
Efficient Pseudorandom Functions From the
Decisional Linear Assumption and Weaker

Variants

Allison B. Lewko ∗

University of Texas at Austin
Brent Waters †

University of Texas at Austin

Abstract
In this paper, we generalize Naor and Reingold’s construction of pseudorandom

functions under the DDH Assumption to yield a construction of pseudorandom
functions under the decisional k-Linear Assumption, for each k ≥ 1. The deci-
sional Linear Assumption was first introduced by Boneh, Boyen, and Shacham as
an alternative assumption for settings where the DDH problem is easy, such as bi-
linear groups. This assumption can be generalized to obtain the decisional k-Linear
Assumptions. Shacham and Hofheinz and Kiltz showed that the decisional (k+ 1)-
Linear problem is hard for generic groups even when the decisional k-Linear problem
is easy. It is thus desirable to have constructions of cryptographic primitives based
on the decisional k-Linear Assumption instead of DDH. Not surprisingly, one must
pay a small price for added security: as k increases, our constructed functions be-
come slightly less efficient to compute and the key size increases (quadratically in
k).

1 Introduction

Pseudorandom functions were first defined by Goldreich, Goldwasser, and Micali
[14]. Informally, a pseudorandom function ensemble is a collection of functions that
can be efficiently sampled and computed, but cannot be distinguished from random
functions by a polynomial time adversary with only black-box access. We will
give a formal definition in the next section. These cryptographic primitives have
many applications (e.g. [3, 7, 12, 13, 20, 25, 28]). For example, a pseudorandom
function is often substituted for a truly random function in an application where
true randomness would be unacceptably inefficient. In private-key cryptography, a
relatively short description of a pseudorandom function can be used as a private key,
allowing parties who share this private key to send encrypted messages or verify
each other’s knowledge of the shared secret without needing to reveal the secret
itself. For applications of pseudorandom functions in private-key cryptography, see
e.g. [7, 13, 20]. Pseudorandom functions are also used in public-key cryptography
(e.g. [3, 12]), learning theory (e.g. [28]), and complexity theory (e.g. [25]).

∗Supported by National Defense Science and Engineering Graduate Fellowship.
†Supported by NSF CNS-0716199, Air Force Office of Scientific Research (AFO SR) under the MURI

award for “Collaborative policies and assured information sharing” (Project PRESIDIO).

1

Motivation These numerous applications make it desirable to have construc-
tions of pseudorandom functions which are both efficient enough to be implemented
in practice and based on well-established assumptions. Goldreich, Goldwasser, and
Micali gave the first construction of a pseudorandom function ensemble, known
as the GGM-Construction [14]. This construction relied only on pseudorandom
generators, which can be built from any one-way function (as shown in [15]). In
[23], Noar and Reingold gave two constructions of pseudorandom functions which
are much more efficient to compute than the GGM functions. One construction
was based on the Decisional Diffie-Hellman Assumption (DDH) and the other was
based on the assumption that factoring Blum integers is hard. (See section 2 for
the definition of the DDH Assumption.)

The DDH Assumption is a commonly used assumption with several attractive
qualities. Its applications include the Diffie-Hellman key-exchange protocol (the
context in which DDH was introduced) [10], ElGamal encryption [11], Cramer-
Shoup CCA-secure public key encryption [8], undeniable signatures [6], verifiable
secret sharing [27], and many others. Naor and Reingold gave a reduction between
the worst-case and the average-case DDH problem, showing that it is either hard
on average or easy even in the worst case.

Though such a reduction gives credence to the belief that the DDH Assumption
holds in groups where it is not known to be easy on average, there are groups
where the DDH Assumption fails. Most notably, the DDH problem is easy in
bilinear groups. In [21], Menezes, Okamoto, and Vanstone showed that there
are subexponential attacks on the discrete log problem in certain elliptic curve
groups (supersingular curves) which had been previously been suggested for use in
cryptographic systems. This example shows that even well-established assumptions
can be found to have surprising weaknesses in certain implementations. Developing
cryptographic primitives and systems based on progressively weaker assumptions is
therefore advantageous because it provides some protection against future advances
in cryptanalysis.

There is evidence that groups exist in which the DDH problem is easy but the
CDH problem (Computational Diffie-Hellman) is hard [17]. In such groups, we
might still rely on the difficulty of computing discrete logarithms, but we must
avoid the DDH Assumption. One alternative is the decisional Linear Assumption,
introduced by Boneh, Boyen, and Shacham [5]. This assumption can be generalized
to yield the decisional k-Linear Assumptions, which we will refer to simply as the
k-Linear Assumptions for brevity. A gap variant of the k-Linear Assumptions was
first proposed by Kiltz in [18]. The form we will use was given independently in
Shacham [26] and Hofheinz and Kiltz [16]. The 1-Linear Assumption is DDH, and
the 2-Linear Assumption is the Linear Assumption from [5]. Both [16, 26] note
that the (k+1)-Linear Assumption holds in a generic group even when the k-Linear
problem is easy and give constructions of chosen-ciphertext secure cryptosystems
based on the k-Linear Assumption for any positive integer k.

