
A | ≤ negl(λ).

Proof. The proof of this lemma is similar to the proof of Lemma D.6. To prove this lemma, we will define a
sequence of hybrid experiments and show that they are computationally indistinguishable.

Hybrid H0 In this experiment, the challenger outputs an obfuscation of P0 = Wint = Prog-2-i{i, t∗, KE ,
KA, KB , mi−2}.

Hybrid H1 In this hybrid, the challenger first computes the constants for program P1 as follows:

1. PRF keys KA and KB are punctured at i − 2 to obtain KA{i − 2} ← F.Puncture(KA, i − 2) and
KB{i− 2} ← F.Puncture(KB, i− 2).

2. Let rc = F (KA, i−2), (SKC ,VKC ,VKC,rej) = Spl.Setup(1λ; rC), rD = F (KB , i−2), (SKD,VKD,VKD,rej) =
Spl.Setup(1λ; rD).

It then outputs an obfuscation of P1 = P1{i, t∗,KE ,KA{i−2},KB{i−2},VKC,one, SKC,one, SKD,abo,mi−2}
(defined in 33). P1 is identical to P0 on inputs corresponding to t ̸= i − 1, i − 2. However, for i − 2, its
output signature is computed using either SKC or SKD. For inputs corresponding to t = i− 1, it uses VKC

for the verification.

76

P1

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, mi−2, VKC , σC , SKD.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) If t ̸= i− 1, let rS,A = F (KA{i− 2}, t− 1). Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).

Else VKA = VKC,one.
(d) If t ̸= i− 2, let r′S,A = F (KA{i− 2}, t). Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(e) If t ̸= i− 2, r′S,B = F (KB{i− 2}, t). Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).
(e) If t = i− 2 and mout = mi−2, σout = Spl.Sign(SKC ,mout).

Else if t = i− 2 and mout ̸= mi−2 σout = Spl.Sign(SKD,mout).
Else σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 33: P1

Hybrid H2 In this hybrid, rC and rD are chosen uniformly at random; that is, the challenger computes
(SKC ,VKC)← Spl.Setup(1λ) and (SKD,VKD)← Spl.Setup(1λ).

Hybrid H3 In this hybrid, the challenger computes constrained secret/verification keys. It com-
putes (σC,one,VKC,one, SKC,abo,VKC,abo) ← Spl.Split(SKC ,mi−2) and (σD,one,VKD,one, SKD,abo,VKD,abo)
← Spl.Split(SKD, mi−2). It then outputs an obfuscation of P3 = P1{i, t∗,KE ,KA{i − 2},KB{i −
2},VKC,one, σC,one,SKD,abo,mi−2}. Note that SKC ,VKC , SKD,VKD are not hardwired in this program.

77

Hybrid H4 In this hybrid, the challenger chooses PAcc, w0, store0 using Acc.Setup-Enforce-Read. It then
uses PAcc, w0, store0, and proceeds as in previous experiment. It outputs an obfuscation of P1{i, t∗, PAcc,
KE , KA{i− 2}, KB{i− 2}, VKC,one, σC,one, SKD,abo, mi−2}.

Hybrid H5 In this hybrid, the challenger makes SSB hash enforcing at tmfaux(i−2). It receives M, (x1, x2)
from A, sets posaux = tmfaux(i − 2), chooses Haux ← SSB.Gen(1λ, 1|x2|, posaux). It computes haux = Haux(x2)
and sets ek = (Haux, haux). The remaining experiment is same as H4.

Hybrid H6 In this hybrid, the challenger first computes ciphertexts ct1 and ct2 as described in Hyb′2,i.
It then outputs an obfuscation of P6 = P6{i, t∗, PAcc, KE , KA{i − 2}, KB{i − 2}, VKC,one, σC,one,

SKD,abo, mi−2, ct1, ct2} (defined in Figure 34). This program differs from P1 for inputs corresponding to
t = i − 1. Instead of decrypting, computing the next state and then encrypting, the program uses the
hardwired ciphertexts.