Our Contribution We generalize the construction of Naor and Reingold to
yield pseudorandom function ensembles based on the Linear and k-Linear Assump-
tions. We thus achieve added security, and we do so with relatively little cost in
efficiency. It is not too difficult to see that a change to the Naor-Reingold construc-
tion is necessary if the DDH problem is easy. The Naor-Reingold construction maps
an n-bit string x = (x1, . . . , xn) into a cyclic group G of prime order p generated by

2

g. A pseudorandom function f is specified by the group G, g, p, and n + 1 values
in Zp denoted by a0, a1, . . . , an. Naor and Reingold define:

fG,p,g,a0,...,an(x) = (ga0)
∏

xi=1 ai . (1)

If we have access to an algorithm A that solves the DDH problem with non-
negligible advantage, then we can distinguish such an f from a truly random func-
tion with non-negligible advantage as follows. We query f on four inputs and obtain
responses:

f(1, 1, . . . , 1, 1) = B1, f(1, 1, . . . , 1, 0) = B2,

f(0, 0, . . . , 0, 1) = B3, f(0, 0, . . . , 0, 0) = B4.

If f is a Naor-Reingold pseudorandom function with key {G, p, g, a0, . . . , an}, then
B1 = ga0a1...an , B2 = ga0a1...an−1 , B3 = ga0an , and B4 = ga0 . We set g̃ = B4, g̃

a =
B3, g̃

b = B2, and T = B1. If f is pseudorandom, then g̃ = ga0 , a = an, b =
a1 . . . an−1, and T = g̃ab. If f is truly random, then T is uniformly random. Hence,
when g̃, g̃a, g̃b, T are given to A as input, the output of A can be used to distinguish
whether f is pseudorandom or truly random with non-negligible advantage.

Our generalized construction and the proof of its security differ from the Naor-
Reingold version in two primary ways. First, the additional complexity required
to accommodate the weaker assumptions means that our functions can no longer
be described by closed-form formulas like (1). Nonetheless, the additional cost in
computational efficiency is rather small. Second, the Linear Assumption cannot be
embedded into our construction as directly as the DDH Assumption is embedded
in Naor-Reingold, so we must use two separate instantiations of the hybrid tech-
nique to prove the pseudorandomness of our construction instead of just one. More
specifically, the Naor-Reingold construction relies on a pseudorandom generator
that doubles its input and arises very naturally from the DDH Assumption. Ob-
taining a suitable pseudorandom generator that doubles its input from the Linear
Assumption is more difficult, and requires use of the hybrid technique. We discuss
this issue in more detail in section 3.

Other Related Work In practice, ad hoc designs of cryptographic primitives
are often substituted for constructions which are proven to be secure under standard
assumptions. This may yield greater efficiency, but it has been shown to be very
dangerous. The potential for compromising vulnerabilities in ad hoc designs further
motivates our search for efficient constructions of cryptographic primitives with
accompanying proofs of security under weak assumptions. Collision attacks against
commonly used hash functions like MD5, SHA-0, and SHA-1 have recently been
demonstrated [4, 29]. There is also an ad hoc design of pseudorandom functions,
known as TLS, that uses both SHA-1 and MD5 [9]. This design is intended to
be secure if both SHA-1 and MD5 are secure, but this is not rigorously proven
and it may be that both of these hash functions are vulnerable. Bellare, Canetti,
and Krawczyk give two constructions, NMAC and HMAC, which are proven to be
secure under the assumption that the underlying hash function is suitably secure
[2], but it may still be the case that an ad hoc hash function chosen for a practical
implementation has previously unknown weaknesses.

To implement our construction in practice, one must balance efficiency with
security in the choice of the group where the k-Linear Assumption will be relied

3

upon. One usually chooses the security parameters based on the best known attacks.
In particular, if one chooses two large primes p and q such that p divides q − 1,
we can work in a subgroup of order p in Z∗q . The known attacks on the discrete
logarithm problem in this case include Shanks’ baby-step giant-step algorithm [19]
and Pollard’s rho method [24], both of which take O(

√
p) time. There is also the

index calculus algorithm [1], which runs in time O
(

2O(
√

log q log log q)
)

. This is a
subexponential attack, but still not polynomial time. These known attacks mean
that if we want roughly 80 bits of security in this group, we need to set the size of
p to at least 160 bits and the size of q to at least 1024 bits.

Naor and Reingold additionally show that the algebraic simplicity of their con-
struction implies that interactive zero-knowledge proofs can be given for statements
of the form “y = fs(x)” and “y 6= fs(x)” once the party computing the pseudo-
random function fs has committed to the key s [23]. Micali, Rabin, and Vadhan
define and construct verifiable random functions [22], which have an even stronger
property: the proofs of statements “y = fs(x)” do not require interaction or a
trusted shared random string. We will not be concerned with such properties for
our construction, as our primary goals are computational efficiency and heightened
security.

Organization In the next section, we formally define pseudorandom functions
and the k-Linear Assumptions. We also establish a basic property shared by these
assumptions that will be useful to us. In section 3, we give our construction based
on the Linear Assumption (the case k = 2) and prove it is pseudorandom. In
section 4, we generalize our construction to hold under the k-Linear Assumption
for each positive integer k and summarize the generalized proof. In section 5, we
summarize the important properties of our pseudorandom functions and analyze
their performance.

2 Background

2.1 Formal Definition of Pseudorandom Functions

We give the definition that is provided in [23]:

Definition 1 (efficiently computable pseudorandom function ensemble) Let {An, Bn}
be a sequence of domains and ranges and let F = {Fn}n∈N be a function ensemble
where each Fn is a random variable taking values in the set of functions from An
to Bn. Then F is an efficiently computable pseudorandom function ensemble if it
satisfies the following two conditions:

1. for every probabilistic polynomial time oracle machine M, every constant
c > 0, and all but finitely many n’s,∣∣Pr[MFn(1n) = 1]− Pr[MRn(1n) = 1]

∣∣ < 1
nc
,

where Rn is uniformly distributed over the set of all functions from An to Bn,
2. there exist probabilistic polynomial time algorithms I and V and a mapping

φ from strings to functions such that φ(I(1n)) and Fn are identically distributed (so
Fn can be efficiently sampled) and V(i, x) = (φ(i))(x) (the sampled function can be
efficiently computed).