Hybrid H6 In this experiment, the challenger uses normal setup for Acc (that is, Acc.Setup) instead of
Acc.Setup-Enforce-Read.

Hybrid H7 In this experiment, the challenger outputs an obfuscation of W ′int.

Analysis Let AdvxA denote the advantage of adversary A in hybrid Hx.

Claim D.19. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv0A − Adv1A| ≤
negl(λ).

Proof. In hybrid H0, program P0 is used, while in H1, program P1 is used. The only difference between the
two programs is that P1 uses punctured PRF keysKA{i−2} andKB{i−2}. It also has the secret/verification
keys computed using F (KA, i− 2) and F (KB , i− 2). As a result, using correctness of puncturable PRFs, it
follows that the two programs have identical functionality. Therefore, by security of iO, their obfuscations
are computationally indistinguishable.

Claim D.20. Assuming F is a selectively secure puncturable PRF, for any PPT A, |Adv1A−Adv
2
A| ≤ negl(λ).

Proof. The proof of this claim follows from the selective security of puncturable PRF F .

Claim D.21. Assuming iO is a secure indistinguishability obfuscator and S satisfies VKone indistinguisha-
bility (Definition C.2), for any PPT A, |Adv2A − Adv3A| ≤ negl(λ).

Proof. In order to prove this claim, we consider an intermediate hybrid program in which only the con-
strained secret keys σC,one and SKD,abo are hardwired, while VKC is hardwired as the verification key.
Using the security of iO, we can argue that the intermediate step and H2 are computationally indistinguish-
able. Next, we use VKone indistinguishability to show that the intermediate step and H3 are computationally
indistinguishable.

Claim D.22. Assuming Acc satisfies indistinguishability of Read Setup (Definition C.5), for any PPT A,
|Adv3A − Adv4A| ≤ negl(λ).

Proof. The proof of this claim follows from Read Setup indistinguishability (Definition C.5).

Claim D.23. Assuming SSB satisfies Definition B.1, for any PPT A, |Adv4A − Adv5A| ≤ negl(λ).

78

P6

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public pa-
rameters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE ,KA,KB ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, mi−2, VKC , σC , SKD, ciphertexts ct1, ct2.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) If t ̸= i− 1, let rS,A = F (KA{i− 2}, t− 1). Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).

Else VKA = VKC,one.
(d) If t ̸= i− 2, let r′S,A = F (KA{i− 2}, t). Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(e) If t ̸= i− 2, r′S,B = F (KB{i− 2}, t). Compute (SK′

B ,VK′
B ,VK′

B,rej)← Spl.Setup(1λ; r′S,B).
(f) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗, compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else if t = i− 1 set ctsym,out = ct1 and ctst,out = ct2.
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE , ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE , t − 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE , t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout).
(e) If t = i− 2 and mout = mi−2, σout = Spl.Sign(SKC ,mout).

Else if t = i− 2 and mout ̸= mi−2 σout = Spl.Sign(SKD,mout).
Else σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 34: P6

Proof. Note that the only difference between H4 and H5 is the enforcing index for SSB hash. In H4, the
hash is enforcing at tmfaux(i−3), while in H5, it is enforcing at tmfaux(i−2). Using the index hiding property
of SSB, we can argue that these two hybrids are computationally indistinguishable.

Claim D.24. Assuming iO is a secure indistinguishability obfuscator, for any PPT A, |Adv5A − Adv6A| ≤
negl(λ).

79

Proof. We need to argue that the programs output in hybrids H5 and H6 are functionally identical. Let
P1 and P2 denote these two programs. Note that the only difference is corresponding to input tuples with
t = i− 1. In P1, for t = i− 1, after the verification step, the ciphertexts ctsym,in and ctst,in are decrypted, the
new state and symbol are computed, which are then encrypted. In H6, the challenger computes the ‘correct’
state and symbol corresponding to t = i− 1. It encrypts them (deterministic encryption using a PRF key),
and hardwires the ciphertexts. If t = i− 1 and the verifications pass, then the program P2 does not decrypt
input ciphertexts; instead it sets ctsym,out and ctst,out to be the hardwired ciphertexts ct1, ct2.