4

We note that oracle machine M in requirement 1 can know the description of
the pseudorandom function ensemble, just not the key of the particular function it
is querying.

2.2 The Decisional k-Linear Assumptions

We define the Linear problem in a cyclic group G of prime order p: given
g0, g1, g2, g

r1
1 , g

r2
2 , g

r0
0 ∈ G, distinguish whether r0 = r1 + r2 or is random. The

assumption is that no polynomial time algorithm can distinguish between these
two cases of r0 with non-negligible advantage. More formally,

Definition 2 Linear problem in G: given g0, g1, g2, g
r1
1 , g

r2
2 , g

r0
0 ∈ G, output “yes”

if r0 = r1 + r2 and “no” otherwise.

The advantage of an algorithm A in deciding the Linear problem is defined to
be:

AdvA =

∣∣∣∣∣ Pr[A(g0, g1, g2, gr11 , g
r2
2 , g

r1+r2
0) = yes : g0, g1, g2

R←− G, r1, r2
R←− Zp]

−Pr[A(g0, g1, g2, gr11 , g
r2
2 , g

r0
0) = yes : g0, g1, g2

R←− G, r1, r2, r0
R←− Zp]

∣∣∣∣∣ .
(We use the notation g0, g1, g2

R←− G to convey that these elements are chosen from
G uniformly randomly.)

Definition 3 Linear Assumption in G: no polynomial time algorithm can achieve
non-negligible advantage in deciding the Linear problem in G.

We now define a generalization of the Linear problem. For k ≥ 1, the k-Linear
problem in G is:

Definition 4 k-Linear problem in G: given g1, g2, . . . , gk, g0, gr11 , g
r2
2 , . . . , g

rk
k , g

r0
0 ∈

G, output “yes” if r0 =
∑k

i=1 ri and “no” otherwise.

Definition 5 k-Linear Assumption in G: no polynomial time algorithm can achieve
non-negligible advantage in deciding the k-Linear problem in G.

(The advantage of an algorithm A in deciding the k-Linear problem is defined
analogously to the Linear case above.) We note that the 1-Linear problem is the
Decisional Diffie-Hellman (DDH) problem and the 2-Linear problem is the Linear
problem. The DDH problem is usually defined with different (though equivalent)
notation:

Definition 6 DDH problem: given g, ga, gb, T , output “yes” if T = gab and “no”
otherwise.

These generalized assumptions are useful because they get weaker as k increases,
in generic groups at least (this was proved in [16, 25]). In particular, some k-Linear
Assumption might hold in a bilinear group G where the DDH Problem is easy.
The k-Linear problem also has a helpful property that we will use later: given a
single instance of the problem, one can randomly generate new instances. (This
was proved for the DDH problem in [23].)

5

Lemma 7 Given g1, . . . , gk, g0, gr11 , . . . , g
rk
k , g

r0
0 ∈ G, one can generate gr

′
1

1 , . . . , g
r′k
k , g

r′0
0

such that r′1, . . . , r
′
k are uniformly random in Zp and r′0 =

∑k
i=1 r

′
i if r0 =

∑k
i=1 ri

and is uniformly random otherwise.

Proof. We pick e0, e1, . . . , ek ∈ Zp uniformly randomly. We then define r′i =
e0ri + ei for i from 1 to k and r′0 = e0r0 + e1 + · · ·+ ek. We can also write this as:

r1 1 0 0 . . . 0
r2 0 1 0 . . . 0
...

...
...

. . .
...

...

rk 0 0
... 0 1

r0 1 1
... 1 1




e0
e1
...

ek−1

ek

 =


r′1
r′2
...
r′k
r′0

 .

If r0 =
∑k

i=1 ri, then r′0 =
∑k

i=1 r
′
i and r′1, . . . , r

′
k are uniformly random. If

r0 6=
∑k

i=1 ri, then the square matrix on the left of the above expression has a
non-zero determinant and is invertible over Zp. (One can easily show by induction
on k that the determinant of this matrix is (−1)k(r0 − r1 − · · · − rk).) Thus, any
(k + 1)-tuple of values r′1, . . . , r

′
k, r
′
0 ∈ Zp can be uniquely formed by one setting of

the values of e0, e1, . . . , ek. So r′1, . . . , r
′
k, r
′
0 are uniformly random. �

Iterative application of this lemma allows us to generate any number of random
instances of the k-Linear problem from a single instance. As was noted for the
DDH case in [23], we can use this lemma and standard amplification techniques to
show that the k-Linear problem is either hard on average or easy even in the worst
case.

3 Our Core Construction

Intuition The key observation behind the Naor-Reingold construction is that the
DDH Assumption implies the existence of a pseudorandom generator that doubles
its input. We use the phrase pseudorandom generator somewhat loosely here, since
their generator is not efficiently computable without knowledge of secret parame-
ters. Specifically, a group element ga is fixed, and this gives a generator G̃g,ga which
takes in one random group element, gb, and outputs two pseudorandom group el-
ements: G̃ga(gb) = (gb, gab). (To compute this pseudorandom generator efficiently,
one needs to know either a or b, but this does not pose a problem for their construc-
tion.) This generator is then used along with the GGM construction (which nests n
copies of the generator for an n-bit input) to yield the Naor-Reingold construction.