At time step t = i−2, both programs output ‘A′ type signatures for the correct message mi−2. Threfore,
at time t = i − 2, there is exactly one input tuple that is accepted, which is mj−2, and hence min = mi−2,
which implies ctsym,in is the correct state’s encryption. Since the SSB hash and accumulator are appropriately
enforced, symaux and ctsym,in are the correct symbols input to P1. As a result, the new state/symbol are
also the correct state/symbol respectively, and hence P1 outputs ct1, ct2. Therefore, both programs have
identical behavior on all inputs.

Claim D.25. Assuming Acc satisfies indistinguishability of Read Setup (Definition C.5), for any PPT A,
|Adv5A − Adv6A| ≤ negl(λ).

Proof. This step is reverse of the step from H3 to H4.

Claim D.26. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF and S satisfies VKone indistinguishability (Definition C.2), for any PPT A, |Adv7A − Adv8A| ≤ negl(λ).

This step is the reverse of the step from H0 to H3. Therefore, using similar intermediate hybrid experi-
ments, a similar proof works here as well.

Lemma D.11. Assuming iO is a secure indistinguishability obfuscator, F is a selectively secure puncturable
PRF, Itr is an iterator satisfying Definitions C.9 and C.10, Acc is an accumulator satisfying Definitions C.5,
C.6, C.7 and C.8, S is a splittable signature scheme satisfying security Definitions C.1, C.2, C.3 and C.4,

|Adv
′int
A − Adv

′2,i
A | ≤ negl(λ).

The proof of this lemma is similar to the proof of Lemma D.9.

Combining Lemma D.9, Lemma D.10 and Lemma D.11, we get our desired proof for Lemma D.2.

D.3 Proof of Lemma D.3

We will first define hybrids H0, . . . , H5, where H0 corresponds to Hyb′2,i and H5 corresponds to Hyb2,i−1.

Hybrid H0 This corresponds to Hyb′2,i.

Hybrid H1 In this hybrid, the challenger punctures the PRF key KE on inputs corresponding to t = i−1.
It outputs an obfuscation of program W1 = Prog′-2-i-1{i, t∗,KE{i − 1},KA, ct1, ct2} where Prog′-2-i-1 is
defined in Figure 35. Note that the only difference between Prog′-2-i and Prog′-2-i-1 is that the latter uses
a punctured PRF key KE{i− 1} instead of KE .

Hybrid H2 In this hybrid, the challenger computes sk ← SetupPKE(1
λ) using true randomness. Also,

the ciphertexts ct1 and ct2 are computed using true randomness; that is, ct1 ← SKE.Enc(sk, sym∗) and
ct2 ← SKE.Enc(sk, st∗).

Hybrid H3 In this hybrid, the challenger sets ct1 = SKE.Enc(sk, erase) and ct2 = SKE.Enc(sk, erase).

80

Prog′-2-i-1

Constants: Index i, Turing machine M = ⟨Q,Σtape, δ, q0, qacc, qrej, tmf1, tmf2⟩, time bound T , Public param-
eters for accumulator PAcc, Public parameters for Iterator PItr, Puncturable PRF keys KE{i − 1},KA ∈ K,
SSB Hash function Haux and hash value haux, b

∗, t∗, ct1, ct2.

Input: Time t ∈ [T], encrypted symbol and last-write time (ctsym,in, ℓ-w), auxiliary tape symbol symaux,
encrypted state ctst,in, accumulator value win ∈ {0, 1}ℓAcc , Iterator value vin, signature σin, accumulator proof
π, SSB proof πaux, auxiliary value symaux.