More formally, the GGM construction takes a pseudorandom generator G that
doubles its input and writes its output G(x) as (G0(x), G1(x)). A pseudorandom
function fs : {0, 1}n → {0, 1}n is then defined from a key s (which is a uniformly
chosen n-bit string) by:

fs(x) = Gxn(· · · (Gx2(Gx1(s))) · · ·).

Naor and Reingold modify this slightly by using a different ga for the generator at
each step:

fG,p,g,a0,...,an(x) = G̃xn
gan (· · · (G̃x1

ga1 (ga0)) · · ·) = (ga0)
∏

xi=1 ai .

6

We might hope to obtain a pseudorandom generator G from the Linear Assump-
tion that doubles its input by defining Gg0,g1,g2,gr1

1
(gr22) = (gr22 , g

r1+r2
0), but this does

not work because fixing r1 makes this generator fail if DDH fails. For example, sup-
pose we receive four output pairs from this generator: (A,A′), (B,B′), (C,C ′), (D,D′).
We can set g = A/B, gb = C/D, ga = A′/B′, and T = C ′/D′. If these pairs were
uniformly random inG2, then T would be uniformly random. Since these pairs come
from our generator, we must have A = g

r12
2 , A

′ = g
r1+r12
0 , B = g

r22
2 , B

′ = g
r1+r22
0 , C =

g
r32
2 , C

′ = g
r1+r32
0 , D = g

r42
2 , D

′ = g
r1+r42
0 for some values r1, r12, . . . , r

4
2. In this case,

g = g
r12−r22
2 , b = r32−r42

r12−r22
, a satisfies ga2 = g0, and T = gab. This is a DDH tuple, so

this generator is no more secure than DDH.
Instead, we can get a generator G′ from the Linear Assumption which takes in

two random group elements, gr11 , g
r2
2 , and outputs 3 pseudorandom group elements:

G′g0,g1,g2(gr11 , g
r2
2) = (gr11 , g

r2
2 , g

r1+r2
0).

Pseudorandomness for this generator under the Linear Assumption follows from
Lemma 7. Since this generator does not double its input, we cannot simply plug
it into the GGM construction in the way that the Naor-Reingold construction is
obtained. There is a standard technique for taking a pseudorandom generator that
only slightly stretches its input size and obtaining a new pseudorandom generator
that (e.g.) doubles its input size, but the proof that this generic approach main-
tains pseudorandomness assumes that the pseudorandom generator is efficiently
computable, which ours is not. (One needs to know r1 and r2 in order to compute
it, and if one knows r1 and r2, it is no longer pseudorandom.)

To overcome this difficulty, we proceed as follows. We can rename gr11 as A, gr22

as B, and note that there exist c, d ∈ Zp such that gc1 = g0 and gd2 = g0. We rename
g1 as gc and g2 as gd to reflect this relationship (i.e. gc is defined to be gc

−1

0). In
this notation, our pseudorandom generator G′, can be written as:

G′g0,gc,gd
(A,B) = (A,B,AcBd).

To modify this so that it doubles its input, we can simply fix additional values
e, f ∈ Zp and define:

Gg0,gc,gd,ge,gf
(A,B) = (A,B,AcBd, AeBf).

One needs to know c, d, e, f in order to compute this generator, but this will not
pose a problem for our construction. Perhaps more worrisome is that the Linear
Assumption is no longer directly embedded in the generator. Nonetheless, we can
use a hybrid argument to show that samples of outputs from this generator G are
indistinguishable from random under the Linear Assumption. (This is accomplished
by Lemma 10 in the proof of security for our pseudorandom function ensemble
below.) We will use this pseudorandom generator along with the GGM construction
(modifying it like Naor-Reingold) to obtain our construction.

3.1 Construction

We now construct our function ensemble F = {Fn}n∈N and prove it is pseu-
dorandom under the Linear Assumption. Each Fn is a set of functions from n-bit
strings to a group G, where G is a cyclic group of prime order p generated by g.

7

A function f ∈ Fn is associated with a unique key consisting of G, g, p and 4n+ 2
elements of Zp. More formally, we give a Setup algorithm that constructs one of
our pseudorandom functions and an Evaluation algorithm that computes its value
on a specified input string.

Setup(λ) → SK Our Setup algorithm takes in a security parameter λ and
chooses a group G of prime order p which is large enough with respect to λ. It then
chooses a generator g of G and 4n + 2 uniformly random elements of Zp, denoted
by y0, z0, y1, z1, w1, v1, . . . , yn, zn, wn, vn. It outputs:

SK = {G, p, g, y0, z0, y1, z1, w1, v1, . . . , yn, zn, wn, vn}.

We describe the Evaluation algorithm for the function f associated with SK as
follows. We let x = x1x2 . . . xn denote the input bit string.

Evaluation(x, SK)→ f(x)

Initialize variables a and b in Zp as a = y0, b = z0.
For i from 1 to n do:

If xi = 0, set a = a and b = b.
If xi = 1, set a = ayi + bzi and b = awi + bvi.

Output f(x) = ga.

For the step when xi = 1, the new values of a and b are both defined in terms of
the old values of a and b, i.e. we do not first update a and then use the updated value
of a in updating b. Technically, our pseudorandom functions deviate slightly from
definition 1, since different functions in Fn will have different groups as their ranges.
As Naor and Reingold note, this does not pose a problem in many applications.
Alternatively, one can get all of the functions in Fn to have the same range by using
suitable families of hash functions [23].

We note that our Evaluation algorithm is very efficient: it performs at most
4n multiplications in Zp, 2n additions in Zp, and one exponentiation in G. This
construction is a generalization of the construction in [23], which was proven to
be pseudorandom under the DDH Assumption. In the next section, we will further
generalize the construction to be pseudorandom under the k-Linear Assumption for
each k ≥ 1. But first, we give a proof for this special case of k = 2.