1. Let posin = tmfwk(t− 1), posaux = tmfaux(t− 1) and posout = tmfwk(t).

2. If t > t∗, output ⊥.
3. Verifications

(a) If Acc.Verify-Read(PAcc, win, (ctsym,in, ℓ-w), posin, π) = 0 or ℓ-w ≥ t, output ⊥.
(b) If SSB.Verify(Haux, haux, posaux, symaux, πaux) = 0, output ⊥.
(c) Let F (KA, t− 1) = rS,A. Compute (SKA,VKA,VKA,rej) = Spl.Setup(1λ; rS,A).
(d) Let min = (vin, ctst,in, win, posin). If Spl.Verify(VKA,min, σin) = 0 output ⊥.

4. Computing next state and symbol (encrypted)

(a) If t = t∗, output b∗.
(b) If i ≤ t < t∗ compute (rt,1, rt,2, rt,3) = F (KE{i− 1}, t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, erase; rt,2) and ctst,out = SKE.Enc(sk′, erase; rt,3).
Else if t = i− 1 set ctsym,out = ct1 and ctst,out = ct2.
Else do the following:

i. Let (rℓ-w,1, rℓ-w,2, rℓ-w,3) = F (KE{i− 1}, ℓ-w), skℓ-w = SKE.Setup(1λ; rℓ-w,1), sym =
SKE.Dec(skℓ-w, ctsym,in).

ii. Let (rt−1,1, rt−1,2, rt−1,3) = F (KE{i− 1}, t− 1), skst = SKE.Setup(1λ, rt−1,1), st =
SKE.Dec(skst, ctst,in).

iii. Let (st′, sym′, β) = δ(st, sym, symaux).
iv. If stout = qrej output 0. Else if stout = qacc output 1.
v. Compute (rt,1, rt,2, rt,3) = F (KE{i− 1}, t), sk′ = SKE.Setup(1λ; r′t,1), ctsym,out =

SKE.Enc(sk′, sym′; rt,2) and ctst,out = SKE.Enc(sk′, st′; rt,3).

5. Update accumulator, iterator and compute new signature

(a) Compute wout = Acc.Update(PAcc, win, (ctsym,out, t), posin, acc-aux). If wout = Reject, output ⊥.
(b) Compute vout = Itr.Iterate(PItr, vin, (ctst,in, win, posin)).
(c) Let F (KA, t) = r′S,A. Compute (SK′

A,VK′
A,VK′

A,rej)← Spl.Setup(1λ; r′S,A).
(d) Let mout = (vout, ctst,out, wout, posout) and σout = Spl.Sign(SK′

A,mout).

6. Output posin, ctsym,out, ctst,out, wout, vout, σout.

Figure 35: Prog′-2-i-1

Hybrid H4 In this hybrid, the challenger computes the ciphertexts using pseudorandom strings gen-
erated using F (KE , ·). More precisely, the challenger computes (ri−1,1, ri−1,2, ri−1,3) = F (KE , i − 1),
skSKE.Setup(1λ; ri−1,1), ct1 = SKE.Enc(sk, erase; ri−1,2) and ct2 = SKE.Enc(sk, erase; ri−1,3).

Hybrid H5 This corresponds to Hyb2,i−1.

D.3.1 Analysis

Claim D.27. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv0A −
Adv1A ≤ negl(λ).

Proof. To prove this claim, it suffices to show that W0 and W1 are functionally identical. The crucial
observation for this proof is the fact that F (KE , i − 1) is not used anywhere in program W0. For inputs

81

corresponding to t > i − 1, both programs don’t use F (KE , i − 1) since the programs do not decrypt for
t > i − 1. For t = i − 1, the ciphertexts ct1 and ct2 are hardwired. For t < i − 1, note that it only
computes F (KE , τ) for τ < i − 1. As a result, F (KE , ·) is not evaluated at input i − 1, and therefore, it is
safe to puncture KE on input i− 1 without affecting functionality. The rest follows from the correctness of
puncturable PRFs.

Claim D.28. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, Adv1A−Adv
2
A ≤

negl(λ).