3.2 Security

Theorem 8 Under the Linear Assumption, this function ensemble is pseudoran-
dom.

Proof. We first note that f can be equivalently defined by the following (less
efficient) algorithm:

Inefficient Evaluation(x, SK)→ f(x)

Initialize variables A and B in G as A = gy0 , B = gz0 .
For i from 1 to n do:

If xi = 0, set A = A and B = B.
If xi = 1, set A = AyiBzi and B = AwiBvi .

Output f(x) = A.

8

We note that one would not actually compute f this way in practice, but using
this algorithm yields the same function values as the more efficient algorithm we
gave above. (To see this, note that A has replaced ga and B has replaced gb. We
are simply performing exponentiations now as we go along instead of waiting until
the end.) We describe f in this alternative way because it is more convenient for
our proof, and it also reveals the relationship between our construction and the
GGM construction.

We recall that we defined our pseudorandom generator G as:

Gg0,gc,gd,ge,gf
(A,B) = (A,B,AcBd, AeBf).

We can now see that our construction is formed by using G in the GGM construc-
tion, where at each level we use a new c, d, e, f :

f(x) = G
xn

g,gyn ,gzn ,gwn ,gvn
(· · · (Gx1

g,gy1 ,gz1 ,gw1 ,gvn
(gy0 , gz0)) · · ·).

We prove this is a pseudorandom function family using the hybrid technique.
We begin by defining a sequence of games: Game 0, Game 1, . . . , Game n. Each
game consists of a challenger and an attacker. The attacker can query the challenger
for values of a function on inputs x = x1 . . . xn that it chooses.

Game j The challenger fixes random values

yj+1, zj+1, wj+1, vj+1, . . . , yn, zn, wn, vn ∈ Zp.

The challenger answers queries for input x’s by setting A and B to be random
functions of the first j bits of the input and then following the iterative procedure
above for i from j + 1 to n. It then outputs the final value of A as the answer to
the query. The attacker must output either 0 or 1.

We note that in Game 0, the challenger is implementing a function from our
function family and in Game n, the challenger is implementing a truly random
function. Thus, our function family is pseudorandom if and only if Game 0 cannot
be distinguished from Game n (with non-negligible advantage) by any polynomial
time attacker.

So if our functions are not pseudorandom, then there exists a probabilistic
algorithm D which can distinguish Game 0 from Game n. In other words, we
suppose

|Pr[D = 1|Game n]− Pr[D = 1|Game 0]| = ε,

where ε > 0 is non-negligible. We then observe:

ε =

∣∣∣∣∣∣
n−1∑
j=0

Pr[D = 1|Game j + 1]− Pr[D = 1|Game j]

∣∣∣∣∣∣ .
By the triangle inequality, this implies that there exists j such that:

|Pr[D = 1|Game j + 1]− Pr[D = 1|Game j]| ≥ ε

n
.

Since ε is non-negligible, ε
n is non-negligible. So we can assume that D also distin-

guishes some pair of adjacent games j and j + 1.

9

The heart of our construction is the pseudorandom generator which takes input
A,B and expands it to 4 elements: A,B,AyiBzi , AwiBvi . We will first show that
if our construction is not pseudorandom, then this generator is not pseudorandom
either. More precisely, we will show that if there is a probabilistic algorithm D able
to distinguish Game j from Game j+1 for some j, then there is another probabilistic
algorithm M which can distinguish samples of the form (A,B,AyiBzi , AwiBvi) from
uniformly random 4-tuples. To state this formally, we define two additional games.
We call them Game 1 and Game 3 because they will later appear as parts of a three
game hybrid.

Game 1 An attacker queries the challenger for 4-tuples in G. Each time the
challenger responds by sending a new 4-tuple (A,B,C,D) uniformly chosen in G4.

Game 3 An attacker queries the challenger for 4-tuples in G. The challenger
chooses elements y, z, w, v uniformly from Zp and keeps these fixed. For each
query, the challenger chooses elements A,B uniformly from G and responds with
(A,B,AyBz, AwBv).

Lemma 9 Suppose there is an algorithm D such that

|Pr[D = 1|Game j + 1]− Pr[D = 1|Game j]| ≥ ε.

Then there exists an algorithm M such that

|Pr[M = 1|Game 1]− Pr[M = 1|Game 3]| ≥ ε.

Proof. Suppose that M receives t 4-tuples (A1, B1, C1, D1), . . . , (At, Bt, Ct, Dt),
where t is an upper bound on the number of queries that D makes. These 4-tuples
are either all uniformly random in G×G×G×G, or Ai, Bi are uniformly random
and Ci = AyiB

z
i , Di = Awi B

v
i for all i. (Note that y, z, w, v are fixed and do not

change with i.) It is M ’s task to distinguish between these two cases. M will
accomplish this task by simulating the challenger in Game j or Game j + 1 and
calling on D.

M starts the simulation by choosing yj+2, zj+2, wj+2, vj+2, . . . , yn, zn, wn, vn ∈
Zp randomly. When D queries M with input x = x1 . . . xn, M defines `(x) :
{0, 1}j → [t] to be an injective function of the first j bits of x. If xj+1 = 0, M sets
A = A`(x) and B = B`(x) (these values are taken from the 4-tuples M has been
given). If xj+1 = 1, M sets A = C`(x) and B = D`(x). M then follows the iterative
procedure from our construction for steps j + 2 to n and outputs the final value of
A.

We note that if the 4-tuples M has received are uniformly random, then M has
simulated game j + 1. If instead Ci = AyiB

z
i , Di = Awi B

v
i for all i, then M has

simulated game j with yj+1 = y, zj+1 = z, wj+1 = w, and vj+1 = v. So if M
outputs 1 when D outputs 1, we have:

|Pr[M = 1|Game 1]− Pr[M = 1|Game 3]|

= |Pr[D = 1|Game j + 1]− Pr[D = 1|Game j]| = ε.

�

10

To complete our proof of Theorem 8, we show that the existence of such an M
violates the Linear Assumption. To do this, we once again use the hybrid technique.
This time, we only need 3 games. Games 1 and 3 are defined as before, but we
include them below for completeness.

Game 1 M is given samples of the form (A,B,C,D) which are uniformly random
in G4.

Game 2 M is given samples of the form (A,B,AyBz, D), where A,B,D are
uniformly random in G and y, z are fixed.

Game 3 M is given samples of the form (A,B,AyBz, AwBv) where A,B are
uniformly random in G and y, z, w, v are fixed.

We suppose that

|Pr[M = 1|Game 1]− Pr[M = 1|Game 3]| = ε.

This means that at least one of the following must hold:

(1) |Pr[M = 1|Game 1]− Pr[M = 1|Game 2]| ≥ ε

2
,

(2) |Pr[M = 1|Game 2]− Pr[M = 1|Game 3]| ≥ ε

2
.

Lemma 10 If either (1) or (2) holds, then there exists an algorithm N with
AdvN ≥ ε

2 in deciding the Linear problem.

Proof. We suppose that (1) holds (i.e. M can distinguish between Game 1 and
Game 2). We will show how to define the algorithm N to break the Linear As-
sumption. The Linear challenger gives N an instance g0, g1, g2, g

r1
1 , g

r2
2 , g

r0
0 ∈ G

of the Linear problem. N calls M . Each time M requests a 4-tuple, N uses
Lemma 1 to generate a new instance of its Linear problem. From this instance,
g0, g1, g2, g

r′1
1 , g

r′2
2 , g

r′0
0 ∈ G, N creates a 4-tuple (A,B,C,D) by setting A = g

r′1
1 ,

B = g
r′2
2 , C = g

r′0
0 , and setting D randomly. If the original r0 is uniformly random,

then the Linear attacker has simulated Game 1. If r0 = r1 + r2, then the Linear
attacker has simulated Game 2 with y and z such that gy1 = g0 and gz2 = g0. (Note
that these values of y and z are uniformly random in Zp because g0, g1, g2 were
chosen uniformly randomly from G.) Hence, if N outputs “yes” when M outputs
1, we will have:∣∣∣Pr[N = “yes”|r0

R←− Zp]− Pr[N = “yes”|r0 = r1 + r2]
∣∣∣

= |Pr[M = 1|Game 1]− Pr[M = 1|Game 2]| ≥ ε

2
.

Similarly, if (2) holds (i.e. M can distinguish between Game 2 and Game 3),
then N sets y and z randomly and generates 4-tuples (A,B,C,D) by setting A =
g
r′1
1 , B = g

r′2
2 , C = AyBz, D = g

r′0
0 . If r0 is random, this is Game 2. If r0 = r1 + r2,

this is Game 3. In both cases, we have shown that we obtain an N such that∣∣∣Pr[N = “yes”|r0
R←− Zp]− Pr[N = “yes”|r0 = r1 + r2]

∣∣∣ ≥ ε

2
.

11

�

Putting it all together, we have shown that if our function ensemble is not pseu-
dorandom, then there exists a probabilistic algorithm N which has non-negligible
advantage in deciding the Linear problem. Hence, if the Linear Assumption holds,
our function ensemble is pseudorandom. This completes our proof of Theorem 8.
�

4 Our Generalized Construction

4.1 Construction

We now generalize the construction of the previous section to create a function
ensemble which is pseudorandom under the k-Linear Assumption, for each k ≥ 1.
We note that for k = 1, this is precisely the construction of [23] which was proven
under the DDH Assumption (a.k.a. the 1-Linear Assumption). We will denote our
function ensemble by Fk = {Fn}. Each function in Fn is a function from {0, 1}n to
a group G of prime order p generated by g. The key specifying a function f ∈ Fn
consists of G, p, g and k2n+ k elements of Zp:

Setup(λ) → SK Our Setup algorithm takes in a security parameter λ and
chooses a group G of prime order p which is large with respect to λ. It then
chooses a generator g of G and k2n+ k uniformly random elements of Zp, denoted
by cm, bim,` where 1 ≤ m, ` ≤ k, and 1 ≤ i ≤ n. It outputs:

SK = {G, p, g, cm, bim,` : i ∈ [n], (m, `) ∈ [k]× [k]}.

Here, [n] denotes the set {1, 2, . . . , n} and [k] denotes the set {1, 2, . . . , k}. (The
i’s are superscripts, and do not denote exponentiations.) To define and compute
f(x) for the function f corresponding to SK, we use the following Evaluation
algorithm:

Evaluation(x, SK)→ f(x)

Initialize variables a1 = c1, . . . , ak = ck in Zp.
For i from 1 to n do:

If xi = 0, set am = am for each m ∈ [k].
If xi = 1, set am =

∑k
`=1 a`b

i
m,` for each m ∈ [k].

Output f(x) = ga1 .

We note that the output is always one group element while the key size grows
quadratically in k. To compute the a value f(x), we only need to do one exponen-
tiation in G, perform ≤ k2n multiplications in Zp, and ≤ (k − 1)kn additions in
Zp.