Proof. The proof of this claim is similar to the proof of Claim ??; it follows from the selective security of
puncturable PRF F .

Claim D.29. Assuming PKE is IND-CPA secure, for any PPT adversary A, Adv2A − Adv3A ≤ negl(λ).

Proof. Note that the secret key sk is not required in both hybrids H2 and H3. Suppose there exists an
adversary A that can distinguish between H2 and H3 with advantage ϵ. Then we can construct a PPT
algorithm B that breaks the IND-CPA security of SKE with advantage ϵ. The reduction algorithm interacts
with A and computes sym∗, st∗. It sends m0 = (sym∗, st∗) and m1 = (erase, erase) as the challenge message
pairs, and receives a ciphertext pair (ct1, ct2). B can now perfectly simulate H2 or H3 for A, depending on
whether (ct1, ct2) are encryptions of m0 or m1. This completes our proof.

Claim D.30. Assuming F is a selectively secure puncturable PRF, for any PPT adversaryA, Adv3A−Adv
4
A ≤

negl(λ).

Proof. This step is the reverse of the step from H1 to H2; its proof also follows from selective security of
puncturable PRFs.

Claim D.31. Assuming iO is a secure indistinguishability obfuscator, for any PPT adversary A, Adv4A −
Adv5A ≤ negl(λ).

Proof. The only difference between the programs used in the two hybrids is that one uses a punctured
key KE{i − 1}, while the other uses KE . Using the correctness of puncturable PRFs, we can argue that
they are functionally identical. As a result, from the security of iO, their obfuscations are computationally
indistinguishable.

D.4 Proof of Lemma D.4

Proof. The only difference between hybrid Hyb2,1 and Hyb3 is with respect to the encoding of the input. In
the former case, the challenger computes encryption of input x1 (followed by hashing using accumulator,
signing etc.), while in the latter case, the challenger computes encryption of erase|x1|. To prove this lemma,
we will introduce two hybrid experiment H1 and H2.

The experiment H1 is similar to Hyb2,1, except that the obfuscated program uses a punctured PRF key
KE{0} for outputting encryptions, and it has encryption of starting state and starting symbol hardwired.
Since this program does not compute F (KE , 0), these two programs are functionally identical, and hence
the hybrid experiments Hyb2,1 and H are computationally indistinguishable.

In experiment H2, the challenger computes uses a truly random string instead of F (KE , 0). Using the
PRF security, we can argue that H1 and H2 are computationally indistinguishable.

Finally, using the security of the encryption scheme, we can show that H2 and Hyb3 are computationally
indistinguishable. This concludes our proof.

82

	Introduction
	Our Results
	Related work

	Technical Overview
	Output Compressing Randomized Encodings
	Compact MPC for Turing Machines in the Random Oracle Model.
	Succinct iO for Turing Machines in the Shared Randomness Model

	Preliminaries
	Randomized Encodings: Definitions
	Succinct Partial Randomized Encodings
	Strong output-compressing Randomized Encodings in the shared randomess model

	Strong Output-compressing Randomized Encodings in the CRS Model
	Construction
	Proof of Security

	Compact MPC
	Construction
	Security Proof

	Constructing iO from Output-Compressing Randomized Encodings
	Construction
	Security
	Succinct Partial Randomized Encodings

	Construction of Succinct Partial Randomized Encodings
	Correctness and Efficiency
	Proof of Security

	Secure Multiparty Computation in the Random Oracle Model
	Further Preliminaries
	Puncturable Pseudorandom Functions
	Somewhere Statistically Binding Hash
	Indistinguishability Obfuscation for Circuits
	Succinct Randomized Encodings

	Primitives from KLW15
	Notations
	iO-Compatible Primitives

	Proof of Simulation Security for Succinct Partial Randomized Encodings
	Proof of Lemma D.1
	Proof of Lemma D.2
	Proof of Lemma D.3
	Proof of Lemma D.4