4.2 Security

Theorem 11 For each k ≥ 1, if the k-Linear Assumption holds, then Fk is a
pseudorandom function ensemble.

12

Proof. The proof is essentially the same as the proof of Theorem 8. Again, we
first give an equivalent definition of f using a less efficient algorithm. This would
not be used in practice, but is more convenient for use in the proof.

Inefficient Evaluation(x, SK)→ f(x)

Initialize variables A1 = gc1 , . . . , Ak = gck in G.
For i from 1 to n do:

If xi = 0, set Am = Am for each m ∈ [k].

If xi = 1, set Am =
∏k
`=1A

bim,`

` for each m ∈ [k].
Output f(x) = A1.

We define a sequence of games, Game 0 through Game n. Each game has a
challenger and an attacker who makes function queries.

Game j The challenger fixes values bim,` ∈ Zp for (m, `) ∈ [k] × [k] and i from
j + 1 to n. To respond to a query, the challenger sets A1, . . . , Ak as a random
function of the first j bits of the input and then follows the iterative procedure
above for bits j + 1 to n.

If our function family Fn is not pseudorandom, this implies there exists an
attacker D who can distinguish between two consecutive games j and j + 1 with
non-negligible advantage.

Using the same argument as in the proof of Theorem 8, we note that D can be
used to define an attacker M who receives 2k-tuples of the form

(A1, . . . , Ak, B1, . . . , Bk),

where either these tuples are uniformly chosen from G2k or (A1, . . . , Ak) is uniformly
chosen from Gk and each Bm =

∏k
`=1A

bm,`

` for fixed values bm,`. M will distinguish
between these two cases with non-negligible advantage.

We will show that such an M can be used to break the k-Linear Assumption
using a hybrid argument. We define new Games 0 through k.

Game j M is given input tuples of the form

(A1, . . . , Ak, B̃1, . . . , B̃j , Bj+1, . . . , Bk),

where Am’s and Bm’s are chosen uniformly randomly from G and B̃m is equal to∏k
`=1A

bm,`

` for some fixed values bm,`.

Since M distinguishes between Game 0 and Game k, it must distinguish be-
tween some Game j and Game j + 1 with non-negligible advantage (assuming k is
polynomial in the security parameter).

A k-Linear attacker can then use M as follows. First, upon receiving one in-
stance of the k-Linear Problem from the k-Linear challenger,

g0, g1, . . . , gk, g
r1
1 , . . . , g

rk
k , g

r0
0 ,

the k-Linear attacker generates t instances with the same g0, . . . , gk but different
r′0, . . . , r

′
k values using Lemma 2 repeatedly. The ith instance is then used to gen-

erate the ith tuple to send to M . In the tuple, Am = g
r′m
m for m from 1 to k. Then

13

bm,` are chosen randomly from Zp for ` from 1 to k and m from 1 to j. For m from

1 to j, B̃m =
∏k
`=1A

bm,`

` . The j + 1 element of the tuple is set to gr
′
0

0 . Elements
Bj+2, . . . , Bk are then chosen randomly from G.

If r0 = r1 + · · ·+ rk, then the j + 1 element of the tuple is B̃j+1 =
∏k
`=1A

bj+1,`

` ,
where bj+1,` satisfies gbj+1,`

` = g0. If r0 is random, then the j+1 element of the tuple
is a random element Bj+1. Hence, when M correctly distinguishes between Game j
and Game j+ 1, it will allow the k-Linear attacker to distinguish r0 = r1 + · · ·+ rk
from random. Thus, our function ensemble is pseudorandom under the k-Linear
Assumption. �

5 Discussion and Performance

The primary advantage of our construction is an increase in security with only
a small cost in efficiency. We summarize the relevant properties of our construction
in the following table (with domain {0, 1}n under the k-Linear Assumption):

Computation time Private key storage Computational storage
1 exponentiation in G + G, g, p + 2k elements of Zp +
k2n multiplications in Zp k2n+ k elements of Zp log p elements of Zq

Table 1: Properties of our construction

The 2k elements of Zp in the computational storage are used to retain all of the
old values of the ai’s in our efficient algorithm while we are computing the updated
ones. The log p elements of Zq come from preprocessing: we compute and store
the values of g2i

mod q for i from 0 to log p and use these to speed up the final
exponentiation. We do not include the private key in our computational storage
because we have listed it separately.

We implemented our construction in a subgroup < g > of order p in Z∗q , where
q is a 1024-bit prime and p is a 160-bit prime dividing q−1. We used 160-bit inputs
(i.e. n = 160). We chose a random key and computed our function on randomly
chosen inputs. The following table shows our running times as a function of the
parameter k. If we approximate these times with a quadratic polynomial using a
least squares fit, we get the polynomial 441.4 + 1.57k + 39.57k2. Our table also
demonstrates how closely our times mimic this function:

k microseconds 441.4 + 1.57k + 39.57k2

1 482 483
2 605 603
3 799 802
4 1083 1081
5 1438 1439

Table 2: Running times for n = 160 and 1 function evaluation

Our implementation was programmed in C using the GNU Multiple-Precision
Library (GMP). It was run on an Intel Core 2 6600 2.40GHz PC running the

14

Ubuntu (Linux-based) operating system and compiled with gcc 4.2.4. The efficient
Evaluation algorithm given above is essentially pseudocode for our implementation
(we also pre-computed the values of g2i

for i from 0 to log p to speed up the final
exponentiation). These actual times are less important than the general behavior
they demonstrate: for small values of k, the quadratic growth in the computation
time is rather muted by the constant factor, so the increase in running time caused
by increasing k is very mild. In particular, one can increase k from 1 to 2 to rely
on the Linear Assumption instead of DDH, and the running time is only increased
by a factor of roughly 1.255.

We note that the output of our construction (based on the k-Linear Assumption)
could be expanded to k elements, A1 = ga1 , . . . , Ak = gak . Pseudorandomness
still holds for this larger output by the same proof. There is a cost in efficiency:
computing the larger output takes k exponentiations in G instead of just one.
However, if one needs to generate more pseudorandom output elements, then it is
more efficient to use this version with k outputs instead of computing the version
with one output on k different inputs. This is because the computations in Zp are
then done only once instead of k times.

6 Conclusion

We have constructed relatively efficient pseudorandom functions and proven
their security under the progressively weaker k-Linear Assumptions. Our proof
relies on a novel application of two hybrid arguments to accomodate the weaker
assumptions. An increase in the value of k leads to an increase in security (for
generic groups at least) and only a mild quadratic increase in running time and
private key size. Thus, we have made progress towards the important goal of pro-
viding provably secure alternatives to ad hoc constructions without sacrificing too
much efficiency.

7 Acknowledgements

We thank Drake Dowsett for help with programming our implementation.

References

[1] L. Adleman. A subexponential algorithm for the discrete logarithm problem
with applications to cryptography. In Proceedings of the 20th IEEE Founda-
tions of Computer Science Symposium, volume 2656, 1979.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology - CRYPTO ’96, volume 1109 of
LNCS, pages 1–16. Springer, 1996.

[3] M. Bellare and S. Goldwasser. New paradigms for digital signatures and mes-
sage authentication based on non-interactive zero knowledge proofs. In Ad-
vances in Cryptology - CRYPTO ’89, volume 435 of LNCS, pages 194–211.
Springer, 1990.

15

[4] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Colli-
sions of sha-0 and reduced sha-1. In Advances in Cryptology - EUROCRYPT
2005, LNCS.

[5] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances
in Cryptology - CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer,
2004.

[6] S. Brands. An efficient off-line electronic cash system based on the represen-
tation problem. 1993.

[7] G. Brassard. Modern cryptology. volume 325 of LNCS. Springer, 1988.

[8] R. Cramer and V. Shoup. A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack. In Advances in Cryptology -
CRYPTO ’98, volume 1462 of LNCS, pages 13–25. Springer, 1998.

[9] T. Dierks and C. Allen. The tls protocol version 1.0. rfc 2246. January 1999.

[10] W. Diffie and M. Hellman. New directions in cryptography. In IEEE Trans-
actions in Information Theory, volume 22, pages 644–654, 1976.

[11] T. ElGamal. A public-key cryptosystem and a signature scheme based on
discrete logarithms. In Advances in Cryptology - CRYPTO ’ 84, volume 196
of LNCS, pages 10–18. Springer, 1985.

[12] O. Goldreich. Two remarks concerning the goldwasser-micali-rivest signature
scheme. In Advances in Cryptology - CRYPTO ’84, volume 263 of LNCS,
pages 104–110. Springer, 1987.

[13] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications
of random functions. In Advances in Cryptology - CRYPTO ’84, volume 196
of LNCS, pages 276–288. Springer, 1985.

[14] O. Goldriech, S. Goldwasser, and S. Micali. How to construct random func-
tions. In Journal of the ACM, volume 33, pages 792–807, 1986.

[15] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. Construction of a
pseudo-random generator from any one-way function. In SIAM Journal on
Computing, volume 28, pages 1364–1396, 1999.

[16] D. Hofheinz and E. Kiltz. Secure hybrid encryption from weakened key encap-
sulation. In Advances in Cryptology - CRYPTO 2007, volume 4622 of LNCS,
pages 553–571. Springer, 2007.

[17] A. Joux and K. Nguyen. Separating decision diffie-hellman from computational
diffie-hellman in cryptographic groups. In Journal of Cryptology, volume 16,
pages 239–247, September 2003.

[18] E. Kiltz. Chosen-ciphertext secure key encapsulation based on hashed gap
decisional diffie-hellman. In Proceedings of IACR PKC 2007, volume 4450 of
LNCS, pages 282–297, 2007.

[19] D. E. Knuth. In The Art of Computer Programming, volume 3, pages 575–576,
1973.

[20] M. Luby. In Pseudo-randomness and applications. Princeton University Press,
1996.

16

[21] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. In IEEE Transactions on Information Theory,
volume 39, pages 1639–1646, 1993.

[22] S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proceed-
ings of 40th Annual Symposium on Foundations of Computer Science, pages
120–130, 1999.

[23] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-
random functions. In 38th Annual Symposium on Foundations of Computer
Science, pages 458–467, 1997.

[24] J. Pollard. Monte carlo methods for index computations (mod p). In Mathe-
matics of Computation, volume 32, pages 918–924, 1978.

[25] A. Razborov and S. Rudich. Natural proofs. In Journal of Computer and
System Sciences, volume 55, pages 24–35, 1997.

[26] H. Shacham. A cramer-shoup encryption scheme from the linear assumption
and from progressively weaker linear variants. 2007.

[27] M. Stadler. Publicly verifiable secret sharing. In Advances in Cryptology -
EUROCRYPT ’96, volume 1070 of LNCS, pages 190–199. Springer, 1996.

[28] L. Valiant. A theory of the learnable. In Communications of the ACM, vol-
ume 27, pages 1134–1142, 1984.

[29] X. Wang and H. Yu. How to break md5 and other hash functions. In Ad-
vances in Cryptology - EUROCRYPT 2005, volume 3494 of LNCS, pages 19–
35. Springer, 2005.

17

